| author | wenzelm | 
| Fri, 28 Apr 2017 13:21:03 +0200 | |
| changeset 65604 | 637aa8e93cd7 | 
| parent 64587 | 8355a6e2df79 | 
| child 66148 | 5e60c2d0a1f1 | 
| permissions | -rw-r--r-- | 
| 51599 | 1 | (* Title: HOL/Library/DAList_Multiset.thy | 
| 2 | Author: Lukas Bulwahn, TU Muenchen | |
| 3 | *) | |
| 4 | ||
| 58881 | 5 | section \<open>Multisets partially implemented by association lists\<close> | 
| 51599 | 6 | |
| 7 | theory DAList_Multiset | |
| 8 | imports Multiset DAList | |
| 9 | begin | |
| 10 | ||
| 58806 | 11 | text \<open>Delete prexisting code equations\<close> | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 12 | |
| 58806 | 13 | lemma [code, code del]: "{#} = {#}" ..
 | 
| 51623 | 14 | |
| 63195 | 15 | lemma [code, code del]: "Multiset.is_empty = Multiset.is_empty" .. | 
| 16 | ||
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 17 | lemma [code, code del]: "add_mset = add_mset" .. | 
| 51623 | 18 | |
| 58806 | 19 | lemma [code, code del]: "plus = (plus :: 'a multiset \<Rightarrow> _)" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 20 | |
| 58806 | 21 | lemma [code, code del]: "minus = (minus :: 'a multiset \<Rightarrow> _)" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 22 | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 23 | lemma [code, code del]: "inf_subset_mset = (inf_subset_mset :: 'a multiset \<Rightarrow> _)" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 24 | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 25 | lemma [code, code del]: "sup_subset_mset = (sup_subset_mset :: 'a multiset \<Rightarrow> _)" .. | 
| 51623 | 26 | |
| 58806 | 27 | lemma [code, code del]: "image_mset = image_mset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 28 | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 29 | lemma [code, code del]: "filter_mset = filter_mset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 30 | |
| 58806 | 31 | lemma [code, code del]: "count = count" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 32 | |
| 59949 | 33 | lemma [code, code del]: "size = (size :: _ multiset \<Rightarrow> nat)" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 34 | |
| 63830 | 35 | lemma [code, code del]: "sum_mset = sum_mset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 36 | |
| 63830 | 37 | lemma [code, code del]: "prod_mset = prod_mset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 38 | |
| 60495 | 39 | lemma [code, code del]: "set_mset = set_mset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 40 | |
| 58806 | 41 | lemma [code, code del]: "sorted_list_of_multiset = sorted_list_of_multiset" .. | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 42 | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 43 | lemma [code, code del]: "subset_mset = subset_mset" .. | 
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 44 | |
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 45 | lemma [code, code del]: "subseteq_mset = subseteq_mset" .. | 
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 46 | |
| 58806 | 47 | lemma [code, code del]: "equal_multiset_inst.equal_multiset = equal_multiset_inst.equal_multiset" .. | 
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 48 | |
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 49 | |
| 58806 | 50 | text \<open>Raw operations on lists\<close> | 
| 51599 | 51 | |
| 58806 | 52 | definition join_raw :: | 
| 53 |     "('key \<Rightarrow> 'val \<times> 'val \<Rightarrow> 'val) \<Rightarrow>
 | |
| 54 |       ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list \<Rightarrow> ('key \<times> 'val) list"
 | |
| 55 | where "join_raw f xs ys = foldr (\<lambda>(k, v). map_default k v (\<lambda>v'. f k (v', v))) ys xs" | |
| 51599 | 56 | |
| 58806 | 57 | lemma join_raw_Nil [simp]: "join_raw f xs [] = xs" | 
| 58 | by (simp add: join_raw_def) | |
| 51599 | 59 | |
| 60 | lemma join_raw_Cons [simp]: | |
| 58806 | 61 | "join_raw f xs ((k, v) # ys) = map_default k v (\<lambda>v'. f k (v', v)) (join_raw f xs ys)" | 
| 62 | by (simp add: join_raw_def) | |
| 51599 | 63 | |
| 64 | lemma map_of_join_raw: | |
| 65 | assumes "distinct (map fst ys)" | |
| 58806 | 66 | shows "map_of (join_raw f xs ys) x = | 
| 67 | (case map_of xs x of | |
| 68 | None \<Rightarrow> map_of ys x | |
| 69 | | Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (f x (v, v'))))" | |
| 70 | using assms | |
| 71 | apply (induct ys) | |
| 72 | apply (auto simp add: map_of_map_default split: option.split) | |
| 73 | apply (metis map_of_eq_None_iff option.simps(2) weak_map_of_SomeI) | |
| 74 | apply (metis Some_eq_map_of_iff map_of_eq_None_iff option.simps(2)) | |
| 75 | done | |
| 51599 | 76 | |
| 77 | lemma distinct_join_raw: | |
| 78 | assumes "distinct (map fst xs)" | |
| 79 | shows "distinct (map fst (join_raw f xs ys))" | |
| 58806 | 80 | using assms | 
| 51599 | 81 | proof (induct ys) | 
| 58806 | 82 | case Nil | 
| 83 | then show ?case by simp | |
| 84 | next | |
| 51599 | 85 | case (Cons y ys) | 
| 58806 | 86 | then show ?case by (cases y) (simp add: distinct_map_default) | 
| 87 | qed | |
| 51599 | 88 | |
| 58806 | 89 | definition "subtract_entries_raw xs ys = foldr (\<lambda>(k, v). AList.map_entry k (\<lambda>v'. v' - v)) ys xs" | 
| 51599 | 90 | |
| 91 | lemma map_of_subtract_entries_raw: | |
| 92 | assumes "distinct (map fst ys)" | |
| 58806 | 93 | shows "map_of (subtract_entries_raw xs ys) x = | 
| 94 | (case map_of xs x of | |
| 95 | None \<Rightarrow> None | |
| 96 | | Some v \<Rightarrow> (case map_of ys x of None \<Rightarrow> Some v | Some v' \<Rightarrow> Some (v - v')))" | |
| 97 | using assms | |
| 98 | unfolding subtract_entries_raw_def | |
| 99 | apply (induct ys) | |
| 100 | apply auto | |
| 101 | apply (simp split: option.split) | |
| 102 | apply (simp add: map_of_map_entry) | |
| 103 | apply (auto split: option.split) | |
| 104 | apply (metis map_of_eq_None_iff option.simps(3) option.simps(4)) | |
| 105 | apply (metis map_of_eq_None_iff option.simps(4) option.simps(5)) | |
| 106 | done | |
| 51599 | 107 | |
| 108 | lemma distinct_subtract_entries_raw: | |
| 109 | assumes "distinct (map fst xs)" | |
| 110 | shows "distinct (map fst (subtract_entries_raw xs ys))" | |
| 58806 | 111 | using assms | 
| 112 | unfolding subtract_entries_raw_def | |
| 113 | by (induct ys) (auto simp add: distinct_map_entry) | |
| 51599 | 114 | |
| 115 | ||
| 58806 | 116 | text \<open>Operations on alists with distinct keys\<close> | 
| 51599 | 117 | |
| 58806 | 118 | lift_definition join :: "('a \<Rightarrow> 'b \<times> 'b \<Rightarrow> 'b) \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist"
 | 
| 119 | is join_raw | |
| 120 | by (simp add: distinct_join_raw) | |
| 51599 | 121 | |
| 122 | lift_definition subtract_entries :: "('a, ('b :: minus)) alist \<Rightarrow> ('a, 'b) alist \<Rightarrow> ('a, 'b) alist"
 | |
| 58806 | 123 | is subtract_entries_raw | 
| 124 | by (simp add: distinct_subtract_entries_raw) | |
| 51599 | 125 | |
| 126 | ||
| 58806 | 127 | text \<open>Implementing multisets by means of association lists\<close> | 
| 51599 | 128 | |
| 58806 | 129 | definition count_of :: "('a \<times> nat) list \<Rightarrow> 'a \<Rightarrow> nat"
 | 
| 130 | where "count_of xs x = (case map_of xs x of None \<Rightarrow> 0 | Some n \<Rightarrow> n)" | |
| 131 | ||
| 132 | lemma count_of_multiset: "count_of xs \<in> multiset" | |
| 51599 | 133 | proof - | 
| 58806 | 134 |   let ?A = "{x::'a. 0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)}"
 | 
| 51599 | 135 | have "?A \<subseteq> dom (map_of xs)" | 
| 136 | proof | |
| 137 | fix x | |
| 138 | assume "x \<in> ?A" | |
| 58806 | 139 | then have "0 < (case map_of xs x of None \<Rightarrow> 0::nat | Some n \<Rightarrow> n)" | 
| 140 | by simp | |
| 141 | then have "map_of xs x \<noteq> None" | |
| 142 | by (cases "map_of xs x") auto | |
| 143 | then show "x \<in> dom (map_of xs)" | |
| 144 | by auto | |
| 51599 | 145 | qed | 
| 146 | with finite_dom_map_of [of xs] have "finite ?A" | |
| 147 | by (auto intro: finite_subset) | |
| 148 | then show ?thesis | |
| 149 | by (simp add: count_of_def fun_eq_iff multiset_def) | |
| 150 | qed | |
| 151 | ||
| 152 | lemma count_simps [simp]: | |
| 153 | "count_of [] = (\<lambda>_. 0)" | |
| 154 | "count_of ((x, n) # xs) = (\<lambda>y. if x = y then n else count_of xs y)" | |
| 155 | by (simp_all add: count_of_def fun_eq_iff) | |
| 156 | ||
| 58806 | 157 | lemma count_of_empty: "x \<notin> fst ` set xs \<Longrightarrow> count_of xs x = 0" | 
| 51599 | 158 | by (induct xs) (simp_all add: count_of_def) | 
| 159 | ||
| 58806 | 160 | lemma count_of_filter: "count_of (List.filter (P \<circ> fst) xs) x = (if P x then count_of xs x else 0)" | 
| 51599 | 161 | by (induct xs) auto | 
| 162 | ||
| 163 | lemma count_of_map_default [simp]: | |
| 58806 | 164 | "count_of (map_default x b (\<lambda>x. x + b) xs) y = | 
| 165 | (if x = y then count_of xs x + b else count_of xs y)" | |
| 166 | unfolding count_of_def by (simp add: map_of_map_default split: option.split) | |
| 51599 | 167 | |
| 168 | lemma count_of_join_raw: | |
| 58806 | 169 | "distinct (map fst ys) \<Longrightarrow> | 
| 170 | count_of xs x + count_of ys x = count_of (join_raw (\<lambda>x (x, y). x + y) xs ys) x" | |
| 171 | unfolding count_of_def by (simp add: map_of_join_raw split: option.split) | |
| 51599 | 172 | |
| 173 | lemma count_of_subtract_entries_raw: | |
| 58806 | 174 | "distinct (map fst ys) \<Longrightarrow> | 
| 175 | count_of xs x - count_of ys x = count_of (subtract_entries_raw xs ys) x" | |
| 176 | unfolding count_of_def by (simp add: map_of_subtract_entries_raw split: option.split) | |
| 51599 | 177 | |
| 178 | ||
| 58806 | 179 | text \<open>Code equations for multiset operations\<close> | 
| 51599 | 180 | |
| 58806 | 181 | definition Bag :: "('a, nat) alist \<Rightarrow> 'a multiset"
 | 
| 182 | where "Bag xs = Abs_multiset (count_of (DAList.impl_of xs))" | |
| 51599 | 183 | |
| 184 | code_datatype Bag | |
| 185 | ||
| 58806 | 186 | lemma count_Bag [simp, code]: "count (Bag xs) = count_of (DAList.impl_of xs)" | 
| 187 | by (simp add: Bag_def count_of_multiset) | |
| 51599 | 188 | |
| 58806 | 189 | lemma Mempty_Bag [code]: "{#} = Bag (DAList.empty)"
 | 
| 51599 | 190 | by (simp add: multiset_eq_iff alist.Alist_inverse DAList.empty_def) | 
| 191 | ||
| 63195 | 192 | lift_definition is_empty_Bag_impl :: "('a, nat) alist \<Rightarrow> bool" is
 | 
| 193 | "\<lambda>xs. list_all (\<lambda>x. snd x = 0) xs" . | |
| 194 | ||
| 195 | lemma is_empty_Bag [code]: "Multiset.is_empty (Bag xs) \<longleftrightarrow> is_empty_Bag_impl xs" | |
| 196 | proof - | |
| 197 | have "Multiset.is_empty (Bag xs) \<longleftrightarrow> (\<forall>x. count (Bag xs) x = 0)" | |
| 198 | unfolding Multiset.is_empty_def multiset_eq_iff by simp | |
| 199 | also have "\<dots> \<longleftrightarrow> (\<forall>x\<in>fst ` set (alist.impl_of xs). count (Bag xs) x = 0)" | |
| 200 | proof (intro iffI allI ballI) | |
| 201 | fix x assume A: "\<forall>x\<in>fst ` set (alist.impl_of xs). count (Bag xs) x = 0" | |
| 202 | thus "count (Bag xs) x = 0" | |
| 203 | proof (cases "x \<in> fst ` set (alist.impl_of xs)") | |
| 204 | case False | |
| 205 | thus ?thesis by (force simp: count_of_def split: option.splits) | |
| 206 | qed (insert A, auto) | |
| 207 | qed simp_all | |
| 208 | also have "\<dots> \<longleftrightarrow> list_all (\<lambda>x. snd x = 0) (alist.impl_of xs)" | |
| 209 | by (auto simp: count_of_def list_all_def) | |
| 210 | finally show ?thesis by (simp add: is_empty_Bag_impl.rep_eq) | |
| 211 | qed | |
| 212 | ||
| 58806 | 213 | lemma union_Bag [code]: "Bag xs + Bag ys = Bag (join (\<lambda>x (n1, n2). n1 + n2) xs ys)" | 
| 214 | by (rule multiset_eqI) | |
| 215 | (simp add: count_of_join_raw alist.Alist_inverse distinct_join_raw join_def) | |
| 51599 | 216 | |
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 217 | lemma add_mset_Bag [code]: "add_mset x (Bag xs) = | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 218 | Bag (join (\<lambda>x (n1, n2). n1 + n2) (DAList.update x 1 DAList.empty) xs)" | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 219 | unfolding add_mset_add_single[of x "Bag xs"] union_Bag[symmetric] | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 220 | by (simp add: multiset_eq_iff update.rep_eq empty.rep_eq) | 
| 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 221 | |
| 58806 | 222 | lemma minus_Bag [code]: "Bag xs - Bag ys = Bag (subtract_entries xs ys)" | 
| 223 | by (rule multiset_eqI) | |
| 224 | (simp add: count_of_subtract_entries_raw alist.Alist_inverse | |
| 225 | distinct_subtract_entries_raw subtract_entries_def) | |
| 51599 | 226 | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 227 | lemma filter_Bag [code]: "filter_mset P (Bag xs) = Bag (DAList.filter (P \<circ> fst) xs)" | 
| 58806 | 228 | by (rule multiset_eqI) (simp add: count_of_filter DAList.filter.rep_eq) | 
| 51599 | 229 | |
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 230 | |
| 64587 | 231 | lemma mset_eq [code]: "HOL.equal (m1::'a::equal multiset) m2 \<longleftrightarrow> m1 \<subseteq># m2 \<and> m2 \<subseteq># m1" | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 232 | by (metis equal_multiset_def subset_mset.eq_iff) | 
| 55808 
488c3e8282c8
added Rene Thiemann's patch for the nonterminating equality/subset test code for multisets
 nipkow parents: 
51623diff
changeset | 233 | |
| 61585 | 234 | text \<open>By default the code for \<open><\<close> is @{prop"xs < ys \<longleftrightarrow> xs \<le> ys \<and> \<not> xs = ys"}.
 | 
| 235 | With equality implemented by \<open>\<le>\<close>, this leads to three calls of \<open>\<le>\<close>. | |
| 58806 | 236 | Here is a more efficient version:\<close> | 
| 64587 | 237 | lemma mset_less[code]: "xs \<subset># (ys :: 'a multiset) \<longleftrightarrow> xs \<subseteq># ys \<and> \<not> ys \<subseteq># xs" | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 238 | by (rule subset_mset.less_le_not_le) | 
| 55887 | 239 | |
| 240 | lemma mset_less_eq_Bag0: | |
| 64587 | 241 | "Bag xs \<subseteq># A \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). count_of (DAList.impl_of xs) x \<le> count A x)" | 
| 51599 | 242 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 243 | proof | |
| 58806 | 244 | assume ?lhs | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 245 | then show ?rhs by (auto simp add: subseteq_mset_def) | 
| 51599 | 246 | next | 
| 247 | assume ?rhs | |
| 248 | show ?lhs | |
| 63310 
caaacf37943f
normalising multiset theorem names
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63195diff
changeset | 249 | proof (rule mset_subset_eqI) | 
| 51599 | 250 | fix x | 
| 58806 | 251 | from \<open>?rhs\<close> have "count_of (DAList.impl_of xs) x \<le> count A x" | 
| 51599 | 252 | by (cases "x \<in> fst ` set (DAList.impl_of xs)") (auto simp add: count_of_empty) | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 253 | then show "count (Bag xs) x \<le> count A x" by (simp add: subset_mset_def) | 
| 51599 | 254 | qed | 
| 255 | qed | |
| 256 | ||
| 55887 | 257 | lemma mset_less_eq_Bag [code]: | 
| 64587 | 258 | "Bag xs \<subseteq># (A :: 'a multiset) \<longleftrightarrow> (\<forall>(x, n) \<in> set (DAList.impl_of xs). n \<le> count A x)" | 
| 55887 | 259 | proof - | 
| 260 |   {
 | |
| 261 | fix x n | |
| 262 | assume "(x,n) \<in> set (DAList.impl_of xs)" | |
| 58806 | 263 | then have "count_of (DAList.impl_of xs) x = n" | 
| 264 | proof transfer | |
| 265 | fix x n | |
| 266 |       fix xs :: "('a \<times> nat) list"
 | |
| 55887 | 267 | show "(distinct \<circ> map fst) xs \<Longrightarrow> (x, n) \<in> set xs \<Longrightarrow> count_of xs x = n" | 
| 58806 | 268 | proof (induct xs) | 
| 269 | case Nil | |
| 270 | then show ?case by simp | |
| 271 | next | |
| 272 | case (Cons ym ys) | |
| 55887 | 273 | obtain y m where ym: "ym = (y,m)" by force | 
| 274 | note Cons = Cons[unfolded ym] | |
| 275 | show ?case | |
| 276 | proof (cases "x = y") | |
| 277 | case False | |
| 58806 | 278 | with Cons show ?thesis | 
| 279 | unfolding ym by auto | |
| 55887 | 280 | next | 
| 281 | case True | |
| 282 | with Cons(2-3) have "m = n" by force | |
| 58806 | 283 | with True show ?thesis | 
| 284 | unfolding ym by auto | |
| 55887 | 285 | qed | 
| 58806 | 286 | qed | 
| 55887 | 287 | qed | 
| 288 | } | |
| 58806 | 289 | then show ?thesis | 
| 290 | unfolding mset_less_eq_Bag0 by auto | |
| 55887 | 291 | qed | 
| 292 | ||
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 293 | declare multiset_inter_def [code] | 
| 60397 
f8a513fedb31
Renaming multiset operators < ~> <#,...
 Mathias Fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
59998diff
changeset | 294 | declare sup_subset_mset_def [code] | 
| 60515 | 295 | declare mset.simps [code] | 
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 296 | |
| 55887 | 297 | |
| 58806 | 298 | fun fold_impl :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a \<times> nat) list \<Rightarrow> 'b"
 | 
| 299 | where | |
| 55887 | 300 | "fold_impl fn e ((a,n) # ms) = (fold_impl fn ((fn a n) e) ms)" | 
| 301 | | "fold_impl fn e [] = e" | |
| 302 | ||
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 303 | context | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 304 | begin | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 305 | |
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 306 | qualified definition fold :: "('a \<Rightarrow> nat \<Rightarrow> 'b \<Rightarrow> 'b) \<Rightarrow> 'b \<Rightarrow> ('a, nat) alist \<Rightarrow> 'b"
 | 
| 58806 | 307 | where "fold f e al = fold_impl f e (DAList.impl_of al)" | 
| 55887 | 308 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 309 | end | 
| 55887 | 310 | |
| 311 | context comp_fun_commute | |
| 312 | begin | |
| 313 | ||
| 58806 | 314 | lemma DAList_Multiset_fold: | 
| 315 | assumes fn: "\<And>a n x. fn a n x = (f a ^^ n) x" | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 316 | shows "fold_mset f e (Bag al) = DAList_Multiset.fold fn e al" | 
| 58806 | 317 | unfolding DAList_Multiset.fold_def | 
| 55887 | 318 | proof (induct al) | 
| 319 | fix ys | |
| 58806 | 320 |   let ?inv = "{xs :: ('a \<times> nat) list. (distinct \<circ> map fst) xs}"
 | 
| 55887 | 321 | note cs[simp del] = count_simps | 
| 58806 | 322 | have count[simp]: "\<And>x. count (Abs_multiset (count_of x)) = count_of x" | 
| 55887 | 323 | by (rule Abs_multiset_inverse[OF count_of_multiset]) | 
| 324 | assume ys: "ys \<in> ?inv" | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 325 | then show "fold_mset f e (Bag (Alist ys)) = fold_impl fn e (DAList.impl_of (Alist ys))" | 
| 55887 | 326 | unfolding Bag_def unfolding Alist_inverse[OF ys] | 
| 327 | proof (induct ys arbitrary: e rule: list.induct) | |
| 328 | case Nil | |
| 329 | show ?case | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 330 |       by (rule trans[OF arg_cong[of _ "{#}" "fold_mset f e", OF multiset_eqI]])
 | 
| 55887 | 331 | (auto, simp add: cs) | 
| 332 | next | |
| 333 | case (Cons pair ys e) | |
| 58806 | 334 | obtain a n where pair: "pair = (a,n)" | 
| 335 | by force | |
| 336 | from fn[of a n] have [simp]: "fn a n = (f a ^^ n)" | |
| 337 | by auto | |
| 338 | have inv: "ys \<in> ?inv" | |
| 339 | using Cons(2) by auto | |
| 55887 | 340 | note IH = Cons(1)[OF inv] | 
| 63040 | 341 | define Ys where "Ys = Abs_multiset (count_of ys)" | 
| 55887 | 342 |     have id: "Abs_multiset (count_of ((a, n) # ys)) = ((op + {# a #}) ^^ n) Ys"
 | 
| 343 | unfolding Ys_def | |
| 344 | proof (rule multiset_eqI, unfold count) | |
| 58806 | 345 | fix c | 
| 346 | show "count_of ((a, n) # ys) c = | |
| 347 |         count ((op + {#a#} ^^ n) (Abs_multiset (count_of ys))) c" (is "?l = ?r")
 | |
| 55887 | 348 | proof (cases "c = a") | 
| 58806 | 349 | case False | 
| 350 | then show ?thesis | |
| 351 | unfolding cs by (induct n) auto | |
| 55887 | 352 | next | 
| 353 | case True | |
| 58806 | 354 | then have "?l = n" by (simp add: cs) | 
| 55887 | 355 | also have "n = ?r" unfolding True | 
| 356 | proof (induct n) | |
| 357 | case 0 | |
| 358 | from Cons(2)[unfolded pair] have "a \<notin> fst ` set ys" by auto | |
| 58806 | 359 | then show ?case by (induct ys) (simp, auto simp: cs) | 
| 360 | next | |
| 361 | case Suc | |
| 362 | then show ?case by simp | |
| 363 | qed | |
| 55887 | 364 | finally show ?thesis . | 
| 365 | qed | |
| 366 | qed | |
| 58806 | 367 | show ?case | 
| 368 | unfolding pair | |
| 369 | apply (simp add: IH[symmetric]) | |
| 370 | unfolding id Ys_def[symmetric] | |
| 371 | apply (induct n) | |
| 372 | apply (auto simp: fold_mset_fun_left_comm[symmetric]) | |
| 373 | done | |
| 55887 | 374 | qed | 
| 375 | qed | |
| 376 | ||
| 58806 | 377 | end | 
| 55887 | 378 | |
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 379 | context | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 380 | begin | 
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 381 | |
| 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 382 | private lift_definition single_alist_entry :: "'a \<Rightarrow> 'b \<Rightarrow> ('a, 'b) alist" is "\<lambda>a b. [(a, b)]"
 | 
| 58806 | 383 | by auto | 
| 55887 | 384 | |
| 58806 | 385 | lemma image_mset_Bag [code]: | 
| 55887 | 386 | "image_mset f (Bag ms) = | 
| 58806 | 387 |     DAList_Multiset.fold (\<lambda>a n m. Bag (single_alist_entry (f a) n) + m) {#} ms"
 | 
| 388 | unfolding image_mset_def | |
| 55887 | 389 | proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) | 
| 390 | fix a n m | |
| 63793 
e68a0b651eb5
add_mset constructor in multisets
 fleury <Mathias.Fleury@mpi-inf.mpg.de> parents: 
63310diff
changeset | 391 | show "Bag (single_alist_entry (f a) n) + m = ((add_mset \<circ> f) a ^^ n) m" (is "?l = ?r") | 
| 55887 | 392 | proof (rule multiset_eqI) | 
| 393 | fix x | |
| 394 | have "count ?r x = (if x = f a then n + count m x else count m x)" | |
| 58806 | 395 | by (induct n) auto | 
| 396 | also have "\<dots> = count ?l x" | |
| 397 | by (simp add: single_alist_entry.rep_eq) | |
| 55887 | 398 | finally show "count ?l x = count ?r x" .. | 
| 399 | qed | |
| 400 | qed | |
| 401 | ||
| 61115 
3a4400985780
modernized name space management -- more uniform qualification;
 wenzelm parents: 
60679diff
changeset | 402 | end | 
| 55887 | 403 | |
| 58806 | 404 | (* we cannot use (\<lambda>a n. op + (a * n)) for folding, since * is not defined | 
| 55887 | 405 | in comm_monoid_add *) | 
| 63830 | 406 | lemma sum_mset_Bag[code]: "sum_mset (Bag ms) = DAList_Multiset.fold (\<lambda>a n. ((op + a) ^^ n)) 0 ms" | 
| 407 | unfolding sum_mset.eq_fold | |
| 58806 | 408 | apply (rule comp_fun_commute.DAList_Multiset_fold) | 
| 409 | apply unfold_locales | |
| 410 | apply (auto simp: ac_simps) | |
| 411 | done | |
| 55887 | 412 | |
| 58806 | 413 | (* we cannot use (\<lambda>a n. op * (a ^ n)) for folding, since ^ is not defined | 
| 55887 | 414 | in comm_monoid_mult *) | 
| 63830 | 415 | lemma prod_mset_Bag[code]: "prod_mset (Bag ms) = DAList_Multiset.fold (\<lambda>a n. ((op * a) ^^ n)) 1 ms" | 
| 416 | unfolding prod_mset.eq_fold | |
| 58806 | 417 | apply (rule comp_fun_commute.DAList_Multiset_fold) | 
| 418 | apply unfold_locales | |
| 419 | apply (auto simp: ac_simps) | |
| 420 | done | |
| 55887 | 421 | |
| 59998 
c54d36be22ef
renamed Multiset.fold -> fold_mset, Multiset.filter -> filter_mset
 nipkow parents: 
59949diff
changeset | 422 | lemma size_fold: "size A = fold_mset (\<lambda>_. Suc) 0 A" (is "_ = fold_mset ?f _ _") | 
| 55887 | 423 | proof - | 
| 60679 | 424 | interpret comp_fun_commute ?f by standard auto | 
| 55887 | 425 | show ?thesis by (induct A) auto | 
| 426 | qed | |
| 427 | ||
| 59949 | 428 | lemma size_Bag[code]: "size (Bag ms) = DAList_Multiset.fold (\<lambda>a n. op + n) 0 ms" | 
| 429 | unfolding size_fold | |
| 55887 | 430 | proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, simp) | 
| 431 | fix a n x | |
| 58806 | 432 | show "n + x = (Suc ^^ n) x" | 
| 433 | by (induct n) auto | |
| 55887 | 434 | qed | 
| 435 | ||
| 436 | ||
| 60495 | 437 | lemma set_mset_fold: "set_mset A = fold_mset insert {} A" (is "_ = fold_mset ?f _ _")
 | 
| 55887 | 438 | proof - | 
| 60679 | 439 | interpret comp_fun_commute ?f by standard auto | 
| 58806 | 440 | show ?thesis by (induct A) auto | 
| 55887 | 441 | qed | 
| 442 | ||
| 60495 | 443 | lemma set_mset_Bag[code]: | 
| 444 |   "set_mset (Bag ms) = DAList_Multiset.fold (\<lambda>a n. (if n = 0 then (\<lambda>m. m) else insert a)) {} ms"
 | |
| 445 | unfolding set_mset_fold | |
| 55887 | 446 | proof (rule comp_fun_commute.DAList_Multiset_fold, unfold_locales, (auto simp: ac_simps)[1]) | 
| 447 | fix a n x | |
| 448 | show "(if n = 0 then \<lambda>m. m else insert a) x = (insert a ^^ n) x" (is "?l n = ?r n") | |
| 449 | proof (cases n) | |
| 58806 | 450 | case 0 | 
| 451 | then show ?thesis by simp | |
| 452 | next | |
| 55887 | 453 | case (Suc m) | 
| 58806 | 454 | then have "?l n = insert a x" by simp | 
| 55887 | 455 | moreover have "?r n = insert a x" unfolding Suc by (induct m) auto | 
| 456 | ultimately show ?thesis by auto | |
| 58806 | 457 | qed | 
| 55887 | 458 | qed | 
| 459 | ||
| 460 | ||
| 51600 
197e25f13f0c
default implementation of multisets by list with reasonable coverage of operations on multisets
 haftmann parents: 
51599diff
changeset | 461 | instantiation multiset :: (exhaustive) exhaustive | 
| 51599 | 462 | begin | 
| 463 | ||
| 58806 | 464 | definition exhaustive_multiset :: | 
| 465 |   "('a multiset \<Rightarrow> (bool \<times> term list) option) \<Rightarrow> natural \<Rightarrow> (bool \<times> term list) option"
 | |
| 466 | where "exhaustive_multiset f i = Quickcheck_Exhaustive.exhaustive (\<lambda>xs. f (Bag xs)) i" | |
| 51599 | 467 | |
| 468 | instance .. | |
| 469 | ||
| 470 | end | |
| 471 | ||
| 472 | end | |
| 473 |