| author | fleury | 
| Mon, 16 Jun 2014 16:21:52 +0200 | |
| changeset 57258 | 67d85a8aa6cc | 
| parent 56651 | fc105315822a | 
| child 57471 | 11cd462e31ec | 
| permissions | -rw-r--r-- | 
| 55059 | 1  | 
(* Title: HOL/BNF_LFP.thy  | 
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
2  | 
Author: Dmitriy Traytel, TU Muenchen  | 
| 53305 | 3  | 
Author: Lorenz Panny, TU Muenchen  | 
4  | 
Author: Jasmin Blanchette, TU Muenchen  | 
|
5  | 
Copyright 2012, 2013  | 
|
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
6  | 
|
| 
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
7  | 
Least fixed point operation on bounded natural functors.  | 
| 
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
8  | 
*)  | 
| 
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
9  | 
|
| 
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
10  | 
header {* Least Fixed Point Operation on Bounded Natural Functors *}
 | 
| 
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
11  | 
|
| 
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
12  | 
theory BNF_LFP  | 
| 53311 | 13  | 
imports BNF_FP_Base  | 
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
14  | 
keywords  | 
| 53305 | 15  | 
"datatype_new" :: thy_decl and  | 
| 
55575
 
a5e33e18fb5c
moved 'primrec' up (for real this time) and removed temporary 'old_primrec'
 
blanchet 
parents: 
55571 
diff
changeset
 | 
16  | 
"datatype_compat" :: thy_decl  | 
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
17  | 
begin  | 
| 
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
18  | 
|
| 49312 | 19  | 
lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}"
 | 
20  | 
by blast  | 
|
21  | 
||
| 56346 | 22  | 
lemma image_Collect_subsetI: "(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B"
 | 
| 49312 | 23  | 
by blast  | 
24  | 
||
25  | 
lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X"
 | 
|
26  | 
by auto  | 
|
27  | 
||
28  | 
lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x"
 | 
|
29  | 
by auto  | 
|
30  | 
||
| 
55023
 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
 
blanchet 
parents: 
54841 
diff
changeset
 | 
31  | 
lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> underS R j"  | 
| 
 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
 
blanchet 
parents: 
54841 
diff
changeset
 | 
32  | 
unfolding underS_def by simp  | 
| 49312 | 33  | 
|
| 
55023
 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
 
blanchet 
parents: 
54841 
diff
changeset
 | 
34  | 
lemma underS_E: "i \<in> underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R"  | 
| 
 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
 
blanchet 
parents: 
54841 
diff
changeset
 | 
35  | 
unfolding underS_def by simp  | 
| 49312 | 36  | 
|
| 
55023
 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
 
blanchet 
parents: 
54841 
diff
changeset
 | 
37  | 
lemma underS_Field: "i \<in> underS R j \<Longrightarrow> i \<in> Field R"  | 
| 
 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
 
blanchet 
parents: 
54841 
diff
changeset
 | 
38  | 
unfolding underS_def Field_def by auto  | 
| 49312 | 39  | 
|
40  | 
lemma FieldI2: "(i, j) \<in> R \<Longrightarrow> j \<in> Field R"  | 
|
41  | 
unfolding Field_def by auto  | 
|
42  | 
||
43  | 
lemma fst_convol': "fst (<f, g> x) = f x"  | 
|
44  | 
using fst_convol unfolding convol_def by simp  | 
|
45  | 
||
46  | 
lemma snd_convol': "snd (<f, g> x) = g x"  | 
|
47  | 
using snd_convol unfolding convol_def by simp  | 
|
48  | 
||
49  | 
lemma convol_expand_snd: "fst o f = g \<Longrightarrow> <g, snd o f> = f"  | 
|
50  | 
unfolding convol_def by auto  | 
|
51  | 
||
| 55811 | 52  | 
lemma convol_expand_snd':  | 
53  | 
assumes "(fst o f = g)"  | 
|
54  | 
shows "h = snd o f \<longleftrightarrow> <g, h> = f"  | 
|
55  | 
proof -  | 
|
56  | 
from assms have *: "<g, snd o f> = f" by (rule convol_expand_snd)  | 
|
57  | 
then have "h = snd o f \<longleftrightarrow> h = snd o <g, snd o f>" by simp  | 
|
58  | 
moreover have "\<dots> \<longleftrightarrow> h = snd o f" by (simp add: snd_convol)  | 
|
59  | 
moreover have "\<dots> \<longleftrightarrow> <g, h> = f" by (subst (2) *[symmetric]) (auto simp: convol_def fun_eq_iff)  | 
|
60  | 
ultimately show ?thesis by simp  | 
|
61  | 
qed  | 
|
| 49312 | 62  | 
lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B"  | 
63  | 
unfolding bij_betw_def by auto  | 
|
64  | 
||
65  | 
lemma bij_betw_imageE: "bij_betw f A B \<Longrightarrow> f ` A = B"  | 
|
66  | 
unfolding bij_betw_def by auto  | 
|
67  | 
||
| 56237 | 68  | 
lemma f_the_inv_into_f_bij_betw: "bij_betw f A B \<Longrightarrow>  | 
69  | 
(bij_betw f A B \<Longrightarrow> x \<in> B) \<Longrightarrow> f (the_inv_into A f x) = x"  | 
|
70  | 
unfolding bij_betw_def by (blast intro: f_the_inv_into_f)  | 
|
| 49312 | 71  | 
|
| 56237 | 72  | 
lemma ex_bij_betw: "|A| \<le>o (r :: 'b rel) \<Longrightarrow> \<exists>f B :: 'b set. bij_betw f B A"  | 
73  | 
by (subst (asm) internalize_card_of_ordLeq)  | 
|
74  | 
(auto dest!: iffD2[OF card_of_ordIso ordIso_symmetric])  | 
|
| 49312 | 75  | 
|
76  | 
lemma bij_betwI':  | 
|
77  | 
"\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y);  | 
|
78  | 
\<And>x. x \<in> X \<Longrightarrow> f x \<in> Y;  | 
|
79  | 
\<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y"  | 
|
| 53695 | 80  | 
unfolding bij_betw_def inj_on_def by blast  | 
| 49312 | 81  | 
|
82  | 
lemma surj_fun_eq:  | 
|
83  | 
assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 o f) x = (g2 o f) x"  | 
|
84  | 
shows "g1 = g2"  | 
|
85  | 
proof (rule ext)  | 
|
86  | 
fix y  | 
|
87  | 
from surj_on obtain x where "x \<in> X" and "y = f x" by blast  | 
|
88  | 
thus "g1 y = g2 y" using eq_on by simp  | 
|
89  | 
qed  | 
|
90  | 
||
91  | 
lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r"  | 
|
| 49514 | 92  | 
unfolding wo_rel_def card_order_on_def by blast  | 
| 49312 | 93  | 
|
94  | 
lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow>  | 
|
95  | 
\<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r"  | 
|
96  | 
unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit)  | 
|
97  | 
||
98  | 
lemma Card_order_trans:  | 
|
99  | 
"\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r"  | 
|
100  | 
unfolding card_order_on_def well_order_on_def linear_order_on_def  | 
|
101  | 
partial_order_on_def preorder_on_def trans_def antisym_def by blast  | 
|
102  | 
||
103  | 
lemma Cinfinite_limit2:  | 
|
104  | 
assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r"  | 
|
105  | 
shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)"  | 
|
106  | 
proof -  | 
|
107  | 
from r have trans: "trans r" and total: "Total r" and antisym: "antisym r"  | 
|
108  | 
unfolding card_order_on_def well_order_on_def linear_order_on_def  | 
|
109  | 
partial_order_on_def preorder_on_def by auto  | 
|
110  | 
obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r"  | 
|
111  | 
using Cinfinite_limit[OF x1 r] by blast  | 
|
112  | 
obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r"  | 
|
113  | 
using Cinfinite_limit[OF x2 r] by blast  | 
|
114  | 
show ?thesis  | 
|
115  | 
proof (cases "y1 = y2")  | 
|
116  | 
case True with y1 y2 show ?thesis by blast  | 
|
117  | 
next  | 
|
118  | 
case False  | 
|
119  | 
with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r"  | 
|
120  | 
unfolding total_on_def by auto  | 
|
121  | 
thus ?thesis  | 
|
122  | 
proof  | 
|
123  | 
assume *: "(y1, y2) \<in> r"  | 
|
124  | 
with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast  | 
|
125  | 
with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def)  | 
|
126  | 
next  | 
|
127  | 
assume *: "(y2, y1) \<in> r"  | 
|
128  | 
with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast  | 
|
129  | 
with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def)  | 
|
130  | 
qed  | 
|
131  | 
qed  | 
|
132  | 
qed  | 
|
133  | 
||
134  | 
lemma Cinfinite_limit_finite: "\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk>  | 
|
135  | 
\<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)"  | 
|
136  | 
proof (induct X rule: finite_induct)  | 
|
137  | 
case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto  | 
|
138  | 
next  | 
|
139  | 
case (insert x X)  | 
|
140  | 
then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast  | 
|
141  | 
then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r"  | 
|
142  | 
using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast  | 
|
| 49326 | 143  | 
show ?case  | 
144  | 
apply (intro bexI ballI)  | 
|
145  | 
apply (erule insertE)  | 
|
146  | 
apply hypsubst  | 
|
147  | 
apply (rule z(2))  | 
|
148  | 
using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3)  | 
|
149  | 
apply blast  | 
|
150  | 
apply (rule z(1))  | 
|
151  | 
done  | 
|
| 49312 | 152  | 
qed  | 
153  | 
||
154  | 
lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A"  | 
|
155  | 
by auto  | 
|
156  | 
||
157  | 
(*helps resolution*)  | 
|
158  | 
lemma well_order_induct_imp:  | 
|
159  | 
"wo_rel r \<Longrightarrow> (\<And>x. \<forall>y. y \<noteq> x \<and> (y, x) \<in> r \<longrightarrow> y \<in> Field r \<longrightarrow> P y \<Longrightarrow> x \<in> Field r \<longrightarrow> P x) \<Longrightarrow>  | 
|
160  | 
x \<in> Field r \<longrightarrow> P x"  | 
|
161  | 
by (erule wo_rel.well_order_induct)  | 
|
162  | 
||
163  | 
lemma meta_spec2:  | 
|
164  | 
assumes "(\<And>x y. PROP P x y)"  | 
|
165  | 
shows "PROP P x y"  | 
|
| 55084 | 166  | 
by (rule assms)  | 
| 49312 | 167  | 
|
| 
54841
 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
 
traytel 
parents: 
54246 
diff
changeset
 | 
168  | 
lemma nchotomy_relcomppE:  | 
| 55811 | 169  | 
assumes "\<And>y. \<exists>x. y = f x" "(r OO s) a c" "\<And>b. r a (f b) \<Longrightarrow> s (f b) c \<Longrightarrow> P"  | 
170  | 
shows P  | 
|
171  | 
proof (rule relcompp.cases[OF assms(2)], hypsubst)  | 
|
172  | 
fix b assume "r a b" "s b c"  | 
|
173  | 
moreover from assms(1) obtain b' where "b = f b'" by blast  | 
|
174  | 
ultimately show P by (blast intro: assms(3))  | 
|
175  | 
qed  | 
|
| 
54841
 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
 
traytel 
parents: 
54246 
diff
changeset
 | 
176  | 
|
| 55945 | 177  | 
lemma vimage2p_rel_fun: "rel_fun (vimage2p f g R) R f g"  | 
178  | 
unfolding rel_fun_def vimage2p_def by auto  | 
|
| 52731 | 179  | 
|
180  | 
lemma predicate2D_vimage2p: "\<lbrakk>R \<le> vimage2p f g S; R x y\<rbrakk> \<Longrightarrow> S (f x) (g y)"  | 
|
181  | 
unfolding vimage2p_def by auto  | 
|
182  | 
||
| 55945 | 183  | 
lemma id_transfer: "rel_fun A A id id"  | 
184  | 
unfolding rel_fun_def by simp  | 
|
| 55084 | 185  | 
|
| 
55770
 
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
 
traytel 
parents: 
55575 
diff
changeset
 | 
186  | 
lemma ssubst_Pair_rhs: "\<lbrakk>(r, s) \<in> R; s' = s\<rbrakk> \<Longrightarrow> (r, s') \<in> R"  | 
| 
55851
 
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
 
blanchet 
parents: 
55811 
diff
changeset
 | 
187  | 
by (rule ssubst)  | 
| 
55770
 
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
 
traytel 
parents: 
55575 
diff
changeset
 | 
188  | 
|
| 55062 | 189  | 
ML_file "Tools/BNF/bnf_lfp_util.ML"  | 
190  | 
ML_file "Tools/BNF/bnf_lfp_tactics.ML"  | 
|
191  | 
ML_file "Tools/BNF/bnf_lfp.ML"  | 
|
192  | 
ML_file "Tools/BNF/bnf_lfp_compat.ML"  | 
|
| 55571 | 193  | 
ML_file "Tools/BNF/bnf_lfp_rec_sugar_more.ML"  | 
| 
56643
 
41d3596d8a64
move size hooks together, with new one preceding old one and sharing same theory data
 
blanchet 
parents: 
56642 
diff
changeset
 | 
194  | 
|
| 55084 | 195  | 
hide_fact (open) id_transfer  | 
196  | 
||
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
197  | 
end  |