src/HOL/Limits.thy
author paulson <lp15@cam.ac.uk>
Sat, 26 May 2018 22:11:55 +0100
changeset 68296 69d680e94961
parent 68064 b249fab48c76
child 68532 f8b98d31ad45
permissions -rw-r--r--
tidying and reorganisation around Cauchy Integral Theorem
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51642
diff changeset
     1
(*  Title:      HOL/Limits.thy
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     2
    Author:     Brian Huffman
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     3
    Author:     Jacques D. Fleuriot, University of Cambridge
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     4
    Author:     Lawrence C Paulson
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
     5
    Author:     Jeremy Avigad
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     6
*)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     7
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
     8
section \<open>Limits on Real Vector Spaces\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
     9
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    10
theory Limits
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    11
  imports Real_Vector_Spaces
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    12
begin
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
    13
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    14
subsection \<open>Filter going to infinity norm\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
    15
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    16
definition at_infinity :: "'a::real_normed_vector filter"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    17
  where "at_infinity = (INF r. principal {x. r \<le> norm x})"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
    18
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    19
lemma eventually_at_infinity: "eventually P at_infinity \<longleftrightarrow> (\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> P x)"
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    20
  unfolding at_infinity_def
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    21
  by (subst eventually_INF_base)
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    22
     (auto simp: subset_eq eventually_principal intro!: exI[of _ "max a b" for a b])
31392
69570155ddf8 replace filters with filter bases
huffman
parents: 31357
diff changeset
    23
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    24
corollary eventually_at_infinity_pos:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    25
  "eventually p at_infinity \<longleftrightarrow> (\<exists>b. 0 < b \<and> (\<forall>x. norm x \<ge> b \<longrightarrow> p x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    26
  apply (simp add: eventually_at_infinity)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    27
  apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    28
  apply (case_tac "b \<le> 0")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    29
  using norm_ge_zero order_trans zero_less_one apply blast
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    30
  apply force
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    31
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    32
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    33
lemma at_infinity_eq_at_top_bot: "(at_infinity :: real filter) = sup at_top at_bot"
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    34
  apply (simp add: filter_eq_iff eventually_sup eventually_at_infinity
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    35
      eventually_at_top_linorder eventually_at_bot_linorder)
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    36
  apply safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    37
    apply (rule_tac x="b" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    38
    apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    39
   apply (rule_tac x="- b" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    40
   apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    41
  apply (rule_tac x="max (- Na) N" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    42
  apply (auto simp: abs_real_def)
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    43
  done
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    44
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    45
lemma at_top_le_at_infinity: "at_top \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    46
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    47
57276
49c51eeaa623 filters are easier to define with INF on filters.
hoelzl
parents: 57275
diff changeset
    48
lemma at_bot_le_at_infinity: "at_bot \<le> (at_infinity :: real filter)"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    49
  unfolding at_infinity_eq_at_top_bot by simp
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
    50
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    51
lemma filterlim_at_top_imp_at_infinity: "filterlim f at_top F \<Longrightarrow> filterlim f at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    52
  for f :: "_ \<Rightarrow> real"
57275
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    53
  by (rule filterlim_mono[OF _ at_top_le_at_infinity order_refl])
0ddb5b755cdc moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
hoelzl
parents: 56541
diff changeset
    54
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    55
lemma filterlim_real_at_infinity_sequentially: "filterlim real at_infinity sequentially"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    56
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_real_sequentially)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
    57
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    58
lemma lim_infinity_imp_sequentially: "(f \<longlongrightarrow> l) at_infinity \<Longrightarrow> ((\<lambda>n. f(n)) \<longlongrightarrow> l) sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    59
  by (simp add: filterlim_at_top_imp_at_infinity filterlim_compose filterlim_real_sequentially)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    60
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
    61
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    62
subsubsection \<open>Boundedness\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    63
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    64
definition Bfun :: "('a \<Rightarrow> 'b::metric_space) \<Rightarrow> 'a filter \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    65
  where Bfun_metric_def: "Bfun f F = (\<exists>y. \<exists>K>0. eventually (\<lambda>x. dist (f x) y \<le> K) F)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    66
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    67
abbreviation Bseq :: "(nat \<Rightarrow> 'a::metric_space) \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    68
  where "Bseq X \<equiv> Bfun X sequentially"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    69
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    70
lemma Bseq_conv_Bfun: "Bseq X \<longleftrightarrow> Bfun X sequentially" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    71
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    72
lemma Bseq_ignore_initial_segment: "Bseq X \<Longrightarrow> Bseq (\<lambda>n. X (n + k))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    73
  unfolding Bfun_metric_def by (subst eventually_sequentially_seg)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    74
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    75
lemma Bseq_offset: "Bseq (\<lambda>n. X (n + k)) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
    76
  unfolding Bfun_metric_def by (subst (asm) eventually_sequentially_seg)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    77
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    78
lemma Bfun_def: "Bfun f F \<longleftrightarrow> (\<exists>K>0. eventually (\<lambda>x. norm (f x) \<le> K) F)"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    79
  unfolding Bfun_metric_def norm_conv_dist
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    80
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    81
  fix y K
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    82
  assume K: "0 < K" and *: "eventually (\<lambda>x. dist (f x) y \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    83
  moreover have "eventually (\<lambda>x. dist (f x) 0 \<le> dist (f x) y + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    84
    by (intro always_eventually) (metis dist_commute dist_triangle)
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    85
  with * have "eventually (\<lambda>x. dist (f x) 0 \<le> K + dist 0 y) F"
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    86
    by eventually_elim auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
    87
  with \<open>0 < K\<close> show "\<exists>K>0. eventually (\<lambda>x. dist (f x) 0 \<le> K) F"
51474
1e9e68247ad1 generalize Bfun and Bseq to metric spaces; Bseq is an abbreviation for Bfun
hoelzl
parents: 51472
diff changeset
    88
    by (intro exI[of _ "K + dist 0 y"] add_pos_nonneg conjI zero_le_dist) auto
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
    89
qed (force simp del: norm_conv_dist [symmetric])
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    90
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
    91
lemma BfunI:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    92
  assumes K: "eventually (\<lambda>x. norm (f x) \<le> K) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    93
  shows "Bfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    94
  unfolding Bfun_def
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    95
proof (intro exI conjI allI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    96
  show "0 < max K 1" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
    97
  show "eventually (\<lambda>x. norm (f x) \<le> max K 1) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
    98
    using K by (rule eventually_mono) simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
    99
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   100
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   101
lemma BfunE:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   102
  assumes "Bfun f F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   103
  obtains B where "0 < B" and "eventually (\<lambda>x. norm (f x) \<le> B) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   104
  using assms unfolding Bfun_def by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   105
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   106
lemma Cauchy_Bseq: "Cauchy X \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   107
  unfolding Cauchy_def Bfun_metric_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   108
  apply (erule_tac x=1 in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   109
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   110
  apply safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   111
  apply (rule_tac x="X M" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   112
  apply (rule_tac x=1 in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   113
  apply (erule_tac x=M in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   114
  apply simp
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   115
  apply (rule_tac x=M in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   116
  apply (auto simp: dist_commute)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   117
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   118
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   119
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   120
subsubsection \<open>Bounded Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   121
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   122
lemma BseqI': "(\<And>n. norm (X n) \<le> K) \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   123
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   124
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   125
lemma BseqI2': "\<forall>n\<ge>N. norm (X n) \<le> K \<Longrightarrow> Bseq X"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   126
  by (intro BfunI) (auto simp: eventually_sequentially)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   127
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   128
lemma Bseq_def: "Bseq X \<longleftrightarrow> (\<exists>K>0. \<forall>n. norm (X n) \<le> K)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   129
  unfolding Bfun_def eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   130
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   131
  fix N K
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   132
  assume "0 < K" "\<forall>n\<ge>N. norm (X n) \<le> K"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   133
  then show "\<exists>K>0. \<forall>n. norm (X n) \<le> K"
54863
82acc20ded73 prefer more canonical names for lemmas on min/max
haftmann
parents: 54263
diff changeset
   134
    by (intro exI[of _ "max (Max (norm ` X ` {..N})) K"] max.strict_coboundedI2)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   135
       (auto intro!: imageI not_less[where 'a=nat, THEN iffD1] Max_ge simp: le_max_iff_disj)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   136
qed auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   137
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   138
lemma BseqE: "Bseq X \<Longrightarrow> (\<And>K. 0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Q) \<Longrightarrow> Q"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   139
  unfolding Bseq_def by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   140
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   141
lemma BseqD: "Bseq X \<Longrightarrow> \<exists>K. 0 < K \<and> (\<forall>n. norm (X n) \<le> K)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   142
  by (simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   143
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   144
lemma BseqI: "0 < K \<Longrightarrow> \<forall>n. norm (X n) \<le> K \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   145
  by (auto simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   146
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   147
lemma Bseq_bdd_above: "Bseq X \<Longrightarrow> bdd_above (range X)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   148
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   149
proof (elim BseqE, intro bdd_aboveI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   150
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   151
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   152
  then show "X n \<le> K"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   153
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   154
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   155
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   156
lemma Bseq_bdd_above': "Bseq X \<Longrightarrow> bdd_above (range (\<lambda>n. norm (X n)))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   157
  for X :: "nat \<Rightarrow> 'a :: real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   158
proof (elim BseqE, intro bdd_aboveI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   159
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   160
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   161
  then show "norm (X n) \<le> K"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   162
    by (auto elim!: allE[of _ n])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   163
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   164
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   165
lemma Bseq_bdd_below: "Bseq X \<Longrightarrow> bdd_below (range X)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   166
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   167
proof (elim BseqE, intro bdd_belowI2)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   168
  fix K n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   169
  assume "0 < K" "\<forall>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   170
  then show "- K \<le> X n"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   171
    by (auto elim!: allE[of _ n])
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   172
qed
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
   173
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   174
lemma Bseq_eventually_mono:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   175
  assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) sequentially" "Bseq g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   176
  shows "Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   177
proof -
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   178
  from assms(2) obtain K where "0 < K" and "eventually (\<lambda>n. norm (g n) \<le> K) sequentially"
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   179
    unfolding Bfun_def by fast
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   180
  with assms(1) have "eventually (\<lambda>n. norm (f n) \<le> K) sequentially"
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   181
    by (fast elim: eventually_elim2 order_trans)
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   182
  with `0 < K` show "Bseq f"
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
   183
    unfolding Bfun_def by fast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   184
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   185
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   186
lemma lemma_NBseq_def: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   187
proof safe
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   188
  fix K :: real
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   189
  from reals_Archimedean2 obtain n :: nat where "K < real n" ..
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   190
  then have "K \<le> real (Suc n)" by auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   191
  moreover assume "\<forall>m. norm (X m) \<le> K"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   192
  ultimately have "\<forall>m. norm (X m) \<le> real (Suc n)"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   193
    by (blast intro: order_trans)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   194
  then show "\<exists>N. \<forall>n. norm (X n) \<le> real (Suc N)" ..
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   195
next
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   196
  show "\<And>N. \<forall>n. norm (X n) \<le> real (Suc N) \<Longrightarrow> \<exists>K>0. \<forall>n. norm (X n) \<le> K"
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   197
    using of_nat_0_less_iff by blast
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   198
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   199
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   200
text \<open>Alternative definition for \<open>Bseq\<close>.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   201
lemma Bseq_iff: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) \<le> real(Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   202
  by (simp add: Bseq_def) (simp add: lemma_NBseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   203
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   204
lemma lemma_NBseq_def2: "(\<exists>K > 0. \<forall>n. norm (X n) \<le> K) = (\<exists>N. \<forall>n. norm (X n) < real(Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   205
  apply (subst lemma_NBseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   206
  apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   207
   apply (rule_tac x = "Suc N" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   208
   apply (rule_tac [2] x = N in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   209
   apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   210
   prefer 2 apply (blast intro: order_less_imp_le)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   211
  apply (drule_tac x = n in spec)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   212
  apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   213
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   214
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   215
text \<open>Yet another definition for Bseq.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   216
lemma Bseq_iff1a: "Bseq X \<longleftrightarrow> (\<exists>N. \<forall>n. norm (X n) < real (Suc N))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   217
  by (simp add: Bseq_def lemma_NBseq_def2)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   218
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   219
subsubsection \<open>A Few More Equivalence Theorems for Boundedness\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   220
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   221
text \<open>Alternative formulation for boundedness.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   222
lemma Bseq_iff2: "Bseq X \<longleftrightarrow> (\<exists>k > 0. \<exists>x. \<forall>n. norm (X n + - x) \<le> k)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   223
  apply (unfold Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   224
  apply safe
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   225
   apply (rule_tac [2] x = "k + norm x" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   226
   apply (rule_tac x = K in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   227
   apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   228
   apply (rule exI [where x = 0])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   229
   apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   230
   apply (erule order_less_le_trans)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   231
   apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   232
  apply (drule_tac x=n in spec)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   233
  apply (drule order_trans [OF norm_triangle_ineq2])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   234
  apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   235
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   236
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   237
text \<open>Alternative formulation for boundedness.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   238
lemma Bseq_iff3: "Bseq X \<longleftrightarrow> (\<exists>k>0. \<exists>N. \<forall>n. norm (X n + - X N) \<le> k)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   239
  (is "?P \<longleftrightarrow> ?Q")
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   240
proof
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   241
  assume ?P
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   242
  then obtain K where *: "0 < K" and **: "\<And>n. norm (X n) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   243
    by (auto simp add: Bseq_def)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   244
  from * have "0 < K + norm (X 0)" by (rule order_less_le_trans) simp
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   245
  from ** have "\<forall>n. norm (X n - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   246
    by (auto intro: order_trans norm_triangle_ineq4)
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   247
  then have "\<forall>n. norm (X n + - X 0) \<le> K + norm (X 0)"
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   248
    by simp
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   249
  with \<open>0 < K + norm (X 0)\<close> show ?Q by blast
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   250
next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   251
  assume ?Q
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   252
  then show ?P by (auto simp add: Bseq_iff2)
53602
0ae3db699a3e tuned proofs
haftmann
parents: 53381
diff changeset
   253
qed
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   254
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   255
lemma BseqI2: "\<forall>n. k \<le> f n \<and> f n \<le> K \<Longrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   256
  for k K :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   257
  apply (simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   258
  apply (rule_tac x = "(\<bar>k\<bar> + \<bar>K\<bar>) + 1" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   259
  apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   260
  apply (drule_tac x = n in spec)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   261
  apply arith
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   262
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   263
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   264
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   265
subsubsection \<open>Upper Bounds and Lubs of Bounded Sequences\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   266
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   267
lemma Bseq_minus_iff: "Bseq (\<lambda>n. - (X n) :: 'a::real_normed_vector) \<longleftrightarrow> Bseq X"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   268
  by (simp add: Bseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   269
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   270
lemma Bseq_add:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   271
  fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   272
  assumes "Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   273
  shows "Bseq (\<lambda>x. f x + c)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   274
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   275
  from assms obtain K where K: "\<And>x. norm (f x) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   276
    unfolding Bseq_def by blast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   277
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   278
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   279
    have "norm (f x + c) \<le> norm (f x) + norm c" by (rule norm_triangle_ineq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   280
    also have "norm (f x) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   281
    finally have "norm (f x + c) \<le> K + norm c" by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   282
  }
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   283
  then show ?thesis by (rule BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   284
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   285
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   286
lemma Bseq_add_iff: "Bseq (\<lambda>x. f x + c) \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   287
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   288
  using Bseq_add[of f c] Bseq_add[of "\<lambda>x. f x + c" "-c"] by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   289
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   290
lemma Bseq_mult:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   291
  fixes f g :: "nat \<Rightarrow> 'a::real_normed_field"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   292
  assumes "Bseq f" and "Bseq g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   293
  shows "Bseq (\<lambda>x. f x * g x)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   294
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   295
  from assms obtain K1 K2 where K: "norm (f x) \<le> K1" "K1 > 0" "norm (g x) \<le> K2" "K2 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   296
    for x
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   297
    unfolding Bseq_def by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   298
  then have "norm (f x * g x) \<le> K1 * K2" for x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   299
    by (auto simp: norm_mult intro!: mult_mono)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   300
  then show ?thesis by (rule BseqI')
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   301
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   302
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   303
lemma Bfun_const [simp]: "Bfun (\<lambda>_. c) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   304
  unfolding Bfun_metric_def by (auto intro!: exI[of _ c] exI[of _ "1::real"])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   305
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   306
lemma Bseq_cmult_iff:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   307
  fixes c :: "'a::real_normed_field"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   308
  assumes "c \<noteq> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   309
  shows "Bseq (\<lambda>x. c * f x) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   310
proof
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   311
  assume "Bseq (\<lambda>x. c * f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   312
  with Bfun_const have "Bseq (\<lambda>x. inverse c * (c * f x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   313
    by (rule Bseq_mult)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   314
  with \<open>c \<noteq> 0\<close> show "Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   315
    by (simp add: divide_simps)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   316
qed (intro Bseq_mult Bfun_const)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   317
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   318
lemma Bseq_subseq: "Bseq f \<Longrightarrow> Bseq (\<lambda>x. f (g x))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   319
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   320
  unfolding Bseq_def by auto
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   321
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   322
lemma Bseq_Suc_iff: "Bseq (\<lambda>n. f (Suc n)) \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   323
  for f :: "nat \<Rightarrow> 'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   324
  using Bseq_offset[of f 1] by (auto intro: Bseq_subseq)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   325
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   326
lemma increasing_Bseq_subseq_iff:
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
   327
  assumes "\<And>x y. x \<le> y \<Longrightarrow> norm (f x :: 'a::real_normed_vector) \<le> norm (f y)" "strict_mono g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   328
  shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   329
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   330
  assume "Bseq (\<lambda>x. f (g x))"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   331
  then obtain K where K: "\<And>x. norm (f (g x)) \<le> K"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   332
    unfolding Bseq_def by auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   333
  {
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   334
    fix x :: nat
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   335
    from filterlim_subseq[OF assms(2)] obtain y where "g y \<ge> x"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   336
      by (auto simp: filterlim_at_top eventually_at_top_linorder)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   337
    then have "norm (f x) \<le> norm (f (g y))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   338
      using assms(1) by blast
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   339
    also have "norm (f (g y)) \<le> K" by (rule K)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   340
    finally have "norm (f x) \<le> K" .
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   341
  }
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   342
  then show "Bseq f" by (rule BseqI')
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   343
qed (use Bseq_subseq[of f g] in simp_all)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   344
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   345
lemma nonneg_incseq_Bseq_subseq_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   346
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   347
    and g :: "nat \<Rightarrow> nat"
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
   348
  assumes "\<And>x. f x \<ge> 0" "incseq f" "strict_mono g"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   349
  shows "Bseq (\<lambda>x. f (g x)) \<longleftrightarrow> Bseq f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   350
  using assms by (intro increasing_Bseq_subseq_iff) (auto simp: incseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   351
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   352
lemma Bseq_eq_bounded: "range f \<subseteq> {a..b} \<Longrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   353
  for a b :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   354
  apply (simp add: subset_eq)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   355
  apply (rule BseqI'[where K="max (norm a) (norm b)"])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   356
  apply (erule_tac x=n in allE)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   357
  apply auto
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   358
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   359
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   360
lemma incseq_bounded: "incseq X \<Longrightarrow> \<forall>i. X i \<le> B \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   361
  for B :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   362
  by (intro Bseq_eq_bounded[of X "X 0" B]) (auto simp: incseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   363
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   364
lemma decseq_bounded: "decseq X \<Longrightarrow> \<forall>i. B \<le> X i \<Longrightarrow> Bseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   365
  for B :: real
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   366
  by (intro Bseq_eq_bounded[of X B "X 0"]) (auto simp: decseq_def)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   367
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   368
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   369
subsection \<open>Bounded Monotonic Sequences\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   370
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   371
subsubsection \<open>A Bounded and Monotonic Sequence Converges\<close>
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   372
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   373
(* TODO: delete *)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   374
(* FIXME: one use in NSA/HSEQ.thy *)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   375
lemma Bmonoseq_LIMSEQ: "\<forall>n. m \<le> n \<longrightarrow> X n = X m \<Longrightarrow> \<exists>L. X \<longlonglongrightarrow> L"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   376
  apply (rule_tac x="X m" in exI)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   377
  apply (rule filterlim_cong[THEN iffD2, OF refl refl _ tendsto_const])
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   378
  unfolding eventually_sequentially
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   379
  apply blast
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   380
  done
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   381
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   382
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   383
subsection \<open>Convergence to Zero\<close>
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   384
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   385
definition Zfun :: "('a \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   386
  where "Zfun f F = (\<forall>r>0. eventually (\<lambda>x. norm (f x) < r) F)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   387
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   388
lemma ZfunI: "(\<And>r. 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F) \<Longrightarrow> Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   389
  by (simp add: Zfun_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   390
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   391
lemma ZfunD: "Zfun f F \<Longrightarrow> 0 < r \<Longrightarrow> eventually (\<lambda>x. norm (f x) < r) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   392
  by (simp add: Zfun_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   393
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   394
lemma Zfun_ssubst: "eventually (\<lambda>x. f x = g x) F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun f F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   395
  unfolding Zfun_def by (auto elim!: eventually_rev_mp)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   396
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   397
lemma Zfun_zero: "Zfun (\<lambda>x. 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   398
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   399
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   400
lemma Zfun_norm_iff: "Zfun (\<lambda>x. norm (f x)) F = Zfun (\<lambda>x. f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   401
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   402
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   403
lemma Zfun_imp_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   404
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   405
    and g: "eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   406
  shows "Zfun (\<lambda>x. g x) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   407
proof (cases "0 < K")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   408
  case K: True
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   409
  show ?thesis
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   410
  proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   411
    fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   412
    assume "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   413
    then have "0 < r / K" using K by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   414
    then have "eventually (\<lambda>x. norm (f x) < r / K) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   415
      using ZfunD [OF f] by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   416
    with g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   417
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   418
      case (elim x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   419
      then have "norm (f x) * K < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   420
        by (simp add: pos_less_divide_eq K)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   421
      then show ?case
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   422
        by (simp add: order_le_less_trans [OF elim(1)])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   423
    qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   424
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   425
next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   426
  case False
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   427
  then have K: "K \<le> 0" by (simp only: not_less)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   428
  show ?thesis
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   429
  proof (rule ZfunI)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   430
    fix r :: real
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   431
    assume "0 < r"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   432
    from g show "eventually (\<lambda>x. norm (g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   433
    proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   434
      case (elim x)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   435
      also have "norm (f x) * K \<le> norm (f x) * 0"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   436
        using K norm_ge_zero by (rule mult_left_mono)
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   437
      finally show ?case
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   438
        using \<open>0 < r\<close> by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   439
    qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   440
  qed
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   441
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   442
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   443
lemma Zfun_le: "Zfun g F \<Longrightarrow> \<forall>x. norm (f x) \<le> norm (g x) \<Longrightarrow> Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   444
  by (erule Zfun_imp_Zfun [where K = 1]) simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   445
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   446
lemma Zfun_add:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   447
  assumes f: "Zfun f F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   448
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   449
  shows "Zfun (\<lambda>x. f x + g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   450
proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   451
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   452
  assume "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   453
  then have r: "0 < r / 2" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   454
  have "eventually (\<lambda>x. norm (f x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   455
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   456
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   457
  have "eventually (\<lambda>x. norm (g x) < r/2) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   458
    using g r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   459
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   460
  show "eventually (\<lambda>x. norm (f x + g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   461
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   462
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   463
    have "norm (f x + g x) \<le> norm (f x) + norm (g x)"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   464
      by (rule norm_triangle_ineq)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   465
    also have "\<dots> < r/2 + r/2"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   466
      using elim by (rule add_strict_mono)
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   467
    finally show ?case
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   468
      by simp
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   469
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   470
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   471
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   472
lemma Zfun_minus: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. - f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   473
  unfolding Zfun_def by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   474
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   475
lemma Zfun_diff: "Zfun f F \<Longrightarrow> Zfun g F \<Longrightarrow> Zfun (\<lambda>x. f x - g x) F"
54230
b1d955791529 more simplification rules on unary and binary minus
haftmann
parents: 53602
diff changeset
   476
  using Zfun_add [of f F "\<lambda>x. - g x"] by (simp add: Zfun_minus)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   477
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   478
lemma (in bounded_linear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   479
  assumes g: "Zfun g F"
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   480
  shows "Zfun (\<lambda>x. f (g x)) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   481
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   482
  obtain K where "norm (f x) \<le> norm x * K" for x
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   483
    using bounded by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   484
  then have "eventually (\<lambda>x. norm (f (g x)) \<le> norm (g x) * K) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   485
    by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   486
  with g show ?thesis
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   487
    by (rule Zfun_imp_Zfun)
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   488
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   489
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   490
lemma (in bounded_bilinear) Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   491
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   492
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   493
  shows "Zfun (\<lambda>x. f x ** g x) F"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   494
proof (rule ZfunI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   495
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   496
  assume r: "0 < r"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   497
  obtain K where K: "0 < K"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   498
    and norm_le: "norm (x ** y) \<le> norm x * norm y * K" for x y
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   499
    using pos_bounded by blast
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   500
  from K have K': "0 < inverse K"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   501
    by (rule positive_imp_inverse_positive)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   502
  have "eventually (\<lambda>x. norm (f x) < r) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   503
    using f r by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   504
  moreover
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   505
  have "eventually (\<lambda>x. norm (g x) < inverse K) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   506
    using g K' by (rule ZfunD)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   507
  ultimately
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   508
  show "eventually (\<lambda>x. norm (f x ** g x) < r) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   509
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   510
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   511
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   512
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   513
    also have "norm (f x) * norm (g x) * K < r * inverse K * K"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   514
      by (intro mult_strict_right_mono mult_strict_mono' norm_ge_zero elim K)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   515
    also from K have "r * inverse K * K = r"
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   516
      by simp
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   517
    finally show ?case .
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   518
  qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   519
qed
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   520
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   521
lemma (in bounded_bilinear) Zfun_left: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. f x ** a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   522
  by (rule bounded_linear_left [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   523
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   524
lemma (in bounded_bilinear) Zfun_right: "Zfun f F \<Longrightarrow> Zfun (\<lambda>x. a ** f x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   525
  by (rule bounded_linear_right [THEN bounded_linear.Zfun])
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   526
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   527
lemmas Zfun_mult = bounded_bilinear.Zfun [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   528
lemmas Zfun_mult_right = bounded_bilinear.Zfun_right [OF bounded_bilinear_mult]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   529
lemmas Zfun_mult_left = bounded_bilinear.Zfun_left [OF bounded_bilinear_mult]
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   530
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   531
lemma tendsto_Zfun_iff: "(f \<longlongrightarrow> a) F = Zfun (\<lambda>x. f x - a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   532
  by (simp only: tendsto_iff Zfun_def dist_norm)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   533
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   534
lemma tendsto_0_le:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   535
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> eventually (\<lambda>x. norm (g x) \<le> norm (f x) * K) F \<Longrightarrow> (g \<longlongrightarrow> 0) F"
56366
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   536
  by (simp add: Zfun_imp_Zfun tendsto_Zfun_iff)
0362c3bb4d02 new theorem about zero limits
paulson <lp15@cam.ac.uk>
parents: 56330
diff changeset
   537
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   538
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   539
subsubsection \<open>Distance and norms\<close>
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   540
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   541
lemma tendsto_dist [tendsto_intros]:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   542
  fixes l m :: "'a::metric_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   543
  assumes f: "(f \<longlongrightarrow> l) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   544
    and g: "(g \<longlongrightarrow> m) F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   545
  shows "((\<lambda>x. dist (f x) (g x)) \<longlongrightarrow> dist l m) F"
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   546
proof (rule tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   547
  fix e :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   548
  assume "0 < e"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   549
  then have e2: "0 < e/2" by simp
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   550
  from tendstoD [OF f e2] tendstoD [OF g e2]
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   551
  show "eventually (\<lambda>x. dist (dist (f x) (g x)) (dist l m) < e) F"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   552
  proof (eventually_elim)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   553
    case (elim x)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   554
    then show "dist (dist (f x) (g x)) (dist l m) < e"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   555
      unfolding dist_real_def
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   556
      using dist_triangle2 [of "f x" "g x" "l"]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   557
        and dist_triangle2 [of "g x" "l" "m"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   558
        and dist_triangle3 [of "l" "m" "f x"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   559
        and dist_triangle [of "f x" "m" "g x"]
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   560
      by arith
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   561
  qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   562
qed
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   563
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   564
lemma continuous_dist[continuous_intros]:
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   565
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   566
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   567
  unfolding continuous_def by (rule tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   568
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   569
lemma continuous_on_dist[continuous_intros]:
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   570
  fixes f g :: "_ \<Rightarrow> 'a :: metric_space"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   571
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. dist (f x) (g x))"
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   572
  unfolding continuous_on_def by (auto intro: tendsto_dist)
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
   573
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   574
lemma tendsto_norm [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> norm a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   575
  unfolding norm_conv_dist by (intro tendsto_intros)
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   576
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   577
lemma continuous_norm [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. norm (f x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   578
  unfolding continuous_def by (rule tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   579
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   580
lemma continuous_on_norm [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   581
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. norm (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   582
  unfolding continuous_on_def by (auto intro: tendsto_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   583
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   584
lemma tendsto_norm_zero: "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   585
  by (drule tendsto_norm) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   586
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   587
lemma tendsto_norm_zero_cancel: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   588
  unfolding tendsto_iff dist_norm by simp
36662
621122eeb138 generalize types of LIMSEQ and LIM; generalize many lemmas
huffman
parents: 36656
diff changeset
   589
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   590
lemma tendsto_norm_zero_iff: "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   591
  unfolding tendsto_iff dist_norm by simp
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   592
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   593
lemma tendsto_rabs [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> \<bar>l\<bar>) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   594
  for l :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   595
  by (fold real_norm_def) (rule tendsto_norm)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   596
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   597
lemma continuous_rabs [continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   598
  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   599
  unfolding real_norm_def[symmetric] by (rule continuous_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   600
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   601
lemma continuous_on_rabs [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   602
  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. \<bar>f x :: real\<bar>)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   603
  unfolding real_norm_def[symmetric] by (rule continuous_on_norm)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   604
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   605
lemma tendsto_rabs_zero: "(f \<longlongrightarrow> (0::real)) F \<Longrightarrow> ((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   606
  by (fold real_norm_def) (rule tendsto_norm_zero)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   607
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   608
lemma tendsto_rabs_zero_cancel: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<Longrightarrow> (f \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   609
  by (fold real_norm_def) (rule tendsto_norm_zero_cancel)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   610
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   611
lemma tendsto_rabs_zero_iff: "((\<lambda>x. \<bar>f x\<bar>) \<longlongrightarrow> (0::real)) F \<longleftrightarrow> (f \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   612
  by (fold real_norm_def) (rule tendsto_norm_zero_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   613
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   614
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   615
subsection \<open>Topological Monoid\<close>
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   616
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   617
class topological_monoid_add = topological_space + monoid_add +
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   618
  assumes tendsto_add_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x + snd x :> nhds (a + b)"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   619
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   620
class topological_comm_monoid_add = topological_monoid_add + comm_monoid_add
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   621
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   622
lemma tendsto_add [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   623
  fixes a b :: "'a::topological_monoid_add"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   624
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> a + b) F"
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   625
  using filterlim_compose[OF tendsto_add_Pair, of "\<lambda>x. (f x, g x)" a b F]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   626
  by (simp add: nhds_prod[symmetric] tendsto_Pair)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   627
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   628
lemma continuous_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   629
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   630
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   631
  unfolding continuous_def by (rule tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   632
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   633
lemma continuous_on_add [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   634
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   635
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x + g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   636
  unfolding continuous_on_def by (auto intro: tendsto_add)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   637
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   638
lemma tendsto_add_zero:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   639
  fixes f g :: "_ \<Rightarrow> 'b::topological_monoid_add"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   640
  shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x + g x) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   641
  by (drule (1) tendsto_add) simp
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   642
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   643
lemma tendsto_sum [tendsto_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   644
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   645
  shows "(\<And>i. i \<in> I \<Longrightarrow> (f i \<longlongrightarrow> a i) F) \<Longrightarrow> ((\<lambda>x. \<Sum>i\<in>I. f i x) \<longlongrightarrow> (\<Sum>i\<in>I. a i)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   646
  by (induct I rule: infinite_finite_induct) (simp_all add: tendsto_add)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   647
67673
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   648
lemma tendsto_null_sum:
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   649
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::topological_comm_monoid_add"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   650
  assumes "\<And>i. i \<in> I \<Longrightarrow> ((\<lambda>x. f x i) \<longlongrightarrow> 0) F"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   651
  shows "((\<lambda>i. sum (f i) I) \<longlongrightarrow> 0) F"
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   652
  using tendsto_sum [of I "\<lambda>x y. f y x" "\<lambda>x. 0"] assms by simp
c8caefb20564 lots of new material, ultimately related to measure theory
paulson <lp15@cam.ac.uk>
parents: 67399
diff changeset
   653
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   654
lemma continuous_sum [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   655
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   656
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Sum>i\<in>I. f i x)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   657
  unfolding continuous_def by (rule tendsto_sum)
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   658
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   659
lemma continuous_on_sum [continuous_intros]:
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   660
  fixes f :: "'a \<Rightarrow> 'b::topological_space \<Rightarrow> 'c::topological_comm_monoid_add"
63301
d3c87eb0bad2 new results about topology
paulson <lp15@cam.ac.uk>
parents: 63263
diff changeset
   661
  shows "(\<And>i. i \<in> I \<Longrightarrow> continuous_on S (f i)) \<Longrightarrow> continuous_on S (\<lambda>x. \<Sum>i\<in>I. f i x)"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   662
  unfolding continuous_on_def by (auto intro: tendsto_sum)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   663
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   664
instance nat :: topological_comm_monoid_add
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   665
  by standard
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   666
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   667
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   668
instance int :: topological_comm_monoid_add
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   669
  by standard
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   670
    (simp add: nhds_discrete principal_prod_principal filterlim_principal eventually_principal)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   671
62369
acfc4ad7b76a instantiate topologies for nat, int and enat
hoelzl
parents: 62368
diff changeset
   672
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   673
subsubsection \<open>Topological group\<close>
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   674
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   675
class topological_group_add = topological_monoid_add + group_add +
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   676
  assumes tendsto_uminus_nhds: "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   677
begin
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   678
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   679
lemma tendsto_minus [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> - a) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   680
  by (rule filterlim_compose[OF tendsto_uminus_nhds])
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   681
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   682
end
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   683
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   684
class topological_ab_group_add = topological_group_add + ab_group_add
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   685
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   686
instance topological_ab_group_add < topological_comm_monoid_add ..
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   687
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   688
lemma continuous_minus [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. - f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   689
  for f :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   690
  unfolding continuous_def by (rule tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   691
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   692
lemma continuous_on_minus [continuous_intros]: "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. - f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   693
  for f :: "_ \<Rightarrow> 'b::topological_group_add"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   694
  unfolding continuous_on_def by (auto intro: tendsto_minus)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   695
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   696
lemma tendsto_minus_cancel: "((\<lambda>x. - f x) \<longlongrightarrow> - a) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   697
  for a :: "'a::topological_group_add"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   698
  by (drule tendsto_minus) simp
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   699
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   700
lemma tendsto_minus_cancel_left:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   701
  "(f \<longlongrightarrow> - (y::_::topological_group_add)) F \<longleftrightarrow> ((\<lambda>x. - f x) \<longlongrightarrow> y) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   702
  using tendsto_minus_cancel[of f "- y" F]  tendsto_minus[of f "- y" F]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   703
  by auto
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   704
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   705
lemma tendsto_diff [tendsto_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   706
  fixes a b :: "'a::topological_group_add"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   707
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> a - b) F"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   708
  using tendsto_add [of f a F "\<lambda>x. - g x" "- b"] by (simp add: tendsto_minus)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   709
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   710
lemma continuous_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   711
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   712
  shows "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   713
  unfolding continuous_def by (rule tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   714
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   715
lemma continuous_on_diff [continuous_intros]:
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   716
  fixes f g :: "_ \<Rightarrow> 'b::topological_group_add"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   717
  shows "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x - g x)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   718
  unfolding continuous_on_def by (auto intro: tendsto_diff)
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   719
67399
eab6ce8368fa ran isabelle update_op on all sources
nipkow
parents: 67371
diff changeset
   720
lemma continuous_on_op_minus: "continuous_on (s::'a::topological_group_add set) ((-) x)"
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   721
  by (rule continuous_intros | simp)+
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   722
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   723
instance real_normed_vector < topological_ab_group_add
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   724
proof
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   725
  fix a b :: 'a
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   726
  show "((\<lambda>x. fst x + snd x) \<longlongrightarrow> a + b) (nhds a \<times>\<^sub>F nhds b)"
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   727
    unfolding tendsto_Zfun_iff add_diff_add
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   728
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   729
    by (intro Zfun_add)
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   730
       (auto simp add: tendsto_Zfun_iff[symmetric] nhds_prod[symmetric] intro!: tendsto_fst)
63081
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   731
  show "(uminus \<longlongrightarrow> - a) (nhds a)"
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   732
    unfolding tendsto_Zfun_iff minus_diff_minus
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   733
    using filterlim_ident[of "nhds a"]
5a5beb3dbe7e introduced class topological_group between topological_monoid and real_normed_vector
immler
parents: 63040
diff changeset
   734
    by (intro Zfun_minus) (simp add: tendsto_Zfun_iff)
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   735
qed
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
   736
65204
d23eded35a33 modernized construction of type bcontfun; base explicit theorems on Uniform_Limit.thy; added some lemmas
immler
parents: 65036
diff changeset
   737
lemmas real_tendsto_sandwich = tendsto_sandwich[where 'a=real]
50999
3de230ed0547 introduce order topology
hoelzl
parents: 50880
diff changeset
   738
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   739
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   740
subsubsection \<open>Linear operators and multiplication\<close>
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   741
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   742
lemma linear_times: "linear (\<lambda>x. c * x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   743
  for c :: "'a::real_algebra"
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   744
  by (auto simp: linearI distrib_left)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   745
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   746
lemma (in bounded_linear) tendsto: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> f a) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   747
  by (simp only: tendsto_Zfun_iff diff [symmetric] Zfun)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   748
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   749
lemma (in bounded_linear) continuous: "continuous F g \<Longrightarrow> continuous F (\<lambda>x. f (g x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   750
  using tendsto[of g _ F] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   751
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   752
lemma (in bounded_linear) continuous_on: "continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f (g x))"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   753
  using tendsto[of g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   754
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   755
lemma (in bounded_linear) tendsto_zero: "(g \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f (g x)) \<longlongrightarrow> 0) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   756
  by (drule tendsto) (simp only: zero)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   757
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   758
lemma (in bounded_bilinear) tendsto:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   759
  "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x ** g x) \<longlongrightarrow> a ** b) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   760
  by (simp only: tendsto_Zfun_iff prod_diff_prod Zfun_add Zfun Zfun_left Zfun_right)
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
   761
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   762
lemma (in bounded_bilinear) continuous:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   763
  "continuous F f \<Longrightarrow> continuous F g \<Longrightarrow> continuous F (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   764
  using tendsto[of f _ F g] by (auto simp: continuous_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   765
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   766
lemma (in bounded_bilinear) continuous_on:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   767
  "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> continuous_on s (\<lambda>x. f x ** g x)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   768
  using tendsto[of f _ _ g] by (auto simp: continuous_on_def)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   769
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   770
lemma (in bounded_bilinear) tendsto_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   771
  assumes f: "(f \<longlongrightarrow> 0) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   772
    and g: "(g \<longlongrightarrow> 0) F"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   773
  shows "((\<lambda>x. f x ** g x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   774
  using tendsto [OF f g] by (simp add: zero_left)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   775
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   776
lemma (in bounded_bilinear) tendsto_left_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   777
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x ** c) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   778
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_left])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   779
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   780
lemma (in bounded_bilinear) tendsto_right_zero:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   781
  "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. c ** f x) \<longlongrightarrow> 0) F"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   782
  by (rule bounded_linear.tendsto_zero [OF bounded_linear_right])
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   783
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   784
lemmas tendsto_of_real [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   785
  bounded_linear.tendsto [OF bounded_linear_of_real]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   786
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   787
lemmas tendsto_scaleR [tendsto_intros] =
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   788
  bounded_bilinear.tendsto [OF bounded_bilinear_scaleR]
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
   789
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   790
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   791
text\<open>Analogous type class for multiplication\<close>
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   792
class topological_semigroup_mult = topological_space + semigroup_mult +
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   793
  assumes tendsto_mult_Pair: "LIM x (nhds a \<times>\<^sub>F nhds b). fst x * snd x :> nhds (a * b)"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   794
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   795
instance real_normed_algebra < topological_semigroup_mult
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   796
proof
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   797
  fix a b :: 'a
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   798
  show "((\<lambda>x. fst x * snd x) \<longlongrightarrow> a * b) (nhds a \<times>\<^sub>F nhds b)"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   799
    unfolding nhds_prod[symmetric]
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   800
    using tendsto_fst[OF filterlim_ident, of "(a,b)"] tendsto_snd[OF filterlim_ident, of "(a,b)"]
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   801
    by (simp add: bounded_bilinear.tendsto [OF bounded_bilinear_mult])
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   802
qed
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   803
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   804
lemma tendsto_mult [tendsto_intros]:
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   805
  fixes a b :: "'a::topological_semigroup_mult"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   806
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> ((\<lambda>x. f x * g x) \<longlongrightarrow> a * b) F"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   807
  using filterlim_compose[OF tendsto_mult_Pair, of "\<lambda>x. (f x, g x)" a b F]
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   808
  by (simp add: nhds_prod[symmetric] tendsto_Pair)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   809
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   810
lemma tendsto_mult_left: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) \<longlongrightarrow> c * l) F"
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   811
  for c :: "'a::topological_semigroup_mult"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   812
  by (rule tendsto_mult [OF tendsto_const])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   813
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   814
lemma tendsto_mult_right: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) \<longlongrightarrow> l * c) F"
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
   815
  for c :: "'a::topological_semigroup_mult"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   816
  by (rule tendsto_mult [OF _ tendsto_const])
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   817
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   818
lemmas continuous_of_real [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   819
  bounded_linear.continuous [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   820
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   821
lemmas continuous_scaleR [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   822
  bounded_bilinear.continuous [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   823
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   824
lemmas continuous_mult [continuous_intros] =
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   825
  bounded_bilinear.continuous [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   826
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   827
lemmas continuous_on_of_real [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   828
  bounded_linear.continuous_on [OF bounded_linear_of_real]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   829
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   830
lemmas continuous_on_scaleR [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   831
  bounded_bilinear.continuous_on [OF bounded_bilinear_scaleR]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   832
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   833
lemmas continuous_on_mult [continuous_intros] =
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   834
  bounded_bilinear.continuous_on [OF bounded_bilinear_mult]
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   835
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   836
lemmas tendsto_mult_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   837
  bounded_bilinear.tendsto_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   838
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   839
lemmas tendsto_mult_left_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   840
  bounded_bilinear.tendsto_left_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   841
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   842
lemmas tendsto_mult_right_zero =
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   843
  bounded_bilinear.tendsto_right_zero [OF bounded_bilinear_mult]
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44342
diff changeset
   844
68296
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   845
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   846
lemma continuous_mult_left:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   847
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   848
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   849
by (rule continuous_mult [OF continuous_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   850
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   851
lemma continuous_mult_right:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   852
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   853
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   854
by (rule continuous_mult [OF _ continuous_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   855
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   856
lemma continuous_on_mult_left:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   857
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   858
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   859
by (rule continuous_on_mult [OF continuous_on_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   860
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   861
lemma continuous_on_mult_right:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   862
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   863
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   864
by (rule continuous_on_mult [OF _ continuous_on_const])
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   865
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   866
lemma continuous_on_mult_const [simp]:
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   867
  fixes c::"'a::real_normed_algebra"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   868
  shows "continuous_on s (( * ) c)"
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   869
  by (intro continuous_on_mult_left continuous_on_id)
69d680e94961 tidying and reorganisation around Cauchy Integral Theorem
paulson <lp15@cam.ac.uk>
parents: 68064
diff changeset
   870
66793
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   871
lemma tendsto_divide_zero:
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   872
  fixes c :: "'a::real_normed_field"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   873
  shows "(f \<longlongrightarrow> 0) F \<Longrightarrow> ((\<lambda>x. f x / c) \<longlongrightarrow> 0) F"
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   874
  by (cases "c=0") (simp_all add: divide_inverse tendsto_mult_left_zero)
deabce3ccf1f new material about connectedness, etc.
paulson <lp15@cam.ac.uk>
parents: 66456
diff changeset
   875
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   876
lemma tendsto_power [tendsto_intros]: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> a ^ n) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   877
  for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra}"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57512
diff changeset
   878
  by (induct n) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   879
65680
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   880
lemma tendsto_null_power: "\<lbrakk>(f \<longlongrightarrow> 0) F; 0 < n\<rbrakk> \<Longrightarrow> ((\<lambda>x. f x ^ n) \<longlongrightarrow> 0) F"
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   881
    for f :: "'a \<Rightarrow> 'b::{power,real_normed_algebra_1}"
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   882
  using tendsto_power [of f 0 F n] by (simp add: power_0_left)
378a2f11bec9 Simplification of some proofs. Also key lemmas using !! rather than ! in premises
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
   883
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   884
lemma continuous_power [continuous_intros]: "continuous F f \<Longrightarrow> continuous F (\<lambda>x. (f x)^n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   885
  for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   886
  unfolding continuous_def by (rule tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   887
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
   888
lemma continuous_on_power [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   889
  fixes f :: "_ \<Rightarrow> 'b::{power,real_normed_algebra}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   890
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. (f x)^n)"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   891
  unfolding continuous_on_def by (auto intro: tendsto_power)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   892
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   893
lemma tendsto_prod [tendsto_intros]:
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   894
  fixes f :: "'a \<Rightarrow> 'b \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   895
  shows "(\<And>i. i \<in> S \<Longrightarrow> (f i \<longlongrightarrow> L i) F) \<Longrightarrow> ((\<lambda>x. \<Prod>i\<in>S. f i x) \<longlongrightarrow> (\<Prod>i\<in>S. L i)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
   896
  by (induct S rule: infinite_finite_induct) (simp_all add: tendsto_mult)
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
   897
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   898
lemma continuous_prod [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   899
  fixes f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   900
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous F (f i)) \<Longrightarrow> continuous F (\<lambda>x. \<Prod>i\<in>S. f i x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   901
  unfolding continuous_def by (rule tendsto_prod)
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   902
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   903
lemma continuous_on_prod [continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   904
  fixes f :: "'a \<Rightarrow> _ \<Rightarrow> 'c::{real_normed_algebra,comm_ring_1}"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   905
  shows "(\<And>i. i \<in> S \<Longrightarrow> continuous_on s (f i)) \<Longrightarrow> continuous_on s (\<lambda>x. \<Prod>i\<in>S. f i x)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   906
  unfolding continuous_on_def by (auto intro: tendsto_prod)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
   907
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   908
lemma tendsto_of_real_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   909
  "((\<lambda>x. of_real (f x) :: 'a::real_normed_div_algebra) \<longlongrightarrow> of_real c) F \<longleftrightarrow> (f \<longlongrightarrow> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   910
  unfolding tendsto_iff by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   911
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   912
lemma tendsto_add_const_iff:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   913
  "((\<lambda>x. c + f x :: 'a::real_normed_vector) \<longlongrightarrow> c + d) F \<longleftrightarrow> (f \<longlongrightarrow> d) F"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
   914
  using tendsto_add[OF tendsto_const[of c], of f d]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   915
    and tendsto_add[OF tendsto_const[of "-c"], of "\<lambda>x. c + f x" "c + d"] by auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   916
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
   917
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
   918
subsubsection \<open>Inverse and division\<close>
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   919
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   920
lemma (in bounded_bilinear) Zfun_prod_Bfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   921
  assumes f: "Zfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   922
    and g: "Bfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   923
  shows "Zfun (\<lambda>x. f x ** g x) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   924
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   925
  obtain K where K: "0 \<le> K"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   926
    and norm_le: "\<And>x y. norm (x ** y) \<le> norm x * norm y * K"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   927
    using nonneg_bounded by blast
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   928
  obtain B where B: "0 < B"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   929
    and norm_g: "eventually (\<lambda>x. norm (g x) \<le> B) F"
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   930
    using g by (rule BfunE)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   931
  have "eventually (\<lambda>x. norm (f x ** g x) \<le> norm (f x) * (B * K)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   932
  using norm_g proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   933
    case (elim x)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   934
    have "norm (f x ** g x) \<le> norm (f x) * norm (g x) * K"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   935
      by (rule norm_le)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   936
    also have "\<dots> \<le> norm (f x) * B * K"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   937
      by (intro mult_mono' order_refl norm_g norm_ge_zero mult_nonneg_nonneg K elim)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   938
    also have "\<dots> = norm (f x) * (B * K)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
   939
      by (rule mult.assoc)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   940
    finally show "norm (f x ** g x) \<le> norm (f x) * (B * K)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   941
  qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   942
  with f show ?thesis
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   943
    by (rule Zfun_imp_Zfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   944
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   945
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   946
lemma (in bounded_bilinear) Bfun_prod_Zfun:
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   947
  assumes f: "Bfun f F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   948
    and g: "Zfun g F"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   949
  shows "Zfun (\<lambda>x. f x ** g x) F"
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   950
  using flip g f by (rule bounded_bilinear.Zfun_prod_Bfun)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   951
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   952
lemma Bfun_inverse_lemma:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   953
  fixes x :: "'a::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   954
  shows "r \<le> norm x \<Longrightarrow> 0 < r \<Longrightarrow> norm (inverse x) \<le> inverse r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   955
  apply (subst nonzero_norm_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   956
  apply clarsimp
44081
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   957
  apply (erule (1) le_imp_inverse_le)
730f7cced3a6 rename type 'a net to 'a filter, following standard mathematical terminology
huffman
parents: 44079
diff changeset
   958
  done
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   959
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   960
lemma Bfun_inverse:
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   961
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   962
  assumes f: "(f \<longlongrightarrow> a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   963
  assumes a: "a \<noteq> 0"
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   964
  shows "Bfun (\<lambda>x. inverse (f x)) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   965
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   966
  from a have "0 < norm a" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   967
  then have "\<exists>r>0. r < norm a" by (rule dense)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   968
  then obtain r where r1: "0 < r" and r2: "r < norm a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   969
    by blast
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
   970
  have "eventually (\<lambda>x. dist (f x) a < r) F"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
   971
    using tendstoD [OF f r1] by blast
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   972
  then have "eventually (\<lambda>x. norm (inverse (f x)) \<le> inverse (norm a - r)) F"
46887
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   973
  proof eventually_elim
cb891d9a23c1 use eventually_elim method
noschinl
parents: 46886
diff changeset
   974
    case (elim x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   975
    then have 1: "norm (f x - a) < r"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   976
      by (simp add: dist_norm)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   977
    then have 2: "f x \<noteq> 0" using r2 by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   978
    then have "norm (inverse (f x)) = inverse (norm (f x))"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   979
      by (rule nonzero_norm_inverse)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   980
    also have "\<dots> \<le> inverse (norm a - r)"
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   981
    proof (rule le_imp_inverse_le)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   982
      show "0 < norm a - r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   983
        using r2 by simp
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   984
      have "norm a - norm (f x) \<le> norm (a - f x)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   985
        by (rule norm_triangle_ineq2)
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   986
      also have "\<dots> = norm (f x - a)"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   987
        by (rule norm_minus_commute)
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   988
      also have "\<dots> < r" using 1 .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   989
      finally show "norm a - r \<le> norm (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   990
        by simp
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   991
    qed
31487
93938cafc0e6 put syntax for tendsto in Limits.thy; rename variables
huffman
parents: 31447
diff changeset
   992
    finally show "norm (inverse (f x)) \<le> inverse (norm a - r)" .
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   993
  qed
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
   994
  then show ?thesis by (rule BfunI)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   995
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   996
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
   997
lemma tendsto_inverse [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
   998
  fixes a :: "'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
   999
  assumes f: "(f \<longlongrightarrow> a) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1000
    and a: "a \<noteq> 0"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1001
  shows "((\<lambda>x. inverse (f x)) \<longlongrightarrow> inverse a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1002
proof -
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1003
  from a have "0 < norm a" by simp
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1004
  with f have "eventually (\<lambda>x. dist (f x) a < norm a) F"
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1005
    by (rule tendstoD)
44195
f5363511b212 consistently use variable name 'F' for filters
huffman
parents: 44194
diff changeset
  1006
  then have "eventually (\<lambda>x. f x \<noteq> 0) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1007
    unfolding dist_norm by (auto elim!: eventually_mono)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1008
  with a have "eventually (\<lambda>x. inverse (f x) - inverse a =
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1009
    - (inverse (f x) * (f x - a) * inverse a)) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1010
    by (auto elim!: eventually_mono simp: inverse_diff_inverse)
44627
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1011
  moreover have "Zfun (\<lambda>x. - (inverse (f x) * (f x - a) * inverse a)) F"
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1012
    by (intro Zfun_minus Zfun_mult_left
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1013
      bounded_bilinear.Bfun_prod_Zfun [OF bounded_bilinear_mult]
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1014
      Bfun_inverse [OF f a] f [unfolded tendsto_Zfun_iff])
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1015
  ultimately show ?thesis
134c06282ae6 convert to Isar-style proof
huffman
parents: 44571
diff changeset
  1016
    unfolding tendsto_Zfun_iff by (rule Zfun_ssubst)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1017
qed
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1018
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1019
lemma continuous_inverse:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1020
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1021
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1022
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1023
  shows "continuous F (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1024
  using assms unfolding continuous_def by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1025
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1026
lemma continuous_at_within_inverse[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1027
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1028
  assumes "continuous (at a within s) f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1029
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1030
  shows "continuous (at a within s) (\<lambda>x. inverse (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1031
  using assms unfolding continuous_within by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1032
66827
c94531b5007d Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
paulson <lp15@cam.ac.uk>
parents: 66793
diff changeset
  1033
lemma continuous_at_inverse[continuous_intros, simp]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1034
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1035
  assumes "isCont f a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1036
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1037
  shows "isCont (\<lambda>x. inverse (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1038
  using assms unfolding continuous_at by (rule tendsto_inverse)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1039
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1040
lemma continuous_on_inverse[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1041
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_div_algebra"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1042
  assumes "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1043
    and "\<forall>x\<in>s. f x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1044
  shows "continuous_on s (\<lambda>x. inverse (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1045
  using assms unfolding continuous_on_def by (blast intro: tendsto_inverse)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1046
31565
da5a5589418e theorem attribute [tendsto_intros]
huffman
parents: 31492
diff changeset
  1047
lemma tendsto_divide [tendsto_intros]:
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1048
  fixes a b :: "'a::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1049
  shows "(f \<longlongrightarrow> a) F \<Longrightarrow> (g \<longlongrightarrow> b) F \<Longrightarrow> b \<noteq> 0 \<Longrightarrow> ((\<lambda>x. f x / g x) \<longlongrightarrow> a / b) F"
44282
f0de18b62d63 remove bounded_(bi)linear locale interpretations, to avoid duplicating so many lemmas
huffman
parents: 44253
diff changeset
  1050
  by (simp add: tendsto_mult tendsto_inverse divide_inverse)
31355
3d18766ddc4b limits of inverse using filters
huffman
parents: 31353
diff changeset
  1051
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1052
lemma continuous_divide:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1053
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1054
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1055
    and "continuous F g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1056
    and "g (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1057
  shows "continuous F (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1058
  using assms unfolding continuous_def by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1059
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1060
lemma continuous_at_within_divide[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1061
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1062
  assumes "continuous (at a within s) f" "continuous (at a within s) g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1063
    and "g a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1064
  shows "continuous (at a within s) (\<lambda>x. (f x) / (g x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1065
  using assms unfolding continuous_within by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1066
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1067
lemma isCont_divide[continuous_intros, simp]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1068
  fixes f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_field"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1069
  assumes "isCont f a" "isCont g a" "g a \<noteq> 0"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1070
  shows "isCont (\<lambda>x. (f x) / g x) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1071
  using assms unfolding continuous_at by (rule tendsto_divide)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1072
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1073
lemma continuous_on_divide[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1074
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_field"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1075
  assumes "continuous_on s f" "continuous_on s g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1076
    and "\<forall>x\<in>s. g x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1077
  shows "continuous_on s (\<lambda>x. (f x) / (g x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1078
  using assms unfolding continuous_on_def by (blast intro: tendsto_divide)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1079
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1080
lemma tendsto_sgn [tendsto_intros]: "(f \<longlongrightarrow> l) F \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> ((\<lambda>x. sgn (f x)) \<longlongrightarrow> sgn l) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1081
  for l :: "'a::real_normed_vector"
44194
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1082
  unfolding sgn_div_norm by (simp add: tendsto_intros)
0639898074ae generalize lemmas about LIM and LIMSEQ to tendsto
huffman
parents: 44081
diff changeset
  1083
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1084
lemma continuous_sgn:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1085
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1086
  assumes "continuous F f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1087
    and "f (Lim F (\<lambda>x. x)) \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1088
  shows "continuous F (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1089
  using assms unfolding continuous_def by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1090
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1091
lemma continuous_at_within_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1092
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1093
  assumes "continuous (at a within s) f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1094
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1095
  shows "continuous (at a within s) (\<lambda>x. sgn (f x))"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1096
  using assms unfolding continuous_within by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1097
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1098
lemma isCont_sgn[continuous_intros]:
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1099
  fixes f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1100
  assumes "isCont f a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1101
    and "f a \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1102
  shows "isCont (\<lambda>x. sgn (f x)) a"
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1103
  using assms unfolding continuous_at by (rule tendsto_sgn)
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1104
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56366
diff changeset
  1105
lemma continuous_on_sgn[continuous_intros]:
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1106
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1107
  assumes "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1108
    and "\<forall>x\<in>s. f x \<noteq> 0"
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1109
  shows "continuous_on s (\<lambda>x. sgn (f x))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  1110
  using assms unfolding continuous_on_def by (blast intro: tendsto_sgn)
51478
270b21f3ae0a move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents: 51474
diff changeset
  1111
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1112
lemma filterlim_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1113
  fixes f :: "_ \<Rightarrow> 'a::real_normed_vector"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1114
  assumes "0 \<le> c"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1115
  shows "(LIM x F. f x :> at_infinity) \<longleftrightarrow> (\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1116
  unfolding filterlim_iff eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1117
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1118
  fix P :: "'a \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1119
  fix b
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1120
  assume *: "\<forall>r>c. eventually (\<lambda>x. r \<le> norm (f x)) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1121
  assume P: "\<forall>x. b \<le> norm x \<longrightarrow> P x"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1122
  have "max b (c + 1) > c" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1123
  with * have "eventually (\<lambda>x. max b (c + 1) \<le> norm (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1124
    by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1125
  then show "eventually (\<lambda>x. P (f x)) F"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1126
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1127
    case (elim x)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1128
    with P show "P (f x)" by auto
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1129
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1130
qed force
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1131
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1132
lemma filterlim_at_infinity_imp_norm_at_top:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1133
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1134
  assumes "filterlim f at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1135
  shows   "filterlim (\<lambda>x. norm (f x)) at_top F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1136
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1137
  {
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1138
    fix r :: real 
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1139
    have "\<forall>\<^sub>F x in F. r \<le> norm (f x)" using filterlim_at_infinity[of 0 f F] assms 
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1140
      by (cases "r > 0") 
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1141
         (auto simp: not_less intro: always_eventually order.trans[OF _ norm_ge_zero])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1142
  }
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1143
  thus ?thesis by (auto simp: filterlim_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1144
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1145
  
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1146
lemma filterlim_norm_at_top_imp_at_infinity:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1147
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1148
  assumes "filterlim (\<lambda>x. norm (f x)) at_top F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1149
  shows   "filterlim f at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1150
  using filterlim_at_infinity[of 0 f F] assms by (auto simp: filterlim_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1151
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1152
lemma filterlim_norm_at_top: "filterlim norm at_top at_infinity"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1153
  by (rule filterlim_at_infinity_imp_norm_at_top) (rule filterlim_ident)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1154
67950
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1155
lemma filterlim_at_infinity_conv_norm_at_top:
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1156
  "filterlim f at_infinity G \<longleftrightarrow> filterlim (\<lambda>x. norm (f x)) at_top G"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1157
  by (auto simp: filterlim_at_infinity[OF order.refl] filterlim_at_top_gt[of _ _ 0])
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1158
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1159
lemma eventually_not_equal_at_infinity:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1160
  "eventually (\<lambda>x. x \<noteq> (a :: 'a :: {real_normed_vector})) at_infinity"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1161
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1162
  from filterlim_norm_at_top[where 'a = 'a]
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1163
    have "\<forall>\<^sub>F x in at_infinity. norm a < norm (x::'a)" by (auto simp: filterlim_at_top_dense)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1164
  thus ?thesis by eventually_elim auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1165
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1166
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1167
lemma filterlim_int_of_nat_at_topD:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1168
  fixes F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1169
  assumes "filterlim (\<lambda>x. f (int x)) F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1170
  shows   "filterlim f F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1171
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1172
  have "filterlim (\<lambda>x. f (int (nat x))) F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1173
    by (rule filterlim_compose[OF assms filterlim_nat_sequentially])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1174
  also have "?this \<longleftrightarrow> filterlim f F at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1175
    by (intro filterlim_cong refl eventually_mono [OF eventually_ge_at_top[of "0::int"]]) auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1176
  finally show ?thesis .
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1177
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1178
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1179
lemma filterlim_int_sequentially [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1180
  "filterlim int at_top sequentially"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1181
  unfolding filterlim_at_top
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1182
proof
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1183
  fix C :: int
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1184
  show "eventually (\<lambda>n. int n \<ge> C) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1185
    using eventually_ge_at_top[of "nat \<lceil>C\<rceil>"] by eventually_elim linarith
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1186
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1187
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1188
lemma filterlim_real_of_int_at_top [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1189
  "filterlim real_of_int at_top at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1190
  unfolding filterlim_at_top
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1191
proof
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1192
  fix C :: real
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1193
  show "eventually (\<lambda>n. real_of_int n \<ge> C) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1194
    using eventually_ge_at_top[of "\<lceil>C\<rceil>"] by eventually_elim linarith
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1195
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1196
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1197
lemma filterlim_abs_real: "filterlim (abs::real \<Rightarrow> real) at_top at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1198
proof (subst filterlim_cong[OF refl refl])
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1199
  from eventually_ge_at_top[of "0::real"] show "eventually (\<lambda>x::real. \<bar>x\<bar> = x) at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1200
    by eventually_elim simp
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1201
qed (simp_all add: filterlim_ident)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1202
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1203
lemma filterlim_of_real_at_infinity [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1204
  "filterlim (of_real :: real \<Rightarrow> 'a :: real_normed_algebra_1) at_infinity at_top"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1205
  by (intro filterlim_norm_at_top_imp_at_infinity) (auto simp: filterlim_abs_real)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1206
    
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1207
lemma not_tendsto_and_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1208
  fixes c :: "'a::real_normed_vector"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1209
  assumes "F \<noteq> bot"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1210
    and "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1211
    and "filterlim f at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1212
  shows False
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1213
proof -
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1214
  from tendstoD[OF assms(2), of "1/2"]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1215
  have "eventually (\<lambda>x. dist (f x) c < 1/2) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1216
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1217
  moreover
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1218
  from filterlim_at_infinity[of "norm c" f F] assms(3)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1219
  have "eventually (\<lambda>x. norm (f x) \<ge> norm c + 1) F" by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1220
  ultimately have "eventually (\<lambda>x. False) F"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1221
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1222
    fix x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1223
    assume A: "dist (f x) c < 1/2"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1224
    assume "norm (f x) \<ge> norm c + 1"
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1225
    also have "norm (f x) = dist (f x) 0" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1226
    also have "\<dots> \<le> dist (f x) c + dist c 0" by (rule dist_triangle)
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1227
    finally show False using A by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1228
  qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1229
  with assms show False by simp
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1230
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1231
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1232
lemma filterlim_at_infinity_imp_not_convergent:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1233
  assumes "filterlim f at_infinity sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1234
  shows "\<not> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1235
  by (rule notI, rule not_tendsto_and_filterlim_at_infinity[OF _ _ assms])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1236
     (simp_all add: convergent_LIMSEQ_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1237
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1238
lemma filterlim_at_infinity_imp_eventually_ne:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1239
  assumes "filterlim f at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1240
  shows "eventually (\<lambda>z. f z \<noteq> c) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1241
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1242
  have "norm c + 1 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1243
    by (intro add_nonneg_pos) simp_all
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1244
  with filterlim_at_infinity[OF order.refl, of f F] assms
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1245
  have "eventually (\<lambda>z. norm (f z) \<ge> norm c + 1) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1246
    by blast
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1247
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1248
    by eventually_elim auto
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1249
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1250
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1251
lemma tendsto_of_nat [tendsto_intros]:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1252
  "filterlim (of_nat :: nat \<Rightarrow> 'a::real_normed_algebra_1) at_infinity sequentially"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1253
proof (subst filterlim_at_infinity[OF order.refl], intro allI impI)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1254
  fix r :: real
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1255
  assume r: "r > 0"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  1256
  define n where "n = nat \<lceil>r\<rceil>"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1257
  from r have n: "\<forall>m\<ge>n. of_nat m \<ge> r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1258
    unfolding n_def by linarith
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1259
  from eventually_ge_at_top[of n] show "eventually (\<lambda>m. norm (of_nat m :: 'a) \<ge> r) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1260
    by eventually_elim (use n in simp_all)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1261
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1262
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1263
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1264
subsection \<open>Relate @{const at}, @{const at_left} and @{const at_right}\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1265
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1266
text \<open>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1267
  This lemmas are useful for conversion between @{term "at x"} to @{term "at_left x"} and
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1268
  @{term "at_right x"} and also @{term "at_right 0"}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1269
\<close>
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1270
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1271
lemmas filterlim_split_at_real = filterlim_split_at[where 'a=real]
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1272
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1273
lemma filtermap_nhds_shift: "filtermap (\<lambda>x. x - d) (nhds a) = nhds (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1274
  for a d :: "'a::real_normed_vector"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1275
  by (rule filtermap_fun_inverse[where g="\<lambda>x. x + d"])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1276
    (auto intro!: tendsto_eq_intros filterlim_ident)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1277
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1278
lemma filtermap_nhds_minus: "filtermap (\<lambda>x. - x) (nhds a) = nhds (- a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1279
  for a :: "'a::real_normed_vector"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1280
  by (rule filtermap_fun_inverse[where g=uminus])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1281
    (auto intro!: tendsto_eq_intros filterlim_ident)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1282
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1283
lemma filtermap_at_shift: "filtermap (\<lambda>x. x - d) (at a) = at (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1284
  for a d :: "'a::real_normed_vector"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1285
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1286
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1287
lemma filtermap_at_right_shift: "filtermap (\<lambda>x. x - d) (at_right a) = at_right (a - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1288
  for a d :: "real"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1289
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_shift[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1290
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1291
lemma at_right_to_0: "at_right a = filtermap (\<lambda>x. x + a) (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1292
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1293
  using filtermap_at_right_shift[of "-a" 0] by simp
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1294
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1295
lemma filterlim_at_right_to_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1296
  "filterlim f F (at_right a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1297
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1298
  unfolding filterlim_def filtermap_filtermap at_right_to_0[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1299
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1300
lemma eventually_at_right_to_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1301
  "eventually P (at_right a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at_right 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1302
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1303
  unfolding at_right_to_0[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1304
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1305
lemma at_to_0: "at a = filtermap (\<lambda>x. x + a) (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1306
  for a :: "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1307
  using filtermap_at_shift[of "-a" 0] by simp
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1308
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1309
lemma filterlim_at_to_0:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1310
  "filterlim f F (at a) \<longleftrightarrow> filterlim (\<lambda>x. f (x + a)) F (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1311
  for a :: "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1312
  unfolding filterlim_def filtermap_filtermap at_to_0[of a] ..
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1313
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1314
lemma eventually_at_to_0:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1315
  "eventually P (at a) \<longleftrightarrow> eventually (\<lambda>x. P (x + a)) (at 0)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1316
  for a ::  "'a::real_normed_vector"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1317
  unfolding at_to_0[of a] by (simp add: eventually_filtermap)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1318
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1319
lemma filtermap_at_minus: "filtermap (\<lambda>x. - x) (at a) = at (- a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1320
  for a :: "'a::real_normed_vector"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1321
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1322
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1323
lemma at_left_minus: "at_left a = filtermap (\<lambda>x. - x) (at_right (- a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1324
  for a :: real
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1325
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1326
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1327
lemma at_right_minus: "at_right a = filtermap (\<lambda>x. - x) (at_left (- a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1328
  for a :: real
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1329
  by (simp add: filter_eq_iff eventually_filtermap eventually_at_filter filtermap_nhds_minus[symmetric])
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1330
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1331
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1332
lemma filterlim_at_left_to_right:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1333
  "filterlim f F (at_left a) \<longleftrightarrow> filterlim (\<lambda>x. f (- x)) F (at_right (-a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1334
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1335
  unfolding filterlim_def filtermap_filtermap at_left_minus[of a] ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1336
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1337
lemma eventually_at_left_to_right:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1338
  "eventually P (at_left a) \<longleftrightarrow> eventually (\<lambda>x. P (- x)) (at_right (-a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1339
  for a :: real
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1340
  unfolding at_left_minus[of a] by (simp add: eventually_filtermap)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1341
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1342
lemma filterlim_uminus_at_top_at_bot: "LIM x at_bot. - x :: real :> at_top"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1343
  unfolding filterlim_at_top eventually_at_bot_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1344
  by (metis leI minus_less_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1345
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1346
lemma filterlim_uminus_at_bot_at_top: "LIM x at_top. - x :: real :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1347
  unfolding filterlim_at_bot eventually_at_top_dense
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1348
  by (metis leI less_minus_iff order_less_asym)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1349
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1350
lemma at_top_mirror: "at_top = filtermap uminus (at_bot :: real filter)"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1351
  by (rule filtermap_fun_inverse[symmetric, of uminus])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1352
     (auto intro: filterlim_uminus_at_bot_at_top filterlim_uminus_at_top_at_bot)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1353
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1354
lemma at_bot_mirror: "at_bot = filtermap uminus (at_top :: real filter)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1355
  unfolding at_top_mirror filtermap_filtermap by (simp add: filtermap_ident)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1356
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1357
lemma filterlim_at_top_mirror: "(LIM x at_top. f x :> F) \<longleftrightarrow> (LIM x at_bot. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1358
  unfolding filterlim_def at_top_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1359
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1360
lemma filterlim_at_bot_mirror: "(LIM x at_bot. f x :> F) \<longleftrightarrow> (LIM x at_top. f (-x::real) :> F)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1361
  unfolding filterlim_def at_bot_mirror filtermap_filtermap ..
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1362
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1363
lemma filterlim_uminus_at_top: "(LIM x F. f x :> at_top) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_bot)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1364
  using filterlim_compose[OF filterlim_uminus_at_bot_at_top, of f F]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1365
    and filterlim_compose[OF filterlim_uminus_at_top_at_bot, of "\<lambda>x. - f x" F]
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1366
  by auto
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1367
67950
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1368
lemma filterlim_at_infinity_imp_filterlim_at_top:
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1369
  assumes "filterlim (f :: 'a \<Rightarrow> real) at_infinity F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1370
  assumes "eventually (\<lambda>x. f x > 0) F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1371
  shows   "filterlim f at_top F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1372
proof -
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1373
  from assms(2) have *: "eventually (\<lambda>x. norm (f x) = f x) F" by eventually_elim simp
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1374
  from assms(1) show ?thesis unfolding filterlim_at_infinity_conv_norm_at_top
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1375
    by (subst (asm) filterlim_cong[OF refl refl *])
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1376
qed
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1377
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1378
lemma filterlim_at_infinity_imp_filterlim_at_bot:
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1379
  assumes "filterlim (f :: 'a \<Rightarrow> real) at_infinity F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1380
  assumes "eventually (\<lambda>x. f x < 0) F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1381
  shows   "filterlim f at_bot F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1382
proof -
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1383
  from assms(2) have *: "eventually (\<lambda>x. norm (f x) = -f x) F" by eventually_elim simp
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1384
  from assms(1) have "filterlim (\<lambda>x. - f x) at_top F"
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1385
    unfolding filterlim_at_infinity_conv_norm_at_top
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1386
    by (subst (asm) filterlim_cong[OF refl refl *])
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1387
  thus ?thesis by (simp add: filterlim_uminus_at_top)
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1388
qed
99eaa5cedbb7 Added some simple facts about limits
Manuel Eberl <eberlm@in.tum.de>
parents: 67707
diff changeset
  1389
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1390
lemma filterlim_uminus_at_bot: "(LIM x F. f x :> at_bot) \<longleftrightarrow> (LIM x F. - (f x) :: real :> at_top)"
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1391
  unfolding filterlim_uminus_at_top by simp
50323
3764d4620fb3 add filterlim rules for unary minus and inverse
hoelzl
parents: 50322
diff changeset
  1392
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1393
lemma filterlim_inverse_at_top_right: "LIM x at_right (0::real). inverse x :> at_top"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1394
  unfolding filterlim_at_top_gt[where c=0] eventually_at_filter
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1395
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1396
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1397
  assume [arith]: "0 < Z"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1398
  then have "eventually (\<lambda>x. x < inverse Z) (nhds 0)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1399
    by (auto simp add: eventually_nhds_metric dist_real_def intro!: exI[of _ "\<bar>inverse Z\<bar>"])
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1400
  then show "eventually (\<lambda>x. x \<noteq> 0 \<longrightarrow> x \<in> {0<..} \<longrightarrow> Z \<le> inverse x) (nhds 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1401
    by (auto elim!: eventually_mono simp: inverse_eq_divide field_simps)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1402
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1403
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1404
lemma tendsto_inverse_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1405
  fixes x :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1406
  shows "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1407
  unfolding tendsto_Zfun_iff diff_0_right Zfun_def eventually_at_infinity
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1408
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1409
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1410
  assume "0 < r"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1411
  show "\<exists>b. \<forall>x. b \<le> norm x \<longrightarrow> norm (inverse x :: 'a) < r"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1412
  proof (intro exI[of _ "inverse (r / 2)"] allI impI)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1413
    fix x :: 'a
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1414
    from \<open>0 < r\<close> have "0 < inverse (r / 2)" by simp
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1415
    also assume *: "inverse (r / 2) \<le> norm x"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1416
    finally show "norm (inverse x) < r"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1417
      using * \<open>0 < r\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1418
      by (subst nonzero_norm_inverse) (simp_all add: inverse_eq_divide field_simps)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1419
  qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1420
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1421
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1422
lemma tendsto_add_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1423
  fixes c :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1424
    and F :: "'a filter"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1425
  assumes "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1426
    and "filterlim g at_infinity F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1427
  shows "filterlim (\<lambda>x. f x + g x) at_infinity F"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1428
proof (subst filterlim_at_infinity[OF order_refl], safe)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1429
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1430
  assume r: "r > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1431
  from assms(1) have "((\<lambda>x. norm (f x)) \<longlongrightarrow> norm c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1432
    by (rule tendsto_norm)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1433
  then have "eventually (\<lambda>x. norm (f x) < norm c + 1) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1434
    by (rule order_tendstoD) simp_all
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1435
  moreover from r have "r + norm c + 1 > 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1436
    by (intro add_pos_nonneg) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1437
  with assms(2) have "eventually (\<lambda>x. norm (g x) \<ge> r + norm c + 1) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1438
    unfolding filterlim_at_infinity[OF order_refl]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1439
    by (elim allE[of _ "r + norm c + 1"]) simp_all
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1440
  ultimately show "eventually (\<lambda>x. norm (f x + g x) \<ge> r) F"
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1441
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1442
    fix x :: 'a
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1443
    assume A: "norm (f x) < norm c + 1" and B: "r + norm c + 1 \<le> norm (g x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1444
    from A B have "r \<le> norm (g x) - norm (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1445
      by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1446
    also have "norm (g x) - norm (f x) \<le> norm (g x + f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1447
      by (rule norm_diff_ineq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1448
    finally show "r \<le> norm (f x + g x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1449
      by (simp add: add_ac)
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1450
  qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1451
qed
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1452
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1453
lemma tendsto_add_filterlim_at_infinity':
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1454
  fixes c :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1455
    and F :: "'a filter"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1456
  assumes "filterlim f at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1457
    and "(g \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1458
  shows "filterlim (\<lambda>x. f x + g x) at_infinity F"
61552
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1459
  by (subst add.commute) (rule tendsto_add_filterlim_at_infinity assms)+
980dd46a03fb Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
eberlm
parents: 61531
diff changeset
  1460
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1461
lemma filterlim_inverse_at_right_top: "LIM x at_top. inverse x :> at_right (0::real)"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1462
  unfolding filterlim_at
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1463
  by (auto simp: eventually_at_top_dense)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1464
     (metis tendsto_inverse_0 filterlim_mono at_top_le_at_infinity order_refl)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1465
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1466
lemma filterlim_inverse_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1467
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. 0 < f x) F \<Longrightarrow> LIM x F. inverse (f x) :> at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1468
  by (intro filterlim_compose[OF filterlim_inverse_at_top_right])
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1469
     (simp add: filterlim_def eventually_filtermap eventually_mono at_within_def le_principal)
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1470
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1471
lemma filterlim_inverse_at_bot_neg:
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1472
  "LIM x (at_left (0::real)). inverse x :> at_bot"
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1473
  by (simp add: filterlim_inverse_at_top_right filterlim_uminus_at_bot filterlim_at_left_to_right)
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1474
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1475
lemma filterlim_inverse_at_bot:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1476
  "(f \<longlongrightarrow> (0 :: real)) F \<Longrightarrow> eventually (\<lambda>x. f x < 0) F \<Longrightarrow> LIM x F. inverse (f x) :> at_bot"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1477
  unfolding filterlim_uminus_at_bot inverse_minus_eq[symmetric]
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1478
  by (rule filterlim_inverse_at_top) (simp_all add: tendsto_minus_cancel_left[symmetric])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1479
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1480
lemma at_right_to_top: "(at_right (0::real)) = filtermap inverse at_top"
60721
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1481
  by (intro filtermap_fun_inverse[symmetric, where g=inverse])
c1b7793c23a3 generalized filtermap_homeomorph to filtermap_fun_inverse; add eventually_at_top/bot_not_equal
hoelzl
parents: 60182
diff changeset
  1482
     (auto intro: filterlim_inverse_at_top_right filterlim_inverse_at_right_top)
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1483
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1484
lemma eventually_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1485
  "eventually P (at_right (0::real)) \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1486
  unfolding at_right_to_top eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1487
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1488
lemma filterlim_at_right_to_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1489
  "filterlim f F (at_right (0::real)) \<longleftrightarrow> (LIM x at_top. f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1490
  unfolding filterlim_def at_right_to_top filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1491
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1492
lemma at_top_to_right: "at_top = filtermap inverse (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1493
  unfolding at_right_to_top filtermap_filtermap inverse_inverse_eq filtermap_ident ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1494
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1495
lemma eventually_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1496
  "eventually P at_top \<longleftrightarrow> eventually (\<lambda>x. P (inverse x)) (at_right (0::real))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1497
  unfolding at_top_to_right eventually_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1498
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1499
lemma filterlim_at_top_to_right:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1500
  "filterlim f F at_top \<longleftrightarrow> (LIM x (at_right (0::real)). f (inverse x) :> F)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1501
  unfolding filterlim_def at_top_to_right filtermap_filtermap ..
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1502
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1503
lemma filterlim_inverse_at_infinity:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1504
  fixes x :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1505
  shows "filterlim inverse at_infinity (at (0::'a))"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1506
  unfolding filterlim_at_infinity[OF order_refl]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1507
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1508
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1509
  assume "0 < r"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1510
  then show "eventually (\<lambda>x::'a. r \<le> norm (inverse x)) (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1511
    unfolding eventually_at norm_inverse
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1512
    by (intro exI[of _ "inverse r"])
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1513
       (auto simp: norm_conv_dist[symmetric] field_simps inverse_eq_divide)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1514
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1515
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1516
lemma filterlim_inverse_at_iff:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1517
  fixes g :: "'a \<Rightarrow> 'b::{real_normed_div_algebra, division_ring}"
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1518
  shows "(LIM x F. inverse (g x) :> at 0) \<longleftrightarrow> (LIM x F. g x :> at_infinity)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1519
  unfolding filterlim_def filtermap_filtermap[symmetric]
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1520
proof
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1521
  assume "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1522
  then have "filtermap inverse (filtermap g F) \<le> filtermap inverse at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1523
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1524
  also have "\<dots> \<le> at 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1525
    using tendsto_inverse_0[where 'a='b]
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1526
    by (auto intro!: exI[of _ 1]
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1527
        simp: le_principal eventually_filtermap filterlim_def at_within_def eventually_at_infinity)
50325
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1528
  finally show "filtermap inverse (filtermap g F) \<le> at 0" .
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1529
next
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1530
  assume "filtermap inverse (filtermap g F) \<le> at 0"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1531
  then have "filtermap inverse (filtermap inverse (filtermap g F)) \<le> filtermap inverse (at 0)"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1532
    by (rule filtermap_mono)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1533
  with filterlim_inverse_at_infinity show "filtermap g F \<le> at_infinity"
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1534
    by (auto intro: order_trans simp: filterlim_def filtermap_filtermap)
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1535
qed
5e40ad9f212a add filterlim rules for inverse and at_infinity
hoelzl
parents: 50324
diff changeset
  1536
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1537
lemma tendsto_mult_filterlim_at_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1538
  fixes c :: "'a::real_normed_field"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  1539
  assumes  "(f \<longlongrightarrow> c) F" "c \<noteq> 0"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1540
  assumes "filterlim g at_infinity F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1541
  shows "filterlim (\<lambda>x. f x * g x) at_infinity F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1542
proof -
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1543
  have "((\<lambda>x. inverse (f x) * inverse (g x)) \<longlongrightarrow> inverse c * 0) F"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1544
    by (intro tendsto_mult tendsto_inverse assms filterlim_compose[OF tendsto_inverse_0])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1545
  then have "filterlim (\<lambda>x. inverse (f x) * inverse (g x)) (at (inverse c * 0)) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1546
    unfolding filterlim_at
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1547
    using assms
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1548
    by (auto intro: filterlim_at_infinity_imp_eventually_ne tendsto_imp_eventually_ne eventually_conj)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1549
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1550
    by (subst filterlim_inverse_at_iff[symmetric]) simp_all
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  1551
qed  
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  1552
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1553
lemma tendsto_inverse_0_at_top: "LIM x F. f x :> at_top \<Longrightarrow> ((\<lambda>x. inverse (f x) :: real) \<longlongrightarrow> 0) F"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  1554
 by (metis filterlim_at filterlim_mono[OF _ at_top_le_at_infinity order_refl] filterlim_inverse_at_iff)
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1555
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1556
lemma real_tendsto_divide_at_top:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1557
  fixes c::"real"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1558
  assumes "(f \<longlongrightarrow> c) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1559
  assumes "filterlim g at_top F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1560
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1561
  by (auto simp: divide_inverse_commute
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1562
      intro!: tendsto_mult[THEN tendsto_eq_rhs] tendsto_inverse_0_at_top assms)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1563
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1564
lemma mult_nat_left_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. c * x) at_top sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1565
  for c :: nat
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  1566
  by (rule filterlim_subseq) (auto simp: strict_mono_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1567
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1568
lemma mult_nat_right_at_top: "c > 0 \<Longrightarrow> filterlim (\<lambda>x. x * c) at_top sequentially"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1569
  for c :: nat
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 65680
diff changeset
  1570
  by (rule filterlim_subseq) (auto simp: strict_mono_def)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1571
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1572
lemma filterlim_times_pos:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1573
  "LIM x F1. c * f x :> at_right l"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1574
  if "filterlim f (at_right p) F1" "0 < c" "l = c * p"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1575
  for c::"'a::{linordered_field, linorder_topology}"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1576
  unfolding filterlim_iff
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1577
proof safe
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1578
  fix P
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1579
  assume "\<forall>\<^sub>F x in at_right l. P x"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1580
  then obtain d where "c * p < d" "\<And>y. y > c * p \<Longrightarrow> y < d \<Longrightarrow> P y"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1581
    unfolding \<open>l = _ \<close> eventually_at_right_field
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1582
    by auto
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1583
  then have "\<forall>\<^sub>F a in at_right p. P (c * a)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1584
    by (auto simp: eventually_at_right_field \<open>0 < c\<close> field_simps intro!: exI[where x="d/c"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1585
  from that(1)[unfolded filterlim_iff, rule_format, OF this]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1586
  show "\<forall>\<^sub>F x in F1. P (c * f x)" .
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1587
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1588
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1589
lemma filtermap_nhds_times: "c \<noteq> 0 \<Longrightarrow> filtermap (times c) (nhds a) = nhds (c * a)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1590
  for a c :: "'a::real_normed_field"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1591
  by (rule filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1592
    (auto intro!: tendsto_eq_intros filterlim_ident)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1593
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1594
lemma filtermap_times_pos_at_right:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1595
  fixes c::"'a::{linordered_field, linorder_topology}"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1596
  assumes "c > 0"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1597
  shows "filtermap (times c) (at_right p) = at_right (c * p)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1598
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1599
  by (intro filtermap_fun_inverse[where g="\<lambda>x. inverse c * x"])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1600
    (auto intro!: filterlim_ident filterlim_times_pos)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  1601
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1602
lemma at_to_infinity: "(at (0::'a::{real_normed_field,field})) = filtermap inverse at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1603
proof (rule antisym)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1604
  have "(inverse \<longlongrightarrow> (0::'a)) at_infinity"
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1605
    by (fact tendsto_inverse_0)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1606
  then show "filtermap inverse at_infinity \<le> at (0::'a)"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1607
    apply (simp add: le_principal eventually_filtermap eventually_at_infinity filterlim_def at_within_def)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1608
    apply (rule_tac x="1" in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1609
    apply auto
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1610
    done
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1611
next
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1612
  have "filtermap inverse (filtermap inverse (at (0::'a))) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1613
    using filterlim_inverse_at_infinity unfolding filterlim_def
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1614
    by (rule filtermap_mono)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1615
  then show "at (0::'a) \<le> filtermap inverse at_infinity"
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1616
    by (simp add: filtermap_ident filtermap_filtermap)
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1617
qed
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1618
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1619
lemma lim_at_infinity_0:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1620
  fixes l :: "'a::{real_normed_field,field}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1621
  shows "(f \<longlongrightarrow> l) at_infinity \<longleftrightarrow> ((f \<circ> inverse) \<longlongrightarrow> l) (at (0::'a))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1622
  by (simp add: tendsto_compose_filtermap at_to_infinity filtermap_filtermap)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1623
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1624
lemma lim_zero_infinity:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1625
  fixes l :: "'a::{real_normed_field,field}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1626
  shows "((\<lambda>x. f(1 / x)) \<longlongrightarrow> l) (at (0::'a)) \<Longrightarrow> (f \<longlongrightarrow> l) at_infinity"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1627
  by (simp add: inverse_eq_divide lim_at_infinity_0 comp_def)
59613
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1628
7103019278f0 The function frac. Various lemmas about limits, series, the exp function, etc.
paulson <lp15@cam.ac.uk>
parents: 58889
diff changeset
  1629
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1630
text \<open>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1631
  We only show rules for multiplication and addition when the functions are either against a real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1632
  value or against infinity. Further rules are easy to derive by using @{thm
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1633
  filterlim_uminus_at_top}.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1634
\<close>
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1635
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1636
lemma filterlim_tendsto_pos_mult_at_top:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1637
  assumes f: "(f \<longlongrightarrow> c) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1638
    and c: "0 < c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1639
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1640
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1641
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1642
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1643
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1644
  assume "0 < Z"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1645
  from f \<open>0 < c\<close> have "eventually (\<lambda>x. c / 2 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1646
    by (auto dest!: tendstoD[where e="c / 2"] elim!: eventually_mono
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1647
        simp: dist_real_def abs_real_def split: if_split_asm)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1648
  moreover from g have "eventually (\<lambda>x. (Z / c * 2) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1649
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1650
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1651
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1652
    case (elim x)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1653
    with \<open>0 < Z\<close> \<open>0 < c\<close> have "c / 2 * (Z / c * 2) \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1654
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1655
    with \<open>0 < c\<close> show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1656
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1657
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1658
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1659
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1660
lemma filterlim_at_top_mult_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1661
  assumes f: "LIM x F. f x :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1662
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1663
  shows "LIM x F. (f x * g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1664
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1665
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1666
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1667
  assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1668
  from f have "eventually (\<lambda>x. 1 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1669
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1670
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1671
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1672
  ultimately show "eventually (\<lambda>x. Z \<le> f x * g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1673
  proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1674
    case (elim x)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1675
    with \<open>0 < Z\<close> have "1 * Z \<le> f x * g x"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1676
      by (intro mult_mono) (auto simp: zero_le_divide_iff)
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1677
    then show "Z \<le> f x * g x"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1678
       by simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1679
  qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1680
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1681
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1682
lemma filterlim_at_top_mult_tendsto_pos:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1683
  assumes f: "(f \<longlongrightarrow> c) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1684
    and c: "0 < c"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1685
    and g: "LIM x F. g x :> at_top"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1686
  shows "LIM x F. (g x * f x:: real) :> at_top"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1687
  by (auto simp: mult.commute intro!: filterlim_tendsto_pos_mult_at_top f c g)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  1688
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1689
lemma filterlim_tendsto_pos_mult_at_bot:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1690
  fixes c :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1691
  assumes "(f \<longlongrightarrow> c) F" "0 < c" "filterlim g at_bot F"
50419
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1692
  shows "LIM x F. f x * g x :> at_bot"
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1693
  using filterlim_tendsto_pos_mult_at_top[OF assms(1,2), of "\<lambda>x. - g x"] assms(3)
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1694
  unfolding filterlim_uminus_at_bot by simp
3177d0374701 add exponential and uniform distributions
hoelzl
parents: 50347
diff changeset
  1695
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1696
lemma filterlim_tendsto_neg_mult_at_bot:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1697
  fixes c :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1698
  assumes c: "(f \<longlongrightarrow> c) F" "c < 0" and g: "filterlim g at_top F"
60182
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1699
  shows "LIM x F. f x * g x :> at_bot"
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1700
  using c filterlim_tendsto_pos_mult_at_top[of "\<lambda>x. - f x" "- c" F, OF _ _ g]
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1701
  unfolding filterlim_uminus_at_bot tendsto_minus_cancel_left by simp
e1ea5a6379c9 generalized tends over powr; added DERIV rule for powr
hoelzl
parents: 60141
diff changeset
  1702
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1703
lemma filterlim_pow_at_top:
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63556
diff changeset
  1704
  fixes f :: "'a \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1705
  assumes "0 < n"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1706
    and f: "LIM x F. f x :> at_top"
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1707
  shows "LIM x F. (f x)^n :: real :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1708
  using \<open>0 < n\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1709
proof (induct n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1710
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1711
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1712
next
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1713
  case (Suc n) with f show ?case
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1714
    by (cases "n = 0") (auto intro!: filterlim_at_top_mult_at_top)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1715
qed
56330
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1716
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1717
lemma filterlim_pow_at_bot_even:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1718
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1719
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> even n \<Longrightarrow> LIM x F. (f x)^n :> at_top"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1720
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_top)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1721
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1722
lemma filterlim_pow_at_bot_odd:
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1723
  fixes f :: "real \<Rightarrow> real"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1724
  shows "0 < n \<Longrightarrow> LIM x F. f x :> at_bot \<Longrightarrow> odd n \<Longrightarrow> LIM x F. (f x)^n :> at_bot"
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1725
  using filterlim_pow_at_top[of n "\<lambda>x. - f x" F] by (simp add: filterlim_uminus_at_bot)
5c4d3be7a6b0 add limits of power at top and bot
hoelzl
parents: 55415
diff changeset
  1726
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1727
lemma filterlim_power_at_infinity [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1728
  fixes F and f :: "'a \<Rightarrow> 'b :: real_normed_div_algebra"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1729
  assumes "filterlim f at_infinity F" "n > 0"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1730
  shows   "filterlim (\<lambda>x. f x ^ n) at_infinity F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1731
  by (rule filterlim_norm_at_top_imp_at_infinity)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1732
     (auto simp: norm_power intro!: filterlim_pow_at_top assms 
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1733
           intro: filterlim_at_infinity_imp_norm_at_top)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67091
diff changeset
  1734
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1735
lemma filterlim_tendsto_add_at_top:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1736
  assumes f: "(f \<longlongrightarrow> c) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1737
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1738
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1739
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1740
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1741
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1742
  assume "0 < Z"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1743
  from f have "eventually (\<lambda>x. c - 1 < f x) F"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61806
diff changeset
  1744
    by (auto dest!: tendstoD[where e=1] elim!: eventually_mono simp: dist_real_def)
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1745
  moreover from g have "eventually (\<lambda>x. Z - (c - 1) \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1746
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1747
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1748
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1749
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1750
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1751
lemma LIM_at_top_divide:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1752
  fixes f g :: "'a \<Rightarrow> real"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1753
  assumes f: "(f \<longlongrightarrow> a) F" "0 < a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1754
    and g: "(g \<longlongrightarrow> 0) F" "eventually (\<lambda>x. 0 < g x) F"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1755
  shows "LIM x F. f x / g x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1756
  unfolding divide_inverse
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1757
  by (rule filterlim_tendsto_pos_mult_at_top[OF f]) (rule filterlim_inverse_at_top[OF g])
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  1758
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1759
lemma filterlim_at_top_add_at_top:
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1760
  assumes f: "LIM x F. f x :> at_top"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1761
    and g: "LIM x F. g x :> at_top"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1762
  shows "LIM x F. (f x + g x :: real) :> at_top"
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1763
  unfolding filterlim_at_top_gt[where c=0]
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1764
proof safe
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1765
  fix Z :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1766
  assume "0 < Z"
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1767
  from f have "eventually (\<lambda>x. 0 \<le> f x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1768
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1769
  moreover from g have "eventually (\<lambda>x. Z \<le> g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1770
    unfolding filterlim_at_top by auto
50346
a75c6429c3c3 add filterlim rules for eventually monotone bijective functions; mirror rules for at_top, at_bot; apply them to prove convergence of arctan at infinity and tan at pi/2
hoelzl
parents: 50331
diff changeset
  1771
  ultimately show "eventually (\<lambda>x. Z \<le> f x + g x) F"
50324
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1772
    by eventually_elim simp
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1773
qed
0a1242d5e7d4 add filterlim rules for diverging multiplication and addition; move at_infinity to the HOL image
hoelzl
parents: 50323
diff changeset
  1774
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1775
lemma tendsto_divide_0:
61076
bdc1e2f0a86a eliminated \<Colon>;
wenzelm
parents: 60974
diff changeset
  1776
  fixes f :: "_ \<Rightarrow> 'a::{real_normed_div_algebra, division_ring}"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1777
  assumes f: "(f \<longlongrightarrow> c) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1778
    and g: "LIM x F. g x :> at_infinity"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1779
  shows "((\<lambda>x. f x / g x) \<longlongrightarrow> 0) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1780
  using tendsto_mult[OF f filterlim_compose[OF tendsto_inverse_0 g]]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1781
  by (simp add: divide_inverse)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1782
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1783
lemma linear_plus_1_le_power:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1784
  fixes x :: real
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1785
  assumes x: "0 \<le> x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1786
  shows "real n * x + 1 \<le> (x + 1) ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1787
proof (induct n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1788
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1789
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1790
next
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1791
  case (Suc n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1792
  from x have "real (Suc n) * x + 1 \<le> (x + 1) * (real n * x + 1)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1793
    by (simp add: field_simps)
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1794
  also have "\<dots> \<le> (x + 1)^Suc n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1795
    using Suc x by (simp add: mult_left_mono)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1796
  finally show ?case .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1797
qed
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1798
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1799
lemma filterlim_realpow_sequentially_gt1:
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1800
  fixes x :: "'a :: real_normed_div_algebra"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1801
  assumes x[arith]: "1 < norm x"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1802
  shows "LIM n sequentially. x ^ n :> at_infinity"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1803
proof (intro filterlim_at_infinity[THEN iffD2] allI impI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1804
  fix y :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1805
  assume "0 < y"
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1806
  have "0 < norm x - 1" by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1807
  then obtain N :: nat where "y < real N * (norm x - 1)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1808
    by (blast dest: reals_Archimedean3)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1809
  also have "\<dots> \<le> real N * (norm x - 1) + 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1810
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1811
  also have "\<dots> \<le> (norm x - 1 + 1) ^ N"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1812
    by (rule linear_plus_1_le_power) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1813
  also have "\<dots> = norm x ^ N"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1814
    by simp
50331
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1815
  finally have "\<forall>n\<ge>N. y \<le> norm x ^ n"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1816
    by (metis order_less_le_trans power_increasing order_less_imp_le x)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1817
  then show "eventually (\<lambda>n. y \<le> norm (x ^ n)) sequentially"
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1818
    unfolding eventually_sequentially
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1819
    by (auto simp: norm_power)
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1820
qed simp
4b6dc5077e98 use filterlim in Lim and SEQ; tuned proofs
hoelzl
parents: 50330
diff changeset
  1821
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  1822
66456
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1823
lemma filterlim_divide_at_infinity:
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1824
  fixes f g :: "'a \<Rightarrow> 'a :: real_normed_field"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1825
  assumes "filterlim f (nhds c) F" "filterlim g (at 0) F" "c \<noteq> 0"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1826
  shows   "filterlim (\<lambda>x. f x / g x) at_infinity F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1827
proof -
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1828
  have "filterlim (\<lambda>x. f x * inverse (g x)) at_infinity F"
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1829
    by (intro tendsto_mult_filterlim_at_infinity[OF assms(1,3)]
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1830
          filterlim_compose [OF filterlim_inverse_at_infinity assms(2)])
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1831
  thus ?thesis by (simp add: field_simps)
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1832
qed
621897f47fab Various lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66447
diff changeset
  1833
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1834
subsection \<open>Floor and Ceiling\<close>
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1835
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1836
lemma eventually_floor_less:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1837
  fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1838
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1839
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1840
  shows "\<forall>\<^sub>F x in F. of_int (floor l) < f x"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1841
  by (intro order_tendstoD[OF f]) (metis Ints_of_int antisym_conv2 floor_correct l)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1842
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1843
lemma eventually_less_ceiling:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1844
  fixes f :: "'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1845
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1846
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1847
  shows "\<forall>\<^sub>F x in F. f x < of_int (ceiling l)"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1848
  by (intro order_tendstoD[OF f]) (metis Ints_of_int l le_of_int_ceiling less_le)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1849
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1850
lemma eventually_floor_eq:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1851
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1852
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1853
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1854
  shows "\<forall>\<^sub>F x in F. floor (f x) = floor l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1855
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1856
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1857
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1858
lemma eventually_ceiling_eq:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1859
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1860
  assumes f: "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1861
    and l: "l \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1862
  shows "\<forall>\<^sub>F x in F. ceiling (f x) = ceiling l"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1863
  using eventually_floor_less[OF assms] eventually_less_ceiling[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1864
  by eventually_elim (meson floor_less_iff less_ceiling_iff not_less_iff_gr_or_eq)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1865
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1866
lemma tendsto_of_int_floor:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1867
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1868
  assumes "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1869
    and "l \<notin> \<int>"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1870
  shows "((\<lambda>x. of_int (floor (f x)) :: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (floor l)) F"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1871
  using eventually_floor_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1872
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1873
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1874
lemma tendsto_of_int_ceiling:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1875
  fixes f::"'a \<Rightarrow> 'b::{order_topology,floor_ceiling}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1876
  assumes "(f \<longlongrightarrow> l) F"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1877
    and "l \<notin> \<int>"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1878
  shows "((\<lambda>x. of_int (ceiling (f x)):: 'c::{ring_1,topological_space}) \<longlongrightarrow> of_int (ceiling l)) F"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1879
  using eventually_ceiling_eq[OF assms]
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1880
  by (simp add: eventually_mono topological_tendstoI)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1881
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1882
lemma continuous_on_of_int_floor:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1883
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1884
    (\<lambda>x. of_int (floor x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1885
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1886
  by (auto intro!: tendsto_of_int_floor)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1887
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1888
lemma continuous_on_of_int_ceiling:
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1889
  "continuous_on (UNIV - \<int>::'a::{order_topology, floor_ceiling} set)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1890
    (\<lambda>x. of_int (ceiling x)::'b::{ring_1, topological_space})"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1891
  unfolding continuous_on_def
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1892
  by (auto intro!: tendsto_of_int_ceiling)
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1893
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63104
diff changeset
  1894
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  1895
subsection \<open>Limits of Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1896
62368
106569399cd6 add type class for topological monoids
hoelzl
parents: 62101
diff changeset
  1897
lemma [trans]: "X = Y \<Longrightarrow> Y \<longlonglongrightarrow> z \<Longrightarrow> X \<longlonglongrightarrow> z"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1898
  by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1899
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1900
lemma LIMSEQ_iff:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1901
  fixes L :: "'a::real_normed_vector"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  1902
  shows "(X \<longlonglongrightarrow> L) = (\<forall>r>0. \<exists>no. \<forall>n \<ge> no. norm (X n - L) < r)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59867
diff changeset
  1903
unfolding lim_sequentially dist_norm ..
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1904
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1905
lemma LIMSEQ_I: "(\<And>r. 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r) \<Longrightarrow> X \<longlonglongrightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1906
  for L :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1907
  by (simp add: LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1908
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1909
lemma LIMSEQ_D: "X \<longlonglongrightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>no. \<forall>n\<ge>no. norm (X n - L) < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1910
  for L :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1911
  by (simp add: LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1912
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1913
lemma LIMSEQ_linear: "X \<longlonglongrightarrow> x \<Longrightarrow> l > 0 \<Longrightarrow> (\<lambda> n. X (n * l)) \<longlonglongrightarrow> x"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1914
  unfolding tendsto_def eventually_sequentially
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57447
diff changeset
  1915
  by (metis div_le_dividend div_mult_self1_is_m le_trans mult.commute)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1916
65036
ab7e11730ad8 Some new lemmas. Existing lemmas modified to use uniform_limit rather than its expansion
paulson <lp15@cam.ac.uk>
parents: 64394
diff changeset
  1917
lemma norm_inverse_le_norm: "r \<le> norm x \<Longrightarrow> 0 < r \<Longrightarrow> norm (inverse x) \<le> inverse r"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1918
  for x :: "'a::real_normed_div_algebra"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1919
  apply (subst nonzero_norm_inverse, clarsimp)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1920
  apply (erule (1) le_imp_inverse_le)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1921
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1922
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1923
lemma Bseq_inverse: "X \<longlonglongrightarrow> a \<Longrightarrow> a \<noteq> 0 \<Longrightarrow> Bseq (\<lambda>n. inverse (X n))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1924
  for a :: "'a::real_normed_div_algebra"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1925
  by (rule Bfun_inverse)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  1926
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1927
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1928
text \<open>Transformation of limit.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1929
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1930
lemma Lim_transform: "(g \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1931
  for a b :: "'a::real_normed_vector"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1932
  using tendsto_add [of g a F "\<lambda>x. f x - g x" 0] by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1933
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1934
lemma Lim_transform2: "(f \<longlongrightarrow> a) F \<Longrightarrow> ((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (g \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1935
  for a b :: "'a::real_normed_vector"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1936
  by (erule Lim_transform) (simp add: tendsto_minus_cancel)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1937
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1938
proposition Lim_transform_eq: "((\<lambda>x. f x - g x) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> a) F \<longleftrightarrow> (g \<longlongrightarrow> a) F"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1939
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1940
  using Lim_transform Lim_transform2 by blast
62379
340738057c8c An assortment of useful lemmas about sums, norm, etc. Also: norm_conv_dist [symmetric] is now a simprule!
paulson <lp15@cam.ac.uk>
parents: 62369
diff changeset
  1941
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1942
lemma Lim_transform_eventually:
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1943
  "eventually (\<lambda>x. f x = g x) net \<Longrightarrow> (f \<longlongrightarrow> l) net \<Longrightarrow> (g \<longlongrightarrow> l) net"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1944
  apply (rule topological_tendstoI)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1945
  apply (drule (2) topological_tendstoD)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1946
  apply (erule (1) eventually_elim2)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1947
  apply simp
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1948
  done
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1949
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1950
lemma Lim_transform_within:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1951
  assumes "(f \<longlongrightarrow> l) (at x within S)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1952
    and "0 < d"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1953
    and "\<And>x'. x'\<in>S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x'"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1954
  shows "(g \<longlongrightarrow> l) (at x within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1955
proof (rule Lim_transform_eventually)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1956
  show "eventually (\<lambda>x. f x = g x) (at x within S)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1957
    using assms by (auto simp: eventually_at)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1958
  show "(f \<longlongrightarrow> l) (at x within S)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1959
    by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1960
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1961
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1962
lemma filterlim_transform_within:
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1963
  assumes "filterlim g G (at x within S)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1964
  assumes "G \<le> F" "0<d" "(\<And>x'. x' \<in> S \<Longrightarrow> 0 < dist x' x \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') "
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1965
  shows "filterlim f F (at x within S)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1966
  using assms
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1967
  apply (elim filterlim_mono_eventually)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1968
  unfolding eventually_at by auto
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67673
diff changeset
  1969
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1970
text \<open>Common case assuming being away from some crucial point like 0.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1971
lemma Lim_transform_away_within:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1972
  fixes a b :: "'a::t1_space"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1973
  assumes "a \<noteq> b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1974
    and "\<forall>x\<in>S. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1975
    and "(f \<longlongrightarrow> l) (at a within S)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1976
  shows "(g \<longlongrightarrow> l) (at a within S)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1977
proof (rule Lim_transform_eventually)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1978
  show "(f \<longlongrightarrow> l) (at a within S)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1979
    by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1980
  show "eventually (\<lambda>x. f x = g x) (at a within S)"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1981
    unfolding eventually_at_topological
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1982
    by (rule exI [where x="- {b}"]) (simp add: open_Compl assms)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1983
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1984
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1985
lemma Lim_transform_away_at:
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1986
  fixes a b :: "'a::t1_space"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1987
  assumes ab: "a \<noteq> b"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1988
    and fg: "\<forall>x. x \<noteq> a \<and> x \<noteq> b \<longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1989
    and fl: "(f \<longlongrightarrow> l) (at a)"
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  1990
  shows "(g \<longlongrightarrow> l) (at a)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1991
  using Lim_transform_away_within[OF ab, of UNIV f g l] fg fl by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1992
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1993
text \<open>Alternatively, within an open set.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1994
lemma Lim_transform_within_open:
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1995
  assumes "(f \<longlongrightarrow> l) (at a within T)"
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1996
    and "open s" and "a \<in> s"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  1997
    and "\<And>x. x\<in>s \<Longrightarrow> x \<noteq> a \<Longrightarrow> f x = g x"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  1998
  shows "(g \<longlongrightarrow> l) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1999
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2000
  show "eventually (\<lambda>x. f x = g x) (at a within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2001
    unfolding eventually_at_topological
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2002
    using assms by auto
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2003
  show "(f \<longlongrightarrow> l) (at a within T)" by fact
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2004
qed
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2005
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2006
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2007
text \<open>A congruence rule allowing us to transform limits assuming not at point.\<close>
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2008
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2009
(* FIXME: Only one congruence rule for tendsto can be used at a time! *)
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2010
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2011
lemma Lim_cong_within(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2012
  assumes "a = b"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2013
    and "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2014
    and "S = T"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2015
    and "\<And>x. x \<noteq> b \<Longrightarrow> x \<in> T \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2016
  shows "(f \<longlongrightarrow> x) (at a within S) \<longleftrightarrow> (g \<longlongrightarrow> y) (at b within T)"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2017
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2018
  using assms by simp
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2019
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2020
lemma Lim_cong_at(*[cong add]*):
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2021
  assumes "a = b" "x = y"
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2022
    and "\<And>x. x \<noteq> a \<Longrightarrow> f x = g x"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2023
  shows "((\<lambda>x. f x) \<longlongrightarrow> x) (at a) \<longleftrightarrow> ((g \<longlongrightarrow> y) (at a))"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2024
  unfolding tendsto_def eventually_at_topological
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2025
  using assms by simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2026
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2027
text \<open>An unbounded sequence's inverse tends to 0.\<close>
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2028
lemma LIMSEQ_inverse_zero:
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2029
  assumes "\<And>r::real. \<exists>N. \<forall>n\<ge>N. r < X n"
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2030
  shows "(\<lambda>n. inverse (X n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2031
  apply (rule filterlim_compose[OF tendsto_inverse_0])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2032
  apply (simp add: filterlim_at_infinity[OF order_refl] eventually_sequentially)
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2033
  apply (metis assms abs_le_D1 linorder_le_cases linorder_not_le)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2034
  done
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2035
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2036
text \<open>The sequence @{term "1/n"} tends to 0 as @{term n} tends to infinity.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2037
lemma LIMSEQ_inverse_real_of_nat: "(\<lambda>n. inverse (real (Suc n))) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2038
  by (metis filterlim_compose tendsto_inverse_0 filterlim_mono order_refl filterlim_Suc
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2039
      filterlim_compose[OF filterlim_real_sequentially] at_top_le_at_infinity)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2040
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2041
text \<open>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2042
  The sequence @{term "r + 1/n"} tends to @{term r} as @{term n} tends to
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2043
  infinity is now easily proved.
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2044
\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2045
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2046
lemma LIMSEQ_inverse_real_of_nat_add: "(\<lambda>n. r + inverse (real (Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2047
  using tendsto_add [OF tendsto_const LIMSEQ_inverse_real_of_nat] by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2048
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2049
lemma LIMSEQ_inverse_real_of_nat_add_minus: "(\<lambda>n. r + -inverse (real (Suc n))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2050
  using tendsto_add [OF tendsto_const tendsto_minus [OF LIMSEQ_inverse_real_of_nat]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2051
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2052
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2053
lemma LIMSEQ_inverse_real_of_nat_add_minus_mult: "(\<lambda>n. r * (1 + - inverse (real (Suc n)))) \<longlonglongrightarrow> r"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2054
  using tendsto_mult [OF tendsto_const LIMSEQ_inverse_real_of_nat_add_minus [of 1]]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2055
  by auto
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2056
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2057
lemma lim_inverse_n: "((\<lambda>n. inverse(of_nat n)) \<longlongrightarrow> (0::'a::real_normed_field)) sequentially"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2058
  using lim_1_over_n by (simp add: inverse_eq_divide)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2059
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2060
lemma lim_inverse_n': "((\<lambda>n. 1 / n) \<longlongrightarrow> 0) sequentially"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2061
  using lim_inverse_n
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2062
  by (simp add: inverse_eq_divide)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67673
diff changeset
  2063
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2064
lemma LIMSEQ_Suc_n_over_n: "(\<lambda>n. of_nat (Suc n) / of_nat n :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2065
proof (rule Lim_transform_eventually)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2066
  show "eventually (\<lambda>n. 1 + inverse (of_nat n :: 'a) = of_nat (Suc n) / of_nat n) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2067
    using eventually_gt_at_top[of "0::nat"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2068
    by eventually_elim (simp add: field_simps)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2069
  have "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1 + 0"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2070
    by (intro tendsto_add tendsto_const lim_inverse_n)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2071
  then show "(\<lambda>n. 1 + inverse (of_nat n) :: 'a) \<longlonglongrightarrow> 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2072
    by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2073
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2074
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2075
lemma LIMSEQ_n_over_Suc_n: "(\<lambda>n. of_nat n / of_nat (Suc n) :: 'a :: real_normed_field) \<longlonglongrightarrow> 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2076
proof (rule Lim_transform_eventually)
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2077
  show "eventually (\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a) =
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2078
      of_nat n / of_nat (Suc n)) sequentially"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2079
    using eventually_gt_at_top[of "0::nat"]
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2080
    by eventually_elim (simp add: field_simps del: of_nat_Suc)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2081
  have "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> inverse 1"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2082
    by (intro tendsto_inverse LIMSEQ_Suc_n_over_n) simp_all
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2083
  then show "(\<lambda>n. inverse (of_nat (Suc n) / of_nat n :: 'a)) \<longlonglongrightarrow> 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2084
    by simp
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2085
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61169
diff changeset
  2086
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2087
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2088
subsection \<open>Convergence on sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2089
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2090
lemma convergent_cong:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2091
  assumes "eventually (\<lambda>x. f x = g x) sequentially"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2092
  shows "convergent f \<longleftrightarrow> convergent g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2093
  unfolding convergent_def
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2094
  by (subst filterlim_cong[OF refl refl assms]) (rule refl)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2095
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2096
lemma convergent_Suc_iff: "convergent (\<lambda>n. f (Suc n)) \<longleftrightarrow> convergent f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2097
  by (auto simp: convergent_def LIMSEQ_Suc_iff)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2098
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2099
lemma convergent_ignore_initial_segment: "convergent (\<lambda>n. f (n + m)) = convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2100
proof (induct m arbitrary: f)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2101
  case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2102
  then show ?case by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2103
next
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2104
  case (Suc m)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2105
  have "convergent (\<lambda>n. f (n + Suc m)) \<longleftrightarrow> convergent (\<lambda>n. f (Suc n + m))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2106
    by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2107
  also have "\<dots> \<longleftrightarrow> convergent (\<lambda>n. f (n + m))"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2108
    by (rule convergent_Suc_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2109
  also have "\<dots> \<longleftrightarrow> convergent f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2110
    by (rule Suc)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2111
  finally show ?case .
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2112
qed
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2113
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2114
lemma convergent_add:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2115
  fixes X Y :: "nat \<Rightarrow> 'a::topological_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2116
  assumes "convergent (\<lambda>n. X n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2117
    and "convergent (\<lambda>n. Y n)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2118
  shows "convergent (\<lambda>n. X n + Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2119
  using assms unfolding convergent_def by (blast intro: tendsto_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2120
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2121
lemma convergent_sum:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2122
  fixes X :: "'a \<Rightarrow> nat \<Rightarrow> 'b::topological_comm_monoid_add"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
  2123
  shows "(\<And>i. i \<in> A \<Longrightarrow> convergent (\<lambda>n. X i n)) \<Longrightarrow> convergent (\<lambda>n. \<Sum>i\<in>A. X i n)"
bab633745c7f tuned proofs;
wenzelm
parents: 63721
diff changeset
  2124
  by (induct A rule: infinite_finite_induct) (simp_all add: convergent_const convergent_add)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2125
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2126
lemma (in bounded_linear) convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2127
  assumes "convergent (\<lambda>n. X n)"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2128
  shows "convergent (\<lambda>n. f (X n))"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2129
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2130
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2131
lemma (in bounded_bilinear) convergent:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2132
  assumes "convergent (\<lambda>n. X n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2133
    and "convergent (\<lambda>n. Y n)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2134
  shows "convergent (\<lambda>n. X n ** Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2135
  using assms unfolding convergent_def by (blast intro: tendsto)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2136
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2137
lemma convergent_minus_iff:
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2138
  fixes X :: "nat \<Rightarrow> 'a::topological_group_add"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2139
  shows "convergent X \<longleftrightarrow> convergent (\<lambda>n. - X n)"
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2140
  unfolding convergent_def by (force dest: tendsto_minus)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2141
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2142
lemma convergent_diff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2143
  fixes X Y :: "nat \<Rightarrow> 'a::topological_group_add"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2144
  assumes "convergent (\<lambda>n. X n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2145
  assumes "convergent (\<lambda>n. Y n)"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2146
  shows "convergent (\<lambda>n. X n - Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2147
  using assms unfolding convergent_def by (blast intro: tendsto_diff)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2148
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2149
lemma convergent_norm:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2150
  assumes "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2151
  shows "convergent (\<lambda>n. norm (f n))"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2152
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2153
  from assms have "f \<longlonglongrightarrow> lim f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2154
    by (simp add: convergent_LIMSEQ_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2155
  then have "(\<lambda>n. norm (f n)) \<longlonglongrightarrow> norm (lim f)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2156
    by (rule tendsto_norm)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2157
  then show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2158
    by (auto simp: convergent_def)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2159
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2160
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2161
lemma convergent_of_real:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2162
  "convergent f \<Longrightarrow> convergent (\<lambda>n. of_real (f n) :: 'a::real_normed_algebra_1)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2163
  unfolding convergent_def by (blast intro!: tendsto_of_real)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2164
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2165
lemma convergent_add_const_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2166
  "convergent (\<lambda>n. c + f n :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2167
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2168
  assume "convergent (\<lambda>n. c + f n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2169
  from convergent_diff[OF this convergent_const[of c]] show "convergent f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2170
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2171
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2172
  assume "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2173
  from convergent_add[OF convergent_const[of c] this] show "convergent (\<lambda>n. c + f n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2174
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2175
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2176
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2177
lemma convergent_add_const_right_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2178
  "convergent (\<lambda>n. f n + c :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2179
  using convergent_add_const_iff[of c f] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2180
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2181
lemma convergent_diff_const_right_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2182
  "convergent (\<lambda>n. f n - c :: 'a::topological_ab_group_add) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2183
  using convergent_add_const_right_iff[of f "-c"] by (simp add: add_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2184
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2185
lemma convergent_mult:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2186
  fixes X Y :: "nat \<Rightarrow> 'a::topological_semigroup_mult"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2187
  assumes "convergent (\<lambda>n. X n)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2188
    and "convergent (\<lambda>n. Y n)"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2189
  shows "convergent (\<lambda>n. X n * Y n)"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2190
  using assms unfolding convergent_def by (blast intro: tendsto_mult)
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2191
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2192
lemma convergent_mult_const_iff:
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2193
  assumes "c \<noteq> 0"
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2194
  shows "convergent (\<lambda>n. c * f n :: 'a::{field,topological_semigroup_mult}) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2195
proof
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2196
  assume "convergent (\<lambda>n. c * f n)"
62087
44841d07ef1d revisions to limits and derivatives, plus new lemmas
paulson
parents: 61976
diff changeset
  2197
  from assms convergent_mult[OF this convergent_const[of "inverse c"]]
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2198
    show "convergent f" by (simp add: field_simps)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2199
next
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2200
  assume "convergent f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2201
  from convergent_mult[OF convergent_const[of c] this] show "convergent (\<lambda>n. c * f n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2202
    by simp
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2203
qed
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2204
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2205
lemma convergent_mult_const_right_iff:
68064
b249fab48c76 type class generalisations; some work on infinite products
paulson <lp15@cam.ac.uk>
parents: 67958
diff changeset
  2206
  fixes c :: "'a::{field,topological_semigroup_mult}"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2207
  assumes "c \<noteq> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2208
  shows "convergent (\<lambda>n. f n * c) \<longleftrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2209
  using convergent_mult_const_iff[OF assms, of f] by (simp add: mult_ac)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2210
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2211
lemma convergent_imp_Bseq: "convergent f \<Longrightarrow> Bseq f"
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2212
  by (simp add: Cauchy_Bseq convergent_Cauchy)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2213
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2214
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2215
text \<open>A monotone sequence converges to its least upper bound.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2216
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2217
lemma LIMSEQ_incseq_SUP:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2218
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder,linorder_topology}"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2219
  assumes u: "bdd_above (range X)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2220
    and X: "incseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2221
  shows "X \<longlonglongrightarrow> (SUP i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2222
  by (rule order_tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2223
    (auto simp: eventually_sequentially u less_cSUP_iff
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2224
      intro: X[THEN incseqD] less_le_trans cSUP_lessD[OF u])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2225
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2226
lemma LIMSEQ_decseq_INF:
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2227
  fixes X :: "nat \<Rightarrow> 'a::{conditionally_complete_linorder, linorder_topology}"
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2228
  assumes u: "bdd_below (range X)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2229
    and X: "decseq X"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2230
  shows "X \<longlonglongrightarrow> (INF i. X i)"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2231
  by (rule order_tendstoI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2232
     (auto simp: eventually_sequentially u cINF_less_iff
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2233
       intro: X[THEN decseqD] le_less_trans less_cINF_D[OF u])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2234
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2235
text \<open>Main monotonicity theorem.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2236
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2237
lemma Bseq_monoseq_convergent: "Bseq X \<Longrightarrow> monoseq X \<Longrightarrow> convergent X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2238
  for X :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2239
  by (auto simp: monoseq_iff convergent_def intro: LIMSEQ_decseq_INF LIMSEQ_incseq_SUP
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2240
      dest: Bseq_bdd_above Bseq_bdd_below)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2241
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2242
lemma Bseq_mono_convergent: "Bseq X \<Longrightarrow> (\<forall>m n. m \<le> n \<longrightarrow> X m \<le> X n) \<Longrightarrow> convergent X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2243
  for X :: "nat \<Rightarrow> real"
54263
c4159fe6fa46 move Lubs from HOL to HOL-Library (replaced by conditionally complete lattices)
hoelzl
parents: 54230
diff changeset
  2244
  by (auto intro!: Bseq_monoseq_convergent incseq_imp_monoseq simp: incseq_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2245
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2246
lemma monoseq_imp_convergent_iff_Bseq: "monoseq f \<Longrightarrow> convergent f \<longleftrightarrow> Bseq f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2247
  for f :: "nat \<Rightarrow> real"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2248
  using Bseq_monoseq_convergent[of f] convergent_imp_Bseq[of f] by blast
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2249
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2250
lemma Bseq_monoseq_convergent'_inc:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2251
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2252
  shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<le> f n) \<Longrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2253
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2254
     (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2255
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2256
lemma Bseq_monoseq_convergent'_dec:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2257
  fixes f :: "nat \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2258
  shows "Bseq (\<lambda>n. f (n + M)) \<Longrightarrow> (\<And>m n. M \<le> m \<Longrightarrow> m \<le> n \<Longrightarrow> f m \<ge> f n) \<Longrightarrow> convergent f"
61531
ab2e862263e7 Rounding function, uniform limits, cotangent, binomial identities
eberlm
parents: 61524
diff changeset
  2259
  by (subst convergent_ignore_initial_segment [symmetric, of _ M])
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2260
    (auto intro!: Bseq_monoseq_convergent simp: monoseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2261
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2262
lemma Cauchy_iff: "Cauchy X \<longleftrightarrow> (\<forall>e>0. \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2263
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2264
  unfolding Cauchy_def dist_norm ..
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2265
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2266
lemma CauchyI: "(\<And>e. 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e) \<Longrightarrow> Cauchy X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2267
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2268
  by (simp add: Cauchy_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2269
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2270
lemma CauchyD: "Cauchy X \<Longrightarrow> 0 < e \<Longrightarrow> \<exists>M. \<forall>m\<ge>M. \<forall>n\<ge>M. norm (X m - X n) < e"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2271
  for X :: "nat \<Rightarrow> 'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2272
  by (simp add: Cauchy_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2273
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2274
lemma incseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2275
  fixes X :: "nat \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2276
  assumes "incseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2277
    and "\<forall>i. X i \<le> B"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2278
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. X i \<le> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2279
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2280
  from incseq_bounded[OF assms] \<open>incseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2281
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2282
    by (auto simp: convergent_def monoseq_def incseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2283
  with \<open>incseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. X i \<le> L)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2284
    by (auto intro!: exI[of _ L] incseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2285
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2286
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2287
lemma decseq_convergent:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2288
  fixes X :: "nat \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2289
  assumes "decseq X"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2290
    and "\<forall>i. B \<le> X i"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2291
  obtains L where "X \<longlonglongrightarrow> L" "\<forall>i. L \<le> X i"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2292
proof atomize_elim
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2293
  from decseq_bounded[OF assms] \<open>decseq X\<close> Bseq_monoseq_convergent[of X]
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2294
  obtain L where "X \<longlonglongrightarrow> L"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2295
    by (auto simp: convergent_def monoseq_def decseq_def)
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2296
  with \<open>decseq X\<close> show "\<exists>L. X \<longlonglongrightarrow> L \<and> (\<forall>i. L \<le> X i)"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2297
    by (auto intro!: exI[of _ L] decseq_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2298
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2299
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2300
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2301
subsection \<open>Power Sequences\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2302
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2303
lemma Bseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> Bseq (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2304
  for x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2305
  apply (simp add: Bseq_def)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2306
  apply (rule_tac x = 1 in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2307
  apply (simp add: power_abs)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2308
  apply (auto dest: power_mono)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2309
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2310
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2311
lemma monoseq_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> monoseq (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2312
  for x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2313
  apply (clarify intro!: mono_SucI2)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2314
  apply (cut_tac n = n and N = "Suc n" and a = x in power_decreasing)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2315
     apply auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2316
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2317
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2318
lemma convergent_realpow: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> convergent (\<lambda>n. x ^ n)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2319
  for x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2320
  by (blast intro!: Bseq_monoseq_convergent Bseq_realpow monoseq_realpow)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2321
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2322
lemma LIMSEQ_inverse_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. inverse (x ^ n)) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2323
  for x :: real
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2324
  by (rule filterlim_compose[OF tendsto_inverse_0 filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2325
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2326
lemma LIMSEQ_realpow_zero:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2327
  fixes x :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2328
  assumes "0 \<le> x" "x < 1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2329
  shows "(\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2330
proof (cases "x = 0")
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2331
  case False
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2332
  with \<open>0 \<le> x\<close> have x0: "0 < x" by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2333
  then have "1 < inverse x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2334
    using \<open>x < 1\<close> by (rule one_less_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2335
  then have "(\<lambda>n. inverse (inverse x ^ n)) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2336
    by (rule LIMSEQ_inverse_realpow_zero)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2337
  then show ?thesis by (simp add: power_inverse)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2338
next
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2339
  case True
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2340
  show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2341
    by (rule LIMSEQ_imp_Suc) (simp add: True)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2342
qed
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2343
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2344
lemma LIMSEQ_power_zero: "norm x < 1 \<Longrightarrow> (\<lambda>n. x ^ n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2345
  for x :: "'a::real_normed_algebra_1"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2346
  apply (drule LIMSEQ_realpow_zero [OF norm_ge_zero])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2347
  apply (simp only: tendsto_Zfun_iff, erule Zfun_le)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2348
  apply (simp add: power_abs norm_power_ineq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2349
  done
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2350
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2351
lemma LIMSEQ_divide_realpow_zero: "1 < x \<Longrightarrow> (\<lambda>n. a / (x ^ n) :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2352
  by (rule tendsto_divide_0 [OF tendsto_const filterlim_realpow_sequentially_gt1]) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2353
63556
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2354
lemma
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2355
  tendsto_power_zero:
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2356
  fixes x::"'a::real_normed_algebra_1"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2357
  assumes "filterlim f at_top F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2358
  assumes "norm x < 1"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2359
  shows "((\<lambda>y. x ^ (f y)) \<longlongrightarrow> 0) F"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2360
proof (rule tendstoI)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2361
  fix e::real assume "0 < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2362
  from tendstoD[OF LIMSEQ_power_zero[OF \<open>norm x < 1\<close>] \<open>0 < e\<close>]
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2363
  have "\<forall>\<^sub>F xa in sequentially. norm (x ^ xa) < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2364
    by simp
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2365
  then obtain N where N: "norm (x ^ n) < e" if "n \<ge> N" for n
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2366
    by (auto simp: eventually_sequentially)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2367
  have "\<forall>\<^sub>F i in F. f i \<ge> N"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2368
    using \<open>filterlim f sequentially F\<close>
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2369
    by (simp add: filterlim_at_top)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2370
  then show "\<forall>\<^sub>F i in F. dist (x ^ f i) 0 < e"
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2371
    by (eventually_elim) (auto simp: N)
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2372
qed
36e9732988ce numerical bounds on pi
immler
parents: 63548
diff changeset
  2373
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2374
text \<open>Limit of @{term "c^n"} for @{term"\<bar>c\<bar> < 1"}.\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2375
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2376
lemma LIMSEQ_rabs_realpow_zero: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. \<bar>c\<bar> ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2377
  by (rule LIMSEQ_realpow_zero [OF abs_ge_zero])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2378
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2379
lemma LIMSEQ_rabs_realpow_zero2: "\<bar>c\<bar> < 1 \<Longrightarrow> (\<lambda>n. c ^ n :: real) \<longlonglongrightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2380
  by (rule LIMSEQ_power_zero) simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2381
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2382
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2383
subsection \<open>Limits of Functions\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2384
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2385
lemma LIM_eq: "f \<midarrow>a\<rightarrow> L = (\<forall>r>0. \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2386
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2387
  by (simp add: LIM_def dist_norm)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2388
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2389
lemma LIM_I:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2390
  "(\<And>r. 0 < r \<Longrightarrow> \<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r) \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2391
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2392
  by (simp add: LIM_eq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2393
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2394
lemma LIM_D: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> 0 < r \<Longrightarrow> \<exists>s>0.\<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (f x - L) < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2395
  for a :: "'a::real_normed_vector" and L :: "'b::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2396
  by (simp add: LIM_eq)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2397
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2398
lemma LIM_offset: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>x. f (x + k)) \<midarrow>(a - k)\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2399
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2400
  by (simp add: filtermap_at_shift[symmetric, of a k] filterlim_def filtermap_filtermap)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2401
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2402
lemma LIM_offset_zero: "f \<midarrow>a\<rightarrow> L \<Longrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2403
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2404
  by (drule LIM_offset [where k = a]) (simp add: add.commute)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2405
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2406
lemma LIM_offset_zero_cancel: "(\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L \<Longrightarrow> f \<midarrow>a\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2407
  for a :: "'a::real_normed_vector"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2408
  by (drule LIM_offset [where k = "- a"]) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2409
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2410
lemma LIM_offset_zero_iff: "f \<midarrow>a\<rightarrow> L \<longleftrightarrow> (\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> L"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2411
  for f :: "'a :: real_normed_vector \<Rightarrow> _"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2412
  using LIM_offset_zero_cancel[of f a L] LIM_offset_zero[of f L a] by auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  2413
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2414
lemma LIM_zero: "(f \<longlongrightarrow> l) F \<Longrightarrow> ((\<lambda>x. f x - l) \<longlongrightarrow> 0) F"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2415
  for f :: "'a \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2416
  unfolding tendsto_iff dist_norm by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2417
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2418
lemma LIM_zero_cancel:
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2419
  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2420
  shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> l) F"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2421
unfolding tendsto_iff dist_norm by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2422
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2423
lemma LIM_zero_iff: "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F = (f \<longlongrightarrow> l) F"
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65204
diff changeset
  2424
  for f :: "'a \<Rightarrow> 'b::real_normed_vector"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2425
  unfolding tendsto_iff dist_norm by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2426
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2427
lemma LIM_imp_LIM:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2428
  fixes f :: "'a::topological_space \<Rightarrow> 'b::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2429
  fixes g :: "'a::topological_space \<Rightarrow> 'c::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2430
  assumes f: "f \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2431
    and le: "\<And>x. x \<noteq> a \<Longrightarrow> norm (g x - m) \<le> norm (f x - l)"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2432
  shows "g \<midarrow>a\<rightarrow> m"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2433
  by (rule metric_LIM_imp_LIM [OF f]) (simp add: dist_norm le)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2434
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2435
lemma LIM_equal2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2436
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2437
  assumes "0 < R"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2438
    and "\<And>x. x \<noteq> a \<Longrightarrow> norm (x - a) < R \<Longrightarrow> f x = g x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2439
  shows "g \<midarrow>a\<rightarrow> l \<Longrightarrow> f \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2440
  by (rule metric_LIM_equal2 [OF assms]) (simp_all add: dist_norm)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2441
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2442
lemma LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2443
  fixes a :: "'a::real_normed_vector"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2444
  assumes f: "f \<midarrow>a\<rightarrow> b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2445
    and g: "g \<midarrow>b\<rightarrow> c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2446
    and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> b"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2447
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> c"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2448
  by (rule metric_LIM_compose2 [OF f g inj [folded dist_norm]])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2449
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2450
lemma real_LIM_sandwich_zero:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2451
  fixes f g :: "'a::topological_space \<Rightarrow> real"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2452
  assumes f: "f \<midarrow>a\<rightarrow> 0"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2453
    and 1: "\<And>x. x \<noteq> a \<Longrightarrow> 0 \<le> g x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2454
    and 2: "\<And>x. x \<noteq> a \<Longrightarrow> g x \<le> f x"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2455
  shows "g \<midarrow>a\<rightarrow> 0"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2456
proof (rule LIM_imp_LIM [OF f]) (* FIXME: use tendsto_sandwich *)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2457
  fix x
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2458
  assume x: "x \<noteq> a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2459
  with 1 have "norm (g x - 0) = g x" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2460
  also have "g x \<le> f x" by (rule 2 [OF x])
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2461
  also have "f x \<le> \<bar>f x\<bar>" by (rule abs_ge_self)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2462
  also have "\<bar>f x\<bar> = norm (f x - 0)" by simp
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2463
  finally show "norm (g x - 0) \<le> norm (f x - 0)" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2464
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2465
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2466
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2467
subsection \<open>Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2468
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2469
lemma LIM_isCont_iff: "(f \<midarrow>a\<rightarrow> f a) = ((\<lambda>h. f (a + h)) \<midarrow>0\<rightarrow> f a)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2470
  for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2471
  by (rule iffI [OF LIM_offset_zero LIM_offset_zero_cancel])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2472
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2473
lemma isCont_iff: "isCont f x = (\<lambda>h. f (x + h)) \<midarrow>0\<rightarrow> f x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2474
  for f :: "'a::real_normed_vector \<Rightarrow> 'b::topological_space"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2475
  by (simp add: isCont_def LIM_isCont_iff)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2476
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2477
lemma isCont_LIM_compose2:
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2478
  fixes a :: "'a::real_normed_vector"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2479
  assumes f [unfolded isCont_def]: "isCont f a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2480
    and g: "g \<midarrow>f a\<rightarrow> l"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2481
    and inj: "\<exists>d>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < d \<longrightarrow> f x \<noteq> f a"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  2482
  shows "(\<lambda>x. g (f x)) \<midarrow>a\<rightarrow> l"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2483
  by (rule LIM_compose2 [OF f g inj])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2484
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2485
lemma isCont_norm [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. norm (f x)) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2486
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2487
  by (fact continuous_norm)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2488
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2489
lemma isCont_rabs [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. \<bar>f x\<bar>) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2490
  for f :: "'a::t2_space \<Rightarrow> real"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2491
  by (fact continuous_rabs)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2492
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2493
lemma isCont_add [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x + g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2494
  for f :: "'a::t2_space \<Rightarrow> 'b::topological_monoid_add"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2495
  by (fact continuous_add)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2496
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2497
lemma isCont_minus [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. - f x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2498
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2499
  by (fact continuous_minus)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2500
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2501
lemma isCont_diff [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x - g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2502
  for f :: "'a::t2_space \<Rightarrow> 'b::real_normed_vector"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2503
  by (fact continuous_diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2504
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2505
lemma isCont_mult [simp]: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x * g x) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2506
  for f g :: "'a::t2_space \<Rightarrow> 'b::real_normed_algebra"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2507
  by (fact continuous_mult)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2508
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2509
lemma (in bounded_linear) isCont: "isCont g a \<Longrightarrow> isCont (\<lambda>x. f (g x)) a"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2510
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2511
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2512
lemma (in bounded_bilinear) isCont: "isCont f a \<Longrightarrow> isCont g a \<Longrightarrow> isCont (\<lambda>x. f x ** g x) a"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2513
  by (fact continuous)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2514
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2515
lemmas isCont_scaleR [simp] =
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2516
  bounded_bilinear.isCont [OF bounded_bilinear_scaleR]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2517
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2518
lemmas isCont_of_real [simp] =
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2519
  bounded_linear.isCont [OF bounded_linear_of_real]
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2520
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2521
lemma isCont_power [simp]: "isCont f a \<Longrightarrow> isCont (\<lambda>x. f x ^ n) a"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2522
  for f :: "'a::t2_space \<Rightarrow> 'b::{power,real_normed_algebra}"
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2523
  by (fact continuous_power)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2524
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2525
lemma isCont_sum [simp]: "\<forall>i\<in>A. isCont (f i) a \<Longrightarrow> isCont (\<lambda>x. \<Sum>i\<in>A. f i x) a"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2526
  for f :: "'a \<Rightarrow> 'b::t2_space \<Rightarrow> 'c::topological_comm_monoid_add"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  2527
  by (auto intro: continuous_sum)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2528
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2529
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2530
subsection \<open>Uniform Continuity\<close>
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2531
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2532
lemma uniformly_continuous_on_def:
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2533
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2534
  shows "uniformly_continuous_on s f \<longleftrightarrow>
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2535
    (\<forall>e>0. \<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2536
  unfolding uniformly_continuous_on_uniformity
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2537
    uniformity_dist filterlim_INF filterlim_principal eventually_inf_principal
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2538
  by (force simp: Ball_def uniformity_dist[symmetric] eventually_uniformity_metric)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2539
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2540
abbreviation isUCont :: "['a::metric_space \<Rightarrow> 'b::metric_space] \<Rightarrow> bool"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2541
  where "isUCont f \<equiv> uniformly_continuous_on UNIV f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2542
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2543
lemma isUCont_def: "isUCont f \<longleftrightarrow> (\<forall>r>0. \<exists>s>0. \<forall>x y. dist x y < s \<longrightarrow> dist (f x) (f y) < r)"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2544
  by (auto simp: uniformly_continuous_on_def dist_commute)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2545
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2546
lemma isUCont_isCont: "isUCont f \<Longrightarrow> isCont f x"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2547
  by (drule uniformly_continuous_imp_continuous) (simp add: continuous_on_eq_continuous_at)
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2548
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2549
lemma uniformly_continuous_on_Cauchy:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2550
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2551
  assumes "uniformly_continuous_on S f" "Cauchy X" "\<And>n. X n \<in> S"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2552
  shows "Cauchy (\<lambda>n. f (X n))"
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2553
  using assms
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2554
  apply (simp only: uniformly_continuous_on_def)
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2555
  apply (rule metric_CauchyI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2556
  apply (drule_tac x=e in spec)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2557
  apply safe
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2558
  apply (drule_tac e=d in metric_CauchyD)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2559
   apply safe
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2560
  apply (rule_tac x=M in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2561
  apply simp
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2562
  done
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2563
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2564
lemma isUCont_Cauchy: "isUCont f \<Longrightarrow> Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
63104
9505a883403c reduce isUCont to uniformly_continuous_on
immler
parents: 63081
diff changeset
  2565
  by (rule uniformly_continuous_on_Cauchy[where S=UNIV and f=f]) simp_all
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2566
  
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2567
lemma uniformly_continuous_imp_Cauchy_continuous:
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2568
  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
67091
1393c2340eec more symbols;
wenzelm
parents: 66827
diff changeset
  2569
  shows "\<lbrakk>uniformly_continuous_on S f; Cauchy \<sigma>; \<And>n. (\<sigma> n) \<in> S\<rbrakk> \<Longrightarrow> Cauchy(f \<circ> \<sigma>)"
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64272
diff changeset
  2570
  by (simp add: uniformly_continuous_on_def Cauchy_def) meson
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2571
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2572
lemma (in bounded_linear) isUCont: "isUCont f"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2573
  unfolding isUCont_def dist_norm
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2574
proof (intro allI impI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2575
  fix r :: real
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2576
  assume r: "0 < r"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2577
  obtain K where K: "0 < K" and norm_le: "norm (f x) \<le> norm x * K" for x
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61609
diff changeset
  2578
    using pos_bounded by blast
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2579
  show "\<exists>s>0. \<forall>x y. norm (x - y) < s \<longrightarrow> norm (f x - f y) < r"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2580
  proof (rule exI, safe)
56541
0e3abadbef39 made divide_pos_pos a simp rule
nipkow
parents: 56536
diff changeset
  2581
    from r K show "0 < r / K" by simp
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2582
  next
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2583
    fix x y :: 'a
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2584
    assume xy: "norm (x - y) < r / K"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2585
    have "norm (f x - f y) = norm (f (x - y))" by (simp only: diff)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2586
    also have "\<dots> \<le> norm (x - y) * K" by (rule norm_le)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2587
    also from K xy have "\<dots> < r" by (simp only: pos_less_divide_eq)
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2588
    finally show "norm (f x - f y) < r" .
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2589
  qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2590
qed
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2591
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2592
lemma (in bounded_linear) Cauchy: "Cauchy X \<Longrightarrow> Cauchy (\<lambda>n. f (X n))"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2593
  by (rule isUCont [THEN isUCont_Cauchy])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2594
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2595
lemma LIM_less_bound:
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2596
  fixes f :: "real \<Rightarrow> real"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2597
  assumes ev: "b < x" "\<forall> x' \<in> { b <..< x}. 0 \<le> f x'" and "isCont f x"
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2598
  shows "0 \<le> f x"
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63915
diff changeset
  2599
proof (rule tendsto_lowerbound)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2600
  show "(f \<longlongrightarrow> f x) (at_left x)"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2601
    using \<open>isCont f x\<close> by (simp add: filterlim_at_split isCont_def)
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2602
  show "eventually (\<lambda>x. 0 \<le> f x) (at_left x)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51531
diff changeset
  2603
    using ev by (auto simp: eventually_at dist_real_def intro!: exI[of _ "x - b"])
51526
155263089e7b move SEQ.thy and Lim.thy to Limits.thy
hoelzl
parents: 51524
diff changeset
  2604
qed simp
51471
cad22a3cc09c move topological_space to its own theory
hoelzl
parents: 51360
diff changeset
  2605
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2606
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2607
subsection \<open>Nested Intervals and Bisection -- Needed for Compactness\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2608
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2609
lemma nested_sequence_unique:
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2610
  assumes "\<forall>n. f n \<le> f (Suc n)" "\<forall>n. g (Suc n) \<le> g n" "\<forall>n. f n \<le> g n" "(\<lambda>n. f n - g n) \<longlonglongrightarrow> 0"
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2611
  shows "\<exists>l::real. ((\<forall>n. f n \<le> l) \<and> f \<longlonglongrightarrow> l) \<and> ((\<forall>n. l \<le> g n) \<and> g \<longlonglongrightarrow> l)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2612
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2613
  have "incseq f" unfolding incseq_Suc_iff by fact
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2614
  have "decseq g" unfolding decseq_Suc_iff by fact
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2615
  have "f n \<le> g 0" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2616
  proof -
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2617
    from \<open>decseq g\<close> have "g n \<le> g 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2618
      by (rule decseqD) simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2619
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2620
      by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2621
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2622
  then obtain u where "f \<longlonglongrightarrow> u" "\<forall>i. f i \<le> u"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2623
    using incseq_convergent[OF \<open>incseq f\<close>] by auto
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2624
  moreover have "f 0 \<le> g n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2625
  proof -
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2626
    from \<open>incseq f\<close> have "f 0 \<le> f n" by (rule incseqD) simp
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2627
    with \<open>\<forall>n. f n \<le> g n\<close>[THEN spec, of n] show ?thesis
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2628
      by simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2629
  qed
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2630
  then obtain l where "g \<longlonglongrightarrow> l" "\<forall>i. l \<le> g i"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2631
    using decseq_convergent[OF \<open>decseq g\<close>] by auto
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2632
  moreover note LIMSEQ_unique[OF assms(4) tendsto_diff[OF \<open>f \<longlonglongrightarrow> u\<close> \<open>g \<longlonglongrightarrow> l\<close>]]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2633
  ultimately show ?thesis by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2634
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2635
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2636
lemma Bolzano[consumes 1, case_names trans local]:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2637
  fixes P :: "real \<Rightarrow> real \<Rightarrow> bool"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2638
  assumes [arith]: "a \<le> b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2639
    and trans: "\<And>a b c. P a b \<Longrightarrow> P b c \<Longrightarrow> a \<le> b \<Longrightarrow> b \<le> c \<Longrightarrow> P a c"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2640
    and local: "\<And>x. a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> \<exists>d>0. \<forall>a b. a \<le> x \<and> x \<le> b \<and> b - a < d \<longrightarrow> P a b"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2641
  shows "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2642
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2643
  define bisect where "bisect =
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2644
    rec_nat (a, b) (\<lambda>n (x, y). if P x ((x+y) / 2) then ((x+y)/2, y) else (x, (x+y)/2))"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2645
  define l u where "l n = fst (bisect n)" and "u n = snd (bisect n)" for n
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2646
  have l[simp]: "l 0 = a" "\<And>n. l (Suc n) = (if P (l n) ((l n + u n) / 2) then (l n + u n) / 2 else l n)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2647
    and u[simp]: "u 0 = b" "\<And>n. u (Suc n) = (if P (l n) ((l n + u n) / 2) then u n else (l n + u n) / 2)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2648
    by (simp_all add: l_def u_def bisect_def split: prod.split)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2649
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2650
  have [simp]: "l n \<le> u n" for n by (induct n) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2651
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2652
  have "\<exists>x. ((\<forall>n. l n \<le> x) \<and> l \<longlonglongrightarrow> x) \<and> ((\<forall>n. x \<le> u n) \<and> u \<longlonglongrightarrow> x)"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2653
  proof (safe intro!: nested_sequence_unique)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2654
    show "l n \<le> l (Suc n)" "u (Suc n) \<le> u n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2655
      by (induct n) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2656
  next
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2657
    have "l n - u n = (a - b) / 2^n" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2658
      by (induct n) (auto simp: field_simps)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2659
    then show "(\<lambda>n. l n - u n) \<longlonglongrightarrow> 0"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2660
      by (simp add: LIMSEQ_divide_realpow_zero)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2661
  qed fact
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2662
  then obtain x where x: "\<And>n. l n \<le> x" "\<And>n. x \<le> u n" and "l \<longlonglongrightarrow> x" "u \<longlonglongrightarrow> x"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2663
    by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2664
  obtain d where "0 < d" and d: "a \<le> x \<Longrightarrow> x \<le> b \<Longrightarrow> b - a < d \<Longrightarrow> P a b" for a b
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2665
    using \<open>l 0 \<le> x\<close> \<open>x \<le> u 0\<close> local[of x] by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2666
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2667
  show "P a b"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2668
  proof (rule ccontr)
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2669
    assume "\<not> P a b"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2670
    have "\<not> P (l n) (u n)" for n
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2671
    proof (induct n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2672
      case 0
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2673
      then show ?case
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2674
        by (simp add: \<open>\<not> P a b\<close>)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2675
    next
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2676
      case (Suc n)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2677
      with trans[of "l n" "(l n + u n) / 2" "u n"] show ?case
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2678
        by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2679
    qed
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2680
    moreover
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2681
    {
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2682
      have "eventually (\<lambda>n. x - d / 2 < l n) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2683
        using \<open>0 < d\<close> \<open>l \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2684
      moreover have "eventually (\<lambda>n. u n < x + d / 2) sequentially"
61969
e01015e49041 more symbols;
wenzelm
parents: 61916
diff changeset
  2685
        using \<open>0 < d\<close> \<open>u \<longlonglongrightarrow> x\<close> by (intro order_tendstoD[of _ x]) auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2686
      ultimately have "eventually (\<lambda>n. P (l n) (u n)) sequentially"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2687
      proof eventually_elim
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2688
        case (elim n)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2689
        from add_strict_mono[OF this] have "u n - l n < d" by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2690
        with x show "P (l n) (u n)" by (rule d)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2691
      qed
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2692
    }
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2693
    ultimately show False by simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2694
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2695
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2696
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2697
lemma compact_Icc[simp, intro]: "compact {a .. b::real}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2698
proof (cases "a \<le> b", rule compactI)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2699
  fix C
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2700
  assume C: "a \<le> b" "\<forall>t\<in>C. open t" "{a..b} \<subseteq> \<Union>C"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62393
diff changeset
  2701
  define T where "T = {a .. b}"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2702
  from C(1,3) show "\<exists>C'\<subseteq>C. finite C' \<and> {a..b} \<subseteq> \<Union>C'"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2703
  proof (induct rule: Bolzano)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2704
    case (trans a b c)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2705
    then have *: "{a..c} = {a..b} \<union> {b..c}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2706
      by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2707
    with trans obtain C1 C2
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2708
      where "C1\<subseteq>C" "finite C1" "{a..b} \<subseteq> \<Union>C1" "C2\<subseteq>C" "finite C2" "{b..c} \<subseteq> \<Union>C2"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2709
      by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2710
    with trans show ?case
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2711
      unfolding * by (intro exI[of _ "C1 \<union> C2"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2712
  next
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2713
    case (local x)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2714
    with C have "x \<in> \<Union>C" by auto
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2715
    with C(2) obtain c where "x \<in> c" "open c" "c \<in> C"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2716
      by auto
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2717
    then obtain e where "0 < e" "{x - e <..< x + e} \<subseteq> c"
62101
26c0a70f78a3 add uniform spaces
hoelzl
parents: 62087
diff changeset
  2718
      by (auto simp: open_dist dist_real_def subset_eq Ball_def abs_less_iff)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2719
    with \<open>c \<in> C\<close> show ?case
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2720
      by (safe intro!: exI[of _ "e/2"] exI[of _ "{c}"]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2721
  qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2722
qed simp
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2723
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2724
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2725
lemma continuous_image_closed_interval:
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2726
  fixes a b and f :: "real \<Rightarrow> real"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2727
  defines "S \<equiv> {a..b}"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2728
  assumes "a \<le> b" and f: "continuous_on S f"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2729
  shows "\<exists>c d. f`S = {c..d} \<and> c \<le> d"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2730
proof -
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2731
  have S: "compact S" "S \<noteq> {}"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2732
    using \<open>a \<le> b\<close> by (auto simp: S_def)
57447
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2733
  obtain c where "c \<in> S" "\<forall>d\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2734
    using continuous_attains_sup[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2735
  moreover obtain d where "d \<in> S" "\<forall>c\<in>S. f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2736
    using continuous_attains_inf[OF S f] by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2737
  moreover have "connected (f`S)"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2738
    using connected_continuous_image[OF f] connected_Icc by (auto simp: S_def)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2739
  ultimately have "f ` S = {f d .. f c} \<and> f d \<le> f c"
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2740
    by (auto simp: connected_iff_interval)
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2741
  then show ?thesis
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2742
    by auto
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2743
qed
87429bdecad5 import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
hoelzl
parents: 57276
diff changeset
  2744
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2745
lemma open_Collect_positive:
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
  2746
  fixes f :: "'a::topological_space \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2747
  assumes f: "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2748
  shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. 0 < f x}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2749
  using continuous_on_open_invariant[THEN iffD1, OF f, rule_format, of "{0 <..}"]
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2750
  by (auto simp: Int_def field_simps)
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2751
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2752
lemma open_Collect_less_Int:
67958
732c0b059463 tuned proofs and generalized some lemmas about limits
huffman
parents: 67950
diff changeset
  2753
  fixes f g :: "'a::topological_space \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2754
  assumes f: "continuous_on s f"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2755
    and g: "continuous_on s g"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2756
  shows "\<exists>A. open A \<and> A \<inter> s = {x\<in>s. f x < g x}"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2757
  using open_Collect_positive[OF continuous_on_diff[OF g f]] by (simp add: field_simps)
60974
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2758
6a6f15d8fbc4 New material and fixes related to the forthcoming Stone-Weierstrass development
paulson <lp15@cam.ac.uk>
parents: 60758
diff changeset
  2759
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2760
subsection \<open>Boundedness of continuous functions\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2761
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60721
diff changeset
  2762
text\<open>By bisection, function continuous on closed interval is bounded above\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2763
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2764
lemma isCont_eq_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2765
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2766
  shows "a \<le> b \<Longrightarrow> \<forall>x::real. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2767
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2768
  using continuous_attains_sup[of "{a..b}" f]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2769
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2770
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2771
lemma isCont_eq_Lb:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2772
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2773
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2774
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> M \<le> f x) \<and> (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = M)"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2775
  using continuous_attains_inf[of "{a..b}" f]
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2776
  by (auto simp add: continuous_at_imp_continuous_on Ball_def Bex_def)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2777
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2778
lemma isCont_bounded:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2779
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2780
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow> \<exists>M. \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2781
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2782
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2783
lemma isCont_has_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2784
  fixes f :: "real \<Rightarrow> 'a::linorder_topology"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2785
  shows "a \<le> b \<Longrightarrow> \<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x \<Longrightarrow>
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2786
    \<exists>M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> M) \<and> (\<forall>N. N < M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> N < f x))"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2787
  using isCont_eq_Ub[of a b f] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2788
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2789
(*HOL style here: object-level formulations*)
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2790
lemma IVT_objl:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2791
  "(f a \<le> y \<and> y \<le> f b \<and> a \<le> b \<and> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x)) \<longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2792
    (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2793
  for a y :: real
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2794
  by (blast intro: IVT)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2795
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2796
lemma IVT2_objl:
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2797
  "(f b \<le> y \<and> y \<le> f a \<and> a \<le> b \<and> (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x)) \<longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2798
    (\<exists>x. a \<le> x \<and> x \<le> b \<and> f x = y)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2799
  for b y :: real
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2800
  by (blast intro: IVT2)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2801
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2802
lemma isCont_Lb_Ub:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2803
  fixes f :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2804
  assumes "a \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2805
  shows "\<exists>L M. (\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> L \<le> f x \<and> f x \<le> M) \<and>
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2806
    (\<forall>y. L \<le> y \<and> y \<le> M \<longrightarrow> (\<exists>x. a \<le> x \<and> x \<le> b \<and> (f x = y)))"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2807
proof -
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2808
  obtain M where M: "a \<le> M" "M \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f x \<le> f M"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2809
    using isCont_eq_Ub[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2810
  obtain L where L: "a \<le> L" "L \<le> b" "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> f L \<le> f x"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2811
    using isCont_eq_Lb[OF assms] by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2812
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2813
    using IVT[of f L _ M] IVT2[of f L _ M] M L assms
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2814
    apply (rule_tac x="f L" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2815
    apply (rule_tac x="f M" in exI)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2816
    apply (cases "L \<le> M")
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2817
     apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2818
     apply (metis order_trans)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2819
    apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2820
    apply (metis order_trans)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2821
    done
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2822
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2823
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2824
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2825
text \<open>Continuity of inverse function.\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2826
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2827
lemma isCont_inverse_function:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2828
  fixes f g :: "real \<Rightarrow> real"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2829
  assumes d: "0 < d"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2830
    and inj: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> g (f z) = z"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2831
    and cont: "\<forall>z. \<bar>z-x\<bar> \<le> d \<longrightarrow> isCont f z"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2832
  shows "isCont g (f x)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2833
proof -
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2834
  let ?A = "f (x - d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2835
  let ?B = "f (x + d)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2836
  let ?D = "{x - d..x + d}"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2837
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2838
  have f: "continuous_on ?D f"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2839
    using cont by (intro continuous_at_imp_continuous_on ballI) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2840
  then have g: "continuous_on (f`?D) g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2841
    using inj by (intro continuous_on_inv) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2842
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2843
  from d f have "{min ?A ?B <..< max ?A ?B} \<subseteq> f ` ?D"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2844
    by (intro connected_contains_Ioo connected_continuous_image) (auto split: split_min split_max)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2845
  with g have "continuous_on {min ?A ?B <..< max ?A ?B} g"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2846
    by (rule continuous_on_subset)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2847
  moreover
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2848
  have "(?A < f x \<and> f x < ?B) \<or> (?B < f x \<and> f x < ?A)"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2849
    using d inj by (intro continuous_inj_imp_mono[OF _ _ f] inj_on_imageI2[of g, OF inj_onI]) auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2850
  then have "f x \<in> {min ?A ?B <..< max ?A ?B}"
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2851
    by auto
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2852
  ultimately
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2853
  show ?thesis
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2854
    by (simp add: continuous_on_eq_continuous_at)
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2855
qed
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2856
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2857
lemma isCont_inverse_function2:
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2858
  fixes f g :: "real \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2859
  shows
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2860
    "a < x \<Longrightarrow> x < b \<Longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2861
      \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z \<Longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2862
      \<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z \<Longrightarrow> isCont g (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2863
  apply (rule isCont_inverse_function [where f=f and d="min (x - a) (b - x)"])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2864
  apply (simp_all add: abs_le_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2865
  done
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2866
66827
c94531b5007d Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
paulson <lp15@cam.ac.uk>
parents: 66793
diff changeset
  2867
(* need to rename second continuous_at_inverse *)
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2868
lemma isCont_inv_fun:
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2869
  fixes f g :: "real \<Rightarrow> real"
63546
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2870
  shows "0 < d \<Longrightarrow> (\<forall>z. \<bar>z - x\<bar> \<le> d \<longrightarrow> g (f z) = z) \<Longrightarrow>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2871
    \<forall>z. \<bar>z - x\<bar> \<le> d \<longrightarrow> isCont f z \<Longrightarrow> isCont g (f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2872
  by (rule isCont_inverse_function)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2873
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2874
text \<open>Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110.\<close>
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2875
lemma LIM_fun_gt_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> 0 < f x)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2876
  for f :: "real \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2877
  apply (drule (1) LIM_D)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2878
  apply clarify
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2879
  apply (rule_tac x = s in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2880
  apply (simp add: abs_less_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2881
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2882
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2883
lemma LIM_fun_less_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x < 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2884
  for f :: "real \<Rightarrow> real"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2885
  apply (drule LIM_D [where r="-l"])
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2886
   apply simp
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2887
  apply clarify
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2888
  apply (rule_tac x = s in exI)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2889
  apply (simp add: abs_less_iff)
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2890
  done
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2891
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2892
lemma LIM_fun_not_zero: "f \<midarrow>c\<rightarrow> l \<Longrightarrow> l \<noteq> 0 \<Longrightarrow> \<exists>r. 0 < r \<and> (\<forall>x. x \<noteq> c \<and> \<bar>c - x\<bar> < r \<longrightarrow> f x \<noteq> 0)"
5f097087fa1e misc tuning and modernization;
wenzelm
parents: 63301
diff changeset
  2893
  for f :: "real \<Rightarrow> real"
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  2894
  using LIM_fun_gt_zero[of f l c] LIM_fun_less_zero[of f l c] by (auto simp add: neq_iff)
51531
f415febf4234 remove Metric_Spaces and move its content into Limits and Real_Vector_Spaces
hoelzl
parents: 51529
diff changeset
  2895
31349
2261c8781f73 new theory of filters and limits; prove LIMSEQ and LIM lemmas using filters
huffman
parents:
diff changeset
  2896
end