| author | hoelzl | 
| Mon, 04 May 2015 18:04:01 +0200 | |
| changeset 60173 | 6a61bb577d5b | 
| parent 60017 | b785d6d06430 | 
| child 60533 | 1e7ccd864b62 | 
| permissions | -rw-r--r-- | 
| 58834 | 1 | (* Author: Johannes Hoelzl, TU Muenchen | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2 | Coercions removed by Dmitriy Traytel *) | 
| 30122 | 3 | |
| 58889 | 4 | section {* Prove Real Valued Inequalities by Computation *}
 | 
| 30122 | 5 | |
| 40892 | 6 | theory Approximation | 
| 41413 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41024diff
changeset | 7 | imports | 
| 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41024diff
changeset | 8 | Complex_Main | 
| 
64cd30d6b0b8
explicit file specifications -- avoid secondary load path;
 wenzelm parents: 
41024diff
changeset | 9 | "~~/src/HOL/Library/Float" | 
| 51544 | 10 | Dense_Linear_Order | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 11 | "~~/src/HOL/Library/Code_Target_Numeral" | 
| 56923 | 12 | keywords "approximate" :: diag | 
| 29805 | 13 | begin | 
| 14 | ||
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54269diff
changeset | 15 | declare powr_numeral [simp] | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54269diff
changeset | 16 | declare powr_neg_one [simp] | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54269diff
changeset | 17 | declare powr_neg_numeral [simp] | 
| 47600 | 18 | |
| 29805 | 19 | section "Horner Scheme" | 
| 20 | ||
| 21 | subsection {* Define auxiliary helper @{text horner} function *}
 | |
| 22 | ||
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 23 | primrec horner :: "(nat \<Rightarrow> nat) \<Rightarrow> (nat \<Rightarrow> nat \<Rightarrow> nat) \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> real \<Rightarrow> real" where | 
| 29805 | 24 | "horner F G 0 i k x = 0" | | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 25 | "horner F G (Suc n) i k x = 1 / k - x * horner F G n (F i) (G i k) x" | 
| 29805 | 26 | |
| 49351 | 27 | lemma horner_schema': | 
| 28 | fixes x :: real and a :: "nat \<Rightarrow> real" | |
| 29805 | 29 | shows "a 0 - x * (\<Sum> i=0..<n. (-1)^i * a (Suc i) * x^i) = (\<Sum> i=0..<Suc n. (-1)^i * a i * x^i)" | 
| 30 | proof - | |
| 49351 | 31 | have shift_pow: "\<And>i. - (x * ((-1)^i * a (Suc i) * x ^ i)) = (-1)^(Suc i) * a (Suc i) * x ^ (Suc i)" | 
| 32 | by auto | |
| 33 | show ?thesis | |
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 34 | unfolding setsum_right_distrib shift_pow uminus_add_conv_diff [symmetric] setsum_negf[symmetric] | 
| 49351 | 35 | setsum_head_upt_Suc[OF zero_less_Suc] | 
| 57418 | 36 | setsum.reindex[OF inj_Suc, unfolded comp_def, symmetric, of "\<lambda> n. (-1)^n *a n * x^n"] by auto | 
| 29805 | 37 | qed | 
| 38 | ||
| 49351 | 39 | lemma horner_schema: | 
| 40 | fixes f :: "nat \<Rightarrow> nat" and G :: "nat \<Rightarrow> nat \<Rightarrow> nat" and F :: "nat \<Rightarrow> nat" | |
| 30971 | 41 | assumes f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)" | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 42 | shows "horner F G n ((F ^^ j') s) (f j') x = (\<Sum> j = 0..< n. (- 1) ^ j * (1 / (f (j' + j))) * x ^ j)" | 
| 45129 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
44821diff
changeset | 43 | proof (induct n arbitrary: j') | 
| 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
44821diff
changeset | 44 | case 0 | 
| 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
44821diff
changeset | 45 | then show ?case by auto | 
| 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
44821diff
changeset | 46 | next | 
| 29805 | 47 | case (Suc n) | 
| 48 | show ?case unfolding horner.simps Suc[where j'="Suc j'", unfolded funpow.simps comp_def f_Suc] | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 49 | using horner_schema'[of "\<lambda> j. 1 / (f (j' + j))"] by auto | 
| 45129 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
44821diff
changeset | 50 | qed | 
| 29805 | 51 | |
| 52 | lemma horner_bounds': | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 53 | fixes lb :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" and ub :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 54 | assumes "0 \<le> real x" and f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)" | 
| 49351 | 55 | and lb_0: "\<And> i k x. lb 0 i k x = 0" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 56 | and lb_Suc: "\<And> n i k x. lb (Suc n) i k x = float_plus_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 57 | (lapprox_rat prec 1 k) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 58 | (- float_round_up prec (x * (ub n (F i) (G i k) x)))" | 
| 49351 | 59 | and ub_0: "\<And> i k x. ub 0 i k x = 0" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 60 | and ub_Suc: "\<And> n i k x. ub (Suc n) i k x = float_plus_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 61 | (rapprox_rat prec 1 k) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 62 | (- float_round_down prec (x * (lb n (F i) (G i k) x)))" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 63 | shows "(lb n ((F ^^ j') s) (f j') x) \<le> horner F G n ((F ^^ j') s) (f j') x \<and> | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 64 | horner F G n ((F ^^ j') s) (f j') x \<le> (ub n ((F ^^ j') s) (f j') x)" | 
| 29805 | 65 | (is "?lb n j' \<le> ?horner n j' \<and> ?horner n j' \<le> ?ub n j'") | 
| 66 | proof (induct n arbitrary: j') | |
| 49351 | 67 | case 0 | 
| 68 | thus ?case unfolding lb_0 ub_0 horner.simps by auto | |
| 29805 | 69 | next | 
| 70 | case (Suc n) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 71 | thus ?case using lapprox_rat[of prec 1 "f j'"] using rapprox_rat[of 1 "f j'" prec] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 72 | Suc[where j'="Suc j'"] `0 \<le> real x` | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 73 | by (auto intro!: add_mono mult_left_mono float_round_down_le float_round_up_le | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 74 | order_trans[OF add_mono[OF _ float_plus_down_le]] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 75 | order_trans[OF _ add_mono[OF _ float_plus_up_le]] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 76 | simp add: lb_Suc ub_Suc field_simps f_Suc) | 
| 29805 | 77 | qed | 
| 78 | ||
| 79 | subsection "Theorems for floating point functions implementing the horner scheme" | |
| 80 | ||
| 81 | text {*
 | |
| 82 | ||
| 83 | Here @{term_type "f :: nat \<Rightarrow> nat"} is the sequence defining the Taylor series, the coefficients are
 | |
| 84 | all alternating and reciprocs. We use @{term G} and @{term F} to describe the computation of @{term f}.
 | |
| 85 | ||
| 86 | *} | |
| 87 | ||
| 49351 | 88 | lemma horner_bounds: | 
| 89 | fixes F :: "nat \<Rightarrow> nat" and G :: "nat \<Rightarrow> nat \<Rightarrow> nat" | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 90 | assumes "0 \<le> real x" and f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)" | 
| 49351 | 91 | and lb_0: "\<And> i k x. lb 0 i k x = 0" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 92 | and lb_Suc: "\<And> n i k x. lb (Suc n) i k x = float_plus_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 93 | (lapprox_rat prec 1 k) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 94 | (- float_round_up prec (x * (ub n (F i) (G i k) x)))" | 
| 49351 | 95 | and ub_0: "\<And> i k x. ub 0 i k x = 0" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 96 | and ub_Suc: "\<And> n i k x. ub (Suc n) i k x = float_plus_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 97 | (rapprox_rat prec 1 k) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 98 | (- float_round_down prec (x * (lb n (F i) (G i k) x)))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 99 | shows "(lb n ((F ^^ j') s) (f j') x) \<le> (\<Sum>j=0..<n. (- 1) ^ j * (1 / (f (j' + j))) * (x ^ j))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 100 | (is "?lb") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 101 | and "(\<Sum>j=0..<n. (- 1) ^ j * (1 / (f (j' + j))) * (x ^ j)) \<le> (ub n ((F ^^ j') s) (f j') x)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 102 | (is "?ub") | 
| 29805 | 103 | proof - | 
| 31809 | 104 | have "?lb \<and> ?ub" | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 105 | using horner_bounds'[where lb=lb, OF `0 \<le> real x` f_Suc lb_0 lb_Suc ub_0 ub_Suc] | 
| 29805 | 106 | unfolding horner_schema[where f=f, OF f_Suc] . | 
| 107 | thus "?lb" and "?ub" by auto | |
| 108 | qed | |
| 109 | ||
| 49351 | 110 | lemma horner_bounds_nonpos: | 
| 111 | fixes F :: "nat \<Rightarrow> nat" and G :: "nat \<Rightarrow> nat \<Rightarrow> nat" | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 112 | assumes "real x \<le> 0" and f_Suc: "\<And>n. f (Suc n) = G ((F ^^ n) s) (f n)" | 
| 49351 | 113 | and lb_0: "\<And> i k x. lb 0 i k x = 0" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 114 | and lb_Suc: "\<And> n i k x. lb (Suc n) i k x = float_plus_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 115 | (lapprox_rat prec 1 k) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 116 | (float_round_down prec (x * (ub n (F i) (G i k) x)))" | 
| 49351 | 117 | and ub_0: "\<And> i k x. ub 0 i k x = 0" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 118 | and ub_Suc: "\<And> n i k x. ub (Suc n) i k x = float_plus_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 119 | (rapprox_rat prec 1 k) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 120 | (float_round_up prec (x * (lb n (F i) (G i k) x)))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 121 | shows "(lb n ((F ^^ j') s) (f j') x) \<le> (\<Sum>j=0..<n. (1 / (f (j' + j))) * real x ^ j)" (is "?lb") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 122 | and "(\<Sum>j=0..<n. (1 / (f (j' + j))) * real x ^ j) \<le> (ub n ((F ^^ j') s) (f j') x)" (is "?ub") | 
| 29805 | 123 | proof - | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 124 |   { fix x y z :: float have "x - y * z = x + - y * z" by simp } note diff_mult_minus = this
 | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 125 | have sum_eq: "(\<Sum>j=0..<n. (1 / (f (j' + j))) * real x ^ j) = | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 126 | (\<Sum>j = 0..<n. (- 1) ^ j * (1 / (f (j' + j))) * real (- x) ^ j)" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 127 | by (auto simp add: field_simps power_mult_distrib[symmetric]) | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 128 | have "0 \<le> real (-x)" using assms by auto | 
| 29805 | 129 | from horner_bounds[where G=G and F=F and f=f and s=s and prec=prec | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 130 | and lb="\<lambda> n i k x. lb n i k (-x)" and ub="\<lambda> n i k x. ub n i k (-x)", | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 131 | unfolded lb_Suc ub_Suc diff_mult_minus, | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 132 | OF this f_Suc lb_0 _ ub_0 _] | 
| 29805 | 133 | show "?lb" and "?ub" unfolding minus_minus sum_eq | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 134 | by (auto simp: minus_float_round_up_eq minus_float_round_down_eq) | 
| 29805 | 135 | qed | 
| 136 | ||
| 137 | subsection {* Selectors for next even or odd number *}
 | |
| 138 | ||
| 139 | text {*
 | |
| 140 | ||
| 141 | The horner scheme computes alternating series. To get the upper and lower bounds we need to | |
| 142 | guarantee to access a even or odd member. To do this we use @{term get_odd} and @{term get_even}.
 | |
| 143 | ||
| 144 | *} | |
| 145 | ||
| 146 | definition get_odd :: "nat \<Rightarrow> nat" where | |
| 147 | "get_odd n = (if odd n then n else (Suc n))" | |
| 148 | ||
| 149 | definition get_even :: "nat \<Rightarrow> nat" where | |
| 150 | "get_even n = (if even n then n else (Suc n))" | |
| 151 | ||
| 152 | lemma get_odd[simp]: "odd (get_odd n)" unfolding get_odd_def by (cases "odd n", auto) | |
| 153 | lemma get_even[simp]: "even (get_even n)" unfolding get_even_def by (cases "even n", auto) | |
| 154 | lemma get_odd_ex: "\<exists> k. Suc k = get_odd n \<and> odd (Suc k)" | |
| 54269 | 155 | by (auto simp: get_odd_def odd_pos intro!: exI[of _ "n - 1"]) | 
| 29805 | 156 | |
| 58709 
efdc6c533bd3
prefer generic elimination rules for even/odd over specialized unfold rules for nat
 haftmann parents: 
58410diff
changeset | 157 | lemma get_even_double: | 
| 
efdc6c533bd3
prefer generic elimination rules for even/odd over specialized unfold rules for nat
 haftmann parents: 
58410diff
changeset | 158 | "\<exists>i. get_even n = 2 * i" using get_even by (blast elim: evenE) | 
| 
efdc6c533bd3
prefer generic elimination rules for even/odd over specialized unfold rules for nat
 haftmann parents: 
58410diff
changeset | 159 | |
| 
efdc6c533bd3
prefer generic elimination rules for even/odd over specialized unfold rules for nat
 haftmann parents: 
58410diff
changeset | 160 | lemma get_odd_double: | 
| 
efdc6c533bd3
prefer generic elimination rules for even/odd over specialized unfold rules for nat
 haftmann parents: 
58410diff
changeset | 161 | "\<exists>i. get_odd n = 2 * i + 1" using get_odd by (blast elim: oddE) | 
| 29805 | 162 | |
| 163 | section "Power function" | |
| 164 | ||
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 165 | definition float_power_bnds :: "nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float * float" where | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 166 | "float_power_bnds prec n l u = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 167 | (if 0 < l then (power_down_fl prec l n, power_up_fl prec u n) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 168 | else if odd n then | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 169 | (- power_up_fl prec (abs l) n, | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 170 | if u < 0 then - power_down_fl prec (abs u) n else power_up_fl prec u n) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 171 | else if u < 0 then (power_down_fl prec (abs u) n, power_up_fl prec (abs l) n) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 172 | else (0, power_up_fl prec (max (abs l) (abs u)) n))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 173 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 174 | lemma le_minus_power_downI: "0 \<le> x \<Longrightarrow> x ^ n \<le> - a \<Longrightarrow> a \<le> - power_down prec x n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 175 | by (subst le_minus_iff) (auto intro: power_down_le power_mono_odd) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 176 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 177 | lemma float_power_bnds: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 178 |   "(l1, u1) = float_power_bnds prec n l u \<Longrightarrow> x \<in> {l .. u} \<Longrightarrow> (x::real) ^ n \<in> {l1..u1}"
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 179 | by (auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 180 | simp: float_power_bnds_def max_def real_power_up_fl real_power_down_fl minus_le_iff | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 181 | split: split_if_asm | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 182 | intro!: power_up_le power_down_le le_minus_power_downI | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 183 | intro: power_mono_odd power_mono power_mono_even zero_le_even_power) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 184 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 185 | lemma bnds_power: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 186 |   "\<forall> (x::real) l u. (l1, u1) = float_power_bnds prec n l u \<and> x \<in> {l .. u} \<longrightarrow>
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 187 | l1 \<le> x ^ n \<and> x ^ n \<le> u1" | 
| 29805 | 188 | using float_power_bnds by auto | 
| 189 | ||
| 190 | section "Square root" | |
| 191 | ||
| 192 | text {*
 | |
| 193 | ||
| 194 | The square root computation is implemented as newton iteration. As first first step we use the | |
| 195 | nearest power of two greater than the square root. | |
| 196 | ||
| 197 | *} | |
| 198 | ||
| 199 | fun sqrt_iteration :: "nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 200 | "sqrt_iteration prec 0 x = Float 1 ((bitlen \<bar>mantissa x\<bar> + exponent x) div 2 + 1)" | | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 201 | "sqrt_iteration prec (Suc m) x = (let y = sqrt_iteration prec m x | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 202 | in Float 1 (- 1) * float_plus_up prec y (float_divr prec x y))" | 
| 29805 | 203 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 204 | lemma compute_sqrt_iteration_base[code]: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 205 | shows "sqrt_iteration prec n (Float m e) = | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 206 | (if n = 0 then Float 1 ((if m = 0 then 0 else bitlen \<bar>m\<bar> + e) div 2 + 1) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 207 | else (let y = sqrt_iteration prec (n - 1) (Float m e) in | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 208 | Float 1 (- 1) * float_plus_up prec y (float_divr prec (Float m e) y)))" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 209 | using bitlen_Float by (cases n) simp_all | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 210 | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 211 | function ub_sqrt lb_sqrt :: "nat \<Rightarrow> float \<Rightarrow> float" where | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 212 | "ub_sqrt prec x = (if 0 < x then (sqrt_iteration prec prec x) | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 213 | else if x < 0 then - lb_sqrt prec (- x) | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 214 | else 0)" | | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 215 | "lb_sqrt prec x = (if 0 < x then (float_divl prec x (sqrt_iteration prec prec x)) | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 216 | else if x < 0 then - ub_sqrt prec (- x) | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 217 | else 0)" | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 218 | by pat_completeness auto | 
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55413diff
changeset | 219 | termination by (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if x < 0 then 1 else 0))", auto) | 
| 29805 | 220 | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 221 | declare lb_sqrt.simps[simp del] | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 222 | declare ub_sqrt.simps[simp del] | 
| 29805 | 223 | |
| 224 | lemma sqrt_ub_pos_pos_1: | |
| 225 | assumes "sqrt x < b" and "0 < b" and "0 < x" | |
| 226 | shows "sqrt x < (b + x / b)/2" | |
| 227 | proof - | |
| 53077 | 228 | from assms have "0 < (b - sqrt x)\<^sup>2 " by simp | 
| 229 | also have "\<dots> = b\<^sup>2 - 2 * b * sqrt x + (sqrt x)\<^sup>2" by algebra | |
| 230 | also have "\<dots> = b\<^sup>2 - 2 * b * sqrt x + x" using assms by simp | |
| 231 | finally have "0 < b\<^sup>2 - 2 * b * sqrt x + x" . | |
| 29805 | 232 | hence "0 < b / 2 - sqrt x + x / (2 * b)" using assms | 
| 233 | by (simp add: field_simps power2_eq_square) | |
| 234 | thus ?thesis by (simp add: field_simps) | |
| 235 | qed | |
| 236 | ||
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 237 | lemma sqrt_iteration_bound: assumes "0 < real x" | 
| 54269 | 238 | shows "sqrt x < sqrt_iteration prec n x" | 
| 29805 | 239 | proof (induct n) | 
| 240 | case 0 | |
| 241 | show ?case | |
| 242 | proof (cases x) | |
| 243 | case (Float m e) | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 244 | hence "0 < m" using assms | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 245 | apply (auto simp: sign_simps) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 246 | by (meson not_less powr_ge_pzero) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 247 | hence "0 < sqrt m" by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 248 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 249 | have int_nat_bl: "(nat (bitlen m)) = bitlen m" using bitlen_nonneg by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 250 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 251 | have "x = (m / 2^nat (bitlen m)) * 2 powr (e + (nat (bitlen m)))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 252 | unfolding Float by (auto simp: powr_realpow[symmetric] field_simps powr_add) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 253 | also have "\<dots> < 1 * 2 powr (e + nat (bitlen m))" | 
| 29805 | 254 | proof (rule mult_strict_right_mono, auto) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 255 | show "m < 2^nat (bitlen m)" using bitlen_bounds[OF `0 < m`, THEN conjunct2] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 256 | unfolding real_of_int_less_iff[of m, symmetric] by auto | 
| 29805 | 257 | qed | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 258 | finally have "sqrt x < sqrt (2 powr (e + bitlen m))" unfolding int_nat_bl by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 259 | also have "\<dots> \<le> 2 powr ((e + bitlen m) div 2 + 1)" | 
| 29805 | 260 | proof - | 
| 261 | let ?E = "e + bitlen m" | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 262 | have E_mod_pow: "2 powr (?E mod 2) < 4" | 
| 29805 | 263 | proof (cases "?E mod 2 = 1") | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 264 | case True thus ?thesis by auto | 
| 29805 | 265 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 266 | case False | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 267 | have "0 \<le> ?E mod 2" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 268 | have "?E mod 2 < 2" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 269 | from this[THEN zless_imp_add1_zle] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 270 | have "?E mod 2 \<le> 0" using False by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 271 | from xt1(5)[OF `0 \<le> ?E mod 2` this] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 272 | show ?thesis by auto | 
| 29805 | 273 | qed | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56813diff
changeset | 274 | hence "sqrt (2 powr (?E mod 2)) < sqrt (2 * 2)" | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56813diff
changeset | 275 | by (auto simp del: real_sqrt_four) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56813diff
changeset | 276 | hence E_mod_pow: "sqrt (2 powr (?E mod 2)) < 2" by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 277 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 278 | have E_eq: "2 powr ?E = 2 powr (?E div 2 + ?E div 2 + ?E mod 2)" by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 279 | have "sqrt (2 powr ?E) = sqrt (2 powr (?E div 2) * 2 powr (?E div 2) * 2 powr (?E mod 2))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 280 | unfolding E_eq unfolding powr_add[symmetric] by (simp add: int_of_reals del: real_of_ints) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 281 | also have "\<dots> = 2 powr (?E div 2) * sqrt (2 powr (?E mod 2))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 282 | unfolding real_sqrt_mult[of _ "2 powr (?E mod 2)"] real_sqrt_abs2 by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 283 | also have "\<dots> < 2 powr (?E div 2) * 2 powr 1" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 284 | by (rule mult_strict_left_mono, auto intro: E_mod_pow) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 285 | also have "\<dots> = 2 powr (?E div 2 + 1)" unfolding add.commute[of _ 1] powr_add[symmetric] | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 286 | by simp | 
| 29805 | 287 | finally show ?thesis by auto | 
| 288 | qed | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 289 | finally show ?thesis using `0 < m` | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 290 | unfolding Float | 
| 47600 | 291 | by (subst compute_sqrt_iteration_base) (simp add: ac_simps) | 
| 29805 | 292 | qed | 
| 293 | next | |
| 294 | case (Suc n) | |
| 295 | let ?b = "sqrt_iteration prec n x" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 296 | have "0 < sqrt x" using `0 < real x` by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 297 | also have "\<dots> < real ?b" using Suc . | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 298 | finally have "sqrt x < (?b + x / ?b)/2" using sqrt_ub_pos_pos_1[OF Suc _ `0 < real x`] by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 299 | also have "\<dots> \<le> (?b + (float_divr prec x ?b))/2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 300 | by (rule divide_right_mono, auto simp add: float_divr) | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 301 | also have "\<dots> = (Float 1 (- 1)) * (?b + (float_divr prec x ?b))" by simp | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 302 | also have "\<dots> \<le> (Float 1 (- 1)) * (float_plus_up prec ?b (float_divr prec x ?b))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 303 | by (auto simp add: algebra_simps float_plus_up_le) | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
49351diff
changeset | 304 | finally show ?case unfolding sqrt_iteration.simps Let_def distrib_left . | 
| 29805 | 305 | qed | 
| 306 | ||
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 307 | lemma sqrt_iteration_lower_bound: assumes "0 < real x" | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 308 | shows "0 < real (sqrt_iteration prec n x)" (is "0 < ?sqrt") | 
| 29805 | 309 | proof - | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 310 | have "0 < sqrt x" using assms by auto | 
| 29805 | 311 | also have "\<dots> < ?sqrt" using sqrt_iteration_bound[OF assms] . | 
| 312 | finally show ?thesis . | |
| 313 | qed | |
| 314 | ||
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 315 | lemma lb_sqrt_lower_bound: assumes "0 \<le> real x" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 316 | shows "0 \<le> real (lb_sqrt prec x)" | 
| 29805 | 317 | proof (cases "0 < x") | 
| 47600 | 318 | case True hence "0 < real x" and "0 \<le> x" using `0 \<le> real x` by auto | 
| 319 | hence "0 < sqrt_iteration prec prec x" using sqrt_iteration_lower_bound by auto | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 320 | hence "0 \<le> real (float_divl prec x (sqrt_iteration prec prec x))" using float_divl_lower_bound[OF `0 \<le> x`] unfolding less_eq_float_def by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 321 | thus ?thesis unfolding lb_sqrt.simps using True by auto | 
| 29805 | 322 | next | 
| 47600 | 323 | case False with `0 \<le> real x` have "real x = 0" by auto | 
| 324 | thus ?thesis unfolding lb_sqrt.simps by auto | |
| 29805 | 325 | qed | 
| 326 | ||
| 49351 | 327 | lemma bnds_sqrt': "sqrt x \<in> {(lb_sqrt prec x) .. (ub_sqrt prec x)}"
 | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 328 | proof - | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 329 |   { fix x :: float assume "0 < x"
 | 
| 47600 | 330 | hence "0 < real x" and "0 \<le> real x" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 331 | hence sqrt_gt0: "0 < sqrt x" by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 332 | hence sqrt_ub: "sqrt x < sqrt_iteration prec prec x" using sqrt_iteration_bound by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 333 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 334 | have "(float_divl prec x (sqrt_iteration prec prec x)) \<le> | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 335 | x / (sqrt_iteration prec prec x)" by (rule float_divl) | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 336 | also have "\<dots> < x / sqrt x" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 337 | by (rule divide_strict_left_mono[OF sqrt_ub `0 < real x` | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 338 | mult_pos_pos[OF order_less_trans[OF sqrt_gt0 sqrt_ub] sqrt_gt0]]) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 339 | also have "\<dots> = sqrt x" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 340 | unfolding inverse_eq_iff_eq[of _ "sqrt x", symmetric] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 341 | sqrt_divide_self_eq[OF `0 \<le> real x`, symmetric] by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 342 | finally have "lb_sqrt prec x \<le> sqrt x" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 343 | unfolding lb_sqrt.simps if_P[OF `0 < x`] by auto } | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 344 | note lb = this | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 345 | |
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 346 |   { fix x :: float assume "0 < x"
 | 
| 47600 | 347 | hence "0 < real x" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 348 | hence "0 < sqrt x" by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 349 | hence "sqrt x < sqrt_iteration prec prec x" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 350 | using sqrt_iteration_bound by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 351 | hence "sqrt x \<le> ub_sqrt prec x" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 352 | unfolding ub_sqrt.simps if_P[OF `0 < x`] by auto } | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 353 | note ub = this | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 354 | |
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 355 | show ?thesis | 
| 54269 | 356 | using lb[of "-x"] ub[of "-x"] lb[of x] ub[of x] | 
| 357 | by (auto simp add: lb_sqrt.simps ub_sqrt.simps real_sqrt_minus) | |
| 29805 | 358 | qed | 
| 359 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 360 | lemma bnds_sqrt: "\<forall> (x::real) lx ux. (l, u) = (lb_sqrt prec lx, ub_sqrt prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> sqrt x \<and> sqrt x \<le> u"
 | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 361 | proof ((rule allI) +, rule impI, erule conjE, rule conjI) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 362 | fix x :: real fix lx ux | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 363 | assume "(l, u) = (lb_sqrt prec lx, ub_sqrt prec ux)" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 364 |     and x: "x \<in> {lx .. ux}"
 | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 365 | hence l: "l = lb_sqrt prec lx " and u: "u = ub_sqrt prec ux" by auto | 
| 29805 | 366 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 367 | have "sqrt lx \<le> sqrt x" using x by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 368 | from order_trans[OF _ this] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 369 | show "l \<le> sqrt x" unfolding l using bnds_sqrt'[of lx prec] by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 370 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 371 | have "sqrt x \<le> sqrt ux" using x by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 372 | from order_trans[OF this] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 373 | show "sqrt x \<le> u" unfolding u using bnds_sqrt'[of ux prec] by auto | 
| 29805 | 374 | qed | 
| 375 | ||
| 376 | section "Arcus tangens and \<pi>" | |
| 377 | ||
| 378 | subsection "Compute arcus tangens series" | |
| 379 | ||
| 380 | text {*
 | |
| 381 | ||
| 382 | As first step we implement the computation of the arcus tangens series. This is only valid in the range | |
| 383 | @{term "{-1 :: real .. 1}"}. This is used to compute \<pi> and then the entire arcus tangens.
 | |
| 384 | ||
| 385 | *} | |
| 386 | ||
| 387 | fun ub_arctan_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" | |
| 388 | and lb_arctan_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where | |
| 389 | "ub_arctan_horner prec 0 k x = 0" | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 390 | | "ub_arctan_horner prec (Suc n) k x = float_plus_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 391 | (rapprox_rat prec 1 k) (- float_round_down prec (x * (lb_arctan_horner prec n (k + 2) x)))" | 
| 29805 | 392 | | "lb_arctan_horner prec 0 k x = 0" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 393 | | "lb_arctan_horner prec (Suc n) k x = float_plus_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 394 | (lapprox_rat prec 1 k) (- float_round_up prec (x * (ub_arctan_horner prec n (k + 2) x)))" | 
| 29805 | 395 | |
| 49351 | 396 | lemma arctan_0_1_bounds': | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 397 | assumes "0 \<le> real y" "real y \<le> 1" and "even n" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 398 | shows "arctan (sqrt y) \<in> | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 399 |       {(sqrt y * lb_arctan_horner prec n 1 y) .. (sqrt y * ub_arctan_horner prec (Suc n) 1 y)}"
 | 
| 29805 | 400 | proof - | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 401 | let ?c = "\<lambda>i. (- 1) ^ i * (1 / (i * 2 + (1::nat)) * sqrt y ^ (i * 2 + 1))" | 
| 54269 | 402 | let ?S = "\<lambda>n. \<Sum> i=0..<n. ?c i" | 
| 29805 | 403 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 404 | have "0 \<le> sqrt y" using assms by auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 405 | have "sqrt y \<le> 1" using assms by auto | 
| 58709 
efdc6c533bd3
prefer generic elimination rules for even/odd over specialized unfold rules for nat
 haftmann parents: 
58410diff
changeset | 406 | from `even n` obtain m where "2 * m = n" by (blast elim: evenE) | 
| 31809 | 407 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 408 |   have "arctan (sqrt y) \<in> { ?S n .. ?S (Suc n) }"
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 409 | proof (cases "sqrt y = 0") | 
| 29805 | 410 | case False | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 411 | hence "0 < sqrt y" using `0 \<le> sqrt y` by auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 412 | hence prem: "0 < 1 / (0 * 2 + (1::nat)) * sqrt y ^ (0 * 2 + 1)" by auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 413 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 414 | have "\<bar> sqrt y \<bar> \<le> 1" using `0 \<le> sqrt y` `sqrt y \<le> 1` by auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 415 | from mp[OF summable_Leibniz(2)[OF zeroseq_arctan_series[OF this] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 416 | monoseq_arctan_series[OF this]] prem, THEN spec, of m, unfolded `2 * m = n`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 417 | show ?thesis unfolding arctan_series[OF `\<bar> sqrt y \<bar> \<le> 1`] Suc_eq_plus1 atLeast0LessThan . | 
| 29805 | 418 | qed auto | 
| 419 | note arctan_bounds = this[unfolded atLeastAtMost_iff] | |
| 420 | ||
| 421 | have F: "\<And>n. 2 * Suc n + 1 = 2 * n + 1 + 2" by auto | |
| 422 | ||
| 31809 | 423 | note bounds = horner_bounds[where s=1 and f="\<lambda>i. 2 * i + 1" and j'=0 | 
| 29805 | 424 | and lb="\<lambda>n i k x. lb_arctan_horner prec n k x" | 
| 31809 | 425 | and ub="\<lambda>n i k x. ub_arctan_horner prec n k x", | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 426 | OF `0 \<le> real y` F lb_arctan_horner.simps ub_arctan_horner.simps] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 427 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 428 |   { have "(sqrt y * lb_arctan_horner prec n 1 y) \<le> ?S n"
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 429 | using bounds(1) `0 \<le> sqrt y` | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 430 | unfolding power_add power_one_right mult.assoc[symmetric] setsum_left_distrib[symmetric] | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 431 | unfolding mult.commute[where 'a=real] mult.commute[of _ "2::nat"] power_mult | 
| 29805 | 432 | by (auto intro!: mult_left_mono) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 433 | also have "\<dots> \<le> arctan (sqrt y)" using arctan_bounds .. | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 434 | finally have "(sqrt y * lb_arctan_horner prec n 1 y) \<le> arctan (sqrt y)" . } | 
| 29805 | 435 | moreover | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 436 |   { have "arctan (sqrt y) \<le> ?S (Suc n)" using arctan_bounds ..
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 437 | also have "\<dots> \<le> (sqrt y * ub_arctan_horner prec (Suc n) 1 y)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 438 | using bounds(2)[of "Suc n"] `0 \<le> sqrt y` | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 439 | unfolding power_add power_one_right mult.assoc[symmetric] setsum_left_distrib[symmetric] | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 440 | unfolding mult.commute[where 'a=real] mult.commute[of _ "2::nat"] power_mult | 
| 29805 | 441 | by (auto intro!: mult_left_mono) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 442 | finally have "arctan (sqrt y) \<le> (sqrt y * ub_arctan_horner prec (Suc n) 1 y)" . } | 
| 29805 | 443 | ultimately show ?thesis by auto | 
| 444 | qed | |
| 445 | ||
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 446 | lemma arctan_0_1_bounds: assumes "0 \<le> real y" "real y \<le> 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 447 | shows "arctan (sqrt y) \<in> | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 448 |     {(sqrt y * lb_arctan_horner prec (get_even n) 1 y) ..
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 449 | (sqrt y * ub_arctan_horner prec (get_odd n) 1 y)}" | 
| 54269 | 450 | using | 
| 451 | arctan_0_1_bounds'[OF assms, of n prec] | |
| 452 | arctan_0_1_bounds'[OF assms, of "n + 1" prec] | |
| 453 | arctan_0_1_bounds'[OF assms, of "n - 1" prec] | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 454 | by (auto simp: get_even_def get_odd_def odd_pos simp del: ub_arctan_horner.simps | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 455 | lb_arctan_horner.simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 456 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 457 | lemma arctan_lower_bound: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 458 | assumes "0 \<le> x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 459 | shows "x / (1 + x\<^sup>2) \<le> arctan x" (is "?l x \<le> _") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 460 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 461 | have "?l x - arctan x \<le> ?l 0 - arctan 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 462 | using assms | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 463 | by (intro DERIV_nonpos_imp_nonincreasing[where f="\<lambda>x. ?l x - arctan x"]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 464 | (auto intro!: derivative_eq_intros simp: add_nonneg_eq_0_iff field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 465 | thus ?thesis by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 466 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 467 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 468 | lemma arctan_divide_mono: "0 < x \<Longrightarrow> x \<le> y \<Longrightarrow> arctan y / y \<le> arctan x / x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 469 | by (rule DERIV_nonpos_imp_nonincreasing[where f="\<lambda>x. arctan x / x"]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 470 | (auto intro!: derivative_eq_intros divide_nonpos_nonneg | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 471 | simp: inverse_eq_divide arctan_lower_bound) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 472 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 473 | lemma arctan_mult_mono: "0 \<le> x \<Longrightarrow> x \<le> y \<Longrightarrow> x * arctan y \<le> y * arctan x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 474 | using arctan_divide_mono[of x y] by (cases "x = 0") (simp_all add: field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 475 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 476 | lemma arctan_mult_le: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 477 | assumes "0 \<le> x" "x \<le> y" "y * z \<le> arctan y" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 478 | shows "x * z \<le> arctan x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 479 | proof cases | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 480 | assume "x \<noteq> 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 481 | with assms have "z \<le> arctan y / y" by (simp add: field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 482 | also have "\<dots> \<le> arctan x / x" using assms `x \<noteq> 0` by (auto intro!: arctan_divide_mono) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 483 | finally show ?thesis using assms `x \<noteq> 0` by (simp add: field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 484 | qed simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 485 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 486 | lemma arctan_le_mult: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 487 | assumes "0 < x" "x \<le> y" "arctan x \<le> x * z" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 488 | shows "arctan y \<le> y * z" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 489 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 490 | from assms have "arctan y / y \<le> arctan x / x" by (auto intro!: arctan_divide_mono) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 491 | also have "\<dots> \<le> z" using assms by (auto simp: field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 492 | finally show ?thesis using assms by (simp add: field_simps) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 493 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 494 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 495 | lemma arctan_0_1_bounds_le: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 496 | assumes "0 \<le> x" "x \<le> 1" "0 < real xl" "real xl \<le> x * x" "x * x \<le> real xu" "real xu \<le> 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 497 | shows "arctan x \<in> | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 498 |       {x * lb_arctan_horner p1 (get_even n) 1 xu .. x * ub_arctan_horner p2 (get_odd n) 1 xl}"
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 499 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 500 | from assms have "real xl \<le> 1" "sqrt (real xl) \<le> x" "x \<le> sqrt (real xu)" "0 \<le> real xu" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 501 | "0 \<le> real xl" "0 < sqrt (real xl)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 502 | by (auto intro!: real_le_rsqrt real_le_lsqrt simp: power2_eq_square) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 503 | from arctan_0_1_bounds[OF `0 \<le> real xu` `real xu \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 504 | have "sqrt (real xu) * real (lb_arctan_horner p1 (get_even n) 1 xu) \<le> arctan (sqrt (real xu))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 505 | by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 506 | from arctan_mult_le[OF `0 \<le> x` `x \<le> sqrt _` this] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 507 | have "x * real (lb_arctan_horner p1 (get_even n) 1 xu) \<le> arctan x" . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 508 | moreover | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 509 | from arctan_0_1_bounds[OF `0 \<le> real xl` `real xl \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 510 | have "arctan (sqrt (real xl)) \<le> sqrt (real xl) * real (ub_arctan_horner p2 (get_odd n) 1 xl)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 511 | by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 512 | from arctan_le_mult[OF `0 < sqrt xl` `sqrt xl \<le> x` this] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 513 | have "arctan x \<le> x * real (ub_arctan_horner p2 (get_odd n) 1 xl)" . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 514 | ultimately show ?thesis by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 515 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 516 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 517 | lemma mult_nonneg_le_one: fixes a::real assumes "0 \<le> a" "0 \<le> b" "a \<le> 1" "b \<le> 1" shows "a * b \<le> 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 518 | proof - | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 519 | have "a * b \<le> 1 * 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 520 | by (intro mult_mono assms) simp_all | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 521 | thus ?thesis by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 522 | qed | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 523 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 524 | lemma arctan_0_1_bounds_round: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 525 | assumes "0 \<le> real x" "real x \<le> 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 526 | shows "arctan x \<in> | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 527 |       {real x * lb_arctan_horner p1 (get_even n) 1 (float_round_up (Suc p2) (x * x)) ..
 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 528 | real x * ub_arctan_horner p3 (get_odd n) 1 (float_round_down (Suc p4) (x * x))}" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 529 | using assms | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 530 | apply (cases "x > 0") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 531 | apply (intro arctan_0_1_bounds_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 532 | apply (auto simp: float_round_down.rep_eq float_round_up.rep_eq | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 533 | intro!: truncate_up_le1 mult_nonneg_le_one truncate_down_le truncate_up_le truncate_down_pos | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 534 | mult_pos_pos) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 535 | done | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 536 | |
| 29805 | 537 | |
| 538 | subsection "Compute \<pi>" | |
| 539 | ||
| 540 | definition ub_pi :: "nat \<Rightarrow> float" where | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 541 | "ub_pi prec = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 542 | (let | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 543 | A = rapprox_rat prec 1 5 ; | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 544 | B = lapprox_rat prec 1 239 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 545 | in ((Float 1 2) * float_plus_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 546 | ((Float 1 2) * float_round_up prec (A * (ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 547 | (float_round_down (Suc prec) (A * A))))) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 548 | (- float_round_down prec (B * (lb_arctan_horner prec (get_even (prec div 14 + 1)) 1 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 549 | (float_round_up (Suc prec) (B * B)))))))" | 
| 29805 | 550 | |
| 551 | definition lb_pi :: "nat \<Rightarrow> float" where | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 552 | "lb_pi prec = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 553 | (let | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 554 | A = lapprox_rat prec 1 5 ; | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 555 | B = rapprox_rat prec 1 239 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 556 | in ((Float 1 2) * float_plus_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 557 | ((Float 1 2) * float_round_down prec (A * (lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 558 | (float_round_up (Suc prec) (A * A))))) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 559 | (- float_round_up prec (B * (ub_arctan_horner prec (get_odd (prec div 14 + 1)) 1 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 560 | (float_round_down (Suc prec) (B * B)))))))" | 
| 29805 | 561 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 562 | lemma pi_boundaries: "pi \<in> {(lb_pi n) .. (ub_pi n)}"
 | 
| 29805 | 563 | proof - | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 564 | have machin_pi: "pi = 4 * (4 * arctan (1 / 5) - arctan (1 / 239))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 565 | unfolding machin[symmetric] by auto | 
| 29805 | 566 | |
| 567 |   { fix prec n :: nat fix k :: int assume "1 < k" hence "0 \<le> k" and "0 < k" and "1 \<le> k" by auto
 | |
| 568 | let ?k = "rapprox_rat prec 1 k" | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 569 | let ?kl = "float_round_down (Suc prec) (?k * ?k)" | 
| 29805 | 570 | have "1 div k = 0" using div_pos_pos_trivial[OF _ `1 < k`] by auto | 
| 31809 | 571 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 572 | have "0 \<le> real ?k" by (rule order_trans[OF _ rapprox_rat]) (auto simp add: `0 \<le> k`) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 573 | have "real ?k \<le> 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 574 | by (auto simp add: `0 < k` `1 \<le> k` less_imp_le | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 575 | intro!: mult_nonneg_le_one order_trans[OF _ rapprox_rat] rapprox_rat_le1) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 576 | have "1 / k \<le> ?k" using rapprox_rat[where x=1 and y=k] by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 577 | hence "arctan (1 / k) \<le> arctan ?k" by (rule arctan_monotone') | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 578 | also have "\<dots> \<le> (?k * ub_arctan_horner prec (get_odd n) 1 ?kl)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 579 | using arctan_0_1_bounds_round[OF `0 \<le> real ?k` `real ?k \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 580 | by auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 581 | finally have "arctan (1 / k) \<le> ?k * ub_arctan_horner prec (get_odd n) 1 ?kl" . | 
| 29805 | 582 | } note ub_arctan = this | 
| 583 | ||
| 584 |   { fix prec n :: nat fix k :: int assume "1 < k" hence "0 \<le> k" and "0 < k" by auto
 | |
| 585 | let ?k = "lapprox_rat prec 1 k" | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 586 | let ?ku = "float_round_up (Suc prec) (?k * ?k)" | 
| 29805 | 587 | have "1 div k = 0" using div_pos_pos_trivial[OF _ `1 < k`] by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 588 | have "1 / k \<le> 1" using `1 < k` by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 589 | have "0 \<le> real ?k" using lapprox_rat_nonneg[where x=1 and y=k, OF zero_le_one `0 \<le> k`] | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58889diff
changeset | 590 | by (auto simp add: `1 div k = 0`) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 591 | have "0 \<le> real (?k * ?k)" by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 592 | have "real ?k \<le> 1" using lapprox_rat by (rule order_trans, auto simp add: `1 / k \<le> 1`) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 593 | hence "real (?k * ?k) \<le> 1" using `0 \<le> real ?k` by (auto intro!: mult_nonneg_le_one) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 594 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 595 | have "?k \<le> 1 / k" using lapprox_rat[where x=1 and y=k] by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 596 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 597 | have "?k * lb_arctan_horner prec (get_even n) 1 ?ku \<le> arctan ?k" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 598 | using arctan_0_1_bounds_round[OF `0 \<le> real ?k` `real ?k \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 599 | by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 600 | also have "\<dots> \<le> arctan (1 / k)" using `?k \<le> 1 / k` by (rule arctan_monotone') | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 601 | finally have "?k * lb_arctan_horner prec (get_even n) 1 ?ku \<le> arctan (1 / k)" . | 
| 29805 | 602 | } note lb_arctan = this | 
| 603 | ||
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 604 | have "pi \<le> ub_pi n " | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 605 | unfolding ub_pi_def machin_pi Let_def times_float.rep_eq Float_num | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 606 | using lb_arctan[of 239] ub_arctan[of 5] powr_realpow[of 2 2] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 607 | by (intro mult_left_mono float_plus_up_le float_plus_down_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 608 | (auto intro!: mult_left_mono float_round_down_le float_round_up_le diff_mono) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 609 | moreover have "lb_pi n \<le> pi" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 610 | unfolding lb_pi_def machin_pi Let_def times_float.rep_eq Float_num | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 611 | using lb_arctan[of 5] ub_arctan[of 239] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 612 | by (intro mult_left_mono float_plus_up_le float_plus_down_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 613 | (auto intro!: mult_left_mono float_round_down_le float_round_up_le diff_mono) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 614 | ultimately show ?thesis by auto | 
| 29805 | 615 | qed | 
| 616 | ||
| 617 | subsection "Compute arcus tangens in the entire domain" | |
| 618 | ||
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 619 | function lb_arctan :: "nat \<Rightarrow> float \<Rightarrow> float" and ub_arctan :: "nat \<Rightarrow> float \<Rightarrow> float" where | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 620 | "lb_arctan prec x = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 621 | (let | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 622 | ub_horner = \<lambda> x. float_round_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 623 | (x * | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 624 | ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x))); | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 625 | lb_horner = \<lambda> x. float_round_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 626 | (x * | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 627 | lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x))) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 628 | in | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 629 | if x < 0 then - ub_arctan prec (-x) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 630 | else if x \<le> Float 1 (- 1) then lb_horner x | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 631 | else if x \<le> Float 1 1 then | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 632 | Float 1 1 * | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 633 | lb_horner | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 634 | (float_divl prec x | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 635 | (float_plus_up prec 1 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 636 | (ub_sqrt prec (float_plus_up prec 1 (float_round_up prec (x * x)))))) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 637 | else let inv = float_divr prec 1 x in | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 638 | if inv > 1 then 0 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 639 | else float_plus_down prec (lb_pi prec * Float 1 (- 1)) ( - ub_horner inv))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 640 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 641 | | "ub_arctan prec x = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 642 | (let | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 643 | lb_horner = \<lambda> x. float_round_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 644 | (x * | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 645 | lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x))) ; | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 646 | ub_horner = \<lambda> x. float_round_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 647 | (x * | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 648 | ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x))) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 649 | in if x < 0 then - lb_arctan prec (-x) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 650 | else if x \<le> Float 1 (- 1) then ub_horner x | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 651 | else if x \<le> Float 1 1 then | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 652 | let y = float_divr prec x | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 653 | (float_plus_down | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 654 | (Suc prec) 1 (lb_sqrt prec (float_plus_down prec 1 (float_round_down prec (x * x))))) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 655 | in if y > 1 then ub_pi prec * Float 1 (- 1) else Float 1 1 * ub_horner y | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 656 | else float_plus_up prec (ub_pi prec * Float 1 (- 1)) ( - lb_horner (float_divl prec 1 x)))" | 
| 29805 | 657 | by pat_completeness auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 658 | termination | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 659 | by (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if x < 0 then 1 else 0))", auto) | 
| 29805 | 660 | |
| 661 | declare ub_arctan_horner.simps[simp del] | |
| 662 | declare lb_arctan_horner.simps[simp del] | |
| 663 | ||
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 664 | lemma lb_arctan_bound': assumes "0 \<le> real x" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 665 | shows "lb_arctan prec x \<le> arctan x" | 
| 29805 | 666 | proof - | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 667 | have "\<not> x < 0" and "0 \<le> x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 668 | using `0 \<le> real x` by (auto intro!: truncate_up_le ) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 669 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 670 | let "?ub_horner x" = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 671 | "x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 672 | and "?lb_horner x" = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 673 | "x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x))" | 
| 29805 | 674 | |
| 675 | show ?thesis | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 676 | proof (cases "x \<le> Float 1 (- 1)") | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 677 | case True hence "real x \<le> 1" by simp | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 678 | from arctan_0_1_bounds_round[OF `0 \<le> real x` `real x \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 679 | show ?thesis | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 680 | unfolding lb_arctan.simps Let_def if_not_P[OF `\<not> x < 0`] if_P[OF True] using `0 \<le> x` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 681 | by (auto intro!: float_round_down_le) | 
| 29805 | 682 | next | 
| 47600 | 683 | case False hence "0 < real x" by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 684 | let ?R = "1 + sqrt (1 + real x * real x)" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 685 | let ?sxx = "float_plus_up prec 1 (float_round_up prec (x * x))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 686 | let ?fR = "float_plus_up prec 1 (ub_sqrt prec ?sxx)" | 
| 29805 | 687 | let ?DIV = "float_divl prec x ?fR" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 688 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 689 | have divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 690 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 691 | have "sqrt (1 + x*x) \<le> sqrt ?sxx" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 692 | by (auto simp: float_plus_up.rep_eq plus_up_def float_round_up.rep_eq intro!: truncate_up_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 693 | also have "\<dots> \<le> ub_sqrt prec ?sxx" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 694 | using bnds_sqrt'[of ?sxx prec] by auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 695 | finally | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 696 | have "sqrt (1 + x*x) \<le> ub_sqrt prec ?sxx" . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 697 | hence "?R \<le> ?fR" by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le) | 
| 47600 | 698 | hence "0 < ?fR" and "0 < real ?fR" using `0 < ?R` by auto | 
| 29805 | 699 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 700 | have monotone: "?DIV \<le> x / ?R" | 
| 29805 | 701 | proof - | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 702 | have "?DIV \<le> real x / ?fR" by (rule float_divl) | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 703 | also have "\<dots> \<le> x / ?R" by (rule divide_left_mono[OF `?R \<le> ?fR` `0 \<le> real x` mult_pos_pos[OF order_less_le_trans[OF divisor_gt0 `?R \<le> real ?fR`] divisor_gt0]]) | 
| 29805 | 704 | finally show ?thesis . | 
| 705 | qed | |
| 706 | ||
| 707 | show ?thesis | |
| 708 | proof (cases "x \<le> Float 1 1") | |
| 709 | case True | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 710 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 711 | have "x \<le> sqrt (1 + x * x)" using real_sqrt_sum_squares_ge2[where x=1, unfolded numeral_2_eq_2] by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 712 | also note `\<dots> \<le> (ub_sqrt prec ?sxx)` | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 713 | finally have "real x \<le> ?fR" by (auto simp: float_plus_up.rep_eq plus_up_def intro!: truncate_up_le) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 714 | moreover have "?DIV \<le> real x / ?fR" by (rule float_divl) | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 715 | ultimately have "real ?DIV \<le> 1" unfolding divide_le_eq_1_pos[OF `0 < real ?fR`, symmetric] by auto | 
| 29805 | 716 | |
| 54782 | 717 | have "0 \<le> real ?DIV" using float_divl_lower_bound[OF `0 \<le> x`] `0 < ?fR` unfolding less_eq_float_def by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 718 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 719 | from arctan_0_1_bounds_round[OF `0 \<le> real (?DIV)` `real (?DIV) \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 720 | have "Float 1 1 * ?lb_horner ?DIV \<le> 2 * arctan ?DIV" by simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 721 | also have "\<dots> \<le> 2 * arctan (x / ?R)" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 722 | using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono arctan_monotone') | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 723 | also have "2 * arctan (x / ?R) = arctan x" using arctan_half[symmetric] unfolding numeral_2_eq_2 power_Suc2 power_0 mult_1_left . | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 724 | finally show ?thesis unfolding lb_arctan.simps Let_def if_not_P[OF `\<not> x < 0`] if_not_P[OF `\<not> x \<le> Float 1 (- 1)`] if_P[OF True] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 725 | by (auto simp: float_round_down.rep_eq intro!: order_trans[OF mult_left_mono[OF truncate_down]]) | 
| 29805 | 726 | next | 
| 727 | case False | |
| 47600 | 728 | hence "2 < real x" by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 729 | hence "1 \<le> real x" by auto | 
| 29805 | 730 | |
| 731 | let "?invx" = "float_divr prec 1 x" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 732 | have "0 \<le> arctan x" using arctan_monotone'[OF `0 \<le> real x`] using arctan_tan[of 0, unfolded tan_zero] by auto | 
| 29805 | 733 | |
| 734 | show ?thesis | |
| 735 | proof (cases "1 < ?invx") | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 736 | case True | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 737 | show ?thesis unfolding lb_arctan.simps Let_def if_not_P[OF `\<not> x < 0`] if_not_P[OF `\<not> x \<le> Float 1 (- 1)`] if_not_P[OF False] if_P[OF True] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 738 | using `0 \<le> arctan x` by auto | 
| 29805 | 739 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 740 | case False | 
| 47600 | 741 | hence "real ?invx \<le> 1" by auto | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 742 | have "0 \<le> real ?invx" by (rule order_trans[OF _ float_divr], auto simp add: `0 \<le> real x`) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 743 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 744 | have "1 / x \<noteq> 0" and "0 < 1 / x" using `0 < real x` by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 745 | |
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 746 | have "arctan (1 / x) \<le> arctan ?invx" unfolding one_float.rep_eq[symmetric] by (rule arctan_monotone', rule float_divr) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 747 | also have "\<dots> \<le> ?ub_horner ?invx" using arctan_0_1_bounds_round[OF `0 \<le> real ?invx` `real ?invx \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 748 | by (auto intro!: float_round_up_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 749 | also note float_round_up | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 750 | finally have "pi / 2 - float_round_up prec (?ub_horner ?invx) \<le> arctan x" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 751 | using `0 \<le> arctan x` arctan_inverse[OF `1 / x \<noteq> 0`] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 752 | unfolding real_sgn_pos[OF `0 < 1 / real x`] le_diff_eq by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 753 | moreover | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 754 | have "lb_pi prec * Float 1 (- 1) \<le> pi / 2" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 755 | unfolding Float_num times_divide_eq_right mult_1_left using pi_boundaries by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 756 | ultimately | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 757 | show ?thesis unfolding lb_arctan.simps Let_def if_not_P[OF `\<not> x < 0`] if_not_P[OF `\<not> x \<le> Float 1 (- 1)`] if_not_P[OF `\<not> x \<le> Float 1 1`] if_not_P[OF False] | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 758 | by (auto intro!: float_plus_down_le) | 
| 29805 | 759 | qed | 
| 760 | qed | |
| 761 | qed | |
| 762 | qed | |
| 763 | ||
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 764 | lemma ub_arctan_bound': assumes "0 \<le> real x" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 765 | shows "arctan x \<le> ub_arctan prec x" | 
| 29805 | 766 | proof - | 
| 47600 | 767 | have "\<not> x < 0" and "0 \<le> x" using `0 \<le> real x` by auto | 
| 29805 | 768 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 769 | let "?ub_horner x" = "float_round_up prec (x * ub_arctan_horner prec (get_odd (prec div 4 + 1)) 1 (float_round_down (Suc prec) (x * x)))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 770 | and "?lb_horner x" = "float_round_down prec (x * lb_arctan_horner prec (get_even (prec div 4 + 1)) 1 (float_round_up (Suc prec) (x * x)))" | 
| 29805 | 771 | |
| 772 | show ?thesis | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 773 | proof (cases "x \<le> Float 1 (- 1)") | 
| 47600 | 774 | case True hence "real x \<le> 1" by auto | 
| 29805 | 775 | show ?thesis unfolding ub_arctan.simps Let_def if_not_P[OF `\<not> x < 0`] if_P[OF True] | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 776 | using arctan_0_1_bounds_round[OF `0 \<le> real x` `real x \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 777 | by (auto intro!: float_round_up_le) | 
| 29805 | 778 | next | 
| 47600 | 779 | case False hence "0 < real x" by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 780 | let ?R = "1 + sqrt (1 + real x * real x)" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 781 | let ?sxx = "float_plus_down prec 1 (float_round_down prec (x * x))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 782 | let ?fR = "float_plus_down (Suc prec) 1 (lb_sqrt prec ?sxx)" | 
| 29805 | 783 | let ?DIV = "float_divr prec x ?fR" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 784 | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 785 | have sqr_ge0: "0 \<le> 1 + real x * real x" using sum_power2_ge_zero[of 1 "real x", unfolded numeral_2_eq_2] by auto | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 786 | hence "0 \<le> real (1 + x*x)" by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 787 | |
| 29805 | 788 | hence divisor_gt0: "0 < ?R" by (auto intro: add_pos_nonneg) | 
| 789 | ||
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 790 | have "lb_sqrt prec ?sxx \<le> sqrt ?sxx" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 791 | using bnds_sqrt'[of ?sxx] by auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 792 | also have "\<dots> \<le> sqrt (1 + x*x)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 793 | by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq truncate_down_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 794 | finally have "lb_sqrt prec ?sxx \<le> sqrt (1 + x*x)" . | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 795 | hence "?fR \<le> ?R" by (auto simp: float_plus_down.rep_eq plus_down_def truncate_down_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 796 | have "0 < real ?fR" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 797 | by (auto simp: float_plus_down.rep_eq plus_down_def float_round_down.rep_eq | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 798 | intro!: truncate_down_ge1 lb_sqrt_lower_bound order_less_le_trans[OF zero_less_one] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 799 | truncate_down_nonneg add_nonneg_nonneg) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 800 | have monotone: "x / ?R \<le> (float_divr prec x ?fR)" | 
| 29805 | 801 | proof - | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 802 | from divide_left_mono[OF `?fR \<le> ?R` `0 \<le> real x` mult_pos_pos[OF divisor_gt0 `0 < real ?fR`]] | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 803 | have "x / ?R \<le> x / ?fR" . | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 804 | also have "\<dots> \<le> ?DIV" by (rule float_divr) | 
| 29805 | 805 | finally show ?thesis . | 
| 806 | qed | |
| 807 | ||
| 808 | show ?thesis | |
| 809 | proof (cases "x \<le> Float 1 1") | |
| 810 | case True | |
| 811 | show ?thesis | |
| 812 | proof (cases "?DIV > 1") | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 813 | case True | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 814 | have "pi / 2 \<le> ub_pi prec * Float 1 (- 1)" unfolding Float_num times_divide_eq_right mult_1_left using pi_boundaries by auto | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 815 | from order_less_le_trans[OF arctan_ubound this, THEN less_imp_le] | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 816 | show ?thesis unfolding ub_arctan.simps Let_def if_not_P[OF `\<not> x < 0`] if_not_P[OF `\<not> x \<le> Float 1 (- 1)`] if_P[OF `x \<le> Float 1 1`] if_P[OF True] . | 
| 29805 | 817 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 818 | case False | 
| 47600 | 819 | hence "real ?DIV \<le> 1" by auto | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 820 | |
| 44349 
f057535311c5
remove redundant lemma real_0_le_divide_iff in favor or zero_le_divide_iff
 huffman parents: 
44306diff
changeset | 821 | have "0 \<le> x / ?R" using `0 \<le> real x` `0 < ?R` unfolding zero_le_divide_iff by auto | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 822 | hence "0 \<le> real ?DIV" using monotone by (rule order_trans) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 823 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 824 | have "arctan x = 2 * arctan (x / ?R)" using arctan_half unfolding numeral_2_eq_2 power_Suc2 power_0 mult_1_left . | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 825 | also have "\<dots> \<le> 2 * arctan (?DIV)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 826 | using arctan_monotone'[OF monotone] by (auto intro!: mult_left_mono) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 827 | also have "\<dots> \<le> (Float 1 1 * ?ub_horner ?DIV)" unfolding Float_num | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 828 | using arctan_0_1_bounds_round[OF `0 \<le> real ?DIV` `real ?DIV \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 829 | by (auto intro!: float_round_up_le) | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 830 | finally show ?thesis unfolding ub_arctan.simps Let_def if_not_P[OF `\<not> x < 0`] if_not_P[OF `\<not> x \<le> Float 1 (- 1)`] if_P[OF `x \<le> Float 1 1`] if_not_P[OF False] . | 
| 29805 | 831 | qed | 
| 832 | next | |
| 833 | case False | |
| 47600 | 834 | hence "2 < real x" by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 835 | hence "1 \<le> real x" by auto | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 836 | hence "0 < real x" by auto | 
| 47600 | 837 | hence "0 < x" by auto | 
| 29805 | 838 | |
| 839 | let "?invx" = "float_divl prec 1 x" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 840 | have "0 \<le> arctan x" using arctan_monotone'[OF `0 \<le> real x`] using arctan_tan[of 0, unfolded tan_zero] by auto | 
| 29805 | 841 | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 842 | have "real ?invx \<le> 1" unfolding less_float_def by (rule order_trans[OF float_divl], auto simp add: `1 \<le> real x` divide_le_eq_1_pos[OF `0 < real x`]) | 
| 47600 | 843 | have "0 \<le> real ?invx" using `0 < x` by (intro float_divl_lower_bound) auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 844 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 845 | have "1 / x \<noteq> 0" and "0 < 1 / x" using `0 < real x` by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 846 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 847 | have "(?lb_horner ?invx) \<le> arctan (?invx)" using arctan_0_1_bounds_round[OF `0 \<le> real ?invx` `real ?invx \<le> 1`] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 848 | by (auto intro!: float_round_down_le) | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 849 | also have "\<dots> \<le> arctan (1 / x)" unfolding one_float.rep_eq[symmetric] by (rule arctan_monotone', rule float_divl) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 850 | finally have "arctan x \<le> pi / 2 - (?lb_horner ?invx)" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 851 | using `0 \<le> arctan x` arctan_inverse[OF `1 / x \<noteq> 0`] | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 852 | unfolding real_sgn_pos[OF `0 < 1 / x`] le_diff_eq by auto | 
| 29805 | 853 | moreover | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 854 | have "pi / 2 \<le> ub_pi prec * Float 1 (- 1)" unfolding Float_num times_divide_eq_right mult_1_right using pi_boundaries by auto | 
| 29805 | 855 | ultimately | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 856 | show ?thesis unfolding ub_arctan.simps Let_def if_not_P[OF `\<not> x < 0`]if_not_P[OF `\<not> x \<le> Float 1 (- 1)`] if_not_P[OF False] | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 857 | by (auto intro!: float_round_up_le float_plus_up_le) | 
| 29805 | 858 | qed | 
| 859 | qed | |
| 860 | qed | |
| 861 | ||
| 862 | lemma arctan_boundaries: | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 863 |   "arctan x \<in> {(lb_arctan prec x) .. (ub_arctan prec x)}"
 | 
| 29805 | 864 | proof (cases "0 \<le> x") | 
| 47600 | 865 | case True hence "0 \<le> real x" by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 866 | show ?thesis using ub_arctan_bound'[OF `0 \<le> real x`] lb_arctan_bound'[OF `0 \<le> real x`] unfolding atLeastAtMost_iff by auto | 
| 29805 | 867 | next | 
| 868 | let ?mx = "-x" | |
| 47600 | 869 | case False hence "x < 0" and "0 \<le> real ?mx" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 870 | hence bounds: "lb_arctan prec ?mx \<le> arctan ?mx \<and> arctan ?mx \<le> ub_arctan prec ?mx" | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 871 | using ub_arctan_bound'[OF `0 \<le> real ?mx`] lb_arctan_bound'[OF `0 \<le> real ?mx`] by auto | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 872 | show ?thesis unfolding minus_float.rep_eq arctan_minus lb_arctan.simps[where x=x] ub_arctan.simps[where x=x] Let_def if_P[OF `x < 0`] | 
| 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 873 | unfolding atLeastAtMost_iff using bounds[unfolded minus_float.rep_eq arctan_minus] | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 874 | by (simp add: arctan_minus) | 
| 29805 | 875 | qed | 
| 876 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 877 | lemma bnds_arctan: "\<forall> (x::real) lx ux. (l, u) = (lb_arctan prec lx, ub_arctan prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> arctan x \<and> arctan x \<le> u"
 | 
| 29805 | 878 | proof (rule allI, rule allI, rule allI, rule impI) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 879 | fix x :: real fix lx ux | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 880 |   assume "(l, u) = (lb_arctan prec lx, ub_arctan prec ux) \<and> x \<in> {lx .. ux}"
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 881 |   hence l: "lb_arctan prec lx = l " and u: "ub_arctan prec ux = u" and x: "x \<in> {lx .. ux}" by auto
 | 
| 29805 | 882 | |
| 883 |   { from arctan_boundaries[of lx prec, unfolded l]
 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 884 | have "l \<le> arctan lx" by (auto simp del: lb_arctan.simps) | 
| 29805 | 885 | also have "\<dots> \<le> arctan x" using x by (auto intro: arctan_monotone') | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 886 | finally have "l \<le> arctan x" . | 
| 29805 | 887 | } moreover | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 888 |   { have "arctan x \<le> arctan ux" using x by (auto intro: arctan_monotone')
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 889 | also have "\<dots> \<le> u" using arctan_boundaries[of ux prec, unfolded u] by (auto simp del: ub_arctan.simps) | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 890 | finally have "arctan x \<le> u" . | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 891 | } ultimately show "l \<le> arctan x \<and> arctan x \<le> u" .. | 
| 29805 | 892 | qed | 
| 893 | ||
| 894 | section "Sinus and Cosinus" | |
| 895 | ||
| 896 | subsection "Compute the cosinus and sinus series" | |
| 897 | ||
| 898 | fun ub_sin_cos_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" | |
| 899 | and lb_sin_cos_aux :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where | |
| 900 | "ub_sin_cos_aux prec 0 i k x = 0" | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 901 | | "ub_sin_cos_aux prec (Suc n) i k x = float_plus_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 902 | (rapprox_rat prec 1 k) (- | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 903 | float_round_down prec (x * (lb_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)))" | 
| 29805 | 904 | | "lb_sin_cos_aux prec 0 i k x = 0" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 905 | | "lb_sin_cos_aux prec (Suc n) i k x = float_plus_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 906 | (lapprox_rat prec 1 k) (- | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 907 | float_round_up prec (x * (ub_sin_cos_aux prec n (i + 2) (k * i * (i + 1)) x)))" | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 908 | |
| 29805 | 909 | lemma cos_aux: | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 910 | shows "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> (\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i))) * x ^(2 * i))" (is "?lb") | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 911 | and "(\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i))) * x^(2 * i)) \<le> (ub_sin_cos_aux prec n 1 1 (x * x))" (is "?ub") | 
| 29805 | 912 | proof - | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 913 | have "0 \<le> real (x * x)" by auto | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 914 | let "?f n" = "fact (2 * n) :: nat" | 
| 29805 | 915 | |
| 31809 | 916 |   { fix n
 | 
| 45129 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
44821diff
changeset | 917 | have F: "\<And>m. ((\<lambda>i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto | 
| 30971 | 918 | have "?f (Suc n) = ?f n * ((\<lambda>i. i + 2) ^^ n) 1 * (((\<lambda>i. i + 2) ^^ n) 1 + 1)" | 
| 29805 | 919 | unfolding F by auto } note f_eq = this | 
| 31809 | 920 | |
| 921 | from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0, | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 922 | OF `0 \<le> real (x * x)` f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps] | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 923 | show "?lb" and "?ub" by (auto simp add: power_mult power2_eq_square[of "real x"]) | 
| 29805 | 924 | qed | 
| 925 | ||
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 926 | lemma lb_sin_cos_aux_zero_le_one: "lb_sin_cos_aux prec n i j 0 \<le> 1" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 927 | by (cases j n rule: nat.exhaust[case_product nat.exhaust]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 928 | (auto intro!: float_plus_down_le order_trans[OF lapprox_rat]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 929 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 930 | lemma one_le_ub_sin_cos_aux: "odd n \<Longrightarrow> 1 \<le> ub_sin_cos_aux prec n i (Suc 0) 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 931 | by (cases n) (auto intro!: float_plus_up_le order_trans[OF _ rapprox_rat]) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 932 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 933 | lemma cos_boundaries: assumes "0 \<le> real x" and "x \<le> pi / 2" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 934 |   shows "cos x \<in> {(lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) .. (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))}"
 | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 935 | proof (cases "real x = 0") | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 936 | case False hence "real x \<noteq> 0" by auto | 
| 47600 | 937 | hence "0 < x" and "0 < real x" using `0 \<le> real x` by auto | 
| 56544 | 938 | have "0 < x * x" using `0 < x` by simp | 
| 29805 | 939 | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 940 |   { fix x n have "(\<Sum> i=0..<n. (-1::real) ^ i * (1/(fact (2 * i))) * x ^ (2 * i))
 | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 941 | = (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * x ^ i)" (is "?sum = ?ifsum") | 
| 29805 | 942 | proof - | 
| 943 | have "?sum = ?sum + (\<Sum> j = 0 ..< n. 0)" by auto | |
| 31809 | 944 | also have "\<dots> = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 945 | (\<Sum> j = 0 ..< n. (- 1) ^ ((2 * j) div 2) / ((fact (2 * j))) * x ^(2 * j)) + (\<Sum> j = 0 ..< n. 0)" by auto | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 946 | also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then (- 1) ^ (i div 2) / ((fact i)) * x ^ i else 0)" | 
| 56195 | 947 | unfolding sum_split_even_odd atLeast0LessThan .. | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 948 | also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then (- 1) ^ (i div 2) / ((fact i)) else 0) * x ^ i)" | 
| 57418 | 949 | by (rule setsum.cong) auto | 
| 29805 | 950 | finally show ?thesis by assumption | 
| 951 | qed } note morph_to_if_power = this | |
| 952 | ||
| 953 | ||
| 954 |   { fix n :: nat assume "0 < n"
 | |
| 955 | hence "0 < 2 * n" by auto | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 956 | obtain t where "0 < t" and "t < real x" and | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 957 | cos_eq: "cos x = (\<Sum> i = 0 ..< 2 * n. (if even(i) then ((- 1) ^ (i div 2))/((fact i)) else 0) * (real x) ^ i) | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 958 | + (cos (t + 1/2 * (2 * n) * pi) / (fact (2*n))) * (real x)^(2*n)" | 
| 29805 | 959 | (is "_ = ?SUM + ?rest / ?fact * ?pow") | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
44305diff
changeset | 960 | using Maclaurin_cos_expansion2[OF `0 < real x` `0 < 2 * n`] | 
| 56195 | 961 | unfolding cos_coeff_def atLeast0LessThan by auto | 
| 29805 | 962 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 963 | have "cos t * (- 1) ^ n = cos t * cos (n * pi) + sin t * sin (n * pi)" by auto | 
| 59751 
916c0f6c83e3
New material for complex sin, cos, tan, Ln, also some reorganisation
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 964 | also have "\<dots> = cos (t + n * pi)" by (simp add: cos_add) | 
| 29805 | 965 | also have "\<dots> = ?rest" by auto | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 966 | finally have "cos t * (- 1) ^ n = ?rest" . | 
| 29805 | 967 | moreover | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 968 | have "t \<le> pi / 2" using `t < real x` and `x \<le> pi / 2` by auto | 
| 29805 | 969 | hence "0 \<le> cos t" using `0 < t` and cos_ge_zero by auto | 
| 970 | ultimately have even: "even n \<Longrightarrow> 0 \<le> ?rest" and odd: "odd n \<Longrightarrow> 0 \<le> - ?rest " by auto | |
| 971 | ||
| 972 | have "0 < ?fact" by auto | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 973 | have "0 < ?pow" using `0 < real x` by auto | 
| 29805 | 974 | |
| 975 |     {
 | |
| 976 | assume "even n" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 977 | have "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> ?SUM" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 978 | unfolding morph_to_if_power[symmetric] using cos_aux by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 979 | also have "\<dots> \<le> cos x" | 
| 29805 | 980 | proof - | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 981 | from even[OF `even n`] `0 < ?fact` `0 < ?pow` | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 982 | have "0 \<le> (?rest / ?fact) * ?pow" by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 983 | thus ?thesis unfolding cos_eq by auto | 
| 29805 | 984 | qed | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 985 | finally have "(lb_sin_cos_aux prec n 1 1 (x * x)) \<le> cos x" . | 
| 29805 | 986 | } note lb = this | 
| 987 | ||
| 988 |     {
 | |
| 989 | assume "odd n" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 990 | have "cos x \<le> ?SUM" | 
| 29805 | 991 | proof - | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 992 | from `0 < ?fact` and `0 < ?pow` and odd[OF `odd n`] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 993 | have "0 \<le> (- ?rest) / ?fact * ?pow" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 994 | by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 995 | thus ?thesis unfolding cos_eq by auto | 
| 29805 | 996 | qed | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 997 | also have "\<dots> \<le> (ub_sin_cos_aux prec n 1 1 (x * x))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 998 | unfolding morph_to_if_power[symmetric] using cos_aux by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 999 | finally have "cos x \<le> (ub_sin_cos_aux prec n 1 1 (x * x))" . | 
| 29805 | 1000 | } note ub = this and lb | 
| 1001 | } note ub = this(1) and lb = this(2) | |
| 1002 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1003 | have "cos x \<le> (ub_sin_cos_aux prec (get_odd n) 1 1 (x * x))" using ub[OF odd_pos[OF get_odd] get_odd] . | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1004 | moreover have "(lb_sin_cos_aux prec (get_even n) 1 1 (x * x)) \<le> cos x" | 
| 29805 | 1005 | proof (cases "0 < get_even n") | 
| 1006 | case True show ?thesis using lb[OF True get_even] . | |
| 1007 | next | |
| 1008 | case False | |
| 1009 | hence "get_even n = 0" by auto | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1010 | have "- (pi / 2) \<le> x" by (rule order_trans[OF _ `0 < real x`[THEN less_imp_le]], auto) | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1011 | with `x \<le> pi / 2` | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1012 | show ?thesis unfolding `get_even n = 0` lb_sin_cos_aux.simps minus_float.rep_eq zero_float.rep_eq using cos_ge_zero by auto | 
| 29805 | 1013 | qed | 
| 1014 | ultimately show ?thesis by auto | |
| 1015 | next | |
| 1016 | case True | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1017 | hence "x = 0" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1018 | by transfer | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1019 | thus ?thesis | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1020 | using lb_sin_cos_aux_zero_le_one one_le_ub_sin_cos_aux | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1021 | by simp | 
| 29805 | 1022 | qed | 
| 1023 | ||
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1024 | lemma sin_aux: assumes "0 \<le> real x" | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1025 | shows "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le> (\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i + 1))) * x^(2 * i + 1))" (is "?lb") | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1026 | and "(\<Sum> i=0..<n. (- 1) ^ i * (1/(fact (2 * i + 1))) * x^(2 * i + 1)) \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))" (is "?ub") | 
| 29805 | 1027 | proof - | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1028 | have "0 \<le> real (x * x)" by auto | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1029 | let "?f n" = "fact (2 * n + 1) :: nat" | 
| 29805 | 1030 | |
| 31809 | 1031 |   { fix n
 | 
| 45129 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
44821diff
changeset | 1032 | have F: "\<And>m. ((\<lambda>i. i + 2) ^^ n) m = m + 2 * n" by (induct n) auto | 
| 30971 | 1033 | have "?f (Suc n) = ?f n * ((\<lambda>i. i + 2) ^^ n) 2 * (((\<lambda>i. i + 2) ^^ n) 2 + 1)" | 
| 59751 
916c0f6c83e3
New material for complex sin, cos, tan, Ln, also some reorganisation
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1034 | unfolding F by auto } | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1035 | note f_eq = this | 
| 29805 | 1036 | from horner_bounds[where lb="lb_sin_cos_aux prec" and ub="ub_sin_cos_aux prec" and j'=0, | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1037 | OF `0 \<le> real (x * x)` f_eq lb_sin_cos_aux.simps ub_sin_cos_aux.simps] | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1038 | show "?lb" and "?ub" using `0 \<le> real x` | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 1039 | unfolding power_add power_one_right mult.assoc[symmetric] setsum_left_distrib[symmetric] | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1040 | unfolding mult.commute[where 'a=real] real_fact_nat | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1041 | by (auto intro!: mult_left_mono simp add: power_mult power2_eq_square[of "real x"]) | 
| 29805 | 1042 | qed | 
| 1043 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1044 | lemma sin_boundaries: assumes "0 \<le> real x" and "x \<le> pi / 2" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1045 |   shows "sin x \<in> {(x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) .. (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))}"
 | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1046 | proof (cases "real x = 0") | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1047 | case False hence "real x \<noteq> 0" by auto | 
| 47600 | 1048 | hence "0 < x" and "0 < real x" using `0 \<le> real x` by auto | 
| 56544 | 1049 | have "0 < x * x" using `0 < x` by simp | 
| 29805 | 1050 | |
| 59751 
916c0f6c83e3
New material for complex sin, cos, tan, Ln, also some reorganisation
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1051 |   { fix x::real and n
 | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1052 | have "(\<Sum>j = 0 ..< n. (- 1) ^ (((2 * j + 1) - Suc 0) div 2) / ((fact (2 * j + 1))) * x ^(2 * j + 1)) | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1053 | = (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * x ^ i)" (is "?SUM = _") | 
| 29805 | 1054 | proof - | 
| 1055 | have pow: "!!i. x ^ (2 * i + 1) = x * x ^ (2 * i)" by auto | |
| 1056 | have "?SUM = (\<Sum> j = 0 ..< n. 0) + ?SUM" by auto | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1057 | also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i)) * x ^ i)" | 
| 56195 | 1058 | unfolding sum_split_even_odd atLeast0LessThan .. | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1059 | also have "\<dots> = (\<Sum> i = 0 ..< 2 * n. (if even i then 0 else (- 1) ^ ((i - Suc 0) div 2) / ((fact i))) * x ^ i)" | 
| 57418 | 1060 | by (rule setsum.cong) auto | 
| 29805 | 1061 | finally show ?thesis by assumption | 
| 1062 | qed } note setsum_morph = this | |
| 1063 | ||
| 1064 |   { fix n :: nat assume "0 < n"
 | |
| 1065 | hence "0 < 2 * n + 1" by auto | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1066 | obtain t where "0 < t" and "t < real x" and | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1067 | sin_eq: "sin x = (\<Sum> i = 0 ..< 2 * n + 1. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real x) ^ i) | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1068 | + (sin (t + 1/2 * (2 * n + 1) * pi) / (fact (2*n + 1))) * (real x)^(2*n + 1)" | 
| 29805 | 1069 | (is "_ = ?SUM + ?rest / ?fact * ?pow") | 
| 44306 
33572a766836
fold definitions of sin_coeff and cos_coeff in Maclaurin lemmas
 huffman parents: 
44305diff
changeset | 1070 | using Maclaurin_sin_expansion3[OF `0 < 2 * n + 1` `0 < real x`] | 
| 56195 | 1071 | unfolding sin_coeff_def atLeast0LessThan by auto | 
| 29805 | 1072 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1073 | have "?rest = cos t * (- 1) ^ n" unfolding sin_add cos_add real_of_nat_add distrib_right distrib_left by auto | 
| 29805 | 1074 | moreover | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1075 | have "t \<le> pi / 2" using `t < real x` and `x \<le> pi / 2` by auto | 
| 29805 | 1076 | hence "0 \<le> cos t" using `0 < t` and cos_ge_zero by auto | 
| 1077 | ultimately have even: "even n \<Longrightarrow> 0 \<le> ?rest" and odd: "odd n \<Longrightarrow> 0 \<le> - ?rest " by auto | |
| 1078 | ||
| 44305 | 1079 | have "0 < ?fact" by (simp del: fact_Suc) | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1080 | have "0 < ?pow" using `0 < real x` by (rule zero_less_power) | 
| 29805 | 1081 | |
| 1082 |     {
 | |
| 1083 | assume "even n" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1084 | have "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le> | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1085 | (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real x) ^ i)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1086 | using sin_aux[OF `0 \<le> real x`] unfolding setsum_morph[symmetric] by auto | 
| 29805 | 1087 | also have "\<dots> \<le> ?SUM" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1088 | also have "\<dots> \<le> sin x" | 
| 29805 | 1089 | proof - | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1090 | from even[OF `even n`] `0 < ?fact` `0 < ?pow` | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 1091 | have "0 \<le> (?rest / ?fact) * ?pow" by simp | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1092 | thus ?thesis unfolding sin_eq by auto | 
| 29805 | 1093 | qed | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1094 | finally have "(x * lb_sin_cos_aux prec n 2 1 (x * x)) \<le> sin x" . | 
| 29805 | 1095 | } note lb = this | 
| 1096 | ||
| 1097 |     {
 | |
| 1098 | assume "odd n" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1099 | have "sin x \<le> ?SUM" | 
| 29805 | 1100 | proof - | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1101 | from `0 < ?fact` and `0 < ?pow` and odd[OF `odd n`] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1102 | have "0 \<le> (- ?rest) / ?fact * ?pow" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1103 | by (metis mult_nonneg_nonneg divide_nonneg_pos less_imp_le) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1104 | thus ?thesis unfolding sin_eq by auto | 
| 29805 | 1105 | qed | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1106 | also have "\<dots> \<le> (\<Sum> i = 0 ..< 2 * n. (if even(i) then 0 else ((- 1) ^ ((i - Suc 0) div 2))/((fact i))) * (real x) ^ i)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1107 | by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1108 | also have "\<dots> \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1109 | using sin_aux[OF `0 \<le> real x`] unfolding setsum_morph[symmetric] by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1110 | finally have "sin x \<le> (x * ub_sin_cos_aux prec n 2 1 (x * x))" . | 
| 29805 | 1111 | } note ub = this and lb | 
| 1112 | } note ub = this(1) and lb = this(2) | |
| 1113 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1114 | have "sin x \<le> (x * ub_sin_cos_aux prec (get_odd n) 2 1 (x * x))" using ub[OF odd_pos[OF get_odd] get_odd] . | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1115 | moreover have "(x * lb_sin_cos_aux prec (get_even n) 2 1 (x * x)) \<le> sin x" | 
| 29805 | 1116 | proof (cases "0 < get_even n") | 
| 1117 | case True show ?thesis using lb[OF True get_even] . | |
| 1118 | next | |
| 1119 | case False | |
| 1120 | hence "get_even n = 0" by auto | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1121 | with `x \<le> pi / 2` `0 \<le> real x` | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1122 | show ?thesis unfolding `get_even n = 0` ub_sin_cos_aux.simps minus_float.rep_eq using sin_ge_zero by auto | 
| 29805 | 1123 | qed | 
| 1124 | ultimately show ?thesis by auto | |
| 1125 | next | |
| 1126 | case True | |
| 1127 | show ?thesis | |
| 1128 | proof (cases "n = 0") | |
| 31809 | 1129 | case True | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1130 | thus ?thesis unfolding `n = 0` get_even_def get_odd_def using `real x = 0` lapprox_rat[where x="-1" and y=1] by auto | 
| 29805 | 1131 | next | 
| 1132 | case False with not0_implies_Suc obtain m where "n = Suc m" by blast | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1133 | thus ?thesis unfolding `n = Suc m` get_even_def get_odd_def using `real x = 0` rapprox_rat[where x=1 and y=1] lapprox_rat[where x=1 and y=1] by (cases "even (Suc m)", auto) | 
| 29805 | 1134 | qed | 
| 1135 | qed | |
| 1136 | ||
| 1137 | subsection "Compute the cosinus in the entire domain" | |
| 1138 | ||
| 1139 | definition lb_cos :: "nat \<Rightarrow> float \<Rightarrow> float" where | |
| 1140 | "lb_cos prec x = (let | |
| 1141 | horner = \<lambda> x. lb_sin_cos_aux prec (get_even (prec div 4 + 1)) 1 1 (x * x) ; | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1142 | half = \<lambda> x. if x < 0 then - 1 else float_plus_down prec (Float 1 1 * x * x) (- 1) | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1143 | in if x < Float 1 (- 1) then horner x | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1144 | else if x < 1 then half (horner (x * Float 1 (- 1))) | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1145 | else half (half (horner (x * Float 1 (- 2)))))" | 
| 29805 | 1146 | |
| 1147 | definition ub_cos :: "nat \<Rightarrow> float \<Rightarrow> float" where | |
| 1148 | "ub_cos prec x = (let | |
| 1149 | horner = \<lambda> x. ub_sin_cos_aux prec (get_odd (prec div 4 + 1)) 1 1 (x * x) ; | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1150 | half = \<lambda> x. float_plus_up prec (Float 1 1 * x * x) (- 1) | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1151 | in if x < Float 1 (- 1) then horner x | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1152 | else if x < 1 then half (horner (x * Float 1 (- 1))) | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1153 | else half (half (horner (x * Float 1 (- 2)))))" | 
| 29805 | 1154 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1155 | lemma lb_cos: assumes "0 \<le> real x" and "x \<le> pi" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1156 |   shows "cos x \<in> {(lb_cos prec x) .. (ub_cos prec x)}" (is "?cos x \<in> {(?lb x) .. (?ub x) }")
 | 
| 29805 | 1157 | proof - | 
| 1158 |   { fix x :: real
 | |
| 1159 | have "cos x = cos (x / 2 + x / 2)" by auto | |
| 1160 | also have "\<dots> = cos (x / 2) * cos (x / 2) + sin (x / 2) * sin (x / 2) - sin (x / 2) * sin (x / 2) + cos (x / 2) * cos (x / 2) - 1" | |
| 1161 | unfolding cos_add by auto | |
| 1162 | also have "\<dots> = 2 * cos (x / 2) * cos (x / 2) - 1" by algebra | |
| 1163 | finally have "cos x = 2 * cos (x / 2) * cos (x / 2) - 1" . | |
| 1164 | } note x_half = this[symmetric] | |
| 1165 | ||
| 47600 | 1166 | have "\<not> x < 0" using `0 \<le> real x` by auto | 
| 29805 | 1167 | let "?ub_horner x" = "ub_sin_cos_aux prec (get_odd (prec div 4 + 1)) 1 1 (x * x)" | 
| 1168 | let "?lb_horner x" = "lb_sin_cos_aux prec (get_even (prec div 4 + 1)) 1 1 (x * x)" | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1169 | let "?ub_half x" = "float_plus_up prec (Float 1 1 * x * x) (- 1)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1170 | let "?lb_half x" = "if x < 0 then - 1 else float_plus_down prec (Float 1 1 * x * x) (- 1)" | 
| 29805 | 1171 | |
| 1172 | show ?thesis | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1173 | proof (cases "x < Float 1 (- 1)") | 
| 47600 | 1174 | case True hence "x \<le> pi / 2" using pi_ge_two by auto | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1175 | show ?thesis unfolding lb_cos_def[where x=x] ub_cos_def[where x=x] if_not_P[OF `\<not> x < 0`] if_P[OF `x < Float 1 (- 1)`] Let_def | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1176 | using cos_boundaries[OF `0 \<le> real x` `x \<le> pi / 2`] . | 
| 29805 | 1177 | next | 
| 1178 | case False | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1179 |     { fix y x :: float let ?x2 = "(x * Float 1 (- 1))"
 | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1180 | assume "y \<le> cos ?x2" and "-pi \<le> x" and "x \<le> pi" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1181 | hence "- (pi / 2) \<le> ?x2" and "?x2 \<le> pi / 2" using pi_ge_two unfolding Float_num by auto | 
| 29805 | 1182 | hence "0 \<le> cos ?x2" by (rule cos_ge_zero) | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1183 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1184 | have "(?lb_half y) \<le> cos x" | 
| 29805 | 1185 | proof (cases "y < 0") | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1186 | case True show ?thesis using cos_ge_minus_one unfolding if_P[OF True] by auto | 
| 29805 | 1187 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1188 | case False | 
| 47600 | 1189 | hence "0 \<le> real y" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1190 | from mult_mono[OF `y \<le> cos ?x2` `y \<le> cos ?x2` `0 \<le> cos ?x2` this] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1191 | have "real y * real y \<le> cos ?x2 * cos ?x2" . | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1192 | hence "2 * real y * real y \<le> 2 * cos ?x2 * cos ?x2" by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1193 | hence "2 * real y * real y - 1 \<le> 2 * cos (x / 2) * cos (x / 2) - 1" unfolding Float_num by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1194 | thus ?thesis unfolding if_not_P[OF False] x_half Float_num | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1195 | by (auto intro!: float_plus_down_le) | 
| 29805 | 1196 | qed | 
| 1197 | } note lb_half = this | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1198 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1199 |     { fix y x :: float let ?x2 = "(x * Float 1 (- 1))"
 | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1200 | assume ub: "cos ?x2 \<le> y" and "- pi \<le> x" and "x \<le> pi" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1201 | hence "- (pi / 2) \<le> ?x2" and "?x2 \<le> pi / 2" using pi_ge_two unfolding Float_num by auto | 
| 29805 | 1202 | hence "0 \<le> cos ?x2" by (rule cos_ge_zero) | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1203 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1204 | have "cos x \<le> (?ub_half y)" | 
| 29805 | 1205 | proof - | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1206 | have "0 \<le> real y" using `0 \<le> cos ?x2` ub by (rule order_trans) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1207 | from mult_mono[OF ub ub this `0 \<le> cos ?x2`] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1208 | have "cos ?x2 * cos ?x2 \<le> real y * real y" . | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1209 | hence "2 * cos ?x2 * cos ?x2 \<le> 2 * real y * real y" by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1210 | hence "2 * cos (x / 2) * cos (x / 2) - 1 \<le> 2 * real y * real y - 1" unfolding Float_num by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1211 | thus ?thesis unfolding x_half Float_num | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1212 | by (auto intro!: float_plus_up_le) | 
| 29805 | 1213 | qed | 
| 1214 | } note ub_half = this | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1215 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1216 | let ?x2 = "x * Float 1 (- 1)" | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1217 | let ?x4 = "x * Float 1 (- 1) * Float 1 (- 1)" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1218 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1219 | have "-pi \<le> x" using pi_ge_zero[THEN le_imp_neg_le, unfolded minus_zero] `0 \<le> real x` by (rule order_trans) | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1220 | |
| 29805 | 1221 | show ?thesis | 
| 1222 | proof (cases "x < 1") | |
| 47600 | 1223 | case True hence "real x \<le> 1" by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1224 | have "0 \<le> real ?x2" and "?x2 \<le> pi / 2" using pi_ge_two `0 \<le> real x` using assms by auto | 
| 29805 | 1225 | from cos_boundaries[OF this] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1226 | have lb: "(?lb_horner ?x2) \<le> ?cos ?x2" and ub: "?cos ?x2 \<le> (?ub_horner ?x2)" by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1227 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1228 | have "(?lb x) \<le> ?cos x" | 
| 29805 | 1229 | proof - | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1230 | from lb_half[OF lb `-pi \<le> x` `x \<le> pi`] | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1231 | show ?thesis unfolding lb_cos_def[where x=x] Let_def using `\<not> x < 0` `\<not> x < Float 1 (- 1)` `x < 1` by auto | 
| 29805 | 1232 | qed | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1233 | moreover have "?cos x \<le> (?ub x)" | 
| 29805 | 1234 | proof - | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1235 | from ub_half[OF ub `-pi \<le> x` `x \<le> pi`] | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1236 | show ?thesis unfolding ub_cos_def[where x=x] Let_def using `\<not> x < 0` `\<not> x < Float 1 (- 1)` `x < 1` by auto | 
| 29805 | 1237 | qed | 
| 1238 | ultimately show ?thesis by auto | |
| 1239 | next | |
| 1240 | case False | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1241 | have "0 \<le> real ?x4" and "?x4 \<le> pi / 2" using pi_ge_two `0 \<le> real x` `x \<le> pi` unfolding Float_num by auto | 
| 29805 | 1242 | from cos_boundaries[OF this] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1243 | have lb: "(?lb_horner ?x4) \<le> ?cos ?x4" and ub: "?cos ?x4 \<le> (?ub_horner ?x4)" by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1244 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1245 | have eq_4: "?x2 * Float 1 (- 1) = x * Float 1 (- 2)" by transfer simp | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1246 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1247 | have "(?lb x) \<le> ?cos x" | 
| 29805 | 1248 | proof - | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1249 | have "-pi \<le> ?x2" and "?x2 \<le> pi" using pi_ge_two `0 \<le> real x` `x \<le> pi` by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1250 | from lb_half[OF lb_half[OF lb this] `-pi \<le> x` `x \<le> pi`, unfolded eq_4] | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1251 | show ?thesis unfolding lb_cos_def[where x=x] if_not_P[OF `\<not> x < 0`] if_not_P[OF `\<not> x < Float 1 (- 1)`] if_not_P[OF `\<not> x < 1`] Let_def . | 
| 29805 | 1252 | qed | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1253 | moreover have "?cos x \<le> (?ub x)" | 
| 29805 | 1254 | proof - | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1255 | have "-pi \<le> ?x2" and "?x2 \<le> pi" using pi_ge_two `0 \<le> real x` ` x \<le> pi` by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1256 | from ub_half[OF ub_half[OF ub this] `-pi \<le> x` `x \<le> pi`, unfolded eq_4] | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1257 | show ?thesis unfolding ub_cos_def[where x=x] if_not_P[OF `\<not> x < 0`] if_not_P[OF `\<not> x < Float 1 (- 1)`] if_not_P[OF `\<not> x < 1`] Let_def . | 
| 29805 | 1258 | qed | 
| 1259 | ultimately show ?thesis by auto | |
| 1260 | qed | |
| 1261 | qed | |
| 1262 | qed | |
| 1263 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1264 | lemma lb_cos_minus: assumes "-pi \<le> x" and "real x \<le> 0" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1265 |   shows "cos (real(-x)) \<in> {(lb_cos prec (-x)) .. (ub_cos prec (-x))}"
 | 
| 29805 | 1266 | proof - | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1267 | have "0 \<le> real (-x)" and "(-x) \<le> pi" using `-pi \<le> x` `real x \<le> 0` by auto | 
| 29805 | 1268 | from lb_cos[OF this] show ?thesis . | 
| 1269 | qed | |
| 1270 | ||
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1271 | definition bnds_cos :: "nat \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float * float" where | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1272 | "bnds_cos prec lx ux = (let | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1273 | lpi = float_round_down prec (lb_pi prec) ; | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1274 | upi = float_round_up prec (ub_pi prec) ; | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1275 | k = floor_fl (float_divr prec (lx + lpi) (2 * lpi)) ; | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1276 | lx = float_plus_down prec lx (- k * 2 * (if k < 0 then lpi else upi)) ; | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1277 | ux = float_plus_up prec ux (- k * 2 * (if k < 0 then upi else lpi)) | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1278 | in if - lpi \<le> lx \<and> ux \<le> 0 then (lb_cos prec (-lx), ub_cos prec (-ux)) | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1279 | else if 0 \<le> lx \<and> ux \<le> lpi then (lb_cos prec ux, ub_cos prec lx) | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1280 | else if - lpi \<le> lx \<and> ux \<le> lpi then (min (lb_cos prec (-lx)) (lb_cos prec ux), Float 1 0) | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1281 | else if 0 \<le> lx \<and> ux \<le> 2 * lpi then (Float (- 1) 0, max (ub_cos prec lx) (ub_cos prec (- (ux - 2 * lpi)))) | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1282 | else if -2 * lpi \<le> lx \<and> ux \<le> 0 then (Float (- 1) 0, max (ub_cos prec (lx + 2 * lpi)) (ub_cos prec (-ux))) | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1283 | else (Float (- 1) 0, Float 1 0))" | 
| 29805 | 1284 | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1285 | lemma floor_int: | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1286 | obtains k :: int where "real k = (floor_fl f)" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1287 | by (simp add: floor_fl_def) | 
| 29805 | 1288 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1289 | lemma cos_periodic_nat[simp]: fixes n :: nat shows "cos (x + n * (2 * pi)) = cos x" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1290 | proof (induct n arbitrary: x) | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1291 | case (Suc n) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1292 | have split_pi_off: "x + (Suc n) * (2 * pi) = (x + n * (2 * pi)) + 2 * pi" | 
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
49351diff
changeset | 1293 | unfolding Suc_eq_plus1 real_of_nat_add real_of_one distrib_right by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1294 | show ?case unfolding split_pi_off using Suc by auto | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1295 | qed auto | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1296 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1297 | lemma cos_periodic_int[simp]: fixes i :: int shows "cos (x + i * (2 * pi)) = cos x" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1298 | proof (cases "0 \<le> i") | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1299 | case True hence i_nat: "real i = nat i" by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1300 | show ?thesis unfolding i_nat by auto | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1301 | next | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1302 | case False hence i_nat: "i = - real (nat (-i))" by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1303 | have "cos x = cos (x + i * (2 * pi) - i * (2 * pi))" by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1304 | also have "\<dots> = cos (x + i * (2 * pi))" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1305 | unfolding i_nat mult_minus_left diff_minus_eq_add by (rule cos_periodic_nat) | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1306 | finally show ?thesis by auto | 
| 29805 | 1307 | qed | 
| 1308 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1309 | lemma bnds_cos: "\<forall> (x::real) lx ux. (l, u) = bnds_cos prec lx ux \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> cos x \<and> cos x \<le> u"
 | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1310 | proof ((rule allI | rule impI | erule conjE) +) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1311 | fix x :: real fix lx ux | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1312 |   assume bnds: "(l, u) = bnds_cos prec lx ux" and x: "x \<in> {lx .. ux}"
 | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1313 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1314 | let ?lpi = "float_round_down prec (lb_pi prec)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1315 | let ?upi = "float_round_up prec (ub_pi prec)" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1316 | let ?k = "floor_fl (float_divr prec (lx + ?lpi) (2 * ?lpi))" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1317 | let ?lx2 = "(- ?k * 2 * (if ?k < 0 then ?lpi else ?upi))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1318 | let ?ux2 = "(- ?k * 2 * (if ?k < 0 then ?upi else ?lpi))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1319 | let ?lx = "float_plus_down prec lx ?lx2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1320 | let ?ux = "float_plus_up prec ux ?ux2" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1321 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1322 | obtain k :: int where k: "k = real ?k" using floor_int . | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1323 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1324 | have upi: "pi \<le> ?upi" and lpi: "?lpi \<le> pi" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1325 | using float_round_up[of "ub_pi prec" prec] pi_boundaries[of prec] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1326 | float_round_down[of prec "lb_pi prec"] by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1327 | hence "lx + ?lx2 \<le> x - k * (2 * pi) \<and> x - k * (2 * pi) \<le> ux + ?ux2" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1328 | using x | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1329 | by (cases "k = 0") | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1330 | (auto intro!: add_mono | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1331 | simp add: k [symmetric] uminus_add_conv_diff [symmetric] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1332 | simp del: float_of_numeral uminus_add_conv_diff) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1333 | hence "?lx \<le> x - k * (2 * pi) \<and> x - k * (2 * pi) \<le> ?ux" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1334 | by (auto intro!: float_plus_down_le float_plus_up_le) | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1335 | note lx = this[THEN conjunct1] and ux = this[THEN conjunct2] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1336 | hence lx_less_ux: "?lx \<le> real ?ux" by (rule order_trans) | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1337 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1338 |   { assume "- ?lpi \<le> ?lx" and x_le_0: "x - k * (2 * pi) \<le> 0"
 | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1339 | with lpi[THEN le_imp_neg_le] lx | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1340 | have pi_lx: "- pi \<le> ?lx" and lx_0: "real ?lx \<le> 0" | 
| 47600 | 1341 | by simp_all | 
| 29805 | 1342 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1343 | have "(lb_cos prec (- ?lx)) \<le> cos (real (- ?lx))" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1344 | using lb_cos_minus[OF pi_lx lx_0] by simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1345 | also have "\<dots> \<le> cos (x + (-k) * (2 * pi))" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1346 | using cos_monotone_minus_pi_0'[OF pi_lx lx x_le_0] | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1347 | by (simp only: uminus_float.rep_eq real_of_int_minus | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 1348 | cos_minus mult_minus_left) simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1349 | finally have "(lb_cos prec (- ?lx)) \<le> cos x" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1350 | unfolding cos_periodic_int . } | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1351 | note negative_lx = this | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1352 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1353 |   { assume "0 \<le> ?lx" and pi_x: "x - k * (2 * pi) \<le> pi"
 | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1354 | with lx | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1355 | have pi_lx: "?lx \<le> pi" and lx_0: "0 \<le> real ?lx" | 
| 47600 | 1356 | by auto | 
| 29805 | 1357 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1358 | have "cos (x + (-k) * (2 * pi)) \<le> cos ?lx" | 
| 59751 
916c0f6c83e3
New material for complex sin, cos, tan, Ln, also some reorganisation
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1359 | using cos_monotone_0_pi_le[OF lx_0 lx pi_x] | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1360 | by (simp only: real_of_int_minus | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 1361 | cos_minus mult_minus_left) simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1362 | also have "\<dots> \<le> (ub_cos prec ?lx)" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1363 | using lb_cos[OF lx_0 pi_lx] by simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1364 | finally have "cos x \<le> (ub_cos prec ?lx)" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1365 | unfolding cos_periodic_int . } | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1366 | note positive_lx = this | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1367 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1368 |   { assume pi_x: "- pi \<le> x - k * (2 * pi)" and "?ux \<le> 0"
 | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1369 | with ux | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1370 | have pi_ux: "- pi \<le> ?ux" and ux_0: "real ?ux \<le> 0" | 
| 47600 | 1371 | by simp_all | 
| 29805 | 1372 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1373 | have "cos (x + (-k) * (2 * pi)) \<le> cos (real (- ?ux))" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1374 | using cos_monotone_minus_pi_0'[OF pi_x ux ux_0] | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1375 | by (simp only: uminus_float.rep_eq real_of_int_minus | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 1376 | cos_minus mult_minus_left) simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1377 | also have "\<dots> \<le> (ub_cos prec (- ?ux))" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1378 | using lb_cos_minus[OF pi_ux ux_0, of prec] by simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1379 | finally have "cos x \<le> (ub_cos prec (- ?ux))" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1380 | unfolding cos_periodic_int . } | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1381 | note negative_ux = this | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1382 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1383 |   { assume "?ux \<le> ?lpi" and x_ge_0: "0 \<le> x - k * (2 * pi)"
 | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1384 | with lpi ux | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1385 | have pi_ux: "?ux \<le> pi" and ux_0: "0 \<le> real ?ux" | 
| 47600 | 1386 | by simp_all | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1387 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1388 | have "(lb_cos prec ?ux) \<le> cos ?ux" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1389 | using lb_cos[OF ux_0 pi_ux] by simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1390 | also have "\<dots> \<le> cos (x + (-k) * (2 * pi))" | 
| 59751 
916c0f6c83e3
New material for complex sin, cos, tan, Ln, also some reorganisation
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1391 | using cos_monotone_0_pi_le[OF x_ge_0 ux pi_ux] | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1392 | by (simp only: real_of_int_minus | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 1393 | cos_minus mult_minus_left) simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1394 | finally have "(lb_cos prec ?ux) \<le> cos x" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1395 | unfolding cos_periodic_int . } | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1396 | note positive_ux = this | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1397 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1398 | show "l \<le> cos x \<and> cos x \<le> u" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1399 | proof (cases "- ?lpi \<le> ?lx \<and> ?ux \<le> 0") | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1400 | case True with bnds | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1401 | have l: "l = lb_cos prec (-?lx)" | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1402 | and u: "u = ub_cos prec (-?ux)" | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1403 | by (auto simp add: bnds_cos_def Let_def) | 
| 29805 | 1404 | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1405 | from True lpi[THEN le_imp_neg_le] lx ux | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1406 | have "- pi \<le> x - k * (2 * pi)" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1407 | and "x - k * (2 * pi) \<le> 0" | 
| 47600 | 1408 | by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1409 | with True negative_ux negative_lx | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1410 | show ?thesis unfolding l u by simp | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1411 | next case False note 1 = this show ?thesis | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1412 | proof (cases "0 \<le> ?lx \<and> ?ux \<le> ?lpi") | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1413 | case True with bnds 1 | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1414 | have l: "l = lb_cos prec ?ux" | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1415 | and u: "u = ub_cos prec ?lx" | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1416 | by (auto simp add: bnds_cos_def Let_def) | 
| 29805 | 1417 | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1418 | from True lpi lx ux | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1419 | have "0 \<le> x - k * (2 * pi)" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1420 | and "x - k * (2 * pi) \<le> pi" | 
| 47600 | 1421 | by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1422 | with True positive_ux positive_lx | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1423 | show ?thesis unfolding l u by simp | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1424 | next case False note 2 = this show ?thesis | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1425 | proof (cases "- ?lpi \<le> ?lx \<and> ?ux \<le> ?lpi") | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1426 | case True note Cond = this with bnds 1 2 | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1427 | have l: "l = min (lb_cos prec (-?lx)) (lb_cos prec ?ux)" | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1428 | and u: "u = Float 1 0" | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1429 | by (auto simp add: bnds_cos_def Let_def) | 
| 29805 | 1430 | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1431 | show ?thesis unfolding u l using negative_lx positive_ux Cond | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1432 | by (cases "x - k * (2 * pi) < 0") (auto simp add: real_of_float_min) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1433 | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1434 | next case False note 3 = this show ?thesis | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1435 | proof (cases "0 \<le> ?lx \<and> ?ux \<le> 2 * ?lpi") | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1436 | case True note Cond = this with bnds 1 2 3 | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1437 | have l: "l = Float (- 1) 0" | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1438 | and u: "u = max (ub_cos prec ?lx) (ub_cos prec (- (?ux - 2 * ?lpi)))" | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1439 | by (auto simp add: bnds_cos_def Let_def) | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1440 | |
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1441 | have "cos x \<le> real u" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1442 | proof (cases "x - k * (2 * pi) < pi") | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1443 | case True hence "x - k * (2 * pi) \<le> pi" by simp | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1444 | from positive_lx[OF Cond[THEN conjunct1] this] | 
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1445 | show ?thesis unfolding u by (simp add: real_of_float_max) | 
| 29805 | 1446 | next | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1447 | case False hence "pi \<le> x - k * (2 * pi)" by simp | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1448 | hence pi_x: "- pi \<le> x - k * (2 * pi) - 2 * pi" by simp | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1449 | |
| 47600 | 1450 | have "?ux \<le> 2 * pi" using Cond lpi by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1451 | hence "x - k * (2 * pi) - 2 * pi \<le> 0" using ux by simp | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1452 | |
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1453 | have ux_0: "real (?ux - 2 * ?lpi) \<le> 0" | 
| 47600 | 1454 | using Cond by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1455 | |
| 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1456 | from 2 and Cond have "\<not> ?ux \<le> ?lpi" by auto | 
| 47600 | 1457 | hence "- ?lpi \<le> ?ux - 2 * ?lpi" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1458 | hence pi_ux: "- pi \<le> (?ux - 2 * ?lpi)" | 
| 47600 | 1459 | using lpi[THEN le_imp_neg_le] by auto | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1460 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1461 | have x_le_ux: "x - k * (2 * pi) - 2 * pi \<le> (?ux - 2 * ?lpi)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1462 | using ux lpi by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1463 | have "cos x = cos (x + (-k) * (2 * pi) + (-1::int) * (2 * pi))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1464 | unfolding cos_periodic_int .. | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1465 | also have "\<dots> \<le> cos ((?ux - 2 * ?lpi))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1466 | using cos_monotone_minus_pi_0'[OF pi_x x_le_ux ux_0] | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54269diff
changeset | 1467 | by (simp only: minus_float.rep_eq real_of_int_minus real_of_one | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54269diff
changeset | 1468 | mult_minus_left mult_1_left) simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1469 | also have "\<dots> = cos ((- (?ux - 2 * ?lpi)))" | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1470 | unfolding uminus_float.rep_eq cos_minus .. | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1471 | also have "\<dots> \<le> (ub_cos prec (- (?ux - 2 * ?lpi)))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1472 | using lb_cos_minus[OF pi_ux ux_0] by simp | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1473 | finally show ?thesis unfolding u by (simp add: real_of_float_max) | 
| 29805 | 1474 | qed | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1475 | thus ?thesis unfolding l by auto | 
| 31508 | 1476 | next case False note 4 = this show ?thesis | 
| 1477 | proof (cases "-2 * ?lpi \<le> ?lx \<and> ?ux \<le> 0") | |
| 1478 | case True note Cond = this with bnds 1 2 3 4 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1479 | have l: "l = Float (- 1) 0" | 
| 31508 | 1480 | and u: "u = max (ub_cos prec (?lx + 2 * ?lpi)) (ub_cos prec (-?ux))" | 
| 47600 | 1481 | by (auto simp add: bnds_cos_def Let_def) | 
| 31508 | 1482 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1483 | have "cos x \<le> u" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1484 | proof (cases "-pi < x - k * (2 * pi)") | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1485 | case True hence "-pi \<le> x - k * (2 * pi)" by simp | 
| 31508 | 1486 | from negative_ux[OF this Cond[THEN conjunct2]] | 
| 1487 | show ?thesis unfolding u by (simp add: real_of_float_max) | |
| 1488 | next | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1489 | case False hence "x - k * (2 * pi) \<le> -pi" by simp | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1490 | hence pi_x: "x - k * (2 * pi) + 2 * pi \<le> pi" by simp | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1491 | |
| 47600 | 1492 | have "-2 * pi \<le> ?lx" using Cond lpi by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1493 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1494 | hence "0 \<le> x - k * (2 * pi) + 2 * pi" using lx by simp | 
| 31508 | 1495 | |
| 1496 | have lx_0: "0 \<le> real (?lx + 2 * ?lpi)" | |
| 47600 | 1497 | using Cond lpi by auto | 
| 31508 | 1498 | |
| 1499 | from 1 and Cond have "\<not> -?lpi \<le> ?lx" by auto | |
| 47600 | 1500 | hence "?lx + 2 * ?lpi \<le> ?lpi" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1501 | hence pi_lx: "(?lx + 2 * ?lpi) \<le> pi" | 
| 47600 | 1502 | using lpi[THEN le_imp_neg_le] by auto | 
| 31508 | 1503 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1504 | have lx_le_x: "(?lx + 2 * ?lpi) \<le> x - k * (2 * pi) + 2 * pi" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1505 | using lx lpi by auto | 
| 31508 | 1506 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1507 | have "cos x = cos (x + (-k) * (2 * pi) + (1 :: int) * (2 * pi))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1508 | unfolding cos_periodic_int .. | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1509 | also have "\<dots> \<le> cos ((?lx + 2 * ?lpi))" | 
| 59751 
916c0f6c83e3
New material for complex sin, cos, tan, Ln, also some reorganisation
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1510 | using cos_monotone_0_pi_le[OF lx_0 lx_le_x pi_x] | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1511 | by (simp only: minus_float.rep_eq real_of_int_minus real_of_one | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54269diff
changeset | 1512 | mult_minus_left mult_1_left) simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1513 | also have "\<dots> \<le> (ub_cos prec (?lx + 2 * ?lpi))" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1514 | using lb_cos[OF lx_0 pi_lx] by simp | 
| 31508 | 1515 | finally show ?thesis unfolding u by (simp add: real_of_float_max) | 
| 1516 | qed | |
| 1517 | thus ?thesis unfolding l by auto | |
| 29805 | 1518 | next | 
| 31508 | 1519 | case False with bnds 1 2 3 4 show ?thesis by (auto simp add: bnds_cos_def Let_def) | 
| 1520 | qed qed qed qed qed | |
| 29805 | 1521 | qed | 
| 1522 | ||
| 1523 | section "Exponential function" | |
| 1524 | ||
| 1525 | subsection "Compute the series of the exponential function" | |
| 1526 | ||
| 1527 | fun ub_exp_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" and lb_exp_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where | |
| 1528 | "ub_exp_horner prec 0 i k x = 0" | | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1529 | "ub_exp_horner prec (Suc n) i k x = float_plus_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1530 | (rapprox_rat prec 1 (int k)) (float_round_up prec (x * lb_exp_horner prec n (i + 1) (k * i) x))" | | 
| 29805 | 1531 | "lb_exp_horner prec 0 i k x = 0" | | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1532 | "lb_exp_horner prec (Suc n) i k x = float_plus_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1533 | (lapprox_rat prec 1 (int k)) (float_round_down prec (x * ub_exp_horner prec n (i + 1) (k * i) x))" | 
| 29805 | 1534 | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1535 | lemma bnds_exp_horner: assumes "real x \<le> 0" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1536 |   shows "exp x \<in> { lb_exp_horner prec (get_even n) 1 1 x .. ub_exp_horner prec (get_odd n) 1 1 x }"
 | 
| 29805 | 1537 | proof - | 
| 1538 |   { fix n
 | |
| 30971 | 1539 | have F: "\<And> m. ((\<lambda>i. i + 1) ^^ n) m = n + m" by (induct n, auto) | 
| 59751 
916c0f6c83e3
New material for complex sin, cos, tan, Ln, also some reorganisation
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 1540 | have "fact (Suc n) = fact n * ((\<lambda>i::nat. i + 1) ^^ n) 1" unfolding F by auto | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1541 | } note f_eq = this | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 1542 | |
| 29805 | 1543 | note bounds = horner_bounds_nonpos[where f="fact" and lb="lb_exp_horner prec" and ub="ub_exp_horner prec" and j'=0 and s=1, | 
| 1544 | OF assms f_eq lb_exp_horner.simps ub_exp_horner.simps] | |
| 1545 | ||
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1546 |   { have "lb_exp_horner prec (get_even n) 1 1 x \<le> (\<Sum>j = 0..<get_even n. 1 / (fact j) * real x ^ j)"
 | 
| 29805 | 1547 | using bounds(1) by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1548 | also have "\<dots> \<le> exp x" | 
| 29805 | 1549 | proof - | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1550 | obtain t where "\<bar>t\<bar> \<le> \<bar>real x\<bar>" and "exp x = (\<Sum>m = 0..<get_even n. real x ^ m / (fact m)) + exp t / (fact (get_even n)) * (real x) ^ (get_even n)" | 
| 56195 | 1551 | using Maclaurin_exp_le unfolding atLeast0LessThan by blast | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1552 | moreover have "0 \<le> exp t / (fact (get_even n)) * (real x) ^ (get_even n)" | 
| 56571 
f4635657d66f
added divide_nonneg_nonneg and co; made it a simp rule
 hoelzl parents: 
56544diff
changeset | 1553 | by (auto simp: zero_le_even_power) | 
| 56536 | 1554 | ultimately show ?thesis using get_odd exp_gt_zero by auto | 
| 29805 | 1555 | qed | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1556 | finally have "lb_exp_horner prec (get_even n) 1 1 x \<le> exp x" . | 
| 29805 | 1557 | } moreover | 
| 31809 | 1558 |   {
 | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1559 | have x_less_zero: "real x ^ get_odd n \<le> 0" | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1560 | proof (cases "real x = 0") | 
| 29805 | 1561 | case True | 
| 1562 | have "(get_odd n) \<noteq> 0" using get_odd[THEN odd_pos] by auto | |
| 1563 | thus ?thesis unfolding True power_0_left by auto | |
| 1564 | next | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1565 | case False hence "real x < 0" using `real x \<le> 0` by auto | 
| 46545 | 1566 | show ?thesis by (rule less_imp_le, auto simp add: power_less_zero_eq `real x < 0`) | 
| 29805 | 1567 | qed | 
| 1568 | ||
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1569 | obtain t where "\<bar>t\<bar> \<le> \<bar>real x\<bar>" and "exp x = (\<Sum>m = 0..<get_odd n. (real x) ^ m / (fact m)) + exp t / (fact (get_odd n)) * (real x) ^ (get_odd n)" | 
| 56195 | 1570 | using Maclaurin_exp_le unfolding atLeast0LessThan by blast | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1571 | moreover have "exp t / (fact (get_odd n)) * (real x) ^ (get_odd n) \<le> 0" | 
| 46545 | 1572 | by (auto intro!: mult_nonneg_nonpos divide_nonpos_pos simp add: x_less_zero) | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 1573 | ultimately have "exp x \<le> (\<Sum>j = 0..<get_odd n. 1 / (fact j) * real x ^ j)" | 
| 56536 | 1574 | using get_odd exp_gt_zero by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1575 | also have "\<dots> \<le> ub_exp_horner prec (get_odd n) 1 1 x" | 
| 29805 | 1576 | using bounds(2) by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1577 | finally have "exp x \<le> ub_exp_horner prec (get_odd n) 1 1 x" . | 
| 29805 | 1578 | } ultimately show ?thesis by auto | 
| 1579 | qed | |
| 1580 | ||
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1581 | lemma ub_exp_horner_nonneg: "real x \<le> 0 \<Longrightarrow> 0 \<le> real (ub_exp_horner prec (get_odd n) (Suc 0) (Suc 0) x)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1582 | using bnds_exp_horner[of x prec n] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1583 | by (intro order_trans[OF exp_ge_zero]) auto | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1584 | |
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1585 | |
| 29805 | 1586 | subsection "Compute the exponential function on the entire domain" | 
| 1587 | ||
| 1588 | function ub_exp :: "nat \<Rightarrow> float \<Rightarrow> float" and lb_exp :: "nat \<Rightarrow> float \<Rightarrow> float" where | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1589 | "lb_exp prec x = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1590 | (if 0 < x then float_divl prec 1 (ub_exp prec (-x)) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1591 | else | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1592 | let | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1593 | horner = (\<lambda> x. let y = lb_exp_horner prec (get_even (prec + 2)) 1 1 x in | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1594 | if y \<le> 0 then Float 1 (- 2) else y) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1595 | in | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1596 | if x < - 1 then | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1597 | power_down_fl prec (horner (float_divl prec x (- floor_fl x))) (nat (- int_floor_fl x)) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1598 | else horner x)" | | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1599 | "ub_exp prec x = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1600 | (if 0 < x then float_divr prec 1 (lb_exp prec (-x)) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1601 | else if x < - 1 then | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1602 | power_up_fl prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1603 | (ub_exp_horner prec (get_odd (prec + 2)) 1 1 | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1604 | (float_divr prec x (- floor_fl x))) (nat (- int_floor_fl x)) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1605 | else ub_exp_horner prec (get_odd (prec + 2)) 1 1 x)" | 
| 29805 | 1606 | by pat_completeness auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1607 | termination | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1608 | by (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if 0 < x then 1 else 0))", auto) | 
| 29805 | 1609 | |
| 1610 | lemma exp_m1_ge_quarter: "(1 / 4 :: real) \<le> exp (- 1)" | |
| 1611 | proof - | |
| 1612 | have eq4: "4 = Suc (Suc (Suc (Suc 0)))" by auto | |
| 1613 | ||
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1614 | have "1 / 4 = (Float 1 (- 2))" unfolding Float_num by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1615 | also have "\<dots> \<le> lb_exp_horner 3 (get_even 3) 1 1 (- 1)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1616 | by code_simp | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1617 | also have "\<dots> \<le> exp (- 1 :: float)" using bnds_exp_horner[where x="- 1"] by auto | 
| 47600 | 1618 | finally show ?thesis by simp | 
| 29805 | 1619 | qed | 
| 1620 | ||
| 1621 | lemma lb_exp_pos: assumes "\<not> 0 < x" shows "0 < lb_exp prec x" | |
| 1622 | proof - | |
| 1623 | let "?lb_horner x" = "lb_exp_horner prec (get_even (prec + 2)) 1 1 x" | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1624 | let "?horner x" = "let y = ?lb_horner x in if y \<le> 0 then Float 1 (- 2) else y" | 
| 47600 | 1625 | have pos_horner: "\<And> x. 0 < ?horner x" unfolding Let_def by (cases "?lb_horner x \<le> 0", auto) | 
| 29805 | 1626 |   moreover { fix x :: float fix num :: nat
 | 
| 47600 | 1627 | have "0 < real (?horner x) ^ num" using `0 < ?horner x` by simp | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1628 | also have "\<dots> = (?horner x) ^ num" by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1629 | finally have "0 < real ((?horner x) ^ num)" . | 
| 29805 | 1630 | } | 
| 1631 | ultimately show ?thesis | |
| 30968 
10fef94f40fc
adaptions due to rearrangment of power operation
 haftmann parents: 
30952diff
changeset | 1632 | unfolding lb_exp.simps if_not_P[OF `\<not> 0 < x`] Let_def | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1633 | by (cases "floor_fl x", cases "x < - 1", auto simp: real_power_up_fl real_power_down_fl | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1634 | intro!: power_up_less power_down_pos) | 
| 29805 | 1635 | qed | 
| 1636 | ||
| 1637 | lemma exp_boundaries': assumes "x \<le> 0" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1638 |   shows "exp x \<in> { (lb_exp prec x) .. (ub_exp prec x)}"
 | 
| 29805 | 1639 | proof - | 
| 1640 | let "?lb_exp_horner x" = "lb_exp_horner prec (get_even (prec + 2)) 1 1 x" | |
| 1641 | let "?ub_exp_horner x" = "ub_exp_horner prec (get_odd (prec + 2)) 1 1 x" | |
| 1642 | ||
| 47600 | 1643 | have "real x \<le> 0" and "\<not> x > 0" using `x \<le> 0` by auto | 
| 29805 | 1644 | show ?thesis | 
| 1645 | proof (cases "x < - 1") | |
| 47600 | 1646 | case False hence "- 1 \<le> real x" by auto | 
| 29805 | 1647 | show ?thesis | 
| 1648 | proof (cases "?lb_exp_horner x \<le> 0") | |
| 47600 | 1649 | from `\<not> x < - 1` have "- 1 \<le> real x" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1650 | hence "exp (- 1) \<le> exp x" unfolding exp_le_cancel_iff . | 
| 29805 | 1651 | from order_trans[OF exp_m1_ge_quarter this] | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1652 | have "Float 1 (- 2) \<le> exp x" unfolding Float_num . | 
| 29805 | 1653 | moreover case True | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1654 | ultimately show ?thesis using bnds_exp_horner `real x \<le> 0` `\<not> x > 0` `\<not> x < - 1` by auto | 
| 29805 | 1655 | next | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1656 | case False thus ?thesis using bnds_exp_horner `real x \<le> 0` `\<not> x > 0` `\<not> x < - 1` by (auto simp add: Let_def) | 
| 29805 | 1657 | qed | 
| 1658 | next | |
| 1659 | case True | |
| 31809 | 1660 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1661 | let ?num = "nat (- int_floor_fl x)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1662 | |
| 47600 | 1663 | have "real (int_floor_fl x) < - 1" using int_floor_fl[of x] `x < - 1` | 
| 1664 | by simp | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1665 | hence "real (int_floor_fl x) < 0" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1666 | hence "int_floor_fl x < 0" by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1667 | hence "1 \<le> - int_floor_fl x" by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1668 | hence "0 < nat (- int_floor_fl x)" by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1669 | hence "0 < ?num" by auto | 
| 29805 | 1670 | hence "real ?num \<noteq> 0" by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1671 | have num_eq: "real ?num = - int_floor_fl x" using `0 < nat (- int_floor_fl x)` by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1672 | have "0 < - int_floor_fl x" using `0 < ?num`[unfolded real_of_nat_less_iff[symmetric]] by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1673 | hence "real (int_floor_fl x) < 0" unfolding less_float_def by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1674 | have fl_eq: "real (- int_floor_fl x) = real (- floor_fl x)" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1675 | by (simp add: floor_fl_def int_floor_fl_def) | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58889diff
changeset | 1676 | from `0 < - int_floor_fl x` have "0 \<le> real (- floor_fl x)" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1677 | by (simp add: floor_fl_def int_floor_fl_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1678 | from `real (int_floor_fl x) < 0` have "real (floor_fl x) < 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1679 | by (simp add: floor_fl_def int_floor_fl_def) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1680 | have "exp x \<le> ub_exp prec x" | 
| 29805 | 1681 | proof - | 
| 31809 | 1682 | have div_less_zero: "real (float_divr prec x (- floor_fl x)) \<le> 0" | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58889diff
changeset | 1683 | using float_divr_nonpos_pos_upper_bound[OF `real x \<le> 0` `0 \<le> real (- floor_fl x)`] | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1684 | unfolding less_eq_float_def zero_float.rep_eq . | 
| 31809 | 1685 | |
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56410diff
changeset | 1686 | have "exp x = exp (?num * (x / ?num))" using `real ?num \<noteq> 0` by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1687 | also have "\<dots> = exp (x / ?num) ^ ?num" unfolding exp_real_of_nat_mult .. | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1688 | also have "\<dots> \<le> exp (float_divr prec x (- floor_fl x)) ^ ?num" unfolding num_eq fl_eq | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1689 | by (rule power_mono, rule exp_le_cancel_iff[THEN iffD2], rule float_divr) auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1690 | also have "\<dots> \<le> (?ub_exp_horner (float_divr prec x (- floor_fl x))) ^ ?num" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1691 | unfolding real_of_float_power | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1692 | by (rule power_mono, rule bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct2], auto) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1693 | also have "\<dots> \<le> real (power_up_fl prec (?ub_exp_horner (float_divr prec x (- floor_fl x))) ?num)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1694 | by (auto simp add: real_power_up_fl intro!: power_up ub_exp_horner_nonneg div_less_zero) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1695 | finally show ?thesis unfolding ub_exp.simps if_not_P[OF `\<not> 0 < x`] if_P[OF `x < - 1`] floor_fl_def Let_def | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1696 | . | 
| 29805 | 1697 | qed | 
| 31809 | 1698 | moreover | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1699 | have "lb_exp prec x \<le> exp x" | 
| 29805 | 1700 | proof - | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1701 | let ?divl = "float_divl prec x (- floor_fl x)" | 
| 29805 | 1702 | let ?horner = "?lb_exp_horner ?divl" | 
| 31809 | 1703 | |
| 29805 | 1704 | show ?thesis | 
| 1705 | proof (cases "?horner \<le> 0") | |
| 47600 | 1706 | case False hence "0 \<le> real ?horner" by auto | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1707 | |
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1708 | have div_less_zero: "real (float_divl prec x (- floor_fl x)) \<le> 0" | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56410diff
changeset | 1709 | using `real (floor_fl x) < 0` `real x \<le> 0` by (auto intro!: order_trans[OF float_divl] divide_nonpos_neg) | 
| 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56410diff
changeset | 1710 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1711 | have "(?lb_exp_horner (float_divl prec x (- floor_fl x))) ^ ?num \<le> | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1712 | exp (float_divl prec x (- floor_fl x)) ^ ?num" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1713 | using `0 \<le> real ?horner`[unfolded floor_fl_def[symmetric]] bnds_exp_horner[OF div_less_zero, unfolded atLeastAtMost_iff, THEN conjunct1] by (auto intro!: power_mono) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1714 | also have "\<dots> \<le> exp (x / ?num) ^ ?num" unfolding num_eq fl_eq | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1715 | using float_divl by (auto intro!: power_mono simp del: uminus_float.rep_eq) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1716 | also have "\<dots> = exp (?num * (x / ?num))" unfolding exp_real_of_nat_mult .. | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56410diff
changeset | 1717 | also have "\<dots> = exp x" using `real ?num \<noteq> 0` by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1718 | finally show ?thesis using False | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1719 | unfolding lb_exp.simps if_not_P[OF `\<not> 0 < x`] if_P[OF `x < - 1`] int_floor_fl_def Let_def if_not_P[OF False] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1720 | by (auto simp: real_power_down_fl intro!: power_down_le) | 
| 29805 | 1721 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1722 | case True | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1723 | have "power_down_fl prec (Float 1 (- 2)) ?num \<le> (Float 1 (- 2)) ^ ?num" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1724 | by (metis Float_le_zero_iff less_imp_le linorder_not_less not_numeral_le_zero numeral_One power_down_fl) | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1725 | then have "power_down_fl prec (Float 1 (- 2)) ?num \<le> real (Float 1 (- 2)) ^ ?num" | 
| 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1726 | by simp | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1727 | also | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1728 | have "real (floor_fl x) \<noteq> 0" and "real (floor_fl x) \<le> 0" using `real (floor_fl x) < 0` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1729 | from divide_right_mono_neg[OF floor_fl[of x] `real (floor_fl x) \<le> 0`, unfolded divide_self[OF `real (floor_fl x) \<noteq> 0`]] | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1730 | have "- 1 \<le> x / (- floor_fl x)" unfolding minus_float.rep_eq by auto | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1731 | from order_trans[OF exp_m1_ge_quarter this[unfolded exp_le_cancel_iff[where x="- 1", symmetric]]] | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1732 | have "Float 1 (- 2) \<le> exp (x / (- floor_fl x))" unfolding Float_num . | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1733 | hence "real (Float 1 (- 2)) ^ ?num \<le> exp (x / (- floor_fl x)) ^ ?num" | 
| 59741 
5b762cd73a8e
Lots of new material on complex-valued functions. Modified simplification of (x/n)^k
 paulson <lp15@cam.ac.uk> parents: 
59730diff
changeset | 1734 | by (metis Float_num(5) power_mono zero_le_divide_1_iff zero_le_numeral) | 
| 56479 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 hoelzl parents: 
56410diff
changeset | 1735 | also have "\<dots> = exp x" unfolding num_eq fl_eq exp_real_of_nat_mult[symmetric] using `real (floor_fl x) \<noteq> 0` by auto | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1736 | finally show ?thesis | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1737 | unfolding lb_exp.simps if_not_P[OF `\<not> 0 < x`] if_P[OF `x < - 1`] int_floor_fl_def Let_def if_P[OF True] real_of_float_power | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1738 | . | 
| 29805 | 1739 | qed | 
| 1740 | qed | |
| 1741 | ultimately show ?thesis by auto | |
| 1742 | qed | |
| 1743 | qed | |
| 1744 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1745 | lemma exp_boundaries: "exp x \<in> { lb_exp prec x .. ub_exp prec x }"
 | 
| 29805 | 1746 | proof - | 
| 1747 | show ?thesis | |
| 1748 | proof (cases "0 < x") | |
| 47600 | 1749 | case False hence "x \<le> 0" by auto | 
| 29805 | 1750 | from exp_boundaries'[OF this] show ?thesis . | 
| 1751 | next | |
| 47600 | 1752 | case True hence "-x \<le> 0" by auto | 
| 31809 | 1753 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1754 | have "lb_exp prec x \<le> exp x" | 
| 29805 | 1755 | proof - | 
| 1756 | from exp_boundaries'[OF `-x \<le> 0`] | |
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1757 | have ub_exp: "exp (- real x) \<le> ub_exp prec (-x)" unfolding atLeastAtMost_iff minus_float.rep_eq by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1758 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1759 | have "float_divl prec 1 (ub_exp prec (-x)) \<le> 1 / ub_exp prec (-x)" using float_divl[where x=1] by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1760 | also have "\<dots> \<le> exp x" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1761 | using ub_exp[unfolded inverse_le_iff_le[OF order_less_le_trans[OF exp_gt_zero ub_exp] exp_gt_zero, symmetric]] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 1762 | unfolding exp_minus nonzero_inverse_inverse_eq[OF exp_not_eq_zero] inverse_eq_divide by auto | 
| 29805 | 1763 | finally show ?thesis unfolding lb_exp.simps if_P[OF True] . | 
| 1764 | qed | |
| 1765 | moreover | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1766 | have "exp x \<le> ub_exp prec x" | 
| 29805 | 1767 | proof - | 
| 47600 | 1768 | have "\<not> 0 < -x" using `0 < x` by auto | 
| 31809 | 1769 | |
| 29805 | 1770 | from exp_boundaries'[OF `-x \<le> 0`] | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 1771 | have lb_exp: "lb_exp prec (-x) \<le> exp (- real x)" unfolding atLeastAtMost_iff minus_float.rep_eq by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1772 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1773 | have "exp x \<le> (1 :: float) / lb_exp prec (-x)" | 
| 47600 | 1774 | using lb_exp lb_exp_pos[OF `\<not> 0 < -x`, of prec] | 
| 1775 | by (simp del: lb_exp.simps add: exp_minus inverse_eq_divide field_simps) | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1776 | also have "\<dots> \<le> float_divr prec 1 (lb_exp prec (-x))" using float_divr . | 
| 29805 | 1777 | finally show ?thesis unfolding ub_exp.simps if_P[OF True] . | 
| 1778 | qed | |
| 1779 | ultimately show ?thesis by auto | |
| 1780 | qed | |
| 1781 | qed | |
| 1782 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1783 | lemma bnds_exp: "\<forall> (x::real) lx ux. (l, u) = (lb_exp prec lx, ub_exp prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> exp x \<and> exp x \<le> u"
 | 
| 29805 | 1784 | proof (rule allI, rule allI, rule allI, rule impI) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1785 | fix x::real and lx ux | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1786 |   assume "(l, u) = (lb_exp prec lx, ub_exp prec ux) \<and> x \<in> {lx .. ux}"
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1787 |   hence l: "lb_exp prec lx = l " and u: "ub_exp prec ux = u" and x: "x \<in> {lx .. ux}" by auto
 | 
| 29805 | 1788 | |
| 1789 |   { from exp_boundaries[of lx prec, unfolded l]
 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1790 | have "l \<le> exp lx" by (auto simp del: lb_exp.simps) | 
| 29805 | 1791 | also have "\<dots> \<le> exp x" using x by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1792 | finally have "l \<le> exp x" . | 
| 29805 | 1793 | } moreover | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1794 |   { have "exp x \<le> exp ux" using x by auto
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1795 | also have "\<dots> \<le> u" using exp_boundaries[of ux prec, unfolded u] by (auto simp del: ub_exp.simps) | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1796 | finally have "exp x \<le> u" . | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1797 | } ultimately show "l \<le> exp x \<and> exp x \<le> u" .. | 
| 29805 | 1798 | qed | 
| 1799 | ||
| 1800 | section "Logarithm" | |
| 1801 | ||
| 1802 | subsection "Compute the logarithm series" | |
| 1803 | ||
| 31809 | 1804 | fun ub_ln_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" | 
| 29805 | 1805 | and lb_ln_horner :: "nat \<Rightarrow> nat \<Rightarrow> nat \<Rightarrow> float \<Rightarrow> float" where | 
| 1806 | "ub_ln_horner prec 0 i x = 0" | | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1807 | "ub_ln_horner prec (Suc n) i x = float_plus_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1808 | (rapprox_rat prec 1 (int i)) (- float_round_down prec (x * lb_ln_horner prec n (Suc i) x))" | | 
| 29805 | 1809 | "lb_ln_horner prec 0 i x = 0" | | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1810 | "lb_ln_horner prec (Suc n) i x = float_plus_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1811 | (lapprox_rat prec 1 (int i)) (- float_round_up prec (x * ub_ln_horner prec n (Suc i) x))" | 
| 29805 | 1812 | |
| 1813 | lemma ln_bounds: | |
| 1814 | assumes "0 \<le> x" and "x < 1" | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1815 | shows "(\<Sum>i=0..<2*n. (- 1) ^ i * (1 / real (i + 1)) * x ^ (Suc i)) \<le> ln (x + 1)" (is "?lb") | 
| 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1816 | and "ln (x + 1) \<le> (\<Sum>i=0..<2*n + 1. (- 1) ^ i * (1 / real (i + 1)) * x ^ (Suc i))" (is "?ub") | 
| 29805 | 1817 | proof - | 
| 30952 
7ab2716dd93b
power operation on functions with syntax o^; power operation on relations with syntax ^^
 haftmann parents: 
30886diff
changeset | 1818 | let "?a n" = "(1/real (n +1)) * x ^ (Suc n)" | 
| 29805 | 1819 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1820 | have ln_eq: "(\<Sum> i. (- 1) ^ i * ?a i) = ln (x + 1)" | 
| 29805 | 1821 | using ln_series[of "x + 1"] `0 \<le> x` `x < 1` by auto | 
| 1822 | ||
| 1823 | have "norm x < 1" using assms by auto | |
| 31809 | 1824 | have "?a ----> 0" unfolding Suc_eq_plus1[symmetric] inverse_eq_divide[symmetric] | 
| 44568 
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
 huffman parents: 
44349diff
changeset | 1825 | using tendsto_mult[OF LIMSEQ_inverse_real_of_nat LIMSEQ_Suc[OF LIMSEQ_power_zero[OF `norm x < 1`]]] by auto | 
| 56536 | 1826 |   { fix n have "0 \<le> ?a n" by (rule mult_nonneg_nonneg, auto simp: `0 \<le> x`) }
 | 
| 29805 | 1827 |   { fix n have "?a (Suc n) \<le> ?a n" unfolding inverse_eq_divide[symmetric]
 | 
| 1828 | proof (rule mult_mono) | |
| 56536 | 1829 | show "0 \<le> x ^ Suc (Suc n)" by (auto simp add: `0 \<le> x`) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 1830 | have "x ^ Suc (Suc n) \<le> x ^ Suc n * 1" unfolding power_Suc2 mult.assoc[symmetric] | 
| 56536 | 1831 | by (rule mult_left_mono, fact less_imp_le[OF `x < 1`], auto simp: `0 \<le> x`) | 
| 29805 | 1832 | thus "x ^ Suc (Suc n) \<le> x ^ Suc n" by auto | 
| 1833 | qed auto } | |
| 1834 | from summable_Leibniz'(2,4)[OF `?a ----> 0` `\<And>n. 0 \<le> ?a n`, OF `\<And>n. ?a (Suc n) \<le> ?a n`, unfolded ln_eq] | |
| 56195 | 1835 | show "?lb" and "?ub" unfolding atLeast0LessThan by auto | 
| 29805 | 1836 | qed | 
| 1837 | ||
| 31809 | 1838 | lemma ln_float_bounds: | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1839 | assumes "0 \<le> real x" and "real x < 1" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1840 | shows "x * lb_ln_horner prec (get_even n) 1 x \<le> ln (x + 1)" (is "?lb \<le> ?ln") | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1841 | and "ln (x + 1) \<le> x * ub_ln_horner prec (get_odd n) 1 x" (is "?ln \<le> ?ub") | 
| 29805 | 1842 | proof - | 
| 1843 | obtain ev where ev: "get_even n = 2 * ev" using get_even_double .. | |
| 1844 | obtain od where od: "get_odd n = 2 * od + 1" using get_odd_double .. | |
| 1845 | ||
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1846 | let "?s n" = "(- 1) ^ n * (1 / real (1 + n)) * (real x)^(Suc n)" | 
| 29805 | 1847 | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 1848 |   have "?lb \<le> setsum ?s {0 ..< 2 * ev}" unfolding power_Suc2 mult.assoc[symmetric] times_float.rep_eq setsum_left_distrib[symmetric] unfolding mult.commute[of "real x"] ev
 | 
| 29805 | 1849 | using horner_bounds(1)[where G="\<lambda> i k. Suc k" and F="\<lambda>x. x" and f="\<lambda>x. x" and lb="\<lambda>n i k x. lb_ln_horner prec n k x" and ub="\<lambda>n i k x. ub_ln_horner prec n k x" and j'=1 and n="2*ev", | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1850 | OF `0 \<le> real x` refl lb_ln_horner.simps ub_ln_horner.simps] `0 \<le> real x` | 
| 29805 | 1851 | by (rule mult_right_mono) | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1852 | also have "\<dots> \<le> ?ln" using ln_bounds(1)[OF `0 \<le> real x` `real x < 1`] by auto | 
| 31809 | 1853 | finally show "?lb \<le> ?ln" . | 
| 29805 | 1854 | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1855 |   have "?ln \<le> setsum ?s {0 ..< 2 * od + 1}" using ln_bounds(2)[OF `0 \<le> real x` `real x < 1`] by auto
 | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 1856 | also have "\<dots> \<le> ?ub" unfolding power_Suc2 mult.assoc[symmetric] times_float.rep_eq setsum_left_distrib[symmetric] unfolding mult.commute[of "real x"] od | 
| 29805 | 1857 | using horner_bounds(2)[where G="\<lambda> i k. Suc k" and F="\<lambda>x. x" and f="\<lambda>x. x" and lb="\<lambda>n i k x. lb_ln_horner prec n k x" and ub="\<lambda>n i k x. ub_ln_horner prec n k x" and j'=1 and n="2*od+1", | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1858 | OF `0 \<le> real x` refl lb_ln_horner.simps ub_ln_horner.simps] `0 \<le> real x` | 
| 29805 | 1859 | by (rule mult_right_mono) | 
| 31809 | 1860 | finally show "?ln \<le> ?ub" . | 
| 29805 | 1861 | qed | 
| 1862 | ||
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 1863 | lemma ln_add: | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 1864 | fixes x::real assumes "0 < x" and "0 < y" shows "ln (x + y) = ln x + ln (1 + y / x)" | 
| 29805 | 1865 | proof - | 
| 1866 | have "x \<noteq> 0" using assms by auto | |
| 49962 
a8cc904a6820
Renamed {left,right}_distrib to distrib_{right,left}.
 webertj parents: 
49351diff
changeset | 1867 | have "x + y = x * (1 + y / x)" unfolding distrib_left times_divide_eq_right nonzero_mult_divide_cancel_left[OF `x \<noteq> 0`] by auto | 
| 31809 | 1868 | moreover | 
| 56541 | 1869 | have "0 < y / x" using assms by auto | 
| 29805 | 1870 | hence "0 < 1 + y / x" by auto | 
| 1871 | ultimately show ?thesis using ln_mult assms by auto | |
| 1872 | qed | |
| 1873 | ||
| 1874 | subsection "Compute the logarithm of 2" | |
| 1875 | ||
| 31809 | 1876 | definition ub_ln2 where "ub_ln2 prec = (let third = rapprox_rat (max prec 1) 1 3 | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1877 | in float_plus_up prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1878 | ((Float 1 (- 1) * ub_ln_horner prec (get_odd prec) 1 (Float 1 (- 1)))) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1879 | (float_round_up prec (third * ub_ln_horner prec (get_odd prec) 1 third)))" | 
| 31809 | 1880 | definition lb_ln2 where "lb_ln2 prec = (let third = lapprox_rat prec 1 3 | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1881 | in float_plus_down prec | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1882 | ((Float 1 (- 1) * lb_ln_horner prec (get_even prec) 1 (Float 1 (- 1)))) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1883 | (float_round_down prec (third * lb_ln_horner prec (get_even prec) 1 third)))" | 
| 29805 | 1884 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1885 | lemma ub_ln2: "ln 2 \<le> ub_ln2 prec" (is "?ub_ln2") | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1886 | and lb_ln2: "lb_ln2 prec \<le> ln 2" (is "?lb_ln2") | 
| 29805 | 1887 | proof - | 
| 1888 | let ?uthird = "rapprox_rat (max prec 1) 1 3" | |
| 1889 | let ?lthird = "lapprox_rat prec 1 3" | |
| 1890 | ||
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 1891 | have ln2_sum: "ln 2 = ln (1/2 + 1) + ln (1 / 3 + 1::real)" | 
| 29805 | 1892 | using ln_add[of "3 / 2" "1 / 2"] by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1893 | have lb3: "?lthird \<le> 1 / 3" using lapprox_rat[of prec 1 3] by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1894 | hence lb3_ub: "real ?lthird < 1" by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1895 | have lb3_lb: "0 \<le> real ?lthird" using lapprox_rat_nonneg[of 1 3] by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1896 | have ub3: "1 / 3 \<le> ?uthird" using rapprox_rat[of 1 3] by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1897 | hence ub3_lb: "0 \<le> real ?uthird" by auto | 
| 29805 | 1898 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1899 | have lb2: "0 \<le> real (Float 1 (- 1))" and ub2: "real (Float 1 (- 1)) < 1" unfolding Float_num by auto | 
| 29805 | 1900 | |
| 1901 | have "0 \<le> (1::int)" and "0 < (3::int)" by auto | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58889diff
changeset | 1902 | have ub3_ub: "real ?uthird < 1" | 
| 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58889diff
changeset | 1903 | by (simp add: Float.compute_rapprox_rat Float.compute_lapprox_rat rapprox_posrat_less1) | 
| 29805 | 1904 | |
| 1905 | have third_gt0: "(0 :: real) < 1 / 3 + 1" by auto | |
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1906 | have uthird_gt0: "0 < real ?uthird + 1" using ub3_lb by auto | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1907 | have lthird_gt0: "0 < real ?lthird + 1" using lb3_lb by auto | 
| 29805 | 1908 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1909 | show ?ub_ln2 unfolding ub_ln2_def Let_def ln2_sum Float_num(4)[symmetric] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1910 | proof (rule float_plus_up_le, rule add_mono, fact ln_float_bounds(2)[OF lb2 ub2]) | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 1911 | have "ln (1 / 3 + 1) \<le> ln (real ?uthird + 1)" unfolding ln_le_cancel_iff[OF third_gt0 uthird_gt0] using ub3 by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1912 | also have "\<dots> \<le> ?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird" | 
| 29805 | 1913 | using ln_float_bounds(2)[OF ub3_lb ub3_ub] . | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1914 | also note float_round_up | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1915 | finally show "ln (1 / 3 + 1) \<le> float_round_up prec (?uthird * ub_ln_horner prec (get_odd prec) 1 ?uthird)" . | 
| 29805 | 1916 | qed | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1917 | show ?lb_ln2 unfolding lb_ln2_def Let_def ln2_sum Float_num(4)[symmetric] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1918 | proof (rule float_plus_down_le, rule add_mono, fact ln_float_bounds(1)[OF lb2 ub2]) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 1919 | have "?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird \<le> ln (real ?lthird + 1)" | 
| 29805 | 1920 | using ln_float_bounds(1)[OF lb3_lb lb3_ub] . | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1921 | note float_round_down_le[OF this] | 
| 29805 | 1922 | also have "\<dots> \<le> ln (1 / 3 + 1)" unfolding ln_le_cancel_iff[OF lthird_gt0 third_gt0] using lb3 by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1923 | finally show "float_round_down prec (?lthird * lb_ln_horner prec (get_even prec) 1 ?lthird) \<le> ln (1 / 3 + 1)" . | 
| 29805 | 1924 | qed | 
| 1925 | qed | |
| 1926 | ||
| 1927 | subsection "Compute the logarithm in the entire domain" | |
| 1928 | ||
| 1929 | function ub_ln :: "nat \<Rightarrow> float \<Rightarrow> float option" and lb_ln :: "nat \<Rightarrow> float \<Rightarrow> float option" where | |
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 1930 | "ub_ln prec x = (if x \<le> 0 then None | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 1931 | else if x < 1 then Some (- the (lb_ln prec (float_divl (max prec 1) 1 x))) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1932 | else let horner = \<lambda>x. float_round_up prec (x * ub_ln_horner prec (get_odd prec) 1 x) in | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1933 | if x \<le> Float 3 (- 1) then Some (horner (x - 1)) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1934 | else if x < Float 1 1 then Some (float_round_up prec (horner (Float 1 (- 1)) + horner (x * rapprox_rat prec 2 3 - 1))) | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 1935 | else let l = bitlen (mantissa x) - 1 in | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1936 | Some (float_plus_up prec (float_round_up prec (ub_ln2 prec * (Float (exponent x + l) 0))) (horner (Float (mantissa x) (- l) - 1))))" | | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 1937 | "lb_ln prec x = (if x \<le> 0 then None | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 1938 | else if x < 1 then Some (- the (ub_ln prec (float_divr prec 1 x))) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1939 | else let horner = \<lambda>x. float_round_down prec (x * lb_ln_horner prec (get_even prec) 1 x) in | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1940 | if x \<le> Float 3 (- 1) then Some (horner (x - 1)) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1941 | else if x < Float 1 1 then Some (float_round_down prec (horner (Float 1 (- 1)) + | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1942 | horner (max (x * lapprox_rat prec 2 3 - 1) 0))) | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 1943 | else let l = bitlen (mantissa x) - 1 in | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1944 | Some (float_plus_down prec (float_round_down prec (lb_ln2 prec * (Float (exponent x + l) 0))) (horner (Float (mantissa x) (- l) - 1))))" | 
| 29805 | 1945 | by pat_completeness auto | 
| 1946 | ||
| 55414 
eab03e9cee8a
renamed '{prod,sum,bool,unit}_case' to 'case_...'
 blanchet parents: 
55413diff
changeset | 1947 | termination proof (relation "measure (\<lambda> v. let (prec, x) = case_sum id id v in (if x < 1 then 1 else 0))", auto) | 
| 47600 | 1948 | fix prec and x :: float assume "\<not> real x \<le> 0" and "real x < 1" and "real (float_divl (max prec (Suc 0)) 1 x) < 1" | 
| 1949 | hence "0 < real x" "1 \<le> max prec (Suc 0)" "real x < 1" by auto | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58889diff
changeset | 1950 | from float_divl_pos_less1_bound[OF `0 < real x` `real x < 1`[THEN less_imp_le] `1 \<le> max prec (Suc 0)`] | 
| 47600 | 1951 | show False using `real (float_divl (max prec (Suc 0)) 1 x) < 1` by auto | 
| 29805 | 1952 | next | 
| 47600 | 1953 | fix prec x assume "\<not> real x \<le> 0" and "real x < 1" and "real (float_divr prec 1 x) < 1" | 
| 1954 | hence "0 < x" by auto | |
| 1955 | from float_divr_pos_less1_lower_bound[OF `0 < x`, of prec] `real x < 1` | |
| 1956 | show False using `real (float_divr prec 1 x) < 1` by auto | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1957 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1958 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1959 | lemma float_pos_eq_mantissa_pos: "x > 0 \<longleftrightarrow> mantissa x > 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1960 | apply (subst Float_mantissa_exponent[of x, symmetric]) | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 1961 | apply (auto simp add: zero_less_mult_iff zero_float_def dest: less_zeroE) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 1962 | by (metis not_le powr_ge_pzero) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1963 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1964 | lemma Float_pos_eq_mantissa_pos: "Float m e > 0 \<longleftrightarrow> m > 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1965 | using powr_gt_zero[of 2 "e"] | 
| 54269 | 1966 | by (auto simp add: zero_less_mult_iff zero_float_def simp del: powr_gt_zero dest: less_zeroE) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1967 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1968 | lemma Float_representation_aux: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1969 | fixes m e | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1970 | defines "x \<equiv> Float m e" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1971 | assumes "x > 0" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1972 | shows "Float (exponent x + (bitlen (mantissa x) - 1)) 0 = Float (e + (bitlen m - 1)) 0" (is ?th1) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1973 | and "Float (mantissa x) (- (bitlen (mantissa x) - 1)) = Float m ( - (bitlen m - 1))" (is ?th2) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1974 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1975 | from assms have mantissa_pos: "m > 0" "mantissa x > 0" | 
| 47600 | 1976 | using Float_pos_eq_mantissa_pos[of m e] float_pos_eq_mantissa_pos[of x] by simp_all | 
| 1977 | thus ?th1 using bitlen_Float[of m e] assms by (auto simp add: zero_less_mult_iff intro!: arg_cong2[where f=Float]) | |
| 1978 | have "x \<noteq> float_of 0" | |
| 1979 | unfolding zero_float_def[symmetric] using `0 < x` by auto | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1980 | from denormalize_shift[OF assms(1) this] guess i . note i = this | 
| 47600 | 1981 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1982 | have "2 powr (1 - (real (bitlen (mantissa x)) + real i)) = | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1983 | 2 powr (1 - (real (bitlen (mantissa x)))) * inverse (2 powr (real i))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1984 | by (simp add: powr_minus[symmetric] powr_add[symmetric] field_simps) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1985 | hence "real (mantissa x) * 2 powr (1 - real (bitlen (mantissa x))) = | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1986 | (real (mantissa x) * 2 ^ i) * 2 powr (1 - real (bitlen (mantissa x * 2 ^ i)))" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1987 | using `mantissa x > 0` by (simp add: powr_realpow) | 
| 47600 | 1988 | then show ?th2 | 
| 1989 | unfolding i by transfer auto | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1990 | qed | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1991 | |
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1992 | lemma compute_ln[code]: | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1993 | fixes m e | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1994 | defines "x \<equiv> Float m e" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1995 | shows "ub_ln prec x = (if x \<le> 0 then None | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 1996 | else if x < 1 then Some (- the (lb_ln prec (float_divl (max prec 1) 1 x))) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1997 | else let horner = \<lambda>x. float_round_up prec (x * ub_ln_horner prec (get_odd prec) 1 x) in | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 1998 | if x \<le> Float 3 (- 1) then Some (horner (x - 1)) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 1999 | else if x < Float 1 1 then Some (float_round_up prec (horner (Float 1 (- 1)) + horner (x * rapprox_rat prec 2 3 - 1))) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2000 | else let l = bitlen m - 1 in | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2001 | Some (float_plus_up prec (float_round_up prec (ub_ln2 prec * (Float (e + l) 0))) (horner (Float m (- l) - 1))))" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2002 | (is ?th1) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2003 | and "lb_ln prec x = (if x \<le> 0 then None | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2004 | else if x < 1 then Some (- the (ub_ln prec (float_divr prec 1 x))) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2005 | else let horner = \<lambda>x. float_round_down prec (x * lb_ln_horner prec (get_even prec) 1 x) in | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2006 | if x \<le> Float 3 (- 1) then Some (horner (x - 1)) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2007 | else if x < Float 1 1 then Some (float_round_down prec (horner (Float 1 (- 1)) + | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2008 | horner (max (x * lapprox_rat prec 2 3 - 1) 0))) | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2009 | else let l = bitlen m - 1 in | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2010 | Some (float_plus_down prec (float_round_down prec (lb_ln2 prec * (Float (e + l) 0))) (horner (Float m (- l) - 1))))" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2011 | (is ?th2) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2012 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2013 | from assms Float_pos_eq_mantissa_pos have "x > 0 \<Longrightarrow> m > 0" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2014 | thus ?th1 ?th2 using Float_representation_aux[of m e] unfolding x_def[symmetric] | 
| 47600 | 2015 | by (auto dest: not_leE) | 
| 29805 | 2016 | qed | 
| 2017 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2018 | lemma ln_shifted_float: assumes "0 < m" shows "ln (Float m e) = ln 2 * (e + (bitlen m - 1)) + ln (Float m (- (bitlen m - 1)))" | 
| 29805 | 2019 | proof - | 
| 2020 | let ?B = "2^nat (bitlen m - 1)" | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2021 | def bl \<equiv> "bitlen m - 1" | 
| 29805 | 2022 | have "0 < real m" and "\<And>X. (0 :: real) < 2^X" and "0 < (2 :: real)" and "m \<noteq> 0" using assms by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2023 | hence "0 \<le> bl" by (simp add: bitlen_def bl_def) | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2024 | show ?thesis | 
| 29805 | 2025 | proof (cases "0 \<le> e") | 
| 59751 
916c0f6c83e3
New material for complex sin, cos, tan, Ln, also some reorganisation
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 2026 | case True | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2027 | thus ?thesis | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2028 | unfolding bl_def[symmetric] using `0 < real m` `0 \<le> bl` | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2029 | apply (simp add: ln_mult) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2030 | apply (cases "e=0") | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2031 | apply (cases "bl = 0", simp_all add: powr_minus ln_inverse ln_powr) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2032 | apply (cases "bl = 0", simp_all add: powr_minus ln_inverse ln_powr field_simps) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2033 | done | 
| 29805 | 2034 | next | 
| 2035 | case False hence "0 < -e" by auto | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2036 | have lne: "ln (2 powr real e) = ln (inverse (2 powr - e))" by (simp add: powr_minus) | 
| 29805 | 2037 | hence pow_gt0: "(0::real) < 2^nat (-e)" by auto | 
| 2038 | hence inv_gt0: "(0::real) < inverse (2^nat (-e))" by auto | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2039 | show ?thesis using False unfolding bl_def[symmetric] using `0 < real m` `0 \<le> bl` | 
| 56483 | 2040 | by (auto simp add: lne ln_mult ln_powr ln_div field_simps) | 
| 29805 | 2041 | qed | 
| 2042 | qed | |
| 2043 | ||
| 2044 | lemma ub_ln_lb_ln_bounds': assumes "1 \<le> x" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2045 | shows "the (lb_ln prec x) \<le> ln x \<and> ln x \<le> the (ub_ln prec x)" | 
| 29805 | 2046 | (is "?lb \<le> ?ln \<and> ?ln \<le> ?ub") | 
| 2047 | proof (cases "x < Float 1 1") | |
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2048 | case True | 
| 47600 | 2049 | hence "real (x - 1) < 1" and "real x < 2" by auto | 
| 2050 | have "\<not> x \<le> 0" and "\<not> x < 1" using `1 \<le> x` by auto | |
| 2051 | hence "0 \<le> real (x - 1)" using `1 \<le> x` by auto | |
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2052 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2053 | have [simp]: "(Float 3 (- 1)) = 3 / 2" by simp | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2054 | |
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2055 | show ?thesis | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2056 | proof (cases "x \<le> Float 3 (- 1)") | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2057 | case True | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2058 | show ?thesis unfolding lb_ln.simps unfolding ub_ln.simps Let_def | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2059 | using ln_float_bounds[OF `0 \<le> real (x - 1)` `real (x - 1) < 1`, of prec] `\<not> x \<le> 0` `\<not> x < 1` True | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2060 | by (auto intro!: float_round_down_le float_round_up_le) | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2061 | next | 
| 47600 | 2062 | case False hence *: "3 / 2 < x" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2063 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2064 | with ln_add[of "3 / 2" "x - 3 / 2"] | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2065 | have add: "ln x = ln (3 / 2) + ln (real x * 2 / 3)" | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2066 | by (auto simp add: algebra_simps diff_divide_distrib) | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2067 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2068 | let "?ub_horner x" = "float_round_up prec (x * ub_ln_horner prec (get_odd prec) 1 x)" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2069 | let "?lb_horner x" = "float_round_down prec (x * lb_ln_horner prec (get_even prec) 1 x)" | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2070 | |
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2071 |     { have up: "real (rapprox_rat prec 2 3) \<le> 1"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2072 | by (rule rapprox_rat_le1) simp_all | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2073 | have low: "2 / 3 \<le> rapprox_rat prec 2 3" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2074 | by (rule order_trans[OF _ rapprox_rat]) simp | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2075 | from mult_less_le_imp_less[OF * low] * | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2076 | have pos: "0 < real (x * rapprox_rat prec 2 3 - 1)" by auto | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2077 | |
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2078 | have "ln (real x * 2/3) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2079 | \<le> ln (real (x * rapprox_rat prec 2 3 - 1) + 1)" | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2080 | proof (rule ln_le_cancel_iff[symmetric, THEN iffD1]) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2081 | show "real x * 2 / 3 \<le> real (x * rapprox_rat prec 2 3 - 1) + 1" | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2082 | using * low by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2083 | show "0 < real x * 2 / 3" using * by simp | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2084 | show "0 < real (x * rapprox_rat prec 2 3 - 1) + 1" using pos by auto | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2085 | qed | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2086 | also have "\<dots> \<le> ?ub_horner (x * rapprox_rat prec 2 3 - 1)" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2087 | proof (rule float_round_up_le, rule ln_float_bounds(2)) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2088 | from mult_less_le_imp_less[OF `real x < 2` up] low * | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2089 | show "real (x * rapprox_rat prec 2 3 - 1) < 1" by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2090 | show "0 \<le> real (x * rapprox_rat prec 2 3 - 1)" using pos by auto | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2091 | qed | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2092 | finally have "ln x \<le> ?ub_horner (Float 1 (-1)) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2093 | + ?ub_horner ((x * rapprox_rat prec 2 3 - 1))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2094 | using ln_float_bounds(2)[of "Float 1 (- 1)" prec prec] add | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2095 | by (auto intro!: add_mono float_round_up_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2096 | note float_round_up_le[OF this, of prec] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2097 | } | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2098 | moreover | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2099 |     { let ?max = "max (x * lapprox_rat prec 2 3 - 1) 0"
 | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2100 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2101 | have up: "lapprox_rat prec 2 3 \<le> 2/3" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2102 | by (rule order_trans[OF lapprox_rat], simp) | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2103 | |
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2104 | have low: "0 \<le> real (lapprox_rat prec 2 3)" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2105 | using lapprox_rat_nonneg[of 2 3 prec] by simp | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2106 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2107 | have "?lb_horner ?max | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2108 | \<le> ln (real ?max + 1)" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2109 | proof (rule float_round_down_le, rule ln_float_bounds(1)) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2110 | from mult_less_le_imp_less[OF `real x < 2` up] * low | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2111 | show "real ?max < 1" by (cases "real (lapprox_rat prec 2 3) = 0", | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2112 | auto simp add: real_of_float_max) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2113 | show "0 \<le> real ?max" by (auto simp add: real_of_float_max) | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2114 | qed | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2115 | also have "\<dots> \<le> ln (real x * 2/3)" | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2116 | proof (rule ln_le_cancel_iff[symmetric, THEN iffD1]) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2117 | show "0 < real ?max + 1" by (auto simp add: real_of_float_max) | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2118 | show "0 < real x * 2/3" using * by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2119 | show "real ?max + 1 \<le> real x * 2/3" using * up | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2120 | by (cases "0 < real x * real (lapprox_posrat prec 2 3) - 1", | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2121 | auto simp add: max_def) | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2122 | qed | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2123 | finally have "?lb_horner (Float 1 (- 1)) + ?lb_horner ?max \<le> ln x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2124 | using ln_float_bounds(1)[of "Float 1 (- 1)" prec prec] add | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2125 | by (auto intro!: add_mono float_round_down_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2126 | note float_round_down_le[OF this, of prec] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2127 | } | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2128 | ultimately | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2129 | show ?thesis unfolding lb_ln.simps unfolding ub_ln.simps Let_def | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2130 | using `\<not> x \<le> 0` `\<not> x < 1` True False by auto | 
| 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2131 | qed | 
| 29805 | 2132 | next | 
| 2133 | case False | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2134 | hence "\<not> x \<le> 0" and "\<not> x < 1" "0 < x" "\<not> x \<le> Float 3 (- 1)" | 
| 47600 | 2135 | using `1 \<le> x` by auto | 
| 29805 | 2136 | show ?thesis | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2137 | proof - | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2138 | def m \<equiv> "mantissa x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2139 | def e \<equiv> "exponent x" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2140 | from Float_mantissa_exponent[of x] have Float: "x = Float m e" by (simp add: m_def e_def) | 
| 29805 | 2141 | let ?s = "Float (e + (bitlen m - 1)) 0" | 
| 2142 | let ?x = "Float m (- (bitlen m - 1))" | |
| 2143 | ||
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 2144 | have "0 < m" and "m \<noteq> 0" using `0 < x` Float powr_gt_zero[of 2 e] | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 2145 | apply (auto simp add: zero_less_mult_iff) | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 2146 | using not_le powr_ge_pzero by blast | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2147 | def bl \<equiv> "bitlen m - 1" hence "bl \<ge> 0" using `m > 0` by (simp add: bitlen_def) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2148 | have "1 \<le> Float m e" using `1 \<le> x` Float unfolding less_eq_float_def by auto | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2149 | from bitlen_div[OF `0 < m`] float_gt1_scale[OF `1 \<le> Float m e`] `bl \<ge> 0` | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2150 | have x_bnds: "0 \<le> real (?x - 1)" "real (?x - 1) < 1" | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2151 | unfolding bl_def[symmetric] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2152 | by (auto simp: powr_realpow[symmetric] field_simps inverse_eq_divide) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2153 | (auto simp : powr_minus field_simps inverse_eq_divide) | 
| 29805 | 2154 | |
| 2155 |     {
 | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2156 | have "float_round_down prec (lb_ln2 prec * ?s) \<le> ln 2 * (e + (bitlen m - 1))" (is "real ?lb2 \<le> _") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2157 | apply (rule float_round_down_le) | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 2158 | unfolding nat_0 power_0 mult_1_right times_float.rep_eq | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2159 | using lb_ln2[of prec] | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2160 | proof (rule mult_mono) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2161 | from float_gt1_scale[OF `1 \<le> Float m e`] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2162 | show "0 \<le> real (Float (e + (bitlen m - 1)) 0)" by simp | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2163 | qed auto | 
| 29805 | 2164 | moreover | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2165 | from ln_float_bounds(1)[OF x_bnds] | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2166 | have "float_round_down prec ((?x - 1) * lb_ln_horner prec (get_even prec) 1 (?x - 1)) \<le> ln ?x" (is "real ?lb_horner \<le> _") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2167 | by (auto intro!: float_round_down_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2168 | ultimately have "float_plus_down prec ?lb2 ?lb_horner \<le> ln x" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2169 | unfolding Float ln_shifted_float[OF `0 < m`, of e] by (auto intro!: float_plus_down_le) | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2170 | } | 
| 29805 | 2171 | moreover | 
| 2172 |     {
 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2173 | from ln_float_bounds(2)[OF x_bnds] | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2174 | have "ln ?x \<le> float_round_up prec ((?x - 1) * ub_ln_horner prec (get_odd prec) 1 (?x - 1))" (is "_ \<le> real ?ub_horner") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2175 | by (auto intro!: float_round_up_le) | 
| 29805 | 2176 | moreover | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2177 | have "ln 2 * (e + (bitlen m - 1)) \<le> float_round_up prec (ub_ln2 prec * ?s)" (is "_ \<le> real ?ub2") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2178 | apply (rule float_round_up_le) | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 2179 | unfolding nat_0 power_0 mult_1_right times_float.rep_eq | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2180 | using ub_ln2[of prec] | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2181 | proof (rule mult_mono) | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2182 | from float_gt1_scale[OF `1 \<le> Float m e`] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2183 | show "0 \<le> real (e + (bitlen m - 1))" by auto | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2184 | next | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 2185 | have "0 \<le> ln (2 :: real)" by simp | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2186 | thus "0 \<le> real (ub_ln2 prec)" using ub_ln2[of prec] by arith | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2187 | qed auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2188 | ultimately have "ln x \<le> float_plus_up prec ?ub2 ?ub_horner" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2189 | unfolding Float ln_shifted_float[OF `0 < m`, of e] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2190 | by (auto intro!: float_plus_up_le) | 
| 29805 | 2191 | } | 
| 2192 | ultimately show ?thesis unfolding lb_ln.simps unfolding ub_ln.simps | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2193 | unfolding if_not_P[OF `\<not> x \<le> 0`] if_not_P[OF `\<not> x < 1`] if_not_P[OF False] if_not_P[OF `\<not> x \<le> Float 3 (- 1)`] Let_def | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 2194 | unfolding plus_float.rep_eq e_def[symmetric] m_def[symmetric] by simp | 
| 29805 | 2195 | qed | 
| 2196 | qed | |
| 2197 | ||
| 49351 | 2198 | lemma ub_ln_lb_ln_bounds: | 
| 2199 | assumes "0 < x" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2200 | shows "the (lb_ln prec x) \<le> ln x \<and> ln x \<le> the (ub_ln prec x)" | 
| 29805 | 2201 | (is "?lb \<le> ?ln \<and> ?ln \<le> ?ub") | 
| 2202 | proof (cases "x < 1") | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2203 | case False hence "1 \<le> x" unfolding less_float_def less_eq_float_def by auto | 
| 29805 | 2204 | show ?thesis using ub_ln_lb_ln_bounds'[OF `1 \<le> x`] . | 
| 2205 | next | |
| 47600 | 2206 | case True have "\<not> x \<le> 0" using `0 < x` by auto | 
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58889diff
changeset | 2207 | from True have "real x \<le> 1" "x \<le> 1" by simp_all | 
| 47600 | 2208 | have "0 < real x" and "real x \<noteq> 0" using `0 < x` by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2209 | hence A: "0 < 1 / real x" by auto | 
| 29805 | 2210 | |
| 2211 |   {
 | |
| 2212 | let ?divl = "float_divl (max prec 1) 1 x" | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58889diff
changeset | 2213 | have A': "1 \<le> ?divl" using float_divl_pos_less1_bound[OF `0 < real x` `real x \<le> 1`] by auto | 
| 47600 | 2214 | hence B: "0 < real ?divl" by auto | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2215 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2216 | have "ln ?divl \<le> ln (1 / x)" unfolding ln_le_cancel_iff[OF B A] using float_divl[of _ 1 x] by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2217 | hence "ln x \<le> - ln ?divl" unfolding nonzero_inverse_eq_divide[OF `real x \<noteq> 0`, symmetric] ln_inverse[OF `0 < real x`] by auto | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2218 | from this ub_ln_lb_ln_bounds'[OF A', THEN conjunct1, THEN le_imp_neg_le] | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 2219 | have "?ln \<le> - the (lb_ln prec ?divl)" unfolding uminus_float.rep_eq by (rule order_trans) | 
| 29805 | 2220 | } moreover | 
| 2221 |   {
 | |
| 2222 | let ?divr = "float_divr prec 1 x" | |
| 58982 
27e7e3f9e665
simplified computations based on round_up by reducing to round_down;
 immler parents: 
58889diff
changeset | 2223 | have A': "1 \<le> ?divr" using float_divr_pos_less1_lower_bound[OF `0 < x` `x \<le> 1`] unfolding less_eq_float_def less_float_def by auto | 
| 47600 | 2224 | hence B: "0 < real ?divr" by auto | 
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2225 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2226 | have "ln (1 / x) \<le> ln ?divr" unfolding ln_le_cancel_iff[OF A B] using float_divr[of 1 x] by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2227 | hence "- ln ?divr \<le> ln x" unfolding nonzero_inverse_eq_divide[OF `real x \<noteq> 0`, symmetric] ln_inverse[OF `0 < real x`] by auto | 
| 29805 | 2228 | from ub_ln_lb_ln_bounds'[OF A', THEN conjunct2, THEN le_imp_neg_le] this | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 2229 | have "- the (ub_ln prec ?divr) \<le> ?ln" unfolding uminus_float.rep_eq by (rule order_trans) | 
| 29805 | 2230 | } | 
| 2231 | ultimately show ?thesis unfolding lb_ln.simps[where x=x] ub_ln.simps[where x=x] | |
| 2232 | unfolding if_not_P[OF `\<not> x \<le> 0`] if_P[OF True] by auto | |
| 2233 | qed | |
| 2234 | ||
| 49351 | 2235 | lemma lb_ln: | 
| 2236 | assumes "Some y = lb_ln prec x" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2237 | shows "y \<le> ln x" and "0 < real x" | 
| 29805 | 2238 | proof - | 
| 2239 | have "0 < x" | |
| 2240 | proof (rule ccontr) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2241 | assume "\<not> 0 < x" hence "x \<le> 0" unfolding less_eq_float_def less_float_def by auto | 
| 29805 | 2242 | thus False using assms by auto | 
| 2243 | qed | |
| 47600 | 2244 | thus "0 < real x" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2245 | have "the (lb_ln prec x) \<le> ln x" using ub_ln_lb_ln_bounds[OF `0 < x`] .. | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2246 | thus "y \<le> ln x" unfolding assms[symmetric] by auto | 
| 29805 | 2247 | qed | 
| 2248 | ||
| 49351 | 2249 | lemma ub_ln: | 
| 2250 | assumes "Some y = ub_ln prec x" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2251 | shows "ln x \<le> y" and "0 < real x" | 
| 29805 | 2252 | proof - | 
| 2253 | have "0 < x" | |
| 2254 | proof (rule ccontr) | |
| 47600 | 2255 | assume "\<not> 0 < x" hence "x \<le> 0" by auto | 
| 29805 | 2256 | thus False using assms by auto | 
| 2257 | qed | |
| 47600 | 2258 | thus "0 < real x" by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2259 | have "ln x \<le> the (ub_ln prec x)" using ub_ln_lb_ln_bounds[OF `0 < x`] .. | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2260 | thus "ln x \<le> y" unfolding assms[symmetric] by auto | 
| 29805 | 2261 | qed | 
| 2262 | ||
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2263 | lemma bnds_ln: "\<forall> (x::real) lx ux. (Some l, Some u) = (lb_ln prec lx, ub_ln prec ux) \<and> x \<in> {lx .. ux} \<longrightarrow> l \<le> ln x \<and> ln x \<le> u"
 | 
| 29805 | 2264 | proof (rule allI, rule allI, rule allI, rule impI) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2265 | fix x::real and lx ux | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2266 |   assume "(Some l, Some u) = (lb_ln prec lx, ub_ln prec ux) \<and> x \<in> {lx .. ux}"
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2267 |   hence l: "Some l = lb_ln prec lx " and u: "Some u = ub_ln prec ux" and x: "x \<in> {lx .. ux}" by auto
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2268 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2269 | have "ln ux \<le> u" and "0 < real ux" using ub_ln u by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2270 | have "l \<le> ln lx" and "0 < real lx" and "0 < x" using lb_ln[OF l] x by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2271 | |
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2272 | from ln_le_cancel_iff[OF `0 < real lx` `0 < x`] `l \<le> ln lx` | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2273 | have "l \<le> ln x" using x unfolding atLeastAtMost_iff by auto | 
| 29805 | 2274 | moreover | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2275 | from ln_le_cancel_iff[OF `0 < x` `0 < real ux`] `ln ux \<le> real u` | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2276 | have "ln x \<le> u" using x unfolding atLeastAtMost_iff by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2277 | ultimately show "l \<le> ln x \<and> ln x \<le> u" .. | 
| 29805 | 2278 | qed | 
| 2279 | ||
| 2280 | section "Implement floatarith" | |
| 2281 | ||
| 2282 | subsection "Define syntax and semantics" | |
| 2283 | ||
| 58310 | 2284 | datatype floatarith | 
| 29805 | 2285 | = Add floatarith floatarith | 
| 2286 | | Minus floatarith | |
| 2287 | | Mult floatarith floatarith | |
| 2288 | | Inverse floatarith | |
| 2289 | | Cos floatarith | |
| 2290 | | Arctan floatarith | |
| 2291 | | Abs floatarith | |
| 2292 | | Max floatarith floatarith | |
| 2293 | | Min floatarith floatarith | |
| 2294 | | Pi | |
| 2295 | | Sqrt floatarith | |
| 2296 | | Exp floatarith | |
| 2297 | | Ln floatarith | |
| 2298 | | Power floatarith nat | |
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2299 | | Var nat | 
| 29805 | 2300 | | Num float | 
| 2301 | ||
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2302 | fun interpret_floatarith :: "floatarith \<Rightarrow> real list \<Rightarrow> real" where | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2303 | "interpret_floatarith (Add a b) vs = (interpret_floatarith a vs) + (interpret_floatarith b vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2304 | "interpret_floatarith (Minus a) vs = - (interpret_floatarith a vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2305 | "interpret_floatarith (Mult a b) vs = (interpret_floatarith a vs) * (interpret_floatarith b vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2306 | "interpret_floatarith (Inverse a) vs = inverse (interpret_floatarith a vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2307 | "interpret_floatarith (Cos a) vs = cos (interpret_floatarith a vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2308 | "interpret_floatarith (Arctan a) vs = arctan (interpret_floatarith a vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2309 | "interpret_floatarith (Min a b) vs = min (interpret_floatarith a vs) (interpret_floatarith b vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2310 | "interpret_floatarith (Max a b) vs = max (interpret_floatarith a vs) (interpret_floatarith b vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2311 | "interpret_floatarith (Abs a) vs = abs (interpret_floatarith a vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2312 | "interpret_floatarith Pi vs = pi" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2313 | "interpret_floatarith (Sqrt a) vs = sqrt (interpret_floatarith a vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2314 | "interpret_floatarith (Exp a) vs = exp (interpret_floatarith a vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2315 | "interpret_floatarith (Ln a) vs = ln (interpret_floatarith a vs)" | | 
| 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2316 | "interpret_floatarith (Power a n) vs = (interpret_floatarith a vs)^n" | | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2317 | "interpret_floatarith (Num f) vs = f" | | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2318 | "interpret_floatarith (Var n) vs = vs ! n" | 
| 29805 | 2319 | |
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2320 | lemma interpret_floatarith_divide: "interpret_floatarith (Mult a (Inverse b)) vs = (interpret_floatarith a vs) / (interpret_floatarith b vs)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36531diff
changeset | 2321 | unfolding divide_inverse interpret_floatarith.simps .. | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2322 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2323 | lemma interpret_floatarith_diff: "interpret_floatarith (Add a (Minus b)) vs = (interpret_floatarith a vs) - (interpret_floatarith b vs)" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 2324 | unfolding interpret_floatarith.simps by simp | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2325 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2326 | lemma interpret_floatarith_sin: "interpret_floatarith (Cos (Add (Mult Pi (Num (Float 1 (- 1)))) (Minus a))) vs = | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2327 | sin (interpret_floatarith a vs)" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2328 | unfolding sin_cos_eq interpret_floatarith.simps | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 2329 | interpret_floatarith_divide interpret_floatarith_diff | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2330 | by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2331 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2332 | lemma interpret_floatarith_tan: | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2333 | "interpret_floatarith (Mult (Cos (Add (Mult Pi (Num (Float 1 (- 1)))) (Minus a))) (Inverse (Cos a))) vs = | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2334 | tan (interpret_floatarith a vs)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36531diff
changeset | 2335 | unfolding interpret_floatarith.simps(3,4) interpret_floatarith_sin tan_def divide_inverse | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2336 | by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2337 | |
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 2338 | lemma interpret_floatarith_log: | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 2339 | "interpret_floatarith ((Mult (Ln x) (Inverse (Ln b)))) vs = | 
| 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 2340 | log (interpret_floatarith b vs) (interpret_floatarith x vs)" | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36531diff
changeset | 2341 | unfolding log_def interpret_floatarith.simps divide_inverse .. | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2342 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2343 | lemma interpret_floatarith_num: | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2344 | shows "interpret_floatarith (Num (Float 0 0)) vs = 0" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2345 | and "interpret_floatarith (Num (Float 1 0)) vs = 1" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54269diff
changeset | 2346 | and "interpret_floatarith (Num (Float (- 1) 0)) vs = - 1" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46545diff
changeset | 2347 | and "interpret_floatarith (Num (Float (numeral a) 0)) vs = numeral a" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54269diff
changeset | 2348 | and "interpret_floatarith (Num (Float (- numeral a) 0)) vs = - numeral a" by auto | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2349 | |
| 29805 | 2350 | subsection "Implement approximation function" | 
| 2351 | ||
| 2352 | fun lift_bin' :: "(float * float) option \<Rightarrow> (float * float) option \<Rightarrow> (float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> (float * float)) \<Rightarrow> (float * float) option" where | |
| 2353 | "lift_bin' (Some (l1, u1)) (Some (l2, u2)) f = Some (f l1 u1 l2 u2)" | | |
| 2354 | "lift_bin' a b f = None" | |
| 2355 | ||
| 2356 | fun lift_un :: "(float * float) option \<Rightarrow> (float \<Rightarrow> float \<Rightarrow> ((float option) * (float option))) \<Rightarrow> (float * float) option" where | |
| 2357 | "lift_un (Some (l1, u1)) f = (case (f l1 u1) of (Some l, Some u) \<Rightarrow> Some (l, u) | |
| 2358 | | t \<Rightarrow> None)" | | |
| 2359 | "lift_un b f = None" | |
| 2360 | ||
| 2361 | fun lift_un' :: "(float * float) option \<Rightarrow> (float \<Rightarrow> float \<Rightarrow> (float * float)) \<Rightarrow> (float * float) option" where | |
| 2362 | "lift_un' (Some (l1, u1)) f = Some (f l1 u1)" | | |
| 2363 | "lift_un' b f = None" | |
| 2364 | ||
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2365 | definition | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2366 | "bounded_by xs vs \<longleftrightarrow> | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2367 | (\<forall> i < length vs. case vs ! i of None \<Rightarrow> True | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2368 |          | Some (l, u) \<Rightarrow> xs ! i \<in> { real l .. real u })"
 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2369 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2370 | lemma bounded_byE: | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2371 | assumes "bounded_by xs vs" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2372 | shows "\<And> i. i < length vs \<Longrightarrow> case vs ! i of None \<Rightarrow> True | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2373 |          | Some (l, u) \<Rightarrow> xs ! i \<in> { real l .. real u }"
 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2374 | using assms bounded_by_def by blast | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2375 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2376 | lemma bounded_by_update: | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2377 | assumes "bounded_by xs vs" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2378 |   and bnd: "xs ! i \<in> { real l .. real u }"
 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2379 | shows "bounded_by xs (vs[i := Some (l,u)])" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2380 | proof - | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2381 | { fix j
 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2382 | let ?vs = "vs[i := Some (l,u)]" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2383 | assume "j < length ?vs" hence [simp]: "j < length vs" by simp | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2384 |   have "case ?vs ! j of None \<Rightarrow> True | Some (l, u) \<Rightarrow> xs ! j \<in> { real l .. real u }"
 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2385 | proof (cases "?vs ! j") | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2386 | case (Some b) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2387 | thus ?thesis | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2388 | proof (cases "i = j") | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2389 | case True | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2390 | thus ?thesis using `?vs ! j = Some b` and bnd by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2391 | next | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2392 | case False | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2393 | thus ?thesis using `bounded_by xs vs` unfolding bounded_by_def by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2394 | qed | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2395 | qed auto } | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2396 | thus ?thesis unfolding bounded_by_def by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2397 | qed | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2398 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2399 | lemma bounded_by_None: | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2400 | shows "bounded_by xs (replicate (length xs) None)" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2401 | unfolding bounded_by_def by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2402 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2403 | fun approx approx' :: "nat \<Rightarrow> floatarith \<Rightarrow> (float * float) option list \<Rightarrow> (float * float) option" where | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2404 | "approx' prec a bs = (case (approx prec a bs) of Some (l, u) \<Rightarrow> Some (float_round_down prec l, float_round_up prec u) | None \<Rightarrow> None)" | | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2405 | "approx prec (Add a b) bs = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2406 | lift_bin' (approx' prec a bs) (approx' prec b bs) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2407 | (\<lambda> l1 u1 l2 u2. (float_plus_down prec l1 l2, float_plus_up prec u1 u2))" | | 
| 29805 | 2408 | "approx prec (Minus a) bs = lift_un' (approx' prec a bs) (\<lambda> l u. (-u, -l))" | | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2409 | "approx prec (Mult a b) bs = | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2410 | lift_bin' (approx' prec a bs) (approx' prec b bs) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2411 | (\<lambda> a1 a2 b1 b2. | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2412 | (float_plus_down prec (nprt a1 * pprt b2) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2413 | (float_plus_down prec (nprt a2 * nprt b2) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2414 | (float_plus_down prec (pprt a1 * pprt b1) (pprt a2 * nprt b1))), | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2415 | float_plus_up prec (pprt a2 * pprt b2) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2416 | (float_plus_up prec (pprt a1 * nprt b2) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2417 | (float_plus_up prec (nprt a2 * pprt b1) (nprt a1 * nprt b1)))))" | | 
| 29805 | 2418 | "approx prec (Inverse a) bs = lift_un (approx' prec a bs) (\<lambda> l u. if (0 < l \<or> u < 0) then (Some (float_divl prec 1 u), Some (float_divr prec 1 l)) else (None, None))" | | 
| 2419 | "approx prec (Cos a) bs = lift_un' (approx' prec a bs) (bnds_cos prec)" | | |
| 2420 | "approx prec Pi bs = Some (lb_pi prec, ub_pi prec)" | | |
| 2421 | "approx prec (Min a b) bs = lift_bin' (approx' prec a bs) (approx' prec b bs) (\<lambda> l1 u1 l2 u2. (min l1 l2, min u1 u2))" | | |
| 2422 | "approx prec (Max a b) bs = lift_bin' (approx' prec a bs) (approx' prec b bs) (\<lambda> l1 u1 l2 u2. (max l1 l2, max u1 u2))" | | |
| 2423 | "approx prec (Abs a) bs = lift_un' (approx' prec a bs) (\<lambda>l u. (if l < 0 \<and> 0 < u then 0 else min \<bar>l\<bar> \<bar>u\<bar>, max \<bar>l\<bar> \<bar>u\<bar>))" | | |
| 2424 | "approx prec (Arctan a) bs = lift_un' (approx' prec a bs) (\<lambda> l u. (lb_arctan prec l, ub_arctan prec u))" | | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 2425 | "approx prec (Sqrt a) bs = lift_un' (approx' prec a bs) (\<lambda> l u. (lb_sqrt prec l, ub_sqrt prec u))" | | 
| 29805 | 2426 | "approx prec (Exp a) bs = lift_un' (approx' prec a bs) (\<lambda> l u. (lb_exp prec l, ub_exp prec u))" | | 
| 2427 | "approx prec (Ln a) bs = lift_un (approx' prec a bs) (\<lambda> l u. (lb_ln prec l, ub_ln prec u))" | | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2428 | "approx prec (Power a n) bs = lift_un' (approx' prec a bs) (float_power_bnds prec n)" | | 
| 29805 | 2429 | "approx prec (Num f) bs = Some (f, f)" | | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2430 | "approx prec (Var i) bs = (if i < length bs then bs ! i else None)" | 
| 29805 | 2431 | |
| 2432 | lemma lift_bin'_ex: | |
| 2433 | assumes lift_bin'_Some: "Some (l, u) = lift_bin' a b f" | |
| 2434 | shows "\<exists> l1 u1 l2 u2. Some (l1, u1) = a \<and> Some (l2, u2) = b" | |
| 2435 | proof (cases a) | |
| 2436 | case None hence "None = lift_bin' a b f" unfolding None lift_bin'.simps .. | |
| 2437 | thus ?thesis using lift_bin'_Some by auto | |
| 2438 | next | |
| 2439 | case (Some a') | |
| 2440 | show ?thesis | |
| 2441 | proof (cases b) | |
| 2442 | case None hence "None = lift_bin' a b f" unfolding None lift_bin'.simps .. | |
| 2443 | thus ?thesis using lift_bin'_Some by auto | |
| 2444 | next | |
| 2445 | case (Some b') | |
| 2446 | obtain la ua where a': "a' = (la, ua)" by (cases a', auto) | |
| 2447 | obtain lb ub where b': "b' = (lb, ub)" by (cases b', auto) | |
| 2448 | thus ?thesis unfolding `a = Some a'` `b = Some b'` a' b' by auto | |
| 2449 | qed | |
| 2450 | qed | |
| 2451 | ||
| 2452 | lemma lift_bin'_f: | |
| 2453 | assumes lift_bin'_Some: "Some (l, u) = lift_bin' (g a) (g b) f" | |
| 2454 | and Pa: "\<And>l u. Some (l, u) = g a \<Longrightarrow> P l u a" and Pb: "\<And>l u. Some (l, u) = g b \<Longrightarrow> P l u b" | |
| 2455 | shows "\<exists> l1 u1 l2 u2. P l1 u1 a \<and> P l2 u2 b \<and> l = fst (f l1 u1 l2 u2) \<and> u = snd (f l1 u1 l2 u2)" | |
| 2456 | proof - | |
| 2457 | obtain l1 u1 l2 u2 | |
| 2458 | where Sa: "Some (l1, u1) = g a" and Sb: "Some (l2, u2) = g b" using lift_bin'_ex[OF assms(1)] by auto | |
| 31809 | 2459 | have lu: "(l, u) = f l1 u1 l2 u2" using lift_bin'_Some[unfolded Sa[symmetric] Sb[symmetric] lift_bin'.simps] by auto | 
| 29805 | 2460 | have "l = fst (f l1 u1 l2 u2)" and "u = snd (f l1 u1 l2 u2)" unfolding lu[symmetric] by auto | 
| 31809 | 2461 | thus ?thesis using Pa[OF Sa] Pb[OF Sb] by auto | 
| 29805 | 2462 | qed | 
| 2463 | ||
| 2464 | lemma approx_approx': | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2465 | assumes Pa: "\<And>l u. Some (l, u) = approx prec a vs \<Longrightarrow> l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" | 
| 29805 | 2466 | and approx': "Some (l, u) = approx' prec a vs" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2467 | shows "l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" | 
| 29805 | 2468 | proof - | 
| 2469 | obtain l' u' where S: "Some (l', u') = approx prec a vs" | |
| 2470 | using approx' unfolding approx'.simps by (cases "approx prec a vs", auto) | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2471 | have l': "l = float_round_down prec l'" and u': "u = float_round_up prec u'" | 
| 29805 | 2472 | using approx' unfolding approx'.simps S[symmetric] by auto | 
| 31809 | 2473 | show ?thesis unfolding l' u' | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2474 | using order_trans[OF Pa[OF S, THEN conjunct2] float_round_up[of u']] | 
| 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2475 | using order_trans[OF float_round_down[of _ l'] Pa[OF S, THEN conjunct1]] by auto | 
| 29805 | 2476 | qed | 
| 2477 | ||
| 2478 | lemma lift_bin': | |
| 2479 | assumes lift_bin'_Some: "Some (l, u) = lift_bin' (approx' prec a bs) (approx' prec b bs) f" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2480 | and Pa: "\<And>l u. Some (l, u) = approx prec a bs \<Longrightarrow> l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" (is "\<And>l u. _ = ?g a \<Longrightarrow> ?P l u a") | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2481 | and Pb: "\<And>l u. Some (l, u) = approx prec b bs \<Longrightarrow> l \<le> interpret_floatarith b xs \<and> interpret_floatarith b xs \<le> u" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2482 | shows "\<exists> l1 u1 l2 u2. (l1 \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u1) \<and> | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2483 | (l2 \<le> interpret_floatarith b xs \<and> interpret_floatarith b xs \<le> u2) \<and> | 
| 29805 | 2484 | l = fst (f l1 u1 l2 u2) \<and> u = snd (f l1 u1 l2 u2)" | 
| 2485 | proof - | |
| 2486 |   { fix l u assume "Some (l, u) = approx' prec a bs"
 | |
| 2487 | with approx_approx'[of prec a bs, OF _ this] Pa | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2488 | have "l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" by auto } note Pa = this | 
| 29805 | 2489 |   { fix l u assume "Some (l, u) = approx' prec b bs"
 | 
| 2490 | with approx_approx'[of prec b bs, OF _ this] Pb | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2491 | have "l \<le> interpret_floatarith b xs \<and> interpret_floatarith b xs \<le> u" by auto } note Pb = this | 
| 29805 | 2492 | |
| 2493 | from lift_bin'_f[where g="\<lambda>a. approx' prec a bs" and P = ?P, OF lift_bin'_Some, OF Pa Pb] | |
| 2494 | show ?thesis by auto | |
| 2495 | qed | |
| 2496 | ||
| 2497 | lemma lift_un'_ex: | |
| 2498 | assumes lift_un'_Some: "Some (l, u) = lift_un' a f" | |
| 2499 | shows "\<exists> l u. Some (l, u) = a" | |
| 2500 | proof (cases a) | |
| 2501 | case None hence "None = lift_un' a f" unfolding None lift_un'.simps .. | |
| 2502 | thus ?thesis using lift_un'_Some by auto | |
| 2503 | next | |
| 2504 | case (Some a') | |
| 2505 | obtain la ua where a': "a' = (la, ua)" by (cases a', auto) | |
| 2506 | thus ?thesis unfolding `a = Some a'` a' by auto | |
| 2507 | qed | |
| 2508 | ||
| 2509 | lemma lift_un'_f: | |
| 2510 | assumes lift_un'_Some: "Some (l, u) = lift_un' (g a) f" | |
| 2511 | and Pa: "\<And>l u. Some (l, u) = g a \<Longrightarrow> P l u a" | |
| 2512 | shows "\<exists> l1 u1. P l1 u1 a \<and> l = fst (f l1 u1) \<and> u = snd (f l1 u1)" | |
| 2513 | proof - | |
| 2514 | obtain l1 u1 where Sa: "Some (l1, u1) = g a" using lift_un'_ex[OF assms(1)] by auto | |
| 2515 | have lu: "(l, u) = f l1 u1" using lift_un'_Some[unfolded Sa[symmetric] lift_un'.simps] by auto | |
| 2516 | have "l = fst (f l1 u1)" and "u = snd (f l1 u1)" unfolding lu[symmetric] by auto | |
| 2517 | thus ?thesis using Pa[OF Sa] by auto | |
| 2518 | qed | |
| 2519 | ||
| 2520 | lemma lift_un': | |
| 2521 | assumes lift_un'_Some: "Some (l, u) = lift_un' (approx' prec a bs) f" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2522 | and Pa: "\<And>l u. Some (l, u) = approx prec a bs \<Longrightarrow> l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" (is "\<And>l u. _ = ?g a \<Longrightarrow> ?P l u a") | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2523 | shows "\<exists> l1 u1. (l1 \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u1) \<and> | 
| 29805 | 2524 | l = fst (f l1 u1) \<and> u = snd (f l1 u1)" | 
| 2525 | proof - | |
| 2526 |   { fix l u assume "Some (l, u) = approx' prec a bs"
 | |
| 2527 | with approx_approx'[of prec a bs, OF _ this] Pa | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2528 | have "l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" by auto } note Pa = this | 
| 29805 | 2529 | from lift_un'_f[where g="\<lambda>a. approx' prec a bs" and P = ?P, OF lift_un'_Some, OF Pa] | 
| 2530 | show ?thesis by auto | |
| 2531 | qed | |
| 2532 | ||
| 2533 | lemma lift_un'_bnds: | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2534 |   assumes bnds: "\<forall> (x::real) lx ux. (l, u) = f lx ux \<and> x \<in> { lx .. ux } \<longrightarrow> l \<le> f' x \<and> f' x \<le> u"
 | 
| 29805 | 2535 | and lift_un'_Some: "Some (l, u) = lift_un' (approx' prec a bs) f" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2536 | and Pa: "\<And>l u. Some (l, u) = approx prec a bs \<Longrightarrow> l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2537 | shows "real l \<le> f' (interpret_floatarith a xs) \<and> f' (interpret_floatarith a xs) \<le> real u" | 
| 29805 | 2538 | proof - | 
| 2539 | from lift_un'[OF lift_un'_Some Pa] | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2540 | obtain l1 u1 where "l1 \<le> interpret_floatarith a xs" and "interpret_floatarith a xs \<le> u1" and "l = fst (f l1 u1)" and "u = snd (f l1 u1)" by blast | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2541 |   hence "(l, u) = f l1 u1" and "interpret_floatarith a xs \<in> {l1 .. u1}" by auto
 | 
| 29805 | 2542 | thus ?thesis using bnds by auto | 
| 2543 | qed | |
| 2544 | ||
| 2545 | lemma lift_un_ex: | |
| 2546 | assumes lift_un_Some: "Some (l, u) = lift_un a f" | |
| 2547 | shows "\<exists> l u. Some (l, u) = a" | |
| 2548 | proof (cases a) | |
| 2549 | case None hence "None = lift_un a f" unfolding None lift_un.simps .. | |
| 2550 | thus ?thesis using lift_un_Some by auto | |
| 2551 | next | |
| 2552 | case (Some a') | |
| 2553 | obtain la ua where a': "a' = (la, ua)" by (cases a', auto) | |
| 2554 | thus ?thesis unfolding `a = Some a'` a' by auto | |
| 2555 | qed | |
| 2556 | ||
| 2557 | lemma lift_un_f: | |
| 2558 | assumes lift_un_Some: "Some (l, u) = lift_un (g a) f" | |
| 2559 | and Pa: "\<And>l u. Some (l, u) = g a \<Longrightarrow> P l u a" | |
| 2560 | shows "\<exists> l1 u1. P l1 u1 a \<and> Some l = fst (f l1 u1) \<and> Some u = snd (f l1 u1)" | |
| 2561 | proof - | |
| 2562 | obtain l1 u1 where Sa: "Some (l1, u1) = g a" using lift_un_ex[OF assms(1)] by auto | |
| 2563 | have "fst (f l1 u1) \<noteq> None \<and> snd (f l1 u1) \<noteq> None" | |
| 2564 | proof (rule ccontr) | |
| 2565 | assume "\<not> (fst (f l1 u1) \<noteq> None \<and> snd (f l1 u1) \<noteq> None)" | |
| 2566 | hence or: "fst (f l1 u1) = None \<or> snd (f l1 u1) = None" by auto | |
| 31809 | 2567 | hence "lift_un (g a) f = None" | 
| 29805 | 2568 | proof (cases "fst (f l1 u1) = None") | 
| 2569 | case True | |
| 2570 | then obtain b where b: "f l1 u1 = (None, b)" by (cases "f l1 u1", auto) | |
| 2571 | thus ?thesis unfolding Sa[symmetric] lift_un.simps b by auto | |
| 2572 | next | |
| 2573 | case False hence "snd (f l1 u1) = None" using or by auto | |
| 2574 | with False obtain b where b: "f l1 u1 = (Some b, None)" by (cases "f l1 u1", auto) | |
| 2575 | thus ?thesis unfolding Sa[symmetric] lift_un.simps b by auto | |
| 2576 | qed | |
| 2577 | thus False using lift_un_Some by auto | |
| 2578 | qed | |
| 2579 | then obtain a' b' where f: "f l1 u1 = (Some a', Some b')" by (cases "f l1 u1", auto) | |
| 2580 | from lift_un_Some[unfolded Sa[symmetric] lift_un.simps f] | |
| 2581 | have "Some l = fst (f l1 u1)" and "Some u = snd (f l1 u1)" unfolding f by auto | |
| 2582 | thus ?thesis unfolding Sa[symmetric] lift_un.simps using Pa[OF Sa] by auto | |
| 2583 | qed | |
| 2584 | ||
| 2585 | lemma lift_un: | |
| 2586 | assumes lift_un_Some: "Some (l, u) = lift_un (approx' prec a bs) f" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2587 | and Pa: "\<And>l u. Some (l, u) = approx prec a bs \<Longrightarrow> l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" (is "\<And>l u. _ = ?g a \<Longrightarrow> ?P l u a") | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2588 | shows "\<exists> l1 u1. (l1 \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u1) \<and> | 
| 29805 | 2589 | Some l = fst (f l1 u1) \<and> Some u = snd (f l1 u1)" | 
| 2590 | proof - | |
| 2591 |   { fix l u assume "Some (l, u) = approx' prec a bs"
 | |
| 2592 | with approx_approx'[of prec a bs, OF _ this] Pa | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2593 | have "l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" by auto } note Pa = this | 
| 29805 | 2594 | from lift_un_f[where g="\<lambda>a. approx' prec a bs" and P = ?P, OF lift_un_Some, OF Pa] | 
| 2595 | show ?thesis by auto | |
| 2596 | qed | |
| 2597 | ||
| 2598 | lemma lift_un_bnds: | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2599 |   assumes bnds: "\<forall> (x::real) lx ux. (Some l, Some u) = f lx ux \<and> x \<in> { lx .. ux } \<longrightarrow> l \<le> f' x \<and> f' x \<le> u"
 | 
| 29805 | 2600 | and lift_un_Some: "Some (l, u) = lift_un (approx' prec a bs) f" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2601 | and Pa: "\<And>l u. Some (l, u) = approx prec a bs \<Longrightarrow> l \<le> interpret_floatarith a xs \<and> interpret_floatarith a xs \<le> u" | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2602 | shows "real l \<le> f' (interpret_floatarith a xs) \<and> f' (interpret_floatarith a xs) \<le> real u" | 
| 29805 | 2603 | proof - | 
| 2604 | from lift_un[OF lift_un_Some Pa] | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2605 | obtain l1 u1 where "l1 \<le> interpret_floatarith a xs" and "interpret_floatarith a xs \<le> u1" and "Some l = fst (f l1 u1)" and "Some u = snd (f l1 u1)" by blast | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2606 |   hence "(Some l, Some u) = f l1 u1" and "interpret_floatarith a xs \<in> {l1 .. u1}" by auto
 | 
| 29805 | 2607 | thus ?thesis using bnds by auto | 
| 2608 | qed | |
| 2609 | ||
| 2610 | lemma approx: | |
| 2611 | assumes "bounded_by xs vs" | |
| 2612 | and "Some (l, u) = approx prec arith vs" (is "_ = ?g arith") | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2613 | shows "l \<le> interpret_floatarith arith xs \<and> interpret_floatarith arith xs \<le> u" (is "?P l u arith") | 
| 31809 | 2614 | using `Some (l, u) = approx prec arith vs` | 
| 45129 
1fce03e3e8ad
tuned proofs -- eliminated vacuous "induct arbitrary: ..." situations;
 wenzelm parents: 
44821diff
changeset | 2615 | proof (induct arith arbitrary: l u) | 
| 29805 | 2616 | case (Add a b) | 
| 2617 | from lift_bin'[OF Add.prems[unfolded approx.simps]] Add.hyps | |
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2618 | obtain l1 u1 l2 u2 where "l = float_plus_down prec l1 l2" and "u = float_plus_up prec u1 u2" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2619 | "l1 \<le> interpret_floatarith a xs" and "interpret_floatarith a xs \<le> u1" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2620 | "l2 \<le> interpret_floatarith b xs" and "interpret_floatarith b xs \<le> u2" unfolding fst_conv snd_conv by blast | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2621 | thus ?case unfolding interpret_floatarith.simps by (auto intro!: float_plus_up_le float_plus_down_le) | 
| 29805 | 2622 | next | 
| 2623 | case (Minus a) | |
| 2624 | from lift_un'[OF Minus.prems[unfolded approx.simps]] Minus.hyps | |
| 2625 | obtain l1 u1 where "l = -u1" and "u = -l1" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2626 | "l1 \<le> interpret_floatarith a xs" and "interpret_floatarith a xs \<le> u1" unfolding fst_conv snd_conv by blast | 
| 47601 
050718fe6eee
use real :: float => real as lifting-morphism so we can directlry use the rep_eq theorems
 hoelzl parents: 
47600diff
changeset | 2627 | thus ?case unfolding interpret_floatarith.simps using minus_float.rep_eq by auto | 
| 29805 | 2628 | next | 
| 2629 | case (Mult a b) | |
| 2630 | from lift_bin'[OF Mult.prems[unfolded approx.simps]] Mult.hyps | |
| 31809 | 2631 | obtain l1 u1 l2 u2 | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2632 | where l: "l = float_plus_down prec (nprt l1 * pprt u2) (float_plus_down prec (nprt u1 * nprt u2) (float_plus_down prec (pprt l1 * pprt l2) (pprt u1 * nprt l2)))" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2633 | and u: "u = float_plus_up prec (pprt u1 * pprt u2) (float_plus_up prec (pprt l1 * nprt u2) (float_plus_up prec (nprt u1 * pprt l2) (nprt l1 * nprt l2)))" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2634 | and "l1 \<le> interpret_floatarith a xs" and "interpret_floatarith a xs \<le> u1" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2635 | and "l2 \<le> interpret_floatarith b xs" and "interpret_floatarith b xs \<le> u2" unfolding fst_conv snd_conv by blast | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2636 | hence bnds: | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2637 | "nprt l1 * pprt u2 + nprt u1 * nprt u2 + pprt l1 * pprt l2 + pprt u1 * nprt l2 \<le> interpret_floatarith (Mult a b) xs" (is "?l \<le> _") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2638 | "interpret_floatarith (Mult a b) xs \<le> pprt u1 * pprt u2 + pprt l1 * nprt u2 + nprt u1 * pprt l2 + nprt l1 * nprt l2" (is "_ \<le> ?u") | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2639 | unfolding interpret_floatarith.simps l u | 
| 29805 | 2640 | using mult_le_prts mult_ge_prts by auto | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2641 | from l u have "l \<le> ?l" "?u \<le> u" | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2642 | by (auto intro!: float_plus_up_le float_plus_down_le) | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2643 | thus ?case using bnds by simp | 
| 29805 | 2644 | next | 
| 2645 | case (Inverse a) | |
| 2646 | from lift_un[OF Inverse.prems[unfolded approx.simps], unfolded if_distrib[of fst] if_distrib[of snd] fst_conv snd_conv] Inverse.hyps | |
| 31809 | 2647 | obtain l1 u1 where l': "Some l = (if 0 < l1 \<or> u1 < 0 then Some (float_divl prec 1 u1) else None)" | 
| 29805 | 2648 | and u': "Some u = (if 0 < l1 \<or> u1 < 0 then Some (float_divr prec 1 l1) else None)" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2649 | and l1: "l1 \<le> interpret_floatarith a xs" and u1: "interpret_floatarith a xs \<le> u1" by blast | 
| 29805 | 2650 | have either: "0 < l1 \<or> u1 < 0" proof (rule ccontr) assume P: "\<not> (0 < l1 \<or> u1 < 0)" show False using l' unfolding if_not_P[OF P] by auto qed | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2651 | moreover have l1_le_u1: "real l1 \<le> real u1" using l1 u1 by auto | 
| 47600 | 2652 | ultimately have "real l1 \<noteq> 0" and "real u1 \<noteq> 0" by auto | 
| 29805 | 2653 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2654 | have inv: "inverse u1 \<le> inverse (interpret_floatarith a xs) | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2655 | \<and> inverse (interpret_floatarith a xs) \<le> inverse l1" | 
| 29805 | 2656 | proof (cases "0 < l1") | 
| 31809 | 2657 | case True hence "0 < real u1" and "0 < real l1" "0 < interpret_floatarith a xs" | 
| 47600 | 2658 | using l1_le_u1 l1 by auto | 
| 29805 | 2659 | show ?thesis | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2660 | unfolding inverse_le_iff_le[OF `0 < real u1` `0 < interpret_floatarith a xs`] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2661 | inverse_le_iff_le[OF `0 < interpret_floatarith a xs` `0 < real l1`] | 
| 29805 | 2662 | using l1 u1 by auto | 
| 2663 | next | |
| 2664 | case False hence "u1 < 0" using either by blast | |
| 31809 | 2665 | hence "real u1 < 0" and "real l1 < 0" "interpret_floatarith a xs < 0" | 
| 47600 | 2666 | using l1_le_u1 u1 by auto | 
| 29805 | 2667 | show ?thesis | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2668 | unfolding inverse_le_iff_le_neg[OF `real u1 < 0` `interpret_floatarith a xs < 0`] | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 2669 | inverse_le_iff_le_neg[OF `interpret_floatarith a xs < 0` `real l1 < 0`] | 
| 29805 | 2670 | using l1 u1 by auto | 
| 2671 | qed | |
| 31468 
b8267feaf342
Approximation: Corrected precision of ln on all real values
 hoelzl parents: 
31467diff
changeset | 2672 | |
| 29805 | 2673 | from l' have "l = float_divl prec 1 u1" by (cases "0 < l1 \<or> u1 < 0", auto) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2674 | hence "l \<le> inverse u1" unfolding nonzero_inverse_eq_divide[OF `real u1 \<noteq> 0`] using float_divl[of prec 1 u1] by auto | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2675 | also have "\<dots> \<le> inverse (interpret_floatarith a xs)" using inv by auto | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2676 | finally have "l \<le> inverse (interpret_floatarith a xs)" . | 
| 29805 | 2677 | moreover | 
| 2678 | from u' have "u = float_divr prec 1 l1" by (cases "0 < l1 \<or> u1 < 0", auto) | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2679 | hence "inverse l1 \<le> u" unfolding nonzero_inverse_eq_divide[OF `real l1 \<noteq> 0`] using float_divr[of 1 l1 prec] by auto | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2680 | hence "inverse (interpret_floatarith a xs) \<le> u" by (rule order_trans[OF inv[THEN conjunct2]]) | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2681 | ultimately show ?case unfolding interpret_floatarith.simps using l1 u1 by auto | 
| 29805 | 2682 | next | 
| 2683 | case (Abs x) | |
| 2684 | from lift_un'[OF Abs.prems[unfolded approx.simps], unfolded fst_conv snd_conv] Abs.hyps | |
| 2685 | obtain l1 u1 where l': "l = (if l1 < 0 \<and> 0 < u1 then 0 else min \<bar>l1\<bar> \<bar>u1\<bar>)" and u': "u = max \<bar>l1\<bar> \<bar>u1\<bar>" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2686 | and l1: "l1 \<le> interpret_floatarith x xs" and u1: "interpret_floatarith x xs \<le> u1" by blast | 
| 47600 | 2687 | thus ?case unfolding l' u' by (cases "l1 < 0 \<and> 0 < u1", auto simp add: real_of_float_min real_of_float_max) | 
| 29805 | 2688 | next | 
| 2689 | case (Min a b) | |
| 2690 | from lift_bin'[OF Min.prems[unfolded approx.simps], unfolded fst_conv snd_conv] Min.hyps | |
| 2691 | obtain l1 u1 l2 u2 where l': "l = min l1 l2" and u': "u = min u1 u2" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2692 | and l1: "l1 \<le> interpret_floatarith a xs" and u1: "interpret_floatarith a xs \<le> u1" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2693 | and l1: "l2 \<le> interpret_floatarith b xs" and u1: "interpret_floatarith b xs \<le> u2" by blast | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2694 | thus ?case unfolding l' u' by (auto simp add: real_of_float_min) | 
| 29805 | 2695 | next | 
| 2696 | case (Max a b) | |
| 2697 | from lift_bin'[OF Max.prems[unfolded approx.simps], unfolded fst_conv snd_conv] Max.hyps | |
| 2698 | obtain l1 u1 l2 u2 where l': "l = max l1 l2" and u': "u = max u1 u2" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2699 | and l1: "l1 \<le> interpret_floatarith a xs" and u1: "interpret_floatarith a xs \<le> u1" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2700 | and l1: "l2 \<le> interpret_floatarith b xs" and u1: "interpret_floatarith b xs \<le> u2" by blast | 
| 31098 
73dd67adf90a
replaced Ifloat => real_of_float and real, renamed ApproxEq => inequality, uneq => interpret_inequality, uneq' => approx_inequality, Ifloatarith => interpret_floatarith
 hoelzl parents: 
30971diff
changeset | 2701 | thus ?case unfolding l' u' by (auto simp add: real_of_float_max) | 
| 29805 | 2702 | next case (Cos a) with lift_un'_bnds[OF bnds_cos] show ?case by auto | 
| 2703 | next case (Arctan a) with lift_un'_bnds[OF bnds_arctan] show ?case by auto | |
| 2704 | next case Pi with pi_boundaries show ?case by auto | |
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 2705 | next case (Sqrt a) with lift_un'_bnds[OF bnds_sqrt] show ?case by auto | 
| 29805 | 2706 | next case (Exp a) with lift_un'_bnds[OF bnds_exp] show ?case by auto | 
| 2707 | next case (Ln a) with lift_un_bnds[OF bnds_ln] show ?case by auto | |
| 2708 | next case (Power a n) with lift_un'_bnds[OF bnds_power] show ?case by auto | |
| 2709 | next case (Num f) thus ?case by auto | |
| 2710 | next | |
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2711 | case (Var n) | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2712 | from this[symmetric] `bounded_by xs vs`[THEN bounded_byE, of n] | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2713 | show ?case by (cases "n < length vs", auto) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2714 | qed | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2715 | |
| 58310 | 2716 | datatype form = Bound floatarith floatarith floatarith form | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2717 | | Assign floatarith floatarith form | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2718 | | Less floatarith floatarith | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2719 | | LessEqual floatarith floatarith | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2720 | | AtLeastAtMost floatarith floatarith floatarith | 
| 58986 | 2721 | | Conj form form | 
| 2722 | | Disj form form | |
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2723 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2724 | fun interpret_form :: "form \<Rightarrow> real list \<Rightarrow> bool" where | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2725 | "interpret_form (Bound x a b f) vs = (interpret_floatarith x vs \<in> { interpret_floatarith a vs .. interpret_floatarith b vs } \<longrightarrow> interpret_form f vs)" |
 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2726 | "interpret_form (Assign x a f) vs = (interpret_floatarith x vs = interpret_floatarith a vs \<longrightarrow> interpret_form f vs)" | | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2727 | "interpret_form (Less a b) vs = (interpret_floatarith a vs < interpret_floatarith b vs)" | | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2728 | "interpret_form (LessEqual a b) vs = (interpret_floatarith a vs \<le> interpret_floatarith b vs)" | | 
| 58986 | 2729 | "interpret_form (AtLeastAtMost x a b) vs = (interpret_floatarith x vs \<in> { interpret_floatarith a vs .. interpret_floatarith b vs })" |
 | 
| 2730 | "interpret_form (Conj f g) vs \<longleftrightarrow> interpret_form f vs \<and> interpret_form g vs" | | |
| 2731 | "interpret_form (Disj f g) vs \<longleftrightarrow> interpret_form f vs \<or> interpret_form g vs" | |
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2732 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2733 | fun approx_form' and approx_form :: "nat \<Rightarrow> form \<Rightarrow> (float * float) option list \<Rightarrow> nat list \<Rightarrow> bool" where | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2734 | "approx_form' prec f 0 n l u bs ss = approx_form prec f (bs[n := Some (l, u)]) ss" | | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2735 | "approx_form' prec f (Suc s) n l u bs ss = | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2736 | (let m = (l + u) * Float 1 (- 1) | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2737 | in (if approx_form' prec f s n l m bs ss then approx_form' prec f s n m u bs ss else False))" | | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2738 | "approx_form prec (Bound (Var n) a b f) bs ss = | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2739 | (case (approx prec a bs, approx prec b bs) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2740 | of (Some (l, _), Some (_, u)) \<Rightarrow> approx_form' prec f (ss ! n) n l u bs ss | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2741 | | _ \<Rightarrow> False)" | | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2742 | "approx_form prec (Assign (Var n) a f) bs ss = | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2743 | (case (approx prec a bs) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2744 | of (Some (l, u)) \<Rightarrow> approx_form' prec f (ss ! n) n l u bs ss | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2745 | | _ \<Rightarrow> False)" | | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2746 | "approx_form prec (Less a b) bs ss = | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2747 | (case (approx prec a bs, approx prec b bs) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2748 | of (Some (l, u), Some (l', u')) \<Rightarrow> float_plus_up prec u (-l') < 0 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2749 | | _ \<Rightarrow> False)" | | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2750 | "approx_form prec (LessEqual a b) bs ss = | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2751 | (case (approx prec a bs, approx prec b bs) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2752 | of (Some (l, u), Some (l', u')) \<Rightarrow> float_plus_up prec u (-l') \<le> 0 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2753 | | _ \<Rightarrow> False)" | | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2754 | "approx_form prec (AtLeastAtMost x a b) bs ss = | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2755 | (case (approx prec x bs, approx prec a bs, approx prec b bs) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2756 | of (Some (lx, ux), Some (l, u), Some (l', u')) \<Rightarrow> float_plus_up prec u (-lx) \<le> 0 \<and> float_plus_up prec ux (-l') \<le> 0 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2757 | | _ \<Rightarrow> False)" | | 
| 58986 | 2758 | "approx_form prec (Conj a b) bs ss \<longleftrightarrow> approx_form prec a bs ss \<and> approx_form prec b bs ss" | | 
| 2759 | "approx_form prec (Disj a b) bs ss \<longleftrightarrow> approx_form prec a bs ss \<or> approx_form prec b bs ss" | | |
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2760 | "approx_form _ _ _ _ = False" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2761 | |
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2762 | lemma lazy_conj: "(if A then B else False) = (A \<and> B)" by simp | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2763 | |
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2764 | lemma approx_form_approx_form': | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2765 |   assumes "approx_form' prec f s n l u bs ss" and "(x::real) \<in> { l .. u }"
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2766 |   obtains l' u' where "x \<in> { l' .. u' }"
 | 
| 49351 | 2767 | and "approx_form prec f (bs[n := Some (l', u')]) ss" | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2768 | using assms proof (induct s arbitrary: l u) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2769 | case 0 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2770 | from this(1)[of l u] this(2,3) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2771 | show thesis by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2772 | next | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2773 | case (Suc s) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2774 | |
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2775 | let ?m = "(l + u) * Float 1 (- 1)" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2776 | have "real l \<le> ?m" and "?m \<le> real u" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2777 | unfolding less_eq_float_def using Suc.prems by auto | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2778 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2779 |   with `x \<in> { l .. u }`
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2780 |   have "x \<in> { l .. ?m} \<or> x \<in> { ?m .. u }" by auto
 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2781 | thus thesis | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2782 | proof (rule disjE) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2783 |     assume *: "x \<in> { l .. ?m }"
 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2784 | with Suc.hyps[OF _ _ *] Suc.prems | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2785 | show thesis by (simp add: Let_def lazy_conj) | 
| 29805 | 2786 | next | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2787 |     assume *: "x \<in> { ?m .. u }"
 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2788 | with Suc.hyps[OF _ _ *] Suc.prems | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2789 | show thesis by (simp add: Let_def lazy_conj) | 
| 29805 | 2790 | qed | 
| 2791 | qed | |
| 2792 | ||
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2793 | lemma approx_form_aux: | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2794 | assumes "approx_form prec f vs ss" | 
| 49351 | 2795 | and "bounded_by xs vs" | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2796 | shows "interpret_form f xs" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2797 | using assms proof (induct f arbitrary: vs) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2798 | case (Bound x a b f) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2799 | then obtain n | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2800 | where x_eq: "x = Var n" by (cases x) auto | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2801 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2802 | with Bound.prems obtain l u' l' u | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2803 | where l_eq: "Some (l, u') = approx prec a vs" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2804 | and u_eq: "Some (l', u) = approx prec b vs" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2805 | and approx_form': "approx_form' prec f (ss ! n) n l u vs ss" | 
| 37411 
c88c44156083
removed simplifier congruence rule of "prod_case"
 haftmann parents: 
37391diff
changeset | 2806 | by (cases "approx prec a vs", simp) (cases "approx prec b vs", auto) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2807 | |
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2808 |   { assume "xs ! n \<in> { interpret_floatarith a xs .. interpret_floatarith b xs }"
 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2809 | with approx[OF Bound.prems(2) l_eq] and approx[OF Bound.prems(2) u_eq] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2810 |     have "xs ! n \<in> { l .. u}" by auto
 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2811 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2812 | from approx_form_approx_form'[OF approx_form' this] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2813 |     obtain lx ux where bnds: "xs ! n \<in> { lx .. ux }"
 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2814 | and approx_form: "approx_form prec f (vs[n := Some (lx, ux)]) ss" . | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2815 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2816 | from `bounded_by xs vs` bnds | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2817 | have "bounded_by xs (vs[n := Some (lx, ux)])" by (rule bounded_by_update) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2818 | with Bound.hyps[OF approx_form] | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2819 | have "interpret_form f xs" by blast } | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2820 | thus ?case using interpret_form.simps x_eq and interpret_floatarith.simps by simp | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2821 | next | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2822 | case (Assign x a f) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2823 | then obtain n | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2824 | where x_eq: "x = Var n" by (cases x) auto | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2825 | |
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 2826 | with Assign.prems obtain l u | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2827 | where bnd_eq: "Some (l, u) = approx prec a vs" | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2828 | and x_eq: "x = Var n" | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2829 | and approx_form': "approx_form' prec f (ss ! n) n l u vs ss" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2830 | by (cases "approx prec a vs") auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2831 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2832 |   { assume bnds: "xs ! n = interpret_floatarith a xs"
 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2833 | with approx[OF Assign.prems(2) bnd_eq] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2834 |     have "xs ! n \<in> { l .. u}" by auto
 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2835 | from approx_form_approx_form'[OF approx_form' this] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 2836 |     obtain lx ux where bnds: "xs ! n \<in> { lx .. ux }"
 | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2837 | and approx_form: "approx_form prec f (vs[n := Some (lx, ux)]) ss" . | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2838 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2839 | from `bounded_by xs vs` bnds | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2840 | have "bounded_by xs (vs[n := Some (lx, ux)])" by (rule bounded_by_update) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2841 | with Assign.hyps[OF approx_form] | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2842 | have "interpret_form f xs" by blast } | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2843 | thus ?case using interpret_form.simps x_eq and interpret_floatarith.simps by simp | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2844 | next | 
| 29805 | 2845 | case (Less a b) | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2846 | then obtain l u l' u' | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2847 | where l_eq: "Some (l, u) = approx prec a vs" | 
| 49351 | 2848 | and u_eq: "Some (l', u') = approx prec b vs" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2849 | and inequality: "real (float_plus_up prec u (-l')) < 0" | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2850 | by (cases "approx prec a vs", auto, | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2851 | cases "approx prec b vs", auto) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2852 | from le_less_trans[OF float_plus_up inequality] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2853 | approx[OF Less.prems(2) l_eq] approx[OF Less.prems(2) u_eq] | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2854 | show ?case by auto | 
| 29805 | 2855 | next | 
| 2856 | case (LessEqual a b) | |
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2857 | then obtain l u l' u' | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2858 | where l_eq: "Some (l, u) = approx prec a vs" | 
| 49351 | 2859 | and u_eq: "Some (l', u') = approx prec b vs" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2860 | and inequality: "real (float_plus_up prec u (-l')) \<le> 0" | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2861 | by (cases "approx prec a vs", auto, | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2862 | cases "approx prec b vs", auto) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2863 | from order_trans[OF float_plus_up inequality] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2864 | approx[OF LessEqual.prems(2) l_eq] approx[OF LessEqual.prems(2) u_eq] | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2865 | show ?case by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2866 | next | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2867 | case (AtLeastAtMost x a b) | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2868 | then obtain lx ux l u l' u' | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2869 | where x_eq: "Some (lx, ux) = approx prec x vs" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2870 | and l_eq: "Some (l, u) = approx prec a vs" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2871 | and u_eq: "Some (l', u') = approx prec b vs" | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2872 | and inequality: "real (float_plus_up prec u (-lx)) \<le> 0" "real (float_plus_up prec ux (-l')) \<le> 0" | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2873 | by (cases "approx prec x vs", auto, | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2874 | cases "approx prec a vs", auto, | 
| 56073 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 nipkow parents: 
55506diff
changeset | 2875 | cases "approx prec b vs", auto) | 
| 58985 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2876 | from order_trans[OF float_plus_up inequality(1)] order_trans[OF float_plus_up inequality(2)] | 
| 
bf498e0af9e3
truncate intermediate results in horner to improve performance of approximate;
 immler parents: 
58982diff
changeset | 2877 | approx[OF AtLeastAtMost.prems(2) l_eq] approx[OF AtLeastAtMost.prems(2) u_eq] approx[OF AtLeastAtMost.prems(2) x_eq] | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2878 | show ?case by auto | 
| 58986 | 2879 | qed auto | 
| 29805 | 2880 | |
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2881 | lemma approx_form: | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2882 | assumes "n = length xs" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2883 | assumes "approx_form prec f (replicate n None) ss" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2884 | shows "interpret_form f xs" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 2885 | using approx_form_aux[OF _ bounded_by_None] assms by auto | 
| 29805 | 2886 | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2887 | subsection {* Implementing Taylor series expansion *}
 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2888 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2889 | fun isDERIV :: "nat \<Rightarrow> floatarith \<Rightarrow> real list \<Rightarrow> bool" where | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2890 | "isDERIV x (Add a b) vs = (isDERIV x a vs \<and> isDERIV x b vs)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2891 | "isDERIV x (Mult a b) vs = (isDERIV x a vs \<and> isDERIV x b vs)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2892 | "isDERIV x (Minus a) vs = isDERIV x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2893 | "isDERIV x (Inverse a) vs = (isDERIV x a vs \<and> interpret_floatarith a vs \<noteq> 0)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2894 | "isDERIV x (Cos a) vs = isDERIV x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2895 | "isDERIV x (Arctan a) vs = isDERIV x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2896 | "isDERIV x (Min a b) vs = False" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2897 | "isDERIV x (Max a b) vs = False" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2898 | "isDERIV x (Abs a) vs = False" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2899 | "isDERIV x Pi vs = True" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2900 | "isDERIV x (Sqrt a) vs = (isDERIV x a vs \<and> interpret_floatarith a vs > 0)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2901 | "isDERIV x (Exp a) vs = isDERIV x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2902 | "isDERIV x (Ln a) vs = (isDERIV x a vs \<and> interpret_floatarith a vs > 0)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2903 | "isDERIV x (Power a 0) vs = True" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2904 | "isDERIV x (Power a (Suc n)) vs = isDERIV x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2905 | "isDERIV x (Num f) vs = True" | | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2906 | "isDERIV x (Var n) vs = True" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2907 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2908 | fun DERIV_floatarith :: "nat \<Rightarrow> floatarith \<Rightarrow> floatarith" where | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2909 | "DERIV_floatarith x (Add a b) = Add (DERIV_floatarith x a) (DERIV_floatarith x b)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2910 | "DERIV_floatarith x (Mult a b) = Add (Mult a (DERIV_floatarith x b)) (Mult (DERIV_floatarith x a) b)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2911 | "DERIV_floatarith x (Minus a) = Minus (DERIV_floatarith x a)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2912 | "DERIV_floatarith x (Inverse a) = Minus (Mult (DERIV_floatarith x a) (Inverse (Power a 2)))" | | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 2913 | "DERIV_floatarith x (Cos a) = Minus (Mult (Cos (Add (Mult Pi (Num (Float 1 (- 1)))) (Minus a))) (DERIV_floatarith x a))" | | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2914 | "DERIV_floatarith x (Arctan a) = Mult (Inverse (Add (Num 1) (Power a 2))) (DERIV_floatarith x a)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2915 | "DERIV_floatarith x (Min a b) = Num 0" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2916 | "DERIV_floatarith x (Max a b) = Num 0" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2917 | "DERIV_floatarith x (Abs a) = Num 0" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2918 | "DERIV_floatarith x Pi = Num 0" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2919 | "DERIV_floatarith x (Sqrt a) = (Mult (Inverse (Mult (Sqrt a) (Num 2))) (DERIV_floatarith x a))" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2920 | "DERIV_floatarith x (Exp a) = Mult (Exp a) (DERIV_floatarith x a)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2921 | "DERIV_floatarith x (Ln a) = Mult (Inverse a) (DERIV_floatarith x a)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2922 | "DERIV_floatarith x (Power a 0) = Num 0" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2923 | "DERIV_floatarith x (Power a (Suc n)) = Mult (Num (Float (int (Suc n)) 0)) (Mult (Power a n) (DERIV_floatarith x a))" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2924 | "DERIV_floatarith x (Num f) = Num 0" | | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2925 | "DERIV_floatarith x (Var n) = (if x = n then Num 1 else Num 0)" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2926 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2927 | lemma DERIV_floatarith: | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2928 | assumes "n < length vs" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2929 | assumes isDERIV: "isDERIV n f (vs[n := x])" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2930 | shows "DERIV (\<lambda> x'. interpret_floatarith f (vs[n := x'])) x :> | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2931 | interpret_floatarith (DERIV_floatarith n f) (vs[n := x])" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2932 | (is "DERIV (?i f) x :> _") | 
| 49351 | 2933 | using isDERIV | 
| 2934 | proof (induct f arbitrary: x) | |
| 2935 | case (Inverse a) | |
| 2936 | thus ?case | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56195diff
changeset | 2937 | by (auto intro!: derivative_eq_intros simp add: algebra_simps power2_eq_square) | 
| 49351 | 2938 | next | 
| 2939 | case (Cos a) | |
| 2940 | thus ?case | |
| 56382 | 2941 | by (auto intro!: derivative_eq_intros | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2942 | simp del: interpret_floatarith.simps(5) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2943 | simp add: interpret_floatarith_sin interpret_floatarith.simps(5)[of a]) | 
| 49351 | 2944 | next | 
| 2945 | case (Power a n) | |
| 2946 | thus ?case | |
| 56382 | 2947 | by (cases n) (auto intro!: derivative_eq_intros simp del: power_Suc simp add: real_of_nat_def) | 
| 49351 | 2948 | next | 
| 2949 | case (Ln a) | |
| 56382 | 2950 | thus ?case by (auto intro!: derivative_eq_intros simp add: divide_inverse) | 
| 49351 | 2951 | next | 
| 2952 | case (Var i) | |
| 2953 | thus ?case using `n < length vs` by auto | |
| 56381 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 hoelzl parents: 
56195diff
changeset | 2954 | qed (auto intro!: derivative_eq_intros) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2955 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2956 | declare approx.simps[simp del] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2957 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2958 | fun isDERIV_approx :: "nat \<Rightarrow> nat \<Rightarrow> floatarith \<Rightarrow> (float * float) option list \<Rightarrow> bool" where | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2959 | "isDERIV_approx prec x (Add a b) vs = (isDERIV_approx prec x a vs \<and> isDERIV_approx prec x b vs)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2960 | "isDERIV_approx prec x (Mult a b) vs = (isDERIV_approx prec x a vs \<and> isDERIV_approx prec x b vs)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2961 | "isDERIV_approx prec x (Minus a) vs = isDERIV_approx prec x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2962 | "isDERIV_approx prec x (Inverse a) vs = | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2963 | (isDERIV_approx prec x a vs \<and> (case approx prec a vs of Some (l, u) \<Rightarrow> 0 < l \<or> u < 0 | None \<Rightarrow> False))" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2964 | "isDERIV_approx prec x (Cos a) vs = isDERIV_approx prec x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2965 | "isDERIV_approx prec x (Arctan a) vs = isDERIV_approx prec x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2966 | "isDERIV_approx prec x (Min a b) vs = False" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2967 | "isDERIV_approx prec x (Max a b) vs = False" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2968 | "isDERIV_approx prec x (Abs a) vs = False" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2969 | "isDERIV_approx prec x Pi vs = True" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2970 | "isDERIV_approx prec x (Sqrt a) vs = | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2971 | (isDERIV_approx prec x a vs \<and> (case approx prec a vs of Some (l, u) \<Rightarrow> 0 < l | None \<Rightarrow> False))" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2972 | "isDERIV_approx prec x (Exp a) vs = isDERIV_approx prec x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2973 | "isDERIV_approx prec x (Ln a) vs = | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2974 | (isDERIV_approx prec x a vs \<and> (case approx prec a vs of Some (l, u) \<Rightarrow> 0 < l | None \<Rightarrow> False))" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2975 | "isDERIV_approx prec x (Power a 0) vs = True" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2976 | "isDERIV_approx prec x (Power a (Suc n)) vs = isDERIV_approx prec x a vs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2977 | "isDERIV_approx prec x (Num f) vs = True" | | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 2978 | "isDERIV_approx prec x (Var n) vs = True" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2979 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2980 | lemma isDERIV_approx: | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2981 | assumes "bounded_by xs vs" | 
| 49351 | 2982 | and isDERIV_approx: "isDERIV_approx prec x f vs" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2983 | shows "isDERIV x f xs" | 
| 49351 | 2984 | using isDERIV_approx | 
| 2985 | proof (induct f) | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2986 | case (Inverse a) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2987 | then obtain l u where approx_Some: "Some (l, u) = approx prec a vs" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2988 | and *: "0 < l \<or> u < 0" | 
| 49351 | 2989 | by (cases "approx prec a vs") auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2990 | with approx[OF `bounded_by xs vs` approx_Some] | 
| 47600 | 2991 | have "interpret_floatarith a xs \<noteq> 0" by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2992 | thus ?case using Inverse by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2993 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2994 | case (Ln a) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2995 | then obtain l u where approx_Some: "Some (l, u) = approx prec a vs" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2996 | and *: "0 < l" | 
| 49351 | 2997 | by (cases "approx prec a vs") auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 2998 | with approx[OF `bounded_by xs vs` approx_Some] | 
| 47600 | 2999 | have "0 < interpret_floatarith a xs" by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3000 | thus ?case using Ln by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3001 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3002 | case (Sqrt a) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3003 | then obtain l u where approx_Some: "Some (l, u) = approx prec a vs" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3004 | and *: "0 < l" | 
| 49351 | 3005 | by (cases "approx prec a vs") auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3006 | with approx[OF `bounded_by xs vs` approx_Some] | 
| 47600 | 3007 | have "0 < interpret_floatarith a xs" by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3008 | thus ?case using Sqrt by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3009 | next | 
| 49351 | 3010 | case (Power a n) thus ?case by (cases n) auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3011 | qed auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3012 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3013 | lemma bounded_by_update_var: | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3014 | assumes "bounded_by xs vs" and "vs ! i = Some (l, u)" | 
| 49351 | 3015 |     and bnd: "x \<in> { real l .. real u }"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3016 | shows "bounded_by (xs[i := x]) vs" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3017 | proof (cases "i < length xs") | 
| 49351 | 3018 | case False | 
| 3019 | thus ?thesis using `bounded_by xs vs` by auto | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3020 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3021 | let ?xs = "xs[i := x]" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3022 | case True hence "i < length ?xs" by auto | 
| 49351 | 3023 |   {
 | 
| 3024 | fix j | |
| 3025 | assume "j < length vs" | |
| 3026 |     have "case vs ! j of None \<Rightarrow> True | Some (l, u) \<Rightarrow> ?xs ! j \<in> { real l .. real u }"
 | |
| 3027 | proof (cases "vs ! j") | |
| 3028 | case (Some b) | |
| 3029 | thus ?thesis | |
| 3030 | proof (cases "i = j") | |
| 3031 | case True | |
| 3032 | thus ?thesis using `vs ! i = Some (l, u)` Some and bnd `i < length ?xs` | |
| 3033 | by auto | |
| 3034 | next | |
| 3035 | case False | |
| 3036 | thus ?thesis | |
| 3037 | using `bounded_by xs vs`[THEN bounded_byE, OF `j < length vs`] Some by auto | |
| 3038 | qed | |
| 3039 | qed auto | |
| 3040 | } | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3041 | thus ?thesis unfolding bounded_by_def by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3042 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3043 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3044 | lemma isDERIV_approx': | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3045 | assumes "bounded_by xs vs" | 
| 49351 | 3046 |     and vs_x: "vs ! x = Some (l, u)" and X_in: "X \<in> { real l .. real u }"
 | 
| 3047 | and approx: "isDERIV_approx prec x f vs" | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3048 | shows "isDERIV x f (xs[x := X])" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3049 | proof - | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3050 | note bounded_by_update_var[OF `bounded_by xs vs` vs_x X_in] approx | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3051 | thus ?thesis by (rule isDERIV_approx) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3052 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3053 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3054 | lemma DERIV_approx: | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3055 | assumes "n < length xs" and bnd: "bounded_by xs vs" | 
| 49351 | 3056 | and isD: "isDERIV_approx prec n f vs" | 
| 3057 | and app: "Some (l, u) = approx prec (DERIV_floatarith n f) vs" (is "_ = approx _ ?D _") | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3058 | shows "\<exists>(x::real). l \<le> x \<and> x \<le> u \<and> | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3059 | DERIV (\<lambda> x. interpret_floatarith f (xs[n := x])) (xs!n) :> x" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3060 | (is "\<exists> x. _ \<and> _ \<and> DERIV (?i f) _ :> _") | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3061 | proof (rule exI[of _ "?i ?D (xs!n)"], rule conjI[OF _ conjI]) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3062 | let "?i f x" = "interpret_floatarith f (xs[n := x])" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3063 | from approx[OF bnd app] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3064 | show "l \<le> ?i ?D (xs!n)" and "?i ?D (xs!n) \<le> u" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3065 | using `n < length xs` by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3066 | from DERIV_floatarith[OF `n < length xs`, of f "xs!n"] isDERIV_approx[OF bnd isD] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3067 | show "DERIV (?i f) (xs!n) :> (?i ?D (xs!n))" by simp | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3068 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3069 | |
| 49351 | 3070 | fun lift_bin :: "(float * float) option \<Rightarrow> | 
| 3071 | (float * float) option \<Rightarrow> (float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> float \<Rightarrow> (float * float) option) \<Rightarrow> | |
| 3072 | (float * float) option" where | |
| 3073 | "lift_bin (Some (l1, u1)) (Some (l2, u2)) f = f l1 u1 l2 u2" | |
| 3074 | | "lift_bin a b f = None" | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3075 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3076 | lemma lift_bin: | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3077 | assumes lift_bin_Some: "Some (l, u) = lift_bin a b f" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3078 | obtains l1 u1 l2 u2 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3079 | where "a = Some (l1, u1)" | 
| 49351 | 3080 | and "b = Some (l2, u2)" | 
| 3081 | and "f l1 u1 l2 u2 = Some (l, u)" | |
| 3082 | using assms by (cases a, simp, cases b, simp, auto) | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3083 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3084 | fun approx_tse where | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3085 | "approx_tse prec n 0 c k f bs = approx prec f bs" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3086 | "approx_tse prec n (Suc s) c k f bs = | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3087 | (if isDERIV_approx prec n f bs then | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3088 | lift_bin (approx prec f (bs[n := Some (c,c)])) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3089 | (approx_tse prec n s c (Suc k) (DERIV_floatarith n f) bs) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3090 | (\<lambda> l1 u1 l2 u2. approx prec | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3091 | (Add (Var 0) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3092 | (Mult (Inverse (Num (Float (int k) 0))) | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3093 | (Mult (Add (Var (Suc (Suc 0))) (Minus (Num c))) | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3094 | (Var (Suc 0))))) [Some (l1, u1), Some (l2, u2), bs!n]) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3095 | else approx prec f bs)" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3096 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3097 | lemma bounded_by_Cons: | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3098 | assumes bnd: "bounded_by xs vs" | 
| 49351 | 3099 |     and x: "x \<in> { real l .. real u }"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3100 | shows "bounded_by (x#xs) ((Some (l, u))#vs)" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3101 | proof - | 
| 49351 | 3102 |   {
 | 
| 3103 | fix i assume *: "i < length ((Some (l, u))#vs)" | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3104 |     have "case ((Some (l,u))#vs) ! i of Some (l, u) \<Rightarrow> (x#xs)!i \<in> { real l .. real u } | None \<Rightarrow> True"
 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3105 | proof (cases i) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3106 | case 0 with x show ?thesis by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3107 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3108 | case (Suc i) with * have "i < length vs" by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3109 | from bnd[THEN bounded_byE, OF this] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3110 | show ?thesis unfolding Suc nth_Cons_Suc . | 
| 49351 | 3111 | qed | 
| 3112 | } | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3113 | thus ?thesis by (auto simp add: bounded_by_def) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3114 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3115 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3116 | lemma approx_tse_generic: | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3117 | assumes "bounded_by xs vs" | 
| 49351 | 3118 | and bnd_c: "bounded_by (xs[x := c]) vs" and "x < length vs" and "x < length xs" | 
| 3119 | and bnd_x: "vs ! x = Some (lx, ux)" | |
| 3120 | and ate: "Some (l, u) = approx_tse prec x s c k f vs" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3121 |   shows "\<exists> n. (\<forall> m < n. \<forall> (z::real) \<in> {lx .. ux}.
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3122 | DERIV (\<lambda> y. interpret_floatarith ((DERIV_floatarith x ^^ m) f) (xs[x := y])) z :> | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3123 | (interpret_floatarith ((DERIV_floatarith x ^^ (Suc m)) f) (xs[x := z]))) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3124 |    \<and> (\<forall> (t::real) \<in> {lx .. ux}.  (\<Sum> i = 0..<n. inverse (real (\<Prod> j \<in> {k..<k+i}. j)) *
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3125 | interpret_floatarith ((DERIV_floatarith x ^^ i) f) (xs[x := c]) * | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3126 | (xs!x - c)^i) + | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3127 |       inverse (real (\<Prod> j \<in> {k..<k+n}. j)) *
 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3128 | interpret_floatarith ((DERIV_floatarith x ^^ n) f) (xs[x := t]) * | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3129 |       (xs!x - c)^n \<in> {l .. u})" (is "\<exists> n. ?taylor f k l u n")
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3130 | using ate proof (induct s arbitrary: k f l u) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3131 | case 0 | 
| 49351 | 3132 |   {
 | 
| 3133 |     fix t::real assume "t \<in> {lx .. ux}"
 | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3134 | note bounded_by_update_var[OF `bounded_by xs vs` bnd_x this] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3135 | from approx[OF this 0[unfolded approx_tse.simps]] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3136 |     have "(interpret_floatarith f (xs[x := t])) \<in> {l .. u}"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3137 | by (auto simp add: algebra_simps) | 
| 49351 | 3138 | } | 
| 3139 | thus ?case by (auto intro!: exI[of _ 0]) | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3140 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3141 | case (Suc s) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3142 | show ?case | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3143 | proof (cases "isDERIV_approx prec x f vs") | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3144 | case False | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3145 | note ap = Suc.prems[unfolded approx_tse.simps if_not_P[OF False]] | 
| 49351 | 3146 |     {
 | 
| 3147 |       fix t::real assume "t \<in> {lx .. ux}"
 | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3148 | note bounded_by_update_var[OF `bounded_by xs vs` bnd_x this] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3149 | from approx[OF this ap] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3150 |       have "(interpret_floatarith f (xs[x := t])) \<in> {l .. u}"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3151 | by (auto simp add: algebra_simps) | 
| 49351 | 3152 | } | 
| 3153 | thus ?thesis by (auto intro!: exI[of _ 0]) | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3154 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3155 | case True | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3156 | with Suc.prems | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3157 | obtain l1 u1 l2 u2 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3158 | where a: "Some (l1, u1) = approx prec f (vs[x := Some (c,c)])" | 
| 49351 | 3159 | and ate: "Some (l2, u2) = approx_tse prec x s c (Suc k) (DERIV_floatarith x f) vs" | 
| 3160 | and final: "Some (l, u) = approx prec | |
| 3161 | (Add (Var 0) | |
| 3162 | (Mult (Inverse (Num (Float (int k) 0))) | |
| 3163 | (Mult (Add (Var (Suc (Suc 0))) (Minus (Num c))) | |
| 3164 | (Var (Suc 0))))) [Some (l1, u1), Some (l2, u2), vs!x]" | |
| 56073 
29e308b56d23
enhanced simplifier solver for preconditions of rewrite rule, can now deal with conjunctions
 nipkow parents: 
55506diff
changeset | 3165 | by (auto elim!: lift_bin) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3166 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3167 | from bnd_c `x < length xs` | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3168 | have bnd: "bounded_by (xs[x:=c]) (vs[x:= Some (c,c)])" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3169 | by (auto intro!: bounded_by_update) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3170 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3171 | from approx[OF this a] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3172 |     have f_c: "interpret_floatarith ((DERIV_floatarith x ^^ 0) f) (xs[x := c]) \<in> { l1 .. u1 }"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3173 | (is "?f 0 (real c) \<in> _") | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3174 | by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3175 | |
| 49351 | 3176 |     {
 | 
| 3177 | fix f :: "'a \<Rightarrow> 'a" fix n :: nat fix x :: 'a | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3178 | have "(f ^^ Suc n) x = (f ^^ n) (f x)" | 
| 49351 | 3179 | by (induct n) auto | 
| 3180 | } | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3181 | note funpow_Suc = this[symmetric] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3182 | from Suc.hyps[OF ate, unfolded this] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3183 | obtain n | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3184 |       where DERIV_hyp: "\<And> m z. \<lbrakk> m < n ; (z::real) \<in> { lx .. ux } \<rbrakk> \<Longrightarrow> DERIV (?f (Suc m)) z :> ?f (Suc (Suc m)) z"
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3185 |       and hyp: "\<forall> t \<in> {real lx .. real ux}. (\<Sum> i = 0..<n. inverse (real (\<Prod> j \<in> {Suc k..<Suc k + i}. j)) * ?f (Suc i) c * (xs!x - c)^i) +
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3186 |            inverse (real (\<Prod> j \<in> {Suc k..<Suc k + n}. j)) * ?f (Suc n) t * (xs!x - c)^n \<in> {l2 .. u2}"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3187 | (is "\<forall> t \<in> _. ?X (Suc k) f n t \<in> _") | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3188 | by blast | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3189 | |
| 49351 | 3190 |     {
 | 
| 3191 | fix m and z::real | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3192 |       assume "m < Suc n" and bnd_z: "z \<in> { lx .. ux }"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3193 | have "DERIV (?f m) z :> ?f (Suc m) z" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3194 | proof (cases m) | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3195 | case 0 | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3196 | with DERIV_floatarith[OF `x < length xs` isDERIV_approx'[OF `bounded_by xs vs` bnd_x bnd_z True]] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3197 | show ?thesis by simp | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3198 | next | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3199 | case (Suc m') | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3200 | hence "m' < n" using `m < Suc n` by auto | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3201 | from DERIV_hyp[OF this bnd_z] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3202 | show ?thesis using Suc by simp | 
| 49351 | 3203 | qed | 
| 3204 | } note DERIV = this | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3205 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3206 |     have "\<And> k i. k < i \<Longrightarrow> {k ..< i} = insert k {Suc k ..< i}" by auto
 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3207 |     hence setprod_head_Suc: "\<And> k i. \<Prod> {k ..< k + Suc i} = k * \<Prod> {Suc k ..< Suc k + i}" by auto
 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3208 |     have setsum_move0: "\<And> k F. setsum F {0..<Suc k} = F 0 + setsum (\<lambda> k. F (Suc k)) {0..<k}"
 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3209 | unfolding setsum_shift_bounds_Suc_ivl[symmetric] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3210 | unfolding setsum_head_upt_Suc[OF zero_less_Suc] .. | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3211 | def C \<equiv> "xs!x - c" | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3212 | |
| 49351 | 3213 |     {
 | 
| 3214 |       fix t::real assume t: "t \<in> {lx .. ux}"
 | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3215 | hence "bounded_by [xs!x] [vs!x]" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3216 | using `bounded_by xs vs`[THEN bounded_byE, OF `x < length vs`] | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3217 | by (cases "vs!x", auto simp add: bounded_by_def) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3218 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3219 | with hyp[THEN bspec, OF t] f_c | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3220 | have "bounded_by [?f 0 c, ?X (Suc k) f n t, xs!x] [Some (l1, u1), Some (l2, u2), vs!x]" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3221 | by (auto intro!: bounded_by_Cons) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3222 | from approx[OF this final, unfolded atLeastAtMost_iff[symmetric]] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3223 |       have "?X (Suc k) f n t * (xs!x - real c) * inverse k + ?f 0 c \<in> {l .. u}"
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3224 | by (auto simp add: algebra_simps) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3225 | also have "?X (Suc k) f n t * (xs!x - real c) * inverse (real k) + ?f 0 c = | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3226 |                (\<Sum> i = 0..<Suc n. inverse (real (\<Prod> j \<in> {k..<k+i}. j)) * ?f i c * (xs!x - c)^i) +
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3227 |                inverse (real (\<Prod> j \<in> {k..<k+Suc n}. j)) * ?f (Suc n) t * (xs!x - c)^Suc n" (is "_ = ?T")
 | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3228 | unfolding funpow_Suc C_def[symmetric] setsum_move0 setprod_head_Suc | 
| 35082 | 3229 | by (auto simp add: algebra_simps) | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57418diff
changeset | 3230 | (simp only: mult.left_commute [of _ "inverse (real k)"] setsum_right_distrib [symmetric]) | 
| 49351 | 3231 |       finally have "?T \<in> {l .. u}" .
 | 
| 3232 | } | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3233 | thus ?thesis using DERIV by blast | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3234 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3235 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3236 | |
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 3237 | lemma setprod_fact: "real (\<Prod> {1..<1 + k}) = fact (k :: nat)"
 | 
| 59751 
916c0f6c83e3
New material for complex sin, cos, tan, Ln, also some reorganisation
 paulson <lp15@cam.ac.uk> parents: 
59741diff
changeset | 3238 | using fact_altdef_nat Suc_eq_plus1_left atLeastLessThanSuc_atLeastAtMost real_fact_nat | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 3239 | by presburger | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3240 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3241 | lemma approx_tse: | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3242 | assumes "bounded_by xs vs" | 
| 49351 | 3243 |     and bnd_x: "vs ! x = Some (lx, ux)" and bnd_c: "real c \<in> {lx .. ux}"
 | 
| 3244 | and "x < length vs" and "x < length xs" | |
| 3245 | and ate: "Some (l, u) = approx_tse prec x s c 1 f vs" | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3246 |   shows "interpret_floatarith f xs \<in> { l .. u }"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3247 | proof - | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3248 | def F \<equiv> "\<lambda> n z. interpret_floatarith ((DERIV_floatarith x ^^ n) f) (xs[x := z])" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3249 | hence F0: "F 0 = (\<lambda> z. interpret_floatarith f (xs[x := z]))" by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3250 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3251 | hence "bounded_by (xs[x := c]) vs" and "x < length vs" "x < length xs" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3252 | using `bounded_by xs vs` bnd_x bnd_c `x < length vs` `x < length xs` | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3253 | by (auto intro!: bounded_by_update_var) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3254 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3255 | from approx_tse_generic[OF `bounded_by xs vs` this bnd_x ate] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3256 | obtain n | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3257 | where DERIV: "\<forall> m z. m < n \<and> real lx \<le> z \<and> z \<le> real ux \<longrightarrow> DERIV (F m) z :> F (Suc m) z" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3258 |     and hyp: "\<And> (t::real). t \<in> {lx .. ux} \<Longrightarrow>
 | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 3259 | (\<Sum> j = 0..<n. inverse(fact j) * F j c * (xs!x - c)^j) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 3260 | inverse ((fact n)) * F n t * (xs!x - c)^n | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3261 |              \<in> {l .. u}" (is "\<And> t. _ \<Longrightarrow> ?taylor t \<in> _")
 | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 3262 | unfolding F_def atLeastAtMost_iff[symmetric] setprod_fact | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 3263 | by blast | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3264 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3265 |   have bnd_xs: "xs ! x \<in> { lx .. ux }"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3266 | using `bounded_by xs vs`[THEN bounded_byE, OF `x < length vs`] bnd_x by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3267 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3268 | show ?thesis | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3269 | proof (cases n) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3270 | case 0 thus ?thesis using hyp[OF bnd_xs] unfolding F_def by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3271 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3272 | case (Suc n') | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3273 | show ?thesis | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3274 | proof (cases "xs ! x = c") | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3275 | case True | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3276 | from True[symmetric] hyp[OF bnd_xs] Suc show ?thesis | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3277 | unfolding F_def Suc setsum_head_upt_Suc[OF zero_less_Suc] setsum_shift_bounds_Suc_ivl by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3278 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3279 | case False | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3280 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3281 | have "lx \<le> real c" "real c \<le> ux" "lx \<le> xs!x" "xs!x \<le> ux" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3282 | using Suc bnd_c `bounded_by xs vs`[THEN bounded_byE, OF `x < length vs`] bnd_x by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3283 | from Taylor.taylor[OF zero_less_Suc, of F, OF F0 DERIV[unfolded Suc] this False] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3284 | obtain t::real where t_bnd: "if xs ! x < c then xs ! x < t \<and> t < c else c < t \<and> t < xs ! x" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3285 | and fl_eq: "interpret_floatarith f (xs[x := xs ! x]) = | 
| 59730 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 3286 | (\<Sum>m = 0..<Suc n'. F m c / (fact m) * (xs ! x - c) ^ m) + | 
| 
b7c394c7a619
The factorial function, "fact", now has type "nat => 'a"
 paulson <lp15@cam.ac.uk> parents: 
59658diff
changeset | 3287 | F (Suc n') t / (fact (Suc n')) * (xs ! x - c) ^ Suc n'" | 
| 56195 | 3288 | unfolding atLeast0LessThan by blast | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3289 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3290 |       from t_bnd bnd_xs bnd_c have *: "t \<in> {lx .. ux}"
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3291 | by (cases "xs ! x < c", auto) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3292 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3293 | have "interpret_floatarith f (xs[x := xs ! x]) = ?taylor t" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3294 | unfolding fl_eq Suc by (auto simp add: algebra_simps divide_inverse) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3295 |       also have "\<dots> \<in> {l .. u}" using * by (rule hyp)
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3296 | finally show ?thesis by simp | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3297 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3298 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3299 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3300 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3301 | fun approx_tse_form' where | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3302 | "approx_tse_form' prec t f 0 l u cmp = | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 3303 | (case approx_tse prec 0 t ((l + u) * Float 1 (- 1)) 1 f [Some (l, u)] | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3304 | of Some (l, u) \<Rightarrow> cmp l u | None \<Rightarrow> False)" | | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3305 | "approx_tse_form' prec t f (Suc s) l u cmp = | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 3306 | (let m = (l + u) * Float 1 (- 1) | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3307 | in (if approx_tse_form' prec t f s l m cmp then | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3308 | approx_tse_form' prec t f s m u cmp else False))" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3309 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3310 | lemma approx_tse_form': | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3311 | fixes x :: real | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3312 |   assumes "approx_tse_form' prec t f s l u cmp" and "x \<in> {l .. u}"
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3313 |   shows "\<exists> l' u' ly uy. x \<in> { l' .. u' } \<and> real l \<le> l' \<and> u' \<le> real u \<and> cmp ly uy \<and>
 | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 3314 | approx_tse prec 0 t ((l' + u') * Float 1 (- 1)) 1 f [Some (l', u')] = Some (ly, uy)" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3315 | using assms proof (induct s arbitrary: l u) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3316 | case 0 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3317 | then obtain ly uy | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 3318 | where *: "approx_tse prec 0 t ((l + u) * Float 1 (- 1)) 1 f [Some (l, u)] = Some (ly, uy)" | 
| 55413 
a8e96847523c
adapted theories to '{case,rec}_{list,option}' names
 blanchet parents: 
54782diff
changeset | 3319 | and **: "cmp ly uy" by (auto elim!: case_optionE) | 
| 46545 | 3320 | with 0 show ?case by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3321 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3322 | case (Suc s) | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 3323 | let ?m = "(l + u) * Float 1 (- 1)" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3324 | from Suc.prems | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3325 | have l: "approx_tse_form' prec t f s l ?m cmp" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3326 | and u: "approx_tse_form' prec t f s ?m u cmp" | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3327 | by (auto simp add: Let_def lazy_conj) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3328 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3329 | have m_l: "real l \<le> ?m" and m_u: "?m \<le> real u" | 
| 47599 
400b158f1589
replace the float datatype by a type with unique representation
 hoelzl parents: 
47108diff
changeset | 3330 | unfolding less_eq_float_def using Suc.prems by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3331 | |
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3332 |   with `x \<in> { l .. u }`
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3333 |   have "x \<in> { l .. ?m} \<or> x \<in> { ?m .. u }" by auto
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3334 | thus ?case | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3335 | proof (rule disjE) | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3336 |     assume "x \<in> { l .. ?m}"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3337 | from Suc.hyps[OF l this] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3338 | obtain l' u' ly uy | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3339 |       where "x \<in> { l' .. u' } \<and> real l \<le> l' \<and> real u' \<le> ?m \<and> cmp ly uy \<and>
 | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 3340 | approx_tse prec 0 t ((l' + u') * Float 1 (- 1)) 1 f [Some (l', u')] = Some (ly, uy)" by blast | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3341 | with m_u show ?thesis by (auto intro!: exI) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3342 | next | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3343 |     assume "x \<in> { ?m .. u }"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3344 | from Suc.hyps[OF u this] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3345 | obtain l' u' ly uy | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3346 |       where "x \<in> { l' .. u' } \<and> ?m \<le> real l' \<and> u' \<le> real u \<and> cmp ly uy \<and>
 | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 3347 | approx_tse prec 0 t ((l' + u') * Float 1 (- 1)) 1 f [Some (l', u')] = Some (ly, uy)" by blast | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3348 | with m_u show ?thesis by (auto intro!: exI) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3349 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3350 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3351 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3352 | lemma approx_tse_form'_less: | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3353 | fixes x :: real | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3354 | assumes tse: "approx_tse_form' prec t (Add a (Minus b)) s l u (\<lambda> l u. 0 < l)" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3355 |   and x: "x \<in> {l .. u}"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3356 | shows "interpret_floatarith b [x] < interpret_floatarith a [x]" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3357 | proof - | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3358 | from approx_tse_form'[OF tse x] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3359 | obtain l' u' ly uy | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3360 |     where x': "x \<in> { l' .. u' }" and "l \<le> real l'"
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3361 | and "real u' \<le> u" and "0 < ly" | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 3362 | and tse: "approx_tse prec 0 t ((l' + u') * Float 1 (- 1)) 1 (Add a (Minus b)) [Some (l', u')] = Some (ly, uy)" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3363 | by blast | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3364 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3365 | hence "bounded_by [x] [Some (l', u')]" by (auto simp add: bounded_by_def) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3366 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3367 | from approx_tse[OF this _ _ _ _ tse[symmetric], of l' u'] x' | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3368 | have "ly \<le> interpret_floatarith a [x] - interpret_floatarith b [x]" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 3369 | by auto | 
| 47600 | 3370 | from order_less_le_trans[OF _ this, of 0] `0 < ly` | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3371 | show ?thesis by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3372 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3373 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3374 | lemma approx_tse_form'_le: | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3375 | fixes x :: real | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3376 | assumes tse: "approx_tse_form' prec t (Add a (Minus b)) s l u (\<lambda> l u. 0 \<le> l)" | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3377 |   and x: "x \<in> {l .. u}"
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3378 | shows "interpret_floatarith b [x] \<le> interpret_floatarith a [x]" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3379 | proof - | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3380 | from approx_tse_form'[OF tse x] | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3381 | obtain l' u' ly uy | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3382 |     where x': "x \<in> { l' .. u' }" and "l \<le> real l'"
 | 
| 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3383 | and "real u' \<le> u" and "0 \<le> ly" | 
| 58410 
6d46ad54a2ab
explicit separation of signed and unsigned numerals using existing lexical categories num and xnum
 haftmann parents: 
58310diff
changeset | 3384 | and tse: "approx_tse prec 0 t ((l' + u') * Float 1 (- 1)) 1 (Add a (Minus b)) [Some (l', u')] = Some (ly, uy)" | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3385 | by blast | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3386 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3387 | hence "bounded_by [x] [Some (l', u')]" by (auto simp add: bounded_by_def) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3388 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3389 | from approx_tse[OF this _ _ _ _ tse[symmetric], of l' u'] x' | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3390 | have "ly \<le> interpret_floatarith a [x] - interpret_floatarith b [x]" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
53077diff
changeset | 3391 | by auto | 
| 47600 | 3392 | from order_trans[OF _ this, of 0] `0 \<le> ly` | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3393 | show ?thesis by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3394 | qed | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3395 | |
| 58986 | 3396 | fun approx_tse_concl where | 
| 3397 | "approx_tse_concl prec t (Less lf rt) s l u l' u' \<longleftrightarrow> | |
| 3398 | approx_tse_form' prec t (Add rt (Minus lf)) s l u' (\<lambda> l u. 0 < l)" | | |
| 3399 | "approx_tse_concl prec t (LessEqual lf rt) s l u l' u' \<longleftrightarrow> | |
| 3400 | approx_tse_form' prec t (Add rt (Minus lf)) s l u' (\<lambda> l u. 0 \<le> l)" | | |
| 3401 | "approx_tse_concl prec t (AtLeastAtMost x lf rt) s l u l' u' \<longleftrightarrow> | |
| 3402 | (if approx_tse_form' prec t (Add x (Minus lf)) s l u' (\<lambda> l u. 0 \<le> l) then | |
| 3403 | approx_tse_form' prec t (Add rt (Minus x)) s l u' (\<lambda> l u. 0 \<le> l) else False)" | | |
| 3404 | "approx_tse_concl prec t (Conj f g) s l u l' u' \<longleftrightarrow> | |
| 3405 | approx_tse_concl prec t f s l u l' u' \<and> approx_tse_concl prec t g s l u l' u'" | | |
| 3406 | "approx_tse_concl prec t (Disj f g) s l u l' u' \<longleftrightarrow> | |
| 3407 | approx_tse_concl prec t f s l u l' u' \<or> approx_tse_concl prec t g s l u l' u'" | | |
| 3408 | "approx_tse_concl _ _ _ _ _ _ _ _ \<longleftrightarrow> False" | |
| 3409 | ||
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3410 | definition | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3411 | "approx_tse_form prec t s f = | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3412 | (case f | 
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3413 | of (Bound x a b f) \<Rightarrow> x = Var 0 \<and> | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3414 | (case (approx prec a [None], approx prec b [None]) | 
| 58986 | 3415 | of (Some (l, u), Some (l', u')) \<Rightarrow> approx_tse_concl prec t f s l u l' u' | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3416 | | _ \<Rightarrow> False) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3417 | | _ \<Rightarrow> False)" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3418 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3419 | lemma approx_tse_form: | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3420 | assumes "approx_tse_form prec t s f" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3421 | shows "interpret_form f [x]" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3422 | proof (cases f) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3423 | case (Bound i a b f') note f_def = this | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3424 | with assms obtain l u l' u' | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3425 | where a: "approx prec a [None] = Some (l, u)" | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3426 | and b: "approx prec b [None] = Some (l', u')" | 
| 55413 
a8e96847523c
adapted theories to '{case,rec}_{list,option}' names
 blanchet parents: 
54782diff
changeset | 3427 | unfolding approx_tse_form_def by (auto elim!: case_optionE) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3428 | |
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3429 | from Bound assms have "i = Var 0" unfolding approx_tse_form_def by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3430 | hence i: "interpret_floatarith i [x] = x" by auto | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3431 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3432 |   { let "?f z" = "interpret_floatarith z [x]"
 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3433 |     assume "?f i \<in> { ?f a .. ?f b }"
 | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3434 | with approx[OF _ a[symmetric], of "[x]"] approx[OF _ b[symmetric], of "[x]"] | 
| 40881 
e84f82418e09
Use coercions in Approximation (by Dmitriy Traytel).
 hoelzl parents: 
39556diff
changeset | 3435 |     have bnd: "x \<in> { l .. u'}" unfolding bounded_by_def i by auto
 | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3436 | |
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3437 | have "interpret_form f' [x]" | 
| 58986 | 3438 | using assms[unfolded Bound] | 
| 3439 | proof (induct f') | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3440 | case (Less lf rt) | 
| 58986 | 3441 | with a b | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3442 | have "approx_tse_form' prec t (Add rt (Minus lf)) s l u' (\<lambda> l u. 0 < l)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3443 | unfolding approx_tse_form_def by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3444 | from approx_tse_form'_less[OF this bnd] | 
| 58986 | 3445 | show ?case using Less by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3446 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3447 | case (LessEqual lf rt) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3448 | with Bound a b assms | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3449 | have "approx_tse_form' prec t (Add rt (Minus lf)) s l u' (\<lambda> l u. 0 \<le> l)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3450 | unfolding approx_tse_form_def by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3451 | from approx_tse_form'_le[OF this bnd] | 
| 58986 | 3452 | show ?case using LessEqual by auto | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3453 | next | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3454 | case (AtLeastAtMost x lf rt) | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3455 | with Bound a b assms | 
| 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3456 | have "approx_tse_form' prec t (Add rt (Minus x)) s l u' (\<lambda> l u. 0 \<le> l)" | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32920diff
changeset | 3457 | and "approx_tse_form' prec t (Add x (Minus lf)) s l u' (\<lambda> l u. 0 \<le> l)" | 
| 58986 | 3458 | unfolding approx_tse_form_def lazy_conj by (auto split: split_if_asm) | 
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3459 | from approx_tse_form'_le[OF this(1) bnd] approx_tse_form'_le[OF this(2) bnd] | 
| 58986 | 3460 | show ?case using AtLeastAtMost by auto | 
| 3461 | qed (auto simp: f_def approx_tse_form_def elim!: case_optionE) | |
| 3462 | } thus ?thesis unfolding f_def by auto | |
| 3463 | qed (insert assms, auto simp add: approx_tse_form_def) | |
| 31863 
e391eee8bf14
Implemented taylor series expansion for approximation
 hoelzl parents: 
31811diff
changeset | 3464 | |
| 32919 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3465 | text {* @{term approx_form_eval} is only used for the {\tt value}-command. *}
 | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3466 | |
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3467 | fun approx_form_eval :: "nat \<Rightarrow> form \<Rightarrow> (float * float) option list \<Rightarrow> (float * float) option list" where | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3468 | "approx_form_eval prec (Bound (Var n) a b f) bs = | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3469 | (case (approx prec a bs, approx prec b bs) | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3470 | of (Some (l, _), Some (_, u)) \<Rightarrow> approx_form_eval prec f (bs[n := Some (l, u)]) | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3471 | | _ \<Rightarrow> bs)" | | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3472 | "approx_form_eval prec (Assign (Var n) a f) bs = | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3473 | (case (approx prec a bs) | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3474 | of (Some (l, u)) \<Rightarrow> approx_form_eval prec f (bs[n := Some (l, u)]) | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3475 | | _ \<Rightarrow> bs)" | | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3476 | "approx_form_eval prec (Less a b) bs = bs @ [approx prec a bs, approx prec b bs]" | | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3477 | "approx_form_eval prec (LessEqual a b) bs = bs @ [approx prec a bs, approx prec b bs]" | | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3478 | "approx_form_eval prec (AtLeastAtMost x a b) bs = | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3479 | bs @ [approx prec x bs, approx prec a bs, approx prec b bs]" | | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3480 | "approx_form_eval _ _ bs = bs" | 
| 
37adfa07b54b
approximation now fails earlier when using interval splitting; value [approximate] now supports bounded variables; renamed Var -> Atom for better readability
 hoelzl parents: 
32650diff
changeset | 3481 | |
| 29805 | 3482 | subsection {* Implement proof method \texttt{approximation} *}
 | 
| 3483 | ||
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 3484 | lemmas interpret_form_equations = interpret_form.simps interpret_floatarith.simps interpret_floatarith_num | 
| 60017 
b785d6d06430
Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
 paulson <lp15@cam.ac.uk> parents: 
59850diff
changeset | 3485 | interpret_floatarith_divide interpret_floatarith_diff interpret_floatarith_tan interpret_floatarith_log | 
| 31467 
f7d2aa438bee
Approximation: Implemented argument reduction for cosine. Sinus is now implemented in terms of cosine. Sqrt computes on the entire real numbers
 hoelzl parents: 
31148diff
changeset | 3486 | interpret_floatarith_sin | 
| 29805 | 3487 | |
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3488 | oracle approximation_oracle = {* fn (thy, t) =>
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3489 | let | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3490 |   fun bad t = error ("Bad term: " ^ Syntax.string_of_term_global thy t);
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3491 | |
| 38716 
3c3b4ad683d5
approximation_oracle: actually match true/false in ML, not arbitrary values;
 wenzelm parents: 
38558diff
changeset | 3492 |   fun term_of_bool true = @{term True}
 | 
| 
3c3b4ad683d5
approximation_oracle: actually match true/false in ML, not arbitrary values;
 wenzelm parents: 
38558diff
changeset | 3493 |     | term_of_bool false = @{term False};
 | 
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3494 | |
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 3495 |   val mk_int = HOLogic.mk_number @{typ int} o @{code integer_of_int};
 | 
| 58988 | 3496 |   fun dest_int (@{term int_of_integer} $ j) = @{code int_of_integer} (snd (HOLogic.dest_number j))
 | 
| 3497 |     | dest_int i = @{code int_of_integer} (snd (HOLogic.dest_number i));
 | |
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 3498 | |
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3499 |   fun term_of_float (@{code Float} (k, l)) =
 | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 3500 |     @{term Float} $ mk_int k $ mk_int l;
 | 
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3501 | |
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3502 |   fun term_of_float_float_option NONE = @{term "None :: (float \<times> float) option"}
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3503 |     | term_of_float_float_option (SOME ff) = @{term "Some :: float \<times> float \<Rightarrow> _"}
 | 
| 59058 
a78612c67ec0
renamed "pairself" to "apply2", in accordance to @{apply 2};
 wenzelm parents: 
58988diff
changeset | 3504 | $ HOLogic.mk_prod (apply2 term_of_float ff); | 
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3505 | |
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3506 | val term_of_float_float_option_list = | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3507 |     HOLogic.mk_list @{typ "(float \<times> float) option"} o map term_of_float_float_option;
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3508 | |
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 3509 |   fun nat_of_term t = @{code nat_of_integer}
 | 
| 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 3510 | (HOLogic.dest_nat t handle TERM _ => snd (HOLogic.dest_number t)); | 
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3511 | |
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3512 |   fun float_of_term (@{term Float} $ k $ l) =
 | 
| 51143 
0a2371e7ced3
two target language numeral types: integer and natural, as replacement for code_numeral;
 haftmann parents: 
49962diff
changeset | 3513 |         @{code Float} (dest_int k, dest_int l)
 | 
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3514 | | float_of_term t = bad t; | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3515 | |
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3516 |   fun floatarith_of_term (@{term Add} $ a $ b) = @{code Add} (floatarith_of_term a, floatarith_of_term b)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3517 |     | floatarith_of_term (@{term Minus} $ a) = @{code Minus} (floatarith_of_term a)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3518 |     | floatarith_of_term (@{term Mult} $ a $ b) = @{code Mult} (floatarith_of_term a, floatarith_of_term b)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3519 |     | floatarith_of_term (@{term Inverse} $ a) = @{code Inverse} (floatarith_of_term a)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3520 |     | floatarith_of_term (@{term Cos} $ a) = @{code Cos} (floatarith_of_term a)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3521 |     | floatarith_of_term (@{term Arctan} $ a) = @{code Arctan} (floatarith_of_term a)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3522 |     | floatarith_of_term (@{term Abs} $ a) = @{code Abs} (floatarith_of_term a)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3523 |     | floatarith_of_term (@{term Max} $ a $ b) = @{code Max} (floatarith_of_term a, floatarith_of_term b)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3524 |     | floatarith_of_term (@{term Min} $ a $ b) = @{code Min} (floatarith_of_term a, floatarith_of_term b)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3525 |     | floatarith_of_term @{term Pi} = @{code Pi}
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3526 |     | floatarith_of_term (@{term Sqrt} $ a) = @{code Sqrt} (floatarith_of_term a)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3527 |     | floatarith_of_term (@{term Exp} $ a) = @{code Exp} (floatarith_of_term a)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3528 |     | floatarith_of_term (@{term Ln} $ a) = @{code Ln} (floatarith_of_term a)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3529 |     | floatarith_of_term (@{term Power} $ a $ n) =
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3530 |         @{code Power} (floatarith_of_term a, nat_of_term n)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3531 |     | floatarith_of_term (@{term Var} $ n) = @{code Var} (nat_of_term n)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3532 |     | floatarith_of_term (@{term Num} $ m) = @{code Num} (float_of_term m)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3533 | | floatarith_of_term t = bad t; | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3534 | |
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3535 |   fun form_of_term (@{term Bound} $ a $ b $ c $ p) = @{code Bound}
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3536 | (floatarith_of_term a, floatarith_of_term b, floatarith_of_term c, form_of_term p) | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3537 |     | form_of_term (@{term Assign} $ a $ b $ p) = @{code Assign}
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3538 | (floatarith_of_term a, floatarith_of_term b, form_of_term p) | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3539 |     | form_of_term (@{term Less} $ a $ b) = @{code Less}
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3540 | (floatarith_of_term a, floatarith_of_term b) | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3541 |     | form_of_term (@{term LessEqual} $ a $ b) = @{code LessEqual}
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3542 | (floatarith_of_term a, floatarith_of_term b) | 
| 58986 | 3543 |     | form_of_term (@{term Conj} $ a $ b) = @{code Conj}
 | 
| 3544 | (form_of_term a, form_of_term b) | |
| 3545 |     | form_of_term (@{term Disj} $ a $ b) = @{code Disj}
 | |
| 3546 | (form_of_term a, form_of_term b) | |
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3547 |     | form_of_term (@{term AtLeastAtMost} $ a $ b $ c) = @{code AtLeastAtMost}
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3548 | (floatarith_of_term a, floatarith_of_term b, floatarith_of_term c) | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3549 | | form_of_term t = bad t; | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3550 | |
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3551 |   fun float_float_option_of_term @{term "None :: (float \<times> float) option"} = NONE
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3552 |     | float_float_option_of_term (@{term "Some :: float \<times> float \<Rightarrow> _"} $ ff) =
 | 
| 59058 
a78612c67ec0
renamed "pairself" to "apply2", in accordance to @{apply 2};
 wenzelm parents: 
58988diff
changeset | 3553 | SOME (apply2 float_of_term (HOLogic.dest_prod ff)) | 
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3554 |     | float_float_option_of_term (@{term approx'} $ n $ a $ ffs) = @{code approx'}
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3555 | (nat_of_term n) (floatarith_of_term a) (float_float_option_list_of_term ffs) | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3556 | | float_float_option_of_term t = bad t | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3557 | and float_float_option_list_of_term | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3558 |         (@{term "replicate :: _ \<Rightarrow> (float \<times> float) option \<Rightarrow> _"} $ n $ @{term "None :: (float \<times> float) option"}) =
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3559 |           @{code replicate} (nat_of_term n) NONE
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3560 |     | float_float_option_list_of_term (@{term approx_form_eval} $ n $ p $ ffs) =
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3561 |         @{code approx_form_eval} (nat_of_term n) (form_of_term p) (float_float_option_list_of_term ffs)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3562 | | float_float_option_list_of_term t = map float_float_option_of_term | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3563 | (HOLogic.dest_list t); | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3564 | |
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3565 | val nat_list_of_term = map nat_of_term o HOLogic.dest_list ; | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3566 | |
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3567 |   fun bool_of_term (@{term approx_form} $ n $ p $ ffs $ ms) = @{code approx_form}
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3568 | (nat_of_term n) (form_of_term p) (float_float_option_list_of_term ffs) (nat_list_of_term ms) | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3569 |     | bool_of_term (@{term approx_tse_form} $ m $ n $ q $ p) =
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3570 |         @{code approx_tse_form} (nat_of_term m) (nat_of_term n) (nat_of_term q) (form_of_term p)
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3571 | | bool_of_term t = bad t; | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3572 | |
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3573 | fun eval t = case fastype_of t | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3574 |    of @{typ bool} =>
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3575 | (term_of_bool o bool_of_term) t | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3576 |     | @{typ "(float \<times> float) option"} =>
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3577 | (term_of_float_float_option o float_float_option_of_term) t | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3578 |     | @{typ "(float \<times> float) option list"} =>
 | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3579 | (term_of_float_float_option_list o float_float_option_list_of_term) t | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3580 | | _ => bad t; | 
| 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3581 | |
| 52131 | 3582 | val normalize = eval o Envir.beta_norm o Envir.eta_long []; | 
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3583 | |
| 59621 
291934bac95e
Thm.cterm_of and Thm.ctyp_of operate on local context;
 wenzelm parents: 
59582diff
changeset | 3584 | in Thm.global_cterm_of thy (Logic.mk_equals (t, normalize t)) end | 
| 36985 
41c5d4002f60
spelt out normalizer explicitly -- avoid dynamic reference to code generator configuration; avoid using old Codegen.eval_term
 haftmann parents: 
36960diff
changeset | 3585 | *} | 
| 31099 
03314c427b34
optimized Approximation by precompiling approx_inequality
 hoelzl parents: 
31098diff
changeset | 3586 | |
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 3587 | lemma intervalE: "a \<le> x \<and> x \<le> b \<Longrightarrow> \<lbrakk> x \<in> { a .. b } \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P"
 | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 3588 | by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 3589 | |
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 3590 | lemma meta_eqE: "x \<equiv> a \<Longrightarrow> \<lbrakk> x = a \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 3591 | by auto | 
| 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 3592 | |
| 59850 | 3593 | ML_file "approximation.ML" | 
| 3594 | ||
| 30549 | 3595 | method_setup approximation = {*
 | 
| 59850 | 3596 | let val free = Args.context -- Args.term >> (fn (_, Free (n, _)) => n | (ctxt, t) => | 
| 3597 |                    error ("Bad free variable: " ^ Syntax.string_of_term ctxt t));
 | |
| 3598 | in | |
| 3599 | Scan.lift Parse.nat | |
| 3600 | -- | |
| 3601 | Scan.optional (Scan.lift (Args.$$$ "splitting" |-- Args.colon) | |
| 3602 | |-- Parse.and_list' (free --| Scan.lift (Args.$$$ "=") -- Scan.lift Parse.nat)) [] | |
| 3603 | -- | |
| 3604 | Scan.option (Scan.lift (Args.$$$ "taylor" |-- Args.colon) | |
| 3605 | |-- (free |-- Scan.lift (Args.$$$ "=") |-- Scan.lift Parse.nat)) | |
| 3606 | >> | |
| 3607 | (fn ((prec, splitting), taylor) => fn ctxt => | |
| 3608 | SIMPLE_METHOD' (Approximation.approximation_tac prec splitting taylor ctxt)) | |
| 3609 | end | |
| 55506 | 3610 | *} "real number approximation" | 
| 31811 
64dea9a15031
Improved computation of bounds and implemented interval splitting for 'approximation'.
 hoelzl parents: 
31810diff
changeset | 3611 | |
| 58988 | 3612 | |
| 3613 | section "Quickcheck Generator" | |
| 3614 | ||
| 3615 | ML_file "approximation_generator.ML" | |
| 3616 | ||
| 3617 | setup "Approximation_Generator.setup" | |
| 3618 | ||
| 29805 | 3619 | end |