src/HOL/Deriv.thy
author wenzelm
Tue, 11 May 2021 20:19:07 +0200
changeset 73675 6c56f2ebe157
parent 72445 2c2de074832e
child 73795 8893e0ed263a
permissions -rw-r--r--
guess package more directly;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     1
(*  Title:      HOL/Deriv.thy
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, 1998
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     3
    Author:     Brian Huffman
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     4
    Author:     Lawrence C Paulson, 2004
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     5
    Author:     Benjamin Porter, 2005
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     6
*)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     7
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     8
section \<open>Differentiation\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     9
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    10
theory Deriv
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    11
  imports Limits
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    12
begin
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    13
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    14
subsection \<open>Frechet derivative\<close>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    15
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    16
definition has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    17
    ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool"  (infix "(has'_derivative)" 50)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    18
  where "(f has_derivative f') F \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    19
    bounded_linear f' \<and>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    20
    ((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) \<longlongrightarrow> 0) F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    21
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    22
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    23
  Usually the filter \<^term>\<open>F\<close> is \<^term>\<open>at x within s\<close>.  \<^term>\<open>(f has_derivative D)
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    24
  (at x within s)\<close> means: \<^term>\<open>D\<close> is the derivative of function \<^term>\<open>f\<close> at point \<^term>\<open>x\<close>
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    25
  within the set \<^term>\<open>s\<close>. Where \<^term>\<open>s\<close> is used to express left or right sided derivatives. In
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    26
  most cases \<^term>\<open>s\<close> is either a variable or \<^term>\<open>UNIV\<close>.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    27
\<close>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    28
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    29
text \<open>These are the only cases we'll care about, probably.\<close>
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    30
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    31
lemma has_derivative_within: "(f has_derivative f') (at x within s) \<longleftrightarrow>
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    32
    bounded_linear f' \<and> ((\<lambda>y. (1 / norm(y - x)) *\<^sub>R (f y - (f x + f' (y - x)))) \<longlongrightarrow> 0) (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    33
  unfolding has_derivative_def tendsto_iff
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    34
  by (subst eventually_Lim_ident_at) (auto simp add: field_simps)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    35
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    36
lemma has_derivative_eq_rhs: "(f has_derivative f') F \<Longrightarrow> f' = g' \<Longrightarrow> (f has_derivative g') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    37
  by simp
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    38
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    39
definition has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    40
    (infix "(has'_field'_derivative)" 50)
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
    41
  where "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative (*) D) F"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    42
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    43
lemma DERIV_cong: "(f has_field_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_field_derivative Y) F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    44
  by simp
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    45
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    46
definition has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    47
    (infix "has'_vector'_derivative" 50)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    48
  where "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    49
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    50
lemma has_vector_derivative_eq_rhs:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    51
  "(f has_vector_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_vector_derivative Y) F"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    52
  by simp
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    53
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57514
diff changeset
    54
named_theorems derivative_intros "structural introduction rules for derivatives"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    55
setup \<open>
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    56
  let
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57514
diff changeset
    57
    val eq_thms = @{thms has_derivative_eq_rhs DERIV_cong has_vector_derivative_eq_rhs}
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    58
    fun eq_rule thm = get_first (try (fn eq_thm => eq_thm OF [thm])) eq_thms
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    59
  in
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    60
    Global_Theory.add_thms_dynamic
67149
e61557884799 prefer control symbol antiquotations;
wenzelm
parents: 64272
diff changeset
    61
      (\<^binding>\<open>derivative_eq_intros\<close>,
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57514
diff changeset
    62
        fn context =>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    63
          Named_Theorems.get (Context.proof_of context) \<^named_theorems>\<open>derivative_intros\<close>
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57514
diff changeset
    64
          |> map_filter eq_rule)
69216
1a52baa70aed clarified ML_Context.expression: it is a closed expression, not a let-declaration -- thus source positions are more accurate (amending d8849cfad60f, 162a4c2e97bc);
wenzelm
parents: 69111
diff changeset
    65
  end
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    66
\<close>
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    67
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    68
text \<open>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    69
  The following syntax is only used as a legacy syntax.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    70
\<close>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    71
abbreviation (input)
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    72
  FDERIV :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow>  ('a \<Rightarrow> 'b) \<Rightarrow> bool"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    73
  ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    74
  where "FDERIV f x :> f' \<equiv> (f has_derivative f') (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    75
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    76
lemma has_derivative_bounded_linear: "(f has_derivative f') F \<Longrightarrow> bounded_linear f'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    77
  by (simp add: has_derivative_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    78
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56289
diff changeset
    79
lemma has_derivative_linear: "(f has_derivative f') F \<Longrightarrow> linear f'"
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56289
diff changeset
    80
  using bounded_linear.linear[OF has_derivative_bounded_linear] .
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56289
diff changeset
    81
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    82
lemma has_derivative_ident[derivative_intros, simp]: "((\<lambda>x. x) has_derivative (\<lambda>x. x)) F"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
    83
  by (simp add: has_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    84
63469
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63299
diff changeset
    85
lemma has_derivative_id [derivative_intros, simp]: "(id has_derivative id) (at a)"
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63299
diff changeset
    86
  by (metis eq_id_iff has_derivative_ident)
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63299
diff changeset
    87
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    88
lemma has_derivative_const[derivative_intros, simp]: "((\<lambda>x. c) has_derivative (\<lambda>x. 0)) F"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
    89
  by (simp add: has_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    90
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    91
lemma (in bounded_linear) bounded_linear: "bounded_linear f" ..
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    92
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    93
lemma (in bounded_linear) has_derivative:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    94
  "(g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f (g x)) has_derivative (\<lambda>x. f (g' x))) F"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63079
diff changeset
    95
  unfolding has_derivative_def
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    96
  by (auto simp add: bounded_linear_compose [OF bounded_linear] scaleR diff dest: tendsto)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    97
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    98
lemmas has_derivative_scaleR_right [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    99
  bounded_linear.has_derivative [OF bounded_linear_scaleR_right]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   100
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   101
lemmas has_derivative_scaleR_left [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   102
  bounded_linear.has_derivative [OF bounded_linear_scaleR_left]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   103
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   104
lemmas has_derivative_mult_right [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   105
  bounded_linear.has_derivative [OF bounded_linear_mult_right]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   106
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   107
lemmas has_derivative_mult_left [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   108
  bounded_linear.has_derivative [OF bounded_linear_mult_left]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   109
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   110
lemmas has_derivative_of_real[derivative_intros, simp] = 
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   111
  bounded_linear.has_derivative[OF bounded_linear_of_real] 
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   112
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   113
lemma has_derivative_add[simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   114
  assumes f: "(f has_derivative f') F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   115
    and g: "(g has_derivative g') F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   116
  shows "((\<lambda>x. f x + g x) has_derivative (\<lambda>x. f' x + g' x)) F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   117
  unfolding has_derivative_def
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   118
proof safe
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   119
  let ?x = "Lim F (\<lambda>x. x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   120
  let ?D = "\<lambda>f f' y. ((f y - f ?x) - f' (y - ?x)) /\<^sub>R norm (y - ?x)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   121
  have "((\<lambda>x. ?D f f' x + ?D g g' x) \<longlongrightarrow> (0 + 0)) F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   122
    using f g by (intro tendsto_add) (auto simp: has_derivative_def)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   123
  then show "(?D (\<lambda>x. f x + g x) (\<lambda>x. f' x + g' x) \<longlongrightarrow> 0) F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   124
    by (simp add: field_simps scaleR_add_right scaleR_diff_right)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   125
qed (blast intro: bounded_linear_add f g has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   126
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   127
lemma has_derivative_sum[simp, derivative_intros]:
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   128
  "(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) F) \<Longrightarrow>
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   129
    ((\<lambda>x. \<Sum>i\<in>I. f i x) has_derivative (\<lambda>x. \<Sum>i\<in>I. f' i x)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   130
  by (induct I rule: infinite_finite_induct) simp_all
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   131
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   132
lemma has_derivative_minus[simp, derivative_intros]:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   133
  "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. - f x) has_derivative (\<lambda>x. - f' x)) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   134
  using has_derivative_scaleR_right[of f f' F "-1"] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   135
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   136
lemma has_derivative_diff[simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   137
  "(f has_derivative f') F \<Longrightarrow> (g has_derivative g') F \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   138
    ((\<lambda>x. f x - g x) has_derivative (\<lambda>x. f' x - g' x)) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   139
  by (simp only: diff_conv_add_uminus has_derivative_add has_derivative_minus)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   140
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   141
lemma has_derivative_at_within:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   142
  "(f has_derivative f') (at x within s) \<longleftrightarrow>
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   143
    (bounded_linear f' \<and> ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s))"
72219
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 71837
diff changeset
   144
proof (cases "at x within s = bot")
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 71837
diff changeset
   145
  case True
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 71837
diff changeset
   146
  then show ?thesis
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 71837
diff changeset
   147
    by (metis (no_types, lifting) has_derivative_within tendsto_bot)
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 71837
diff changeset
   148
next
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 71837
diff changeset
   149
  case False
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 71837
diff changeset
   150
  then show ?thesis
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 71837
diff changeset
   151
  by (simp add: Lim_ident_at has_derivative_def)
0f38c96a0a74 tidying up some theorem statements
paulson <lp15@cam.ac.uk>
parents: 71837
diff changeset
   152
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   153
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   154
lemma has_derivative_iff_norm:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   155
  "(f has_derivative f') (at x within s) \<longleftrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   156
    bounded_linear f' \<and> ((\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   157
  using tendsto_norm_zero_iff[of _ "at x within s", where 'b="'b", symmetric]
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   158
  by (simp add: has_derivative_at_within divide_inverse ac_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   159
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   160
lemma has_derivative_at:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   161
  "(f has_derivative D) (at x) \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   162
    (bounded_linear D \<and> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) \<midarrow>0\<rightarrow> 0)"
72245
cbe7aa1c2bdc tidying and de-applying
paulson <lp15@cam.ac.uk>
parents: 72219
diff changeset
   163
  by (simp add: has_derivative_iff_norm LIM_offset_zero_iff)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   164
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   165
lemma field_has_derivative_at:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   166
  fixes x :: "'a::real_normed_field"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   167
  shows "(f has_derivative (*) D) (at x) \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D" (is "?lhs = ?rhs")
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   168
proof -
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   169
  have "?lhs = (\<lambda>h. norm (f (x + h) - f x - D * h) / norm h) \<midarrow>0 \<rightarrow> 0"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   170
    by (simp add: bounded_linear_mult_right has_derivative_at)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   171
  also have "... = (\<lambda>y. norm ((f (x + y) - f x - D * y) / y)) \<midarrow>0\<rightarrow> 0"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   172
    by (simp cong: LIM_cong flip: nonzero_norm_divide)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   173
  also have "... = (\<lambda>y. norm ((f (x + y) - f x) / y - D / y * y)) \<midarrow>0\<rightarrow> 0"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   174
    by (simp only: diff_divide_distrib times_divide_eq_left [symmetric])
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   175
  also have "... = ?rhs"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   176
    by (simp add: tendsto_norm_zero_iff LIM_zero_iff cong: LIM_cong)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   177
  finally show ?thesis .
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   178
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   179
70999
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   180
lemma has_derivative_iff_Ex:
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   181
  "(f has_derivative f') (at x) \<longleftrightarrow>
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   182
    bounded_linear f' \<and> (\<exists>e. (\<forall>h. f (x+h) = f x + f' h + e h) \<and> ((\<lambda>h. norm (e h) / norm h) \<longlongrightarrow> 0) (at 0))"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   183
  unfolding has_derivative_at by force
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   184
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   185
lemma has_derivative_at_within_iff_Ex:
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   186
  assumes "x \<in> S" "open S"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   187
  shows "(f has_derivative f') (at x within S) \<longleftrightarrow>
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   188
         bounded_linear f' \<and> (\<exists>e. (\<forall>h. x+h \<in> S \<longrightarrow> f (x+h) = f x + f' h + e h) \<and> ((\<lambda>h. norm (e h) / norm h) \<longlongrightarrow> 0) (at 0))"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   189
    (is "?lhs = ?rhs")
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   190
proof safe
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   191
  show "bounded_linear f'"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   192
    if "(f has_derivative f') (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   193
    using has_derivative_bounded_linear that by blast
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   194
  show "\<exists>e. (\<forall>h. x + h \<in> S \<longrightarrow> f (x + h) = f x + f' h + e h) \<and> (\<lambda>h. norm (e h) / norm h) \<midarrow>0\<rightarrow> 0"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   195
    if "(f has_derivative f') (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   196
    by (metis (full_types) assms that has_derivative_iff_Ex at_within_open)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   197
  show "(f has_derivative f') (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   198
    if "bounded_linear f'"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   199
      and eq [rule_format]: "\<forall>h. x + h \<in> S \<longrightarrow> f (x + h) = f x + f' h + e h"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   200
      and 0: "(\<lambda>h. norm (e (h::'a)::'b) / norm h) \<midarrow>0\<rightarrow> 0"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   201
    for e 
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   202
  proof -
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   203
    have 1: "f y - f x = f' (y-x) + e (y-x)" if "y \<in> S" for y
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   204
      using eq [of "y-x"] that by simp
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   205
    have 2: "((\<lambda>y. norm (e (y-x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   206
      by (simp add: "0" assms tendsto_offset_zero_iff)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   207
    have "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   208
      by (simp add: Lim_cong_within 1 2)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   209
    then show ?thesis
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   210
      by (simp add: has_derivative_iff_norm \<open>bounded_linear f'\<close>)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   211
  qed
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   212
qed
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   213
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   214
lemma has_derivativeI:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   215
  "bounded_linear f' \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   216
    ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   217
    (f has_derivative f') (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   218
  by (simp add: has_derivative_at_within)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   219
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   220
lemma has_derivativeI_sandwich:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   221
  assumes e: "0 < e"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   222
    and bounded: "bounded_linear f'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   223
    and sandwich: "(\<And>y. y \<in> s \<Longrightarrow> y \<noteq> x \<Longrightarrow> dist y x < e \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   224
      norm ((f y - f x) - f' (y - x)) / norm (y - x) \<le> H y)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   225
    and "(H \<longlongrightarrow> 0) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   226
  shows "(f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   227
  unfolding has_derivative_iff_norm
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   228
proof safe
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   229
  show "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   230
  proof (rule tendsto_sandwich[where f="\<lambda>x. 0"])
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   231
    show "(H \<longlongrightarrow> 0) (at x within s)" by fact
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   232
    show "eventually (\<lambda>n. norm (f n - f x - f' (n - x)) / norm (n - x) \<le> H n) (at x within s)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   233
      unfolding eventually_at using e sandwich by auto
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
   234
  qed (auto simp: le_divide_eq)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   235
qed fact
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   236
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   237
lemma has_derivative_subset:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   238
  "(f has_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> (f has_derivative f') (at x within t)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   239
  by (auto simp add: has_derivative_iff_norm intro: tendsto_within_subset)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   240
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   241
lemma has_derivative_within_singleton_iff:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   242
  "(f has_derivative g) (at x within {x}) \<longleftrightarrow> bounded_linear g"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   243
  by (auto intro!: has_derivativeI_sandwich[where e=1] has_derivative_bounded_linear)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   244
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   245
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   246
subsubsection \<open>Limit transformation for derivatives\<close>
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   247
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   248
lemma has_derivative_transform_within:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   249
  assumes "(f has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   250
    and "0 < d"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   251
    and "x \<in> s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   252
    and "\<And>x'. \<lbrakk>x' \<in> s; dist x' x < d\<rbrakk> \<Longrightarrow> f x' = g x'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   253
  shows "(g has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   254
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   255
  unfolding has_derivative_within
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   256
  by (force simp add: intro: Lim_transform_within)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   257
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   258
lemma has_derivative_transform_within_open:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   259
  assumes "(f has_derivative f') (at x within t)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   260
    and "open s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   261
    and "x \<in> s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   262
    and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   263
  shows "(g has_derivative f') (at x within t)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   264
  using assms unfolding has_derivative_within
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   265
  by (force simp add: intro: Lim_transform_within_open)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   266
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   267
lemma has_derivative_transform:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   268
  assumes "x \<in> s" "\<And>x. x \<in> s \<Longrightarrow> g x = f x"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   269
  assumes "(f has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   270
  shows "(g has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   271
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   272
  by (intro has_derivative_transform_within[OF _ zero_less_one, where g=g]) auto
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   273
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   274
lemma has_derivative_transform_eventually:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   275
  assumes "(f has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   276
    "(\<forall>\<^sub>F x' in at x within s. f x' = g x')"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   277
  assumes "f x = g x" "x \<in> s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   278
  shows "(g has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   279
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   280
proof -
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   281
  from assms(2,3) obtain d where "d > 0" "\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   282
    by (force simp: eventually_at)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   283
  from has_derivative_transform_within[OF assms(1) this(1) assms(4) this(2)]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   284
  show ?thesis .
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   285
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   286
71029
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   287
lemma has_field_derivative_transform_within:
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   288
  assumes "(f has_field_derivative f') (at a within S)"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   289
    and "0 < d"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   290
    and "a \<in> S"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   291
    and "\<And>x. \<lbrakk>x \<in> S; dist x a < d\<rbrakk> \<Longrightarrow> f x = g x"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   292
  shows "(g has_field_derivative f') (at a within S)"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   293
  using assms unfolding has_field_derivative_def
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   294
  by (metis has_derivative_transform_within)
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   295
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   296
lemma has_field_derivative_transform_within_open:
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   297
  assumes "(f has_field_derivative f') (at a)"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   298
    and "open S" "a \<in> S"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   299
    and "\<And>x. x \<in> S \<Longrightarrow> f x = g x"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   300
  shows "(g has_field_derivative f') (at a)"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   301
  using assms unfolding has_field_derivative_def
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   302
  by (metis has_derivative_transform_within_open)
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   303
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   304
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   305
subsection \<open>Continuity\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   306
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   307
lemma has_derivative_continuous:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   308
  assumes f: "(f has_derivative f') (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   309
  shows "continuous (at x within s) f"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   310
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   311
  from f interpret F: bounded_linear f'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   312
    by (rule has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   313
  note F.tendsto[tendsto_intros]
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   314
  let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   315
  have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x))"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   316
    using f unfolding has_derivative_iff_norm by blast
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   317
  then have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x) * norm (y - x))" (is ?m)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   318
    by (rule tendsto_mult_zero) (auto intro!: tendsto_eq_intros)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   319
  also have "?m \<longleftrightarrow> ?L (\<lambda>y. norm ((f y - f x) - f' (y - x)))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   320
    by (intro filterlim_cong) (simp_all add: eventually_at_filter)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   321
  finally have "?L (\<lambda>y. (f y - f x) - f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   322
    by (rule tendsto_norm_zero_cancel)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   323
  then have "?L (\<lambda>y. ((f y - f x) - f' (y - x)) + f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   324
    by (rule tendsto_eq_intros) (auto intro!: tendsto_eq_intros simp: F.zero)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   325
  then have "?L (\<lambda>y. f y - f x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   326
    by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   327
  from tendsto_add[OF this tendsto_const, of "f x"] show ?thesis
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   328
    by (simp add: continuous_within)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   329
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   330
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   331
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   332
subsection \<open>Composition\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   333
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   334
lemma tendsto_at_iff_tendsto_nhds_within:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   335
  "f x = y \<Longrightarrow> (f \<longlongrightarrow> y) (at x within s) \<longleftrightarrow> (f \<longlongrightarrow> y) (inf (nhds x) (principal s))"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   336
  unfolding tendsto_def eventually_inf_principal eventually_at_filter
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   337
  by (intro ext all_cong imp_cong) (auto elim!: eventually_mono)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   338
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   339
lemma has_derivative_in_compose:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   340
  assumes f: "(f has_derivative f') (at x within s)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   341
    and g: "(g has_derivative g') (at (f x) within (f`s))"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   342
  shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   343
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   344
  from f interpret F: bounded_linear f'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   345
    by (rule has_derivative_bounded_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   346
  from g interpret G: bounded_linear g'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   347
    by (rule has_derivative_bounded_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   348
  from F.bounded obtain kF where kF: "\<And>x. norm (f' x) \<le> norm x * kF"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   349
    by fast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   350
  from G.bounded obtain kG where kG: "\<And>x. norm (g' x) \<le> norm x * kG"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   351
    by fast
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   352
  note G.tendsto[tendsto_intros]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   353
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   354
  let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   355
  let ?D = "\<lambda>f f' x y. (f y - f x) - f' (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   356
  let ?N = "\<lambda>f f' x y. norm (?D f f' x y) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   357
  let ?gf = "\<lambda>x. g (f x)" and ?gf' = "\<lambda>x. g' (f' x)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
   358
  define Nf where "Nf = ?N f f' x"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
   359
  define Ng where [abs_def]: "Ng y = ?N g g' (f x) (f y)" for y
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   360
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   361
  show ?thesis
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   362
  proof (rule has_derivativeI_sandwich[of 1])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   363
    show "bounded_linear (\<lambda>x. g' (f' x))"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   364
      using f g by (blast intro: bounded_linear_compose has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   365
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   366
    fix y :: 'a
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   367
    assume neq: "y \<noteq> x"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   368
    have "?N ?gf ?gf' x y = norm (g' (?D f f' x y) + ?D g g' (f x) (f y)) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   369
      by (simp add: G.diff G.add field_simps)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   370
    also have "\<dots> \<le> norm (g' (?D f f' x y)) / norm (y - x) + Ng y * (norm (f y - f x) / norm (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   371
      by (simp add: add_divide_distrib[symmetric] divide_right_mono norm_triangle_ineq G.zero Ng_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   372
    also have "\<dots> \<le> Nf y * kG + Ng y * (Nf y + kF)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   373
    proof (intro add_mono mult_left_mono)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   374
      have "norm (f y - f x) = norm (?D f f' x y + f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   375
        by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   376
      also have "\<dots> \<le> norm (?D f f' x y) + norm (f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   377
        by (rule norm_triangle_ineq)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   378
      also have "\<dots> \<le> norm (?D f f' x y) + norm (y - x) * kF"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   379
        using kF by (intro add_mono) simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   380
      finally show "norm (f y - f x) / norm (y - x) \<le> Nf y + kF"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   381
        by (simp add: neq Nf_def field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   382
    qed (use kG in \<open>simp_all add: Ng_def Nf_def neq zero_le_divide_iff field_simps\<close>)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   383
    finally show "?N ?gf ?gf' x y \<le> Nf y * kG + Ng y * (Nf y + kF)" .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   384
  next
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   385
    have [tendsto_intros]: "?L Nf"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   386
      using f unfolding has_derivative_iff_norm Nf_def ..
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   387
    from f have "(f \<longlongrightarrow> f x) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   388
      by (blast intro: has_derivative_continuous continuous_within[THEN iffD1])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   389
    then have f': "LIM x at x within s. f x :> inf (nhds (f x)) (principal (f`s))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   390
      unfolding filterlim_def
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   391
      by (simp add: eventually_filtermap eventually_at_filter le_principal)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   392
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   393
    have "((?N g  g' (f x)) \<longlongrightarrow> 0) (at (f x) within f`s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   394
      using g unfolding has_derivative_iff_norm ..
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   395
    then have g': "((?N g  g' (f x)) \<longlongrightarrow> 0) (inf (nhds (f x)) (principal (f`s)))"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   396
      by (rule tendsto_at_iff_tendsto_nhds_within[THEN iffD1, rotated]) simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   397
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   398
    have [tendsto_intros]: "?L Ng"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   399
      unfolding Ng_def by (rule filterlim_compose[OF g' f'])
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   400
    show "((\<lambda>y. Nf y * kG + Ng y * (Nf y + kF)) \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   401
      by (intro tendsto_eq_intros) auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   402
  qed simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   403
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   404
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   405
lemma has_derivative_compose:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   406
  "(f has_derivative f') (at x within s) \<Longrightarrow> (g has_derivative g') (at (f x)) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   407
  ((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   408
  by (blast intro: has_derivative_in_compose has_derivative_subset)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   409
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   410
lemma has_derivative_in_compose2:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   411
  assumes "\<And>x. x \<in> t \<Longrightarrow> (g has_derivative g' x) (at x within t)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   412
  assumes "f ` s \<subseteq> t" "x \<in> s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   413
  assumes "(f has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   414
  shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>y. g' (f x) (f' y))) (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   415
  using assms
72445
2c2de074832e tidying and removal of legacy name
paulson <lp15@cam.ac.uk>
parents: 72245
diff changeset
   416
  by (auto intro: has_derivative_subset intro!: has_derivative_in_compose[of f f' x s g])
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   417
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   418
lemma (in bounded_bilinear) FDERIV:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   419
  assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   420
  shows "((\<lambda>x. f x ** g x) has_derivative (\<lambda>h. f x ** g' h + f' h ** g x)) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   421
proof -
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   422
  from bounded_linear.bounded [OF has_derivative_bounded_linear [OF f]]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   423
  obtain KF where norm_F: "\<And>x. norm (f' x) \<le> norm x * KF" by fast
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   424
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   425
  from pos_bounded obtain K
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   426
    where K: "0 < K" and norm_prod: "\<And>a b. norm (a ** b) \<le> norm a * norm b * K"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   427
    by fast
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   428
  let ?D = "\<lambda>f f' y. f y - f x - f' (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   429
  let ?N = "\<lambda>f f' y. norm (?D f f' y) / norm (y - x)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
   430
  define Ng where "Ng = ?N g g'"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
   431
  define Nf where "Nf = ?N f f'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   432
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   433
  let ?fun1 = "\<lambda>y. norm (f y ** g y - f x ** g x - (f x ** g' (y - x) + f' (y - x) ** g x)) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   434
  let ?fun2 = "\<lambda>y. norm (f x) * Ng y * K + Nf y * norm (g y) * K + KF * norm (g y - g x) * K"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   435
  let ?F = "at x within s"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   436
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   437
  show ?thesis
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   438
  proof (rule has_derivativeI_sandwich[of 1])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   439
    show "bounded_linear (\<lambda>h. f x ** g' h + f' h ** g x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   440
      by (intro bounded_linear_add
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   441
        bounded_linear_compose [OF bounded_linear_right] bounded_linear_compose [OF bounded_linear_left]
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   442
        has_derivative_bounded_linear [OF g] has_derivative_bounded_linear [OF f])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   443
  next
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   444
    from g have "(g \<longlongrightarrow> g x) ?F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   445
      by (intro continuous_within[THEN iffD1] has_derivative_continuous)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   446
    moreover from f g have "(Nf \<longlongrightarrow> 0) ?F" "(Ng \<longlongrightarrow> 0) ?F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   447
      by (simp_all add: has_derivative_iff_norm Ng_def Nf_def)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   448
    ultimately have "(?fun2 \<longlongrightarrow> norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K) ?F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   449
      by (intro tendsto_intros) (simp_all add: LIM_zero_iff)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   450
    then show "(?fun2 \<longlongrightarrow> 0) ?F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   451
      by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   452
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   453
    fix y :: 'd
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   454
    assume "y \<noteq> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   455
    have "?fun1 y =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   456
        norm (f x ** ?D g g' y + ?D f f' y ** g y + f' (y - x) ** (g y - g x)) / norm (y - x)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   457
      by (simp add: diff_left diff_right add_left add_right field_simps)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   458
    also have "\<dots> \<le> (norm (f x) * norm (?D g g' y) * K + norm (?D f f' y) * norm (g y) * K +
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   459
        norm (y - x) * KF * norm (g y - g x) * K) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   460
      by (intro divide_right_mono mult_mono'
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   461
                order_trans [OF norm_triangle_ineq add_mono]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   462
                order_trans [OF norm_prod mult_right_mono]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   463
                mult_nonneg_nonneg order_refl norm_ge_zero norm_F
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   464
                K [THEN order_less_imp_le])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   465
    also have "\<dots> = ?fun2 y"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   466
      by (simp add: add_divide_distrib Ng_def Nf_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   467
    finally show "?fun1 y \<le> ?fun2 y" .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   468
  qed simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   469
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   470
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   471
lemmas has_derivative_mult[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_mult]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   472
lemmas has_derivative_scaleR[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_scaleR]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   473
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   474
lemma has_derivative_prod[simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   475
  fixes f :: "'i \<Rightarrow> 'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   476
  shows "(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) (at x within S)) \<Longrightarrow>
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   477
    ((\<lambda>x. \<Prod>i\<in>I. f i x) has_derivative (\<lambda>y. \<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x))) (at x within S)"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   478
proof (induct I rule: infinite_finite_induct)
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   479
  case infinite
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   480
  then show ?case by simp
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   481
next
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   482
  case empty
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   483
  then show ?case by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   484
next
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   485
  case (insert i I)
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   486
  let ?P = "\<lambda>y. f i x * (\<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x)) + (f' i y) * (\<Prod>i\<in>I. f i x)"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   487
  have "((\<lambda>x. f i x * (\<Prod>i\<in>I. f i x)) has_derivative ?P) (at x within S)"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   488
    using insert by (intro has_derivative_mult) auto
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   489
  also have "?P = (\<lambda>y. \<Sum>i'\<in>insert i I. f' i' y * (\<Prod>j\<in>insert i I - {i'}. f j x))"
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   490
    using insert(1,2)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   491
    by (auto simp add: sum_distrib_left insert_Diff_if intro!: ext sum.cong)
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   492
  finally show ?case
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   493
    using insert by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   494
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   495
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   496
lemma has_derivative_power[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   497
  fixes f :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   498
  assumes f: "(f has_derivative f') (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   499
  shows "((\<lambda>x. f x^n) has_derivative (\<lambda>y. of_nat n * f' y * f x^(n - 1))) (at x within S)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   500
  using has_derivative_prod[OF f, of "{..< n}"] by (simp add: prod_constant ac_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   501
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   502
lemma has_derivative_inverse':
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   503
  fixes x :: "'a::real_normed_div_algebra"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   504
  assumes x: "x \<noteq> 0"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   505
  shows "(inverse has_derivative (\<lambda>h. - (inverse x * h * inverse x))) (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   506
    (is "(_ has_derivative ?f) _")
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   507
proof (rule has_derivativeI_sandwich)
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   508
  show "bounded_linear (\<lambda>h. - (inverse x * h * inverse x))"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   509
    by (simp add: bounded_linear_minus bounded_linear_mult_const bounded_linear_mult_right)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   510
  show "0 < norm x" using x by simp
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   511
  have "(inverse \<longlongrightarrow> inverse x) (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   512
    using tendsto_inverse tendsto_ident_at x by auto
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   513
  then show "((\<lambda>y. norm (inverse y - inverse x) * norm (inverse x)) \<longlongrightarrow> 0) (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   514
    by (simp add: LIM_zero_iff tendsto_mult_left_zero tendsto_norm_zero)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   515
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   516
  fix y :: 'a
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   517
  assume h: "y \<noteq> x" "dist y x < norm x"
62397
5ae24f33d343 Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents: 61976
diff changeset
   518
  then have "y \<noteq> 0" by auto
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   519
  have "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x) 
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   520
        = norm (- (inverse y * (y - x) * inverse x - inverse x * (y - x) * inverse x)) /
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   521
                norm (y - x)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   522
    by (simp add: \<open>y \<noteq> 0\<close> inverse_diff_inverse x)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   523
  also have "... = norm ((inverse y - inverse x) * (y - x) * inverse x) / norm (y - x)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   524
    by (simp add: left_diff_distrib norm_minus_commute)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   525
  also have "\<dots> \<le> norm (inverse y - inverse x) * norm (y - x) * norm (inverse x) / norm (y - x)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   526
    by (simp add: norm_mult)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   527
  also have "\<dots> = norm (inverse y - inverse x) * norm (inverse x)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   528
    by simp
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   529
  finally show "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x) \<le>
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   530
    norm (inverse y - inverse x) * norm (inverse x)" .
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   531
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   532
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   533
lemma has_derivative_inverse[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   534
  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   535
  assumes x:  "f x \<noteq> 0"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   536
    and f: "(f has_derivative f') (at x within S)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   537
  shows "((\<lambda>x. inverse (f x)) has_derivative (\<lambda>h. - (inverse (f x) * f' h * inverse (f x))))
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   538
    (at x within S)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   539
  using has_derivative_compose[OF f has_derivative_inverse', OF x] .
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   540
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   541
lemma has_derivative_divide[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   542
  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   543
  assumes f: "(f has_derivative f') (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   544
    and g: "(g has_derivative g') (at x within S)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   545
  assumes x: "g x \<noteq> 0"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   546
  shows "((\<lambda>x. f x / g x) has_derivative
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   547
                (\<lambda>h. - f x * (inverse (g x) * g' h * inverse (g x)) + f' h / g x)) (at x within S)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   548
  using has_derivative_mult[OF f has_derivative_inverse[OF x g]]
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
   549
  by (simp add: field_simps)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   550
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   551
lemma has_derivative_power_int':
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   552
  fixes x :: "'a::real_normed_field"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   553
  assumes x: "x \<noteq> 0"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   554
  shows "((\<lambda>x. power_int x n) has_derivative (\<lambda>y. y * (of_int n * power_int x (n - 1)))) (at x within S)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   555
proof (cases n rule: int_cases4)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   556
  case (nonneg n)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   557
  thus ?thesis using x
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   558
    by (cases "n = 0") (auto intro!: derivative_eq_intros simp: field_simps power_int_diff fun_eq_iff
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   559
                             simp flip: power_Suc)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   560
next
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   561
  case (neg n)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   562
  thus ?thesis using x
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   563
    by (auto intro!: derivative_eq_intros simp: field_simps power_int_diff power_int_minus
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   564
             simp flip: power_Suc power_Suc2 power_add)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   565
qed
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   566
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   567
lemma has_derivative_power_int[simp, derivative_intros]:
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   568
  fixes f :: "_ \<Rightarrow> 'a::real_normed_field"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   569
  assumes x:  "f x \<noteq> 0"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   570
    and f: "(f has_derivative f') (at x within S)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   571
  shows "((\<lambda>x. power_int (f x) n) has_derivative (\<lambda>h. f' h * (of_int n * power_int (f x) (n - 1))))
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   572
           (at x within S)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   573
  using has_derivative_compose[OF f has_derivative_power_int', OF x] .
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   574
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   575
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   576
text \<open>Conventional form requires mult-AC laws. Types real and complex only.\<close>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   577
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   578
lemma has_derivative_divide'[derivative_intros]:
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   579
  fixes f :: "_ \<Rightarrow> 'a::real_normed_field"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   580
  assumes f: "(f has_derivative f') (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   581
    and g: "(g has_derivative g') (at x within S)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   582
    and x: "g x \<noteq> 0"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   583
  shows "((\<lambda>x. f x / g x) has_derivative (\<lambda>h. (f' h * g x - f x * g' h) / (g x * g x))) (at x within S)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   584
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   585
  have "f' h / g x - f x * (inverse (g x) * g' h * inverse (g x)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   586
      (f' h * g x - f x * g' h) / (g x * g x)" for h
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   587
    by (simp add: field_simps x)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   588
  then show ?thesis
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   589
    using has_derivative_divide [OF f g] x
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   590
    by simp
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   591
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   592
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   593
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   594
subsection \<open>Uniqueness\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   595
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   596
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
   597
This can not generally shown for \<^const>\<open>has_derivative\<close>, as we need to approach the point from
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63558
diff changeset
   598
all directions. There is a proof in \<open>Analysis\<close> for \<open>euclidean_space\<close>.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   599
\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   600
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   601
lemma has_derivative_at2: "(f has_derivative f') (at x) \<longleftrightarrow>
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   602
    bounded_linear f' \<and> ((\<lambda>y. (1 / (norm(y - x))) *\<^sub>R (f y - (f x + f' (y - x)))) \<longlongrightarrow> 0) (at x)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   603
  using has_derivative_within [of f f' x UNIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   604
  by simp
71827
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
   605
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   606
lemma has_derivative_zero_unique:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   607
  assumes "((\<lambda>x. 0) has_derivative F) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   608
  shows "F = (\<lambda>h. 0)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   609
proof -
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   610
  interpret F: bounded_linear F
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   611
    using assms by (rule has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   612
  let ?r = "\<lambda>h. norm (F h) / norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   613
  have *: "?r \<midarrow>0\<rightarrow> 0"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   614
    using assms unfolding has_derivative_at by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   615
  show "F = (\<lambda>h. 0)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   616
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   617
    show "F h = 0" for h
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   618
    proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   619
      assume **: "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   620
      then have h: "h \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   621
        by (auto simp add: F.zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   622
      with ** have "0 < ?r h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   623
        by simp
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   624
      from LIM_D [OF * this] obtain S
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   625
        where S: "0 < S" and r: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < S \<Longrightarrow> ?r x < ?r h"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   626
        by auto
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   627
      from dense [OF S] obtain t where t: "0 < t \<and> t < S" ..
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   628
      let ?x = "scaleR (t / norm h) h"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   629
      have "?x \<noteq> 0" and "norm ?x < S"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   630
        using t h by simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   631
      then have "?r ?x < ?r h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   632
        by (rule r)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   633
      then show False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   634
        using t h by (simp add: F.scaleR)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   635
    qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   636
  qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   637
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   638
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   639
lemma has_derivative_unique:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   640
  assumes "(f has_derivative F) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   641
    and "(f has_derivative F') (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   642
  shows "F = F'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   643
proof -
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   644
  have "((\<lambda>x. 0) has_derivative (\<lambda>h. F h - F' h)) (at x)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   645
    using has_derivative_diff [OF assms] by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   646
  then have "(\<lambda>h. F h - F' h) = (\<lambda>h. 0)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   647
    by (rule has_derivative_zero_unique)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   648
  then show "F = F'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   649
    unfolding fun_eq_iff right_minus_eq .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   650
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   651
71827
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
   652
lemma has_derivative_Uniq: "\<exists>\<^sub>\<le>\<^sub>1F. (f has_derivative F) (at x)"
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
   653
  by (simp add: Uniq_def has_derivative_unique)
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
   654
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   655
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   656
subsection \<open>Differentiability predicate\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   657
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   658
definition differentiable :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   659
    (infix "differentiable" 50)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   660
  where "f differentiable F \<longleftrightarrow> (\<exists>D. (f has_derivative D) F)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   661
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   662
lemma differentiable_subset:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   663
  "f differentiable (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f differentiable (at x within t)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   664
  unfolding differentiable_def by (blast intro: has_derivative_subset)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   665
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   666
lemmas differentiable_within_subset = differentiable_subset
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   667
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   668
lemma differentiable_ident [simp, derivative_intros]: "(\<lambda>x. x) differentiable F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   669
  unfolding differentiable_def by (blast intro: has_derivative_ident)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   670
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   671
lemma differentiable_const [simp, derivative_intros]: "(\<lambda>z. a) differentiable F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   672
  unfolding differentiable_def by (blast intro: has_derivative_const)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   673
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   674
lemma differentiable_in_compose:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   675
  "f differentiable (at (g x) within (g`s)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   676
    (\<lambda>x. f (g x)) differentiable (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   677
  unfolding differentiable_def by (blast intro: has_derivative_in_compose)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   678
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   679
lemma differentiable_compose:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   680
  "f differentiable (at (g x)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   681
    (\<lambda>x. f (g x)) differentiable (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   682
  by (blast intro: differentiable_in_compose differentiable_subset)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   683
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   684
lemma differentiable_add [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   685
  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x + g x) differentiable F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   686
  unfolding differentiable_def by (blast intro: has_derivative_add)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   687
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   688
lemma differentiable_sum[simp, derivative_intros]:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   689
  assumes "finite s" "\<forall>a\<in>s. (f a) differentiable net"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   690
  shows "(\<lambda>x. sum (\<lambda>a. f a x) s) differentiable net"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   691
proof -
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   692
  from bchoice[OF assms(2)[unfolded differentiable_def]]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   693
  show ?thesis
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   694
    by (auto intro!: has_derivative_sum simp: differentiable_def)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   695
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   696
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   697
lemma differentiable_minus [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   698
  "f differentiable F \<Longrightarrow> (\<lambda>x. - f x) differentiable F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   699
  unfolding differentiable_def by (blast intro: has_derivative_minus)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   700
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   701
lemma differentiable_diff [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   702
  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x - g x) differentiable F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   703
  unfolding differentiable_def by (blast intro: has_derivative_diff)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   704
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   705
lemma differentiable_mult [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   706
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   707
  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   708
    (\<lambda>x. f x * g x) differentiable (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   709
  unfolding differentiable_def by (blast intro: has_derivative_mult)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   710
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   711
lemma differentiable_inverse [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   712
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   713
  shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   714
    (\<lambda>x. inverse (f x)) differentiable (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   715
  unfolding differentiable_def by (blast intro: has_derivative_inverse)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   716
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   717
lemma differentiable_divide [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   718
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   719
  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   720
    g x \<noteq> 0 \<Longrightarrow> (\<lambda>x. f x / g x) differentiable (at x within s)"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63079
diff changeset
   721
  unfolding divide_inverse by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   722
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   723
lemma differentiable_power [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   724
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   725
  shows "f differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x ^ n) differentiable (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   726
  unfolding differentiable_def by (blast intro: has_derivative_power)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   727
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   728
lemma differentiable_power_int [simp, derivative_intros]:
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   729
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   730
  shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   731
           (\<lambda>x. power_int (f x) n) differentiable (at x within s)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   732
  unfolding differentiable_def by (blast intro: has_derivative_power_int)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   733
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   734
lemma differentiable_scaleR [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   735
  "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   736
    (\<lambda>x. f x *\<^sub>R g x) differentiable (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   737
  unfolding differentiable_def by (blast intro: has_derivative_scaleR)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   738
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   739
lemma has_derivative_imp_has_field_derivative:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   740
  "(f has_derivative D) F \<Longrightarrow> (\<And>x. x * D' = D x) \<Longrightarrow> (f has_field_derivative D') F"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   741
  unfolding has_field_derivative_def
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   742
  by (rule has_derivative_eq_rhs[of f D]) (simp_all add: fun_eq_iff mult.commute)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   743
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   744
lemma has_field_derivative_imp_has_derivative:
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   745
  "(f has_field_derivative D) F \<Longrightarrow> (f has_derivative (*) D) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   746
  by (simp add: has_field_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   747
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   748
lemma DERIV_subset:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   749
  "(f has_field_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   750
    (f has_field_derivative f') (at x within t)"
72445
2c2de074832e tidying and removal of legacy name
paulson <lp15@cam.ac.uk>
parents: 72245
diff changeset
   751
  by (simp add: has_field_derivative_def has_derivative_subset)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   752
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   753
lemma has_field_derivative_at_within:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   754
  "(f has_field_derivative f') (at x) \<Longrightarrow> (f has_field_derivative f') (at x within s)"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   755
  using DERIV_subset by blast
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   756
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   757
abbreviation (input)
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   758
  DERIV :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   759
    ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   760
  where "DERIV f x :> D \<equiv> (f has_field_derivative D) (at x)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   761
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   762
abbreviation has_real_derivative :: "(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   763
    (infix "(has'_real'_derivative)" 50)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   764
  where "(f has_real_derivative D) F \<equiv> (f has_field_derivative D) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   765
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   766
lemma real_differentiable_def:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   767
  "f differentiable at x within s \<longleftrightarrow> (\<exists>D. (f has_real_derivative D) (at x within s))"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   768
proof safe
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   769
  assume "f differentiable at x within s"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   770
  then obtain f' where *: "(f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   771
    unfolding differentiable_def by auto
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   772
  then obtain c where "f' = ((*) c)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   773
    by (metis real_bounded_linear has_derivative_bounded_linear mult.commute fun_eq_iff)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   774
  with * show "\<exists>D. (f has_real_derivative D) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   775
    unfolding has_field_derivative_def by auto
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   776
qed (auto simp: differentiable_def has_field_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   777
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   778
lemma real_differentiableE [elim?]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   779
  assumes f: "f differentiable (at x within s)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   780
  obtains df where "(f has_real_derivative df) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   781
  using assms by (auto simp: real_differentiable_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   782
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   783
lemma has_field_derivative_iff:
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   784
  "(f has_field_derivative D) (at x within S) \<longleftrightarrow>
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   785
    ((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   786
proof -
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   787
  have "((\<lambda>y. norm (f y - f x - D * (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S) 
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   788
      = ((\<lambda>y. (f y - f x) / (y - x) - D) \<longlongrightarrow> 0) (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   789
    apply (subst tendsto_norm_zero_iff[symmetric], rule filterlim_cong)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   790
      apply (simp_all add: eventually_at_filter field_simps nonzero_norm_divide)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   791
    done
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   792
  then show ?thesis
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   793
    by (simp add: has_field_derivative_def has_derivative_iff_norm bounded_linear_mult_right LIM_zero_iff)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   794
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   795
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   796
lemma DERIV_def: "DERIV f x :> D \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   797
  unfolding field_has_derivative_at has_field_derivative_def has_field_derivative_iff ..
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   798
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   799
lemma mult_commute_abs: "(\<lambda>x. x * c) = (*) c"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   800
  for c :: "'a::ab_semigroup_mult"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   801
  by (simp add: fun_eq_iff mult.commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   802
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   803
lemma DERIV_compose_FDERIV:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   804
  fixes f::"real\<Rightarrow>real"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   805
  assumes "DERIV f (g x) :> f'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   806
  assumes "(g has_derivative g') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   807
  shows "((\<lambda>x. f (g x)) has_derivative (\<lambda>x. g' x * f')) (at x within s)"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   808
  using assms has_derivative_compose[of g g' x s f "(*) f'"]
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   809
  by (auto simp: has_field_derivative_def ac_simps)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   810
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   811
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   812
subsection \<open>Vector derivative\<close>
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   813
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   814
lemma has_field_derivative_iff_has_vector_derivative:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   815
  "(f has_field_derivative y) F \<longleftrightarrow> (f has_vector_derivative y) F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   816
  unfolding has_vector_derivative_def has_field_derivative_def real_scaleR_def mult_commute_abs ..
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   817
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   818
lemma has_field_derivative_subset:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   819
  "(f has_field_derivative y) (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   820
    (f has_field_derivative y) (at x within t)"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   821
  unfolding has_field_derivative_def by (rule has_derivative_subset)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   822
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   823
lemma has_vector_derivative_const[simp, derivative_intros]: "((\<lambda>x. c) has_vector_derivative 0) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   824
  by (auto simp: has_vector_derivative_def)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   825
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   826
lemma has_vector_derivative_id[simp, derivative_intros]: "((\<lambda>x. x) has_vector_derivative 1) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   827
  by (auto simp: has_vector_derivative_def)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   828
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   829
lemma has_vector_derivative_minus[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   830
  "(f has_vector_derivative f') net \<Longrightarrow> ((\<lambda>x. - f x) has_vector_derivative (- f')) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   831
  by (auto simp: has_vector_derivative_def)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   832
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   833
lemma has_vector_derivative_add[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   834
  "(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow>
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   835
    ((\<lambda>x. f x + g x) has_vector_derivative (f' + g')) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   836
  by (auto simp: has_vector_derivative_def scaleR_right_distrib)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   837
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   838
lemma has_vector_derivative_sum[derivative_intros]:
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   839
  "(\<And>i. i \<in> I \<Longrightarrow> (f i has_vector_derivative f' i) net) \<Longrightarrow>
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   840
    ((\<lambda>x. \<Sum>i\<in>I. f i x) has_vector_derivative (\<Sum>i\<in>I. f' i)) net"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   841
  by (auto simp: has_vector_derivative_def fun_eq_iff scaleR_sum_right intro!: derivative_eq_intros)
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   842
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   843
lemma has_vector_derivative_diff[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   844
  "(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow>
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   845
    ((\<lambda>x. f x - g x) has_vector_derivative (f' - g')) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   846
  by (auto simp: has_vector_derivative_def scaleR_diff_right)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   847
61204
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60758
diff changeset
   848
lemma has_vector_derivative_add_const:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   849
  "((\<lambda>t. g t + z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   850
  apply (intro iffI)
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   851
   apply (force dest: has_vector_derivative_diff [where g = "\<lambda>t. z", OF _ has_vector_derivative_const])
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   852
  apply (force dest: has_vector_derivative_add [OF _ has_vector_derivative_const])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   853
  done
61204
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60758
diff changeset
   854
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60758
diff changeset
   855
lemma has_vector_derivative_diff_const:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   856
  "((\<lambda>t. g t - z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   857
  using has_vector_derivative_add_const [where z = "-z"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   858
  by simp
61204
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60758
diff changeset
   859
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   860
lemma (in bounded_linear) has_vector_derivative:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   861
  assumes "(g has_vector_derivative g') F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   862
  shows "((\<lambda>x. f (g x)) has_vector_derivative f g') F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   863
  using has_derivative[OF assms[unfolded has_vector_derivative_def]]
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   864
  by (simp add: has_vector_derivative_def scaleR)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   865
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   866
lemma (in bounded_bilinear) has_vector_derivative:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   867
  assumes "(f has_vector_derivative f') (at x within s)"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   868
    and "(g has_vector_derivative g') (at x within s)"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   869
  shows "((\<lambda>x. f x ** g x) has_vector_derivative (f x ** g' + f' ** g x)) (at x within s)"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   870
  using FDERIV[OF assms(1-2)[unfolded has_vector_derivative_def]]
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   871
  by (simp add: has_vector_derivative_def scaleR_right scaleR_left scaleR_right_distrib)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   872
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   873
lemma has_vector_derivative_scaleR[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   874
  "(f has_field_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow>
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   875
    ((\<lambda>x. f x *\<^sub>R g x) has_vector_derivative (f x *\<^sub>R g' + f' *\<^sub>R g x)) (at x within s)"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   876
  unfolding has_field_derivative_iff_has_vector_derivative
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   877
  by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_scaleR])
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   878
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   879
lemma has_vector_derivative_mult[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   880
  "(f has_vector_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   881
    ((\<lambda>x. f x * g x) has_vector_derivative (f x * g' + f' * g x)) (at x within s)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   882
  for f g :: "real \<Rightarrow> 'a::real_normed_algebra"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   883
  by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_mult])
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   884
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   885
lemma has_vector_derivative_of_real[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   886
  "(f has_field_derivative D) F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_vector_derivative (of_real D)) F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   887
  by (rule bounded_linear.has_vector_derivative[OF bounded_linear_of_real])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   888
    (simp add: has_field_derivative_iff_has_vector_derivative)
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   889
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   890
lemma has_vector_derivative_real_field:
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   891
  "(f has_field_derivative f') (at (of_real a)) \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   892
  using has_derivative_compose[of of_real of_real a _ f "(*) f'"] 
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   893
  by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   894
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   895
lemma has_vector_derivative_continuous:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   896
  "(f has_vector_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   897
  by (auto intro: has_derivative_continuous simp: has_vector_derivative_def)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   898
70613
8b7f6ecb3369 moved basic theorem
immler
parents: 70346
diff changeset
   899
lemma continuous_on_vector_derivative:
8b7f6ecb3369 moved basic theorem
immler
parents: 70346
diff changeset
   900
  "(\<And>x. x \<in> S \<Longrightarrow> (f has_vector_derivative f' x) (at x within S)) \<Longrightarrow> continuous_on S f"
8b7f6ecb3369 moved basic theorem
immler
parents: 70346
diff changeset
   901
  by (auto simp: continuous_on_eq_continuous_within intro!: has_vector_derivative_continuous)
8b7f6ecb3369 moved basic theorem
immler
parents: 70346
diff changeset
   902
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   903
lemma has_vector_derivative_mult_right[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   904
  fixes a :: "'a::real_normed_algebra"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   905
  shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. a * f x) has_vector_derivative (a * x)) F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   906
  by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_right])
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   907
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   908
lemma has_vector_derivative_mult_left[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   909
  fixes a :: "'a::real_normed_algebra"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   910
  shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. f x * a) has_vector_derivative (x * a)) F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   911
  by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_left])
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   912
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   913
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   914
subsection \<open>Derivatives\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   915
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   916
lemma DERIV_D: "DERIV f x :> D \<Longrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   917
  by (simp add: DERIV_def)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   918
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   919
lemma has_field_derivativeD:
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   920
  "(f has_field_derivative D) (at x within S) \<Longrightarrow>
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   921
    ((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   922
  by (simp add: has_field_derivative_iff)
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   923
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   924
lemma DERIV_const [simp, derivative_intros]: "((\<lambda>x. k) has_field_derivative 0) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   925
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_const]) auto
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   926
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   927
lemma DERIV_ident [simp, derivative_intros]: "((\<lambda>x. x) has_field_derivative 1) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   928
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_ident]) auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   929
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   930
lemma field_differentiable_add[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   931
  "(f has_field_derivative f') F \<Longrightarrow> (g has_field_derivative g') F \<Longrightarrow>
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   932
    ((\<lambda>z. f z + g z) has_field_derivative f' + g') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   933
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_add])
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   934
     (auto simp: has_field_derivative_def field_simps mult_commute_abs)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   935
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   936
corollary DERIV_add:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   937
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   938
    ((\<lambda>x. f x + g x) has_field_derivative D + E) (at x within s)"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   939
  by (rule field_differentiable_add)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   940
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   941
lemma field_differentiable_minus[derivative_intros]:
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   942
  "(f has_field_derivative f') F \<Longrightarrow> ((\<lambda>z. - (f z)) has_field_derivative -f') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   943
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus])
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   944
     (auto simp: has_field_derivative_def field_simps mult_commute_abs)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   945
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   946
corollary DERIV_minus:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   947
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   948
    ((\<lambda>x. - f x) has_field_derivative -D) (at x within s)"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   949
  by (rule field_differentiable_minus)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   950
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   951
lemma field_differentiable_diff[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   952
  "(f has_field_derivative f') F \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   953
    (g has_field_derivative g') F \<Longrightarrow> ((\<lambda>z. f z - g z) has_field_derivative f' - g') F"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63079
diff changeset
   954
  by (simp only: diff_conv_add_uminus field_differentiable_add field_differentiable_minus)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   955
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   956
corollary DERIV_diff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   957
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   958
    (g has_field_derivative E) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   959
    ((\<lambda>x. f x - g x) has_field_derivative D - E) (at x within s)"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   960
  by (rule field_differentiable_diff)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   961
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   962
lemma DERIV_continuous: "(f has_field_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   963
  by (drule has_derivative_continuous[OF has_field_derivative_imp_has_derivative]) simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   964
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   965
corollary DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   966
  by (rule DERIV_continuous)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   967
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   968
lemma DERIV_atLeastAtMost_imp_continuous_on:
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   969
  assumes "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   970
  shows "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   971
  by (meson DERIV_isCont assms atLeastAtMost_iff continuous_at_imp_continuous_at_within continuous_on_eq_continuous_within)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   972
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   973
lemma DERIV_continuous_on:
63299
71805faedeb2 Integration by substitution
eberlm
parents: 63263
diff changeset
   974
  "(\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative (D x)) (at x within s)) \<Longrightarrow> continuous_on s f"
71805faedeb2 Integration by substitution
eberlm
parents: 63263
diff changeset
   975
  unfolding continuous_on_eq_continuous_within
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   976
  by (intro continuous_at_imp_continuous_on ballI DERIV_continuous)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   977
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   978
lemma DERIV_mult':
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   979
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   980
    ((\<lambda>x. f x * g x) has_field_derivative f x * E + D * g x) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   981
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   982
     (auto simp: field_simps mult_commute_abs dest: has_field_derivative_imp_has_derivative)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   983
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   984
lemma DERIV_mult[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   985
  "(f has_field_derivative Da) (at x within s) \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   986
    ((\<lambda>x. f x * g x) has_field_derivative Da * g x + Db * f x) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   987
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   988
     (auto simp: field_simps dest: has_field_derivative_imp_has_derivative)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   989
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   990
text \<open>Derivative of linear multiplication\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   991
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   992
lemma DERIV_cmult:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   993
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   994
    ((\<lambda>x. c * f x) has_field_derivative c * D) (at x within s)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   995
  by (drule DERIV_mult' [OF DERIV_const]) simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   996
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   997
lemma DERIV_cmult_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   998
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   999
    ((\<lambda>x. f x * c) has_field_derivative D * c) (at x within s)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1000
  using DERIV_cmult by (auto simp add: ac_simps)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1001
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
  1002
lemma DERIV_cmult_Id [simp]: "((*) c has_field_derivative c) (at x within s)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1003
  using DERIV_ident [THEN DERIV_cmult, where c = c and x = x] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1004
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1005
lemma DERIV_cdivide:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1006
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1007
    ((\<lambda>x. f x / c) has_field_derivative D / c) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1008
  using DERIV_cmult_right[of f D x s "1 / c"] by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1009
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1010
lemma DERIV_unique: "DERIV f x :> D \<Longrightarrow> DERIV f x :> E \<Longrightarrow> D = E"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1011
  unfolding DERIV_def by (rule LIM_unique)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1012
71827
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
  1013
lemma DERIV_Uniq: "\<exists>\<^sub>\<le>\<^sub>1D. DERIV f x :> D"
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
  1014
  by (simp add: DERIV_unique Uniq_def)
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
  1015
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  1016
lemma DERIV_sum[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1017
  "(\<And> n. n \<in> S \<Longrightarrow> ((\<lambda>x. f x n) has_field_derivative (f' x n)) F) \<Longrightarrow>
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  1018
    ((\<lambda>x. sum (f x) S) has_field_derivative sum (f' x) S) F"
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  1019
  by (rule has_derivative_imp_has_field_derivative [OF has_derivative_sum])
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  1020
     (auto simp: sum_distrib_left mult_commute_abs dest: has_field_derivative_imp_has_derivative)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1021
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1022
lemma DERIV_inverse'[derivative_intros]:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1023
  assumes "(f has_field_derivative D) (at x within s)"
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1024
    and "f x \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1025
  shows "((\<lambda>x. inverse (f x)) has_field_derivative - (inverse (f x) * D * inverse (f x)))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1026
    (at x within s)"
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1027
proof -
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
  1028
  have "(f has_derivative (\<lambda>x. x * D)) = (f has_derivative (*) D)"
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1029
    by (rule arg_cong [of "\<lambda>x. x * D"]) (simp add: fun_eq_iff)
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1030
  with assms have "(f has_derivative (\<lambda>x. x * D)) (at x within s)"
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1031
    by (auto dest!: has_field_derivative_imp_has_derivative)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1032
  then show ?thesis using \<open>f x \<noteq> 0\<close>
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1033
    by (auto intro: has_derivative_imp_has_field_derivative has_derivative_inverse)
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1034
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1035
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1036
text \<open>Power of \<open>-1\<close>\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1037
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1038
lemma DERIV_inverse:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1039
  "x \<noteq> 0 \<Longrightarrow> ((\<lambda>x. inverse(x)) has_field_derivative - (inverse x ^ Suc (Suc 0))) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1040
  by (drule DERIV_inverse' [OF DERIV_ident]) simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1041
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1042
text \<open>Derivative of inverse\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1043
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1044
lemma DERIV_inverse_fun:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1045
  "(f has_field_derivative d) (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1046
    ((\<lambda>x. inverse (f x)) has_field_derivative (- (d * inverse(f x ^ Suc (Suc 0))))) (at x within s)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1047
  by (drule (1) DERIV_inverse') (simp add: ac_simps nonzero_inverse_mult_distrib)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1048
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1049
text \<open>Derivative of quotient\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1050
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1051
lemma DERIV_divide[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1052
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1053
    (g has_field_derivative E) (at x within s) \<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1054
    ((\<lambda>x. f x / g x) has_field_derivative (D * g x - f x * E) / (g x * g x)) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1055
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_divide])
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
  1056
     (auto dest: has_field_derivative_imp_has_derivative simp: field_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1057
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1058
lemma DERIV_quotient:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1059
  "(f has_field_derivative d) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1060
    (g has_field_derivative e) (at x within s)\<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1061
    ((\<lambda>y. f y / g y) has_field_derivative (d * g x - (e * f x)) / (g x ^ Suc (Suc 0))) (at x within s)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1062
  by (drule (2) DERIV_divide) (simp add: mult.commute)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1063
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1064
lemma DERIV_power_Suc:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1065
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1066
    ((\<lambda>x. f x ^ Suc n) has_field_derivative (1 + of_nat n) * (D * f x ^ n)) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1067
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1068
     (auto simp: has_field_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1069
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1070
lemma DERIV_power[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1071
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1072
    ((\<lambda>x. f x ^ n) has_field_derivative of_nat n * (D * f x ^ (n - Suc 0))) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1073
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1074
     (auto simp: has_field_derivative_def)
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31404
diff changeset
  1075
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1076
lemma DERIV_pow: "((\<lambda>x. x ^ n) has_field_derivative real n * (x ^ (n - Suc 0))) (at x within s)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1077
  using DERIV_power [OF DERIV_ident] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1078
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1079
lemma DERIV_power_int [derivative_intros]:
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1080
  assumes [derivative_intros]: "(f has_field_derivative d) (at x within s)" and [simp]: "f x \<noteq> 0"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1081
  shows   "((\<lambda>x. power_int (f x) n) has_field_derivative
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1082
             (of_int n * power_int (f x) (n - 1) * d)) (at x within s)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1083
proof (cases n rule: int_cases4)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1084
  case (nonneg n)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1085
  thus ?thesis 
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1086
    by (cases "n = 0")
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1087
       (auto intro!: derivative_eq_intros simp: field_simps power_int_diff
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1088
             simp flip: power_Suc power_Suc2 power_add)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1089
next
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1090
  case (neg n)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1091
  thus ?thesis
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1092
    by (auto intro!: derivative_eq_intros simp: field_simps power_int_diff power_int_minus
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1093
             simp flip: power_Suc power_Suc2 power_add)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1094
qed
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1095
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1096
lemma DERIV_chain': "(f has_field_derivative D) (at x within s) \<Longrightarrow> DERIV g (f x) :> E \<Longrightarrow>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1097
  ((\<lambda>x. g (f x)) has_field_derivative E * D) (at x within s)"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
  1098
  using has_derivative_compose[of f "(*) D" x s g "(*) E"]
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63092
diff changeset
  1099
  by (simp only: has_field_derivative_def mult_commute_abs ac_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1100
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1101
corollary DERIV_chain2: "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1102
  ((\<lambda>x. f (g x)) has_field_derivative Da * Db) (at x within s)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1103
  by (rule DERIV_chain')
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1104
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1105
text \<open>Standard version\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1106
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1107
lemma DERIV_chain:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1108
  "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1109
    (f \<circ> g has_field_derivative Da * Db) (at x within s)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1110
  by (drule (1) DERIV_chain', simp add: o_def mult.commute)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1111
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1112
lemma DERIV_image_chain:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1113
  "(f has_field_derivative Da) (at (g x) within (g ` s)) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1114
    (g has_field_derivative Db) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1115
    (f \<circ> g has_field_derivative Da * Db) (at x within s)"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
  1116
  using has_derivative_in_compose [of g "(*) Db" x s f "(*) Da "]
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1117
  by (simp add: has_field_derivative_def o_def mult_commute_abs ac_simps)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1118
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1119
(*These two are from HOL Light: HAS_COMPLEX_DERIVATIVE_CHAIN*)
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1120
lemma DERIV_chain_s:
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1121
  assumes "(\<And>x. x \<in> s \<Longrightarrow> DERIV g x :> g'(x))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1122
    and "DERIV f x :> f'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1123
    and "f x \<in> s"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1124
  shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1125
  by (metis (full_types) DERIV_chain' mult.commute assms)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1126
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1127
lemma DERIV_chain3: (*HAS_COMPLEX_DERIVATIVE_CHAIN_UNIV*)
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1128
  assumes "(\<And>x. DERIV g x :> g'(x))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1129
    and "DERIV f x :> f'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1130
  shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1131
  by (metis UNIV_I DERIV_chain_s [of UNIV] assms)
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1132
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1133
text \<open>Alternative definition for differentiability\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1134
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1135
lemma DERIV_LIM_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1136
  fixes f :: "'a::{real_normed_vector,inverse} \<Rightarrow> 'a"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1137
  shows "((\<lambda>h. (f (a + h) - f a) / h) \<midarrow>0\<rightarrow> D) = ((\<lambda>x. (f x - f a) / (x - a)) \<midarrow>a\<rightarrow> D)" (is "?lhs = ?rhs")
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1138
proof
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1139
  assume ?lhs
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1140
  then have "(\<lambda>x. (f (a + (x + - a)) - f a) / (x + - a)) \<midarrow>0 - - a\<rightarrow> D"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1141
    by (rule LIM_offset)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1142
  then show ?rhs
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1143
    by simp
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1144
next
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1145
  assume ?rhs
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1146
  then have "(\<lambda>x. (f (x+a) - f a) / ((x+a) - a)) \<midarrow>a-a\<rightarrow> D"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1147
    by (rule LIM_offset)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1148
  then show ?lhs
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1149
    by (simp add: add.commute)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1150
qed
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1151
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1152
lemma has_field_derivative_cong_ev:
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1153
  assumes "x = y"
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1154
    and *: "eventually (\<lambda>x. x \<in> S \<longrightarrow> f x = g x) (nhds x)"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1155
    and "u = v" "S = t" "x \<in> S"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1156
  shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative v) (at y within t)"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1157
  unfolding has_field_derivative_iff
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1158
proof (rule filterlim_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1159
  from assms have "f y = g y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1160
    by (auto simp: eventually_nhds)
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1161
  with * show "\<forall>\<^sub>F z in at x within S. (f z - f x) / (z - x) = (g z - g y) / (z - y)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1162
    unfolding eventually_at_filter
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1163
    by eventually_elim (auto simp: assms \<open>f y = g y\<close>)
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1164
qed (simp_all add: assms)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1165
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67443
diff changeset
  1166
lemma has_field_derivative_cong_eventually:
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1167
  assumes "eventually (\<lambda>x. f x = g x) (at x within S)" "f x = g x"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1168
  shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative u) (at x within S)"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1169
  unfolding has_field_derivative_iff
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1170
proof (rule tendsto_cong)
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1171
  show "\<forall>\<^sub>F y in at x within S. (f y - f x) / (y - x) = (g y - g x) / (y - x)"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1172
    using assms by (auto elim: eventually_mono)
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1173
qed
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67443
diff changeset
  1174
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1175
lemma DERIV_cong_ev:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1176
  "x = y \<Longrightarrow> eventually (\<lambda>x. f x = g x) (nhds x) \<Longrightarrow> u = v \<Longrightarrow>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1177
    DERIV f x :> u \<longleftrightarrow> DERIV g y :> v"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1178
  by (rule has_field_derivative_cong_ev) simp_all
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1179
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1180
lemma DERIV_shift:
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1181
  "(f has_field_derivative y) (at (x + z)) = ((\<lambda>x. f (x + z)) has_field_derivative y) (at x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1182
  by (simp add: DERIV_def field_simps)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1183
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1184
lemma DERIV_mirror: "(DERIV f (- x) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (- x)) x :> - y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1185
  for f :: "real \<Rightarrow> real" and x y :: real
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  1186
  by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1187
      tendsto_minus_cancel_left field_simps conj_commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1188
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1189
lemma floor_has_real_derivative:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1190
  fixes f :: "real \<Rightarrow> 'a::{floor_ceiling,order_topology}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1191
  assumes "isCont f x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1192
    and "f x \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1193
  shows "((\<lambda>x. floor (f x)) has_real_derivative 0) (at x)"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1194
proof (subst DERIV_cong_ev[OF refl _ refl])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1195
  show "((\<lambda>_. floor (f x)) has_real_derivative 0) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1196
    by simp
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1197
  have "\<forall>\<^sub>F y in at x. \<lfloor>f y\<rfloor> = \<lfloor>f x\<rfloor>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1198
    by (rule eventually_floor_eq[OF assms[unfolded continuous_at]])
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1199
  then show "\<forall>\<^sub>F y in nhds x. real_of_int \<lfloor>f y\<rfloor> = real_of_int \<lfloor>f x\<rfloor>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1200
    unfolding eventually_at_filter
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1201
    by eventually_elim auto
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1202
qed
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1203
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
  1204
lemmas has_derivative_floor[derivative_intros] =
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
  1205
  floor_has_real_derivative[THEN DERIV_compose_FDERIV]
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1206
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1207
lemma continuous_floor:
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1208
  fixes x::real
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1209
  shows "x \<notin> \<int> \<Longrightarrow> continuous (at x) (real_of_int \<circ> floor)"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1210
  using floor_has_real_derivative [where f=id]
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1211
  by (auto simp: o_def has_field_derivative_def intro: has_derivative_continuous)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1212
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1213
lemma continuous_frac:
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1214
  fixes x::real
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1215
  assumes "x \<notin> \<int>"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1216
  shows "continuous (at x) frac"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1217
proof -
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1218
  have "isCont (\<lambda>x. real_of_int \<lfloor>x\<rfloor>) x"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1219
    using continuous_floor [OF assms] by (simp add: o_def)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1220
  then have *: "continuous (at x) (\<lambda>x. x - real_of_int \<lfloor>x\<rfloor>)"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1221
    by (intro continuous_intros)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1222
  moreover have "\<forall>\<^sub>F x in nhds x. frac x = x - real_of_int \<lfloor>x\<rfloor>"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1223
    by (simp add: frac_def)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1224
  ultimately show ?thesis
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1225
    by (simp add: LIM_imp_LIM frac_def isCont_def)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1226
qed
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1227
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1228
text \<open>Caratheodory formulation of derivative at a point\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1229
68644
242d298526a3 de-applying and simplifying proofs
paulson <lp15@cam.ac.uk>
parents: 68638
diff changeset
  1230
lemma CARAT_DERIV:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1231
  "(DERIV f x :> l) \<longleftrightarrow> (\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1232
  (is "?lhs = ?rhs")
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1233
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1234
  assume ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1235
  show "\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1236
  proof (intro exI conjI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1237
    let ?g = "(\<lambda>z. if z = x then l else (f z - f x) / (z-x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1238
    show "\<forall>z. f z - f x = ?g z * (z - x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1239
      by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1240
    show "isCont ?g x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1241
      using \<open>?lhs\<close> by (simp add: isCont_iff DERIV_def cong: LIM_equal [rule_format])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1242
    show "?g x = l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1243
      by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1244
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1245
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1246
  assume ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1247
  then show ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1248
    by (auto simp add: isCont_iff DERIV_def cong: LIM_cong)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1249
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1250
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1251
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1252
subsection \<open>Local extrema\<close>
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1253
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1254
text \<open>If \<^term>\<open>0 < f' x\<close> then \<^term>\<open>x\<close> is Locally Strictly Increasing At The Right.\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1255
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1256
lemma has_real_derivative_pos_inc_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1257
  fixes f :: "real \<Rightarrow> real"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1258
  assumes der: "(f has_real_derivative l) (at x within S)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1259
    and l: "0 < l"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1260
  shows "\<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x + h)"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1261
  using assms
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1262
proof -
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1263
  from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1264
  obtain s where s: "0 < s"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1265
    and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < l"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1266
    by (auto simp: dist_real_def)
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1267
  then show ?thesis
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1268
  proof (intro exI conjI strip)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1269
    show "0 < s" by (rule s)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1270
  next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1271
    fix h :: real
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1272
    assume "0 < h" "h < s" "x + h \<in> S"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1273
    with all [of "x + h"] show "f x < f (x+h)"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1274
    proof (simp add: abs_if dist_real_def pos_less_divide_eq split: if_split_asm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1275
      assume "\<not> (f (x + h) - f x) / h < l" and h: "0 < h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1276
      with l have "0 < (f (x + h) - f x) / h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1277
        by arith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1278
      then show "f x < f (x + h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1279
        by (simp add: pos_less_divide_eq h)
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1280
    qed
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1281
  qed
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1282
qed
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1283
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1284
lemma DERIV_pos_inc_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1285
  fixes f :: "real \<Rightarrow> real"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1286
  assumes der: "DERIV f x :> l"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1287
    and l: "0 < l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1288
  shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x + h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1289
  using has_real_derivative_pos_inc_right[OF assms]
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1290
  by auto
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1291
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1292
lemma has_real_derivative_neg_dec_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1293
  fixes f :: "real \<Rightarrow> real"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1294
  assumes der: "(f has_real_derivative l) (at x within S)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1295
    and "l < 0"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1296
  shows "\<exists>d > 0. \<forall>h > 0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x - h)"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1297
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1298
  from \<open>l < 0\<close> have l: "- l > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1299
    by simp
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1300
  from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1301
  obtain s where s: "0 < s"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1302
    and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < - l"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1303
    by (auto simp: dist_real_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1304
  then show ?thesis
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1305
  proof (intro exI conjI strip)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1306
    show "0 < s" by (rule s)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1307
  next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1308
    fix h :: real
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1309
    assume "0 < h" "h < s" "x - h \<in> S"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1310
    with all [of "x - h"] show "f x < f (x-h)"
63648
f9f3006a5579 "split add" -> "split"
nipkow
parents: 63627
diff changeset
  1311
    proof (simp add: abs_if pos_less_divide_eq dist_real_def split: if_split_asm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1312
      assume "- ((f (x-h) - f x) / h) < l" and h: "0 < h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1313
      with l have "0 < (f (x-h) - f x) / h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1314
        by arith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1315
      then show "f x < f (x - h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1316
        by (simp add: pos_less_divide_eq h)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1317
    qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1318
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1319
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1320
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1321
lemma DERIV_neg_dec_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1322
  fixes f :: "real \<Rightarrow> real"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1323
  assumes der: "DERIV f x :> l"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1324
    and l: "l < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1325
  shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x - h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1326
  using has_real_derivative_neg_dec_left[OF assms]
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1327
  by auto
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1328
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1329
lemma has_real_derivative_pos_inc_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1330
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1331
  shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> 0 < l \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1332
    \<exists>d>0. \<forall>h>0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f (x - h) < f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1333
  by (rule has_real_derivative_neg_dec_left [of "\<lambda>x. - f x" "-l" x S, simplified])
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1334
      (auto simp add: DERIV_minus)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1335
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1336
lemma DERIV_pos_inc_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1337
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1338
  shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f (x - h) < f x"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1339
  using has_real_derivative_pos_inc_left
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1340
  by blast
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1341
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1342
lemma has_real_derivative_neg_dec_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1343
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1344
  shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> l < 0 \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1345
    \<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x > f (x + h)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1346
  by (rule has_real_derivative_pos_inc_right [of "\<lambda>x. - f x" "-l" x S, simplified])
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1347
      (auto simp add: DERIV_minus)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1348
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1349
lemma DERIV_neg_dec_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1350
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1351
  shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x > f (x + h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1352
  using has_real_derivative_neg_dec_right by blast
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1353
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1354
lemma DERIV_local_max:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1355
  fixes f :: "real \<Rightarrow> real"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1356
  assumes der: "DERIV f x :> l"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1357
    and d: "0 < d"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1358
    and le: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1359
  shows "l = 0"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1360
proof (cases rule: linorder_cases [of l 0])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1361
  case equal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1362
  then show ?thesis .
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1363
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1364
  case less
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1365
  from DERIV_neg_dec_left [OF der less]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1366
  obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x - h)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1367
    by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1368
  obtain e where "0 < e \<and> e < d \<and> e < d'"
68527
2f4e2aab190a Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents: 67707
diff changeset
  1369
    using field_lbound_gt_zero [OF d d']  ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1370
  with lt le [THEN spec [where x="x - e"]] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1371
    by (auto simp add: abs_if)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1372
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1373
  case greater
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1374
  from DERIV_pos_inc_right [OF der greater]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1375
  obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1376
    by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1377
  obtain e where "0 < e \<and> e < d \<and> e < d'"
68527
2f4e2aab190a Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents: 67707
diff changeset
  1378
    using field_lbound_gt_zero [OF d d'] ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1379
  with lt le [THEN spec [where x="x + e"]] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1380
    by (auto simp add: abs_if)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1381
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1382
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1383
text \<open>Similar theorem for a local minimum\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1384
lemma DERIV_local_min:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1385
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1386
  shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x \<le> f y \<Longrightarrow> l = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1387
  by (drule DERIV_minus [THEN DERIV_local_max]) auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1388
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1389
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1390
text\<open>In particular, if a function is locally flat\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1391
lemma DERIV_local_const:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1392
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1393
  shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x = f y \<Longrightarrow> l = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1394
  by (auto dest!: DERIV_local_max)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1395
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1396
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1397
subsection \<open>Rolle's Theorem\<close>
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1398
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1399
text \<open>Lemma about introducing open ball in open interval\<close>
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1400
lemma lemma_interval_lt: 
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1401
  fixes a b x :: real
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1402
  assumes "a < x" "x < b"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1403
  shows "\<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a < y \<and> y < b)"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1404
  using linorder_linear [of "x - a" "b - x"]
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1405
proof 
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1406
  assume "x - a \<le> b - x"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1407
  with assms show ?thesis
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1408
    by (rule_tac x = "x - a" in exI) auto
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1409
next
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1410
  assume "b - x \<le> x - a"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1411
  with assms show ?thesis
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1412
    by (rule_tac x = "b - x" in exI) auto
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1413
qed
27668
6eb20b2cecf8 Tuned and simplified proofs
chaieb
parents: 26120
diff changeset
  1414
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1415
lemma lemma_interval: "a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1416
  for a b x :: real
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1417
  by (force dest: lemma_interval_lt)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1418
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1419
text \<open>Rolle's Theorem.
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1420
   If \<^term>\<open>f\<close> is defined and continuous on the closed interval
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1421
   \<open>[a,b]\<close> and differentiable on the open interval \<open>(a,b)\<close>,
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1422
   and \<^term>\<open>f a = f b\<close>,
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1423
   then there exists \<open>x0 \<in> (a,b)\<close> such that \<^term>\<open>f' x0 = 0\<close>\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1424
theorem Rolle_deriv:
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1425
  fixes f :: "real \<Rightarrow> real"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1426
  assumes "a < b"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1427
    and fab: "f a = f b"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1428
    and contf: "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1429
    and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1430
  shows "\<exists>z. a < z \<and> z < b \<and> f' z = (\<lambda>v. 0)"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1431
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1432
  have le: "a \<le> b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1433
    using \<open>a < b\<close> by simp
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1434
    have "(a + b) / 2 \<in> {a..b}"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1435
      using assms(1) by auto
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1436
    then have *: "{a..b} \<noteq> {}"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1437
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1438
  obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x" and "a \<le> x" "x \<le> b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1439
    using continuous_attains_sup[OF compact_Icc * contf]
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1440
    by (meson atLeastAtMost_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1441
  obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z" and "a \<le> x'" "x' \<le> b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1442
    using continuous_attains_inf[OF compact_Icc * contf] by (meson atLeastAtMost_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1443
  consider "a < x" "x < b" | "x = a \<or> x = b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1444
    using \<open>a \<le> x\<close> \<open>x \<le> b\<close> by arith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1445
  then show ?thesis
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1446
  proof cases
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1447
    case 1
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1448
    \<comment> \<open>\<^term>\<open>f\<close> attains its maximum within the interval\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1449
    then obtain l where der: "DERIV f x :> l"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1450
      using derf differentiable_def real_differentiable_def by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1451
    obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1452
      using lemma_interval [OF 1] by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1453
    then have bound': "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1454
      using x_max by blast
67443
3abf6a722518 standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents: 67399
diff changeset
  1455
    \<comment> \<open>the derivative at a local maximum is zero\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1456
    have "l = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1457
      by (rule DERIV_local_max [OF der d bound'])
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1458
    with 1 der derf [of x] show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1459
      by (metis has_derivative_unique has_field_derivative_def mult_zero_left)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1460
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1461
    case 2
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1462
    then have fx: "f b = f x" by (auto simp add: fab)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1463
    consider "a < x'" "x' < b" | "x' = a \<or> x' = b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1464
      using \<open>a \<le> x'\<close> \<open>x' \<le> b\<close> by arith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1465
    then show ?thesis
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1466
    proof cases
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1467
      case 1
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1468
        \<comment> \<open>\<^term>\<open>f\<close> attains its minimum within the interval\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1469
      then obtain l where der: "DERIV f x' :> l"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1470
        using derf differentiable_def real_differentiable_def by blast 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1471
      from lemma_interval [OF 1]
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1472
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1473
        by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1474
      then have bound': "\<forall>y. \<bar>x' - y\<bar> < d \<longrightarrow> f x' \<le> f y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1475
        using x'_min by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1476
      have "l = 0" by (rule DERIV_local_min [OF der d bound'])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1477
        \<comment> \<open>the derivative at a local minimum is zero\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1478
      then show ?thesis using 1 der derf [of x'] 
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1479
        by (metis has_derivative_unique has_field_derivative_def mult_zero_left)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1480
    next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1481
      case 2
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1482
        \<comment> \<open>\<^term>\<open>f\<close> is constant throughout the interval\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1483
      then have fx': "f b = f x'" by (auto simp: fab)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1484
      from dense [OF \<open>a < b\<close>] obtain r where r: "a < r" "r < b" by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1485
      obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1486
        using lemma_interval [OF r] by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1487
      have eq_fb: "f z = f b" if "a \<le> z" and "z \<le> b" for z
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1488
      proof (rule order_antisym)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1489
        show "f z \<le> f b" by (simp add: fx x_max that)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1490
        show "f b \<le> f z" by (simp add: fx' x'_min that)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1491
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1492
      have bound': "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> f r = f y"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1493
      proof (intro strip)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1494
        fix y :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1495
        assume lt: "\<bar>r - y\<bar> < d"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1496
        then have "f y = f b" by (simp add: eq_fb bound)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1497
        then show "f r = f y" by (simp add: eq_fb r order_less_imp_le)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1498
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1499
      obtain l where der: "DERIV f r :> l"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1500
        using derf differentiable_def r(1) r(2) real_differentiable_def by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1501
      have "l = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1502
        by (rule DERIV_local_const [OF der d bound'])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1503
        \<comment> \<open>the derivative of a constant function is zero\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1504
      with r der derf [of r] show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1505
        by (metis has_derivative_unique has_field_derivative_def mult_zero_left)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1506
    qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1507
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1508
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1509
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1510
corollary Rolle:
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1511
  fixes a b :: real
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1512
  assumes ab: "a < b" "f a = f b" "continuous_on {a..b} f"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1513
    and dif [rule_format]: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1514
  shows "\<exists>z. a < z \<and> z < b \<and> DERIV f z :> 0"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1515
proof -
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1516
  obtain f' where f': "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1517
    using dif unfolding differentiable_def by metis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1518
  then have "\<exists>z. a < z \<and> z < b \<and> f' z = (\<lambda>v. 0)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1519
    by (metis Rolle_deriv [OF ab])
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1520
  then show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1521
    using f' has_derivative_imp_has_field_derivative by fastforce
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1522
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1523
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1524
subsection \<open>Mean Value Theorem\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1525
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1526
theorem mvt:
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1527
  fixes f :: "real \<Rightarrow> real"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1528
  assumes "a < b"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1529
    and contf: "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1530
    and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"
69109
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1531
  obtains \<xi> where "a < \<xi>" "\<xi> < b" "f b - f a = (f' \<xi>) (b - a)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1532
proof -
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1533
  have "\<exists>x. a < x \<and> x < b \<and> (\<lambda>y. f' x y - (f b - f a) / (b - a) * y) = (\<lambda>v. 0)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1534
  proof (intro Rolle_deriv[OF \<open>a < b\<close>])
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1535
    fix x
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1536
    assume x: "a < x" "x < b"
69109
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1537
    show "((\<lambda>x. f x - (f b - f a) / (b - a) * x) 
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1538
          has_derivative (\<lambda>y. f' x y - (f b - f a) / (b - a) * y)) (at x)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1539
      by (intro derivative_intros derf[OF x])
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1540
  qed (use assms in \<open>auto intro!: continuous_intros simp: field_simps\<close>)
69109
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1541
  then obtain \<xi> where
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1542
    "a < \<xi>" "\<xi> < b" "(\<lambda>y. f' \<xi> y - (f b - f a) / (b - a) * y) = (\<lambda>v. 0)" 
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1543
    by metis
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1544
  then show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1545
    by (metis (no_types, hide_lams) that add.right_neutral add_diff_cancel_left' add_diff_eq \<open>a < b\<close>
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1546
                 less_irrefl nonzero_eq_divide_eq)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1547
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1548
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1549
theorem MVT:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1550
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1551
  assumes lt: "a < b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1552
    and contf: "continuous_on {a..b} f"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1553
    and dif: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1554
  shows "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1555
proof -
70346
408e15cbd2a6 tuned proofs
haftmann
parents: 69593
diff changeset
  1556
  obtain f' :: "real \<Rightarrow> real \<Rightarrow> real"
408e15cbd2a6 tuned proofs
haftmann
parents: 69593
diff changeset
  1557
    where derf: "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (f has_derivative f' x) (at x)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1558
    using dif unfolding differentiable_def by metis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1559
  then obtain z where "a < z" "z < b" "f b - f a = (f' z) (b - a)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1560
    using mvt [OF lt contf] by blast
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1561
  then show ?thesis
70346
408e15cbd2a6 tuned proofs
haftmann
parents: 69593
diff changeset
  1562
    by (simp add: ac_simps)
408e15cbd2a6 tuned proofs
haftmann
parents: 69593
diff changeset
  1563
      (metis derf dif has_derivative_unique has_field_derivative_imp_has_derivative real_differentiable_def)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1564
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1565
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1566
corollary MVT2:
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1567
  assumes "a < b" and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> DERIV f x :> f' x"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1568
  shows "\<exists>z::real. a < z \<and> z < b \<and> (f b - f a = (b - a) * f' z)"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1569
proof -
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1570
  have "\<exists>l z. a < z \<and>
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1571
           z < b \<and>
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1572
           (f has_real_derivative l) (at z) \<and>
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1573
           f b - f a = (b - a) * l"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1574
  proof (rule MVT [OF \<open>a < b\<close>])
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1575
    show "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1576
      by (meson DERIV_continuous atLeastAtMost_iff continuous_at_imp_continuous_on der) 
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1577
    show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1578
      using assms by (force dest: order_less_imp_le simp add: real_differentiable_def)
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1579
  qed
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1580
  with assms show ?thesis
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1581
    by (blast dest: DERIV_unique order_less_imp_le)
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1582
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1583
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1584
lemma pos_deriv_imp_strict_mono:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1585
  assumes "\<And>x. (f has_real_derivative f' x) (at x)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1586
  assumes "\<And>x. f' x > 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1587
  shows   "strict_mono f"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1588
proof (rule strict_monoI)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1589
  fix x y :: real assume xy: "x < y"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1590
  from assms and xy have "\<exists>z>x. z < y \<and> f y - f x = (y - x) * f' z"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1591
    by (intro MVT2) (auto dest: connectedD_interval)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1592
  then obtain z where z: "z > x" "z < y" "f y - f x = (y - x) * f' z" by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1593
  note \<open>f y - f x = (y - x) * f' z\<close>
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1594
  also have "(y - x) * f' z > 0" using xy assms by (intro mult_pos_pos) auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1595
  finally show "f x < f y" by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1596
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1597
70614
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1598
proposition  deriv_nonneg_imp_mono:
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1599
  assumes deriv: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1600
  assumes nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1601
  assumes ab: "a \<le> b"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1602
  shows "g a \<le> g b"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1603
proof (cases "a < b")
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1604
  assume "a < b"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1605
  from deriv have "\<And>x. \<lbrakk>x \<ge> a; x \<le> b\<rbrakk> \<Longrightarrow> (g has_real_derivative g' x) (at x)" by simp
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1606
  with MVT2[OF \<open>a < b\<close>] and deriv
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1607
    obtain \<xi> where \<xi>_ab: "\<xi> > a" "\<xi> < b" and g_ab: "g b - g a = (b - a) * g' \<xi>" by blast
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1608
  from \<xi>_ab ab nonneg have "(b - a) * g' \<xi> \<ge> 0" by simp
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1609
  with g_ab show ?thesis by simp
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1610
qed (insert ab, simp)
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1611
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1612
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1613
subsubsection \<open>A function is constant if its derivative is 0 over an interval.\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1614
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1615
lemma DERIV_isconst_end:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1616
  fixes f :: "real \<Rightarrow> real"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1617
  assumes "a < b" and contf: "continuous_on {a..b} f"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1618
    and 0: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> DERIV f x :> 0"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1619
  shows "f b = f a"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1620
  using MVT [OF \<open>a < b\<close>] "0" DERIV_unique contf real_differentiable_def
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1621
  by (fastforce simp: algebra_simps)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1622
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1623
lemma DERIV_isconst2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1624
  fixes f :: "real \<Rightarrow> real"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1625
  assumes "a < b" and contf: "continuous_on {a..b} f" and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> DERIV f x :> 0"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1626
    and "a \<le> x" "x \<le> b"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1627
shows "f x = f a"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1628
proof (cases "a < x")
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1629
  case True
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1630
  have *: "continuous_on {a..x} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1631
    using \<open>x \<le> b\<close> contf continuous_on_subset by fastforce
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1632
  show ?thesis
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1633
    by (rule DERIV_isconst_end [OF True *]) (use \<open>x \<le> b\<close> derf in auto)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1634
qed (use \<open>a \<le> x\<close> in auto)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1635
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1636
lemma DERIV_isconst3:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1637
  fixes a b x y :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1638
  assumes "a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1639
    and "x \<in> {a <..< b}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1640
    and "y \<in> {a <..< b}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1641
    and derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1642
  shows "f x = f y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1643
proof (cases "x = y")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1644
  case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1645
  let ?a = "min x y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1646
  let ?b = "max x y"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1647
  have *: "DERIV f z :> 0" if "?a \<le> z" "z \<le> ?b" for z
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1648
  proof -
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1649
    have "a < z" and "z < b"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1650
      using that \<open>x \<in> {a <..< b}\<close> and \<open>y \<in> {a <..< b}\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1651
    then have "z \<in> {a<..<b}" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1652
    then show "DERIV f z :> 0" by (rule derivable)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1653
  qed
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1654
  have isCont: "continuous_on {?a..?b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1655
    by (meson * DERIV_continuous_on atLeastAtMost_iff has_field_derivative_at_within)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1656
  have DERIV: "\<And>z. \<lbrakk>?a < z; z < ?b\<rbrakk> \<Longrightarrow> DERIV f z :> 0"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1657
    using * by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1658
  have "?a < ?b" using \<open>x \<noteq> y\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1659
  from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1660
  show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1661
qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1662
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1663
lemma DERIV_isconst_all:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1664
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1665
  shows "\<forall>x. DERIV f x :> 0 \<Longrightarrow> f x = f y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1666
  apply (rule linorder_cases [of x y])
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1667
  apply (metis DERIV_continuous DERIV_isconst_end continuous_at_imp_continuous_on)+
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1668
  done
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1669
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1670
lemma DERIV_const_ratio_const:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1671
  fixes f :: "real \<Rightarrow> real"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1672
  assumes "a \<noteq> b" and df: "\<And>x. DERIV f x :> k"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1673
  shows "f b - f a = (b - a) * k"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1674
proof (cases a b rule: linorder_cases)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1675
  case less
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1676
  show ?thesis
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1677
    using MVT [OF less] df
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1678
    by (metis DERIV_continuous DERIV_unique continuous_at_imp_continuous_on real_differentiable_def)
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1679
next
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1680
  case greater
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1681
  have  "f a - f b = (a - b) * k"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1682
    using MVT [OF greater] df
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1683
    by (metis DERIV_continuous DERIV_unique continuous_at_imp_continuous_on real_differentiable_def)
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1684
  then show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1685
    by (simp add: algebra_simps)
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1686
qed auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1687
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1688
lemma DERIV_const_ratio_const2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1689
  fixes f :: "real \<Rightarrow> real"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1690
  assumes "a \<noteq> b" and df: "\<And>x. DERIV f x :> k"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1691
  shows "(f b - f a) / (b - a) = k"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1692
  using DERIV_const_ratio_const [OF assms] \<open>a \<noteq> b\<close> by auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1693
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1694
lemma real_average_minus_first [simp]: "(a + b) / 2 - a = (b - a) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1695
  for a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1696
  by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1697
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1698
lemma real_average_minus_second [simp]: "(b + a) / 2 - a = (b - a) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1699
  for a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1700
  by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1701
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1702
text \<open>Gallileo's "trick": average velocity = av. of end velocities.\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1703
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1704
lemma DERIV_const_average:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1705
  fixes v :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1706
    and a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1707
  assumes neq: "a \<noteq> b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1708
    and der: "\<And>x. DERIV v x :> k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1709
  shows "v ((a + b) / 2) = (v a + v b) / 2"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1710
proof (cases rule: linorder_cases [of a b])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1711
  case equal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1712
  with neq show ?thesis by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1713
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1714
  case less
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1715
  have "(v b - v a) / (b - a) = k"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1716
    by (rule DERIV_const_ratio_const2 [OF neq der])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1717
  then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1718
    by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1719
  moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1720
    by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1721
  ultimately show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1722
    using neq by force
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1723
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1724
  case greater
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1725
  have "(v b - v a) / (b - a) = k"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1726
    by (rule DERIV_const_ratio_const2 [OF neq der])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1727
  then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1728
    by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1729
  moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1730
    by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1731
  ultimately show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1732
    using neq by (force simp add: add.commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1733
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1734
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1735
subsubsection\<open>A function with positive derivative is increasing\<close>
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1736
text \<open>A simple proof using the MVT, by Jeremy Avigad. And variants.\<close>
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1737
lemma DERIV_pos_imp_increasing_open:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1738
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1739
    and f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1740
  assumes "a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1741
    and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1742
    and con: "continuous_on {a..b} f"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1743
  shows "f a < f b"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1744
proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1745
  assume f: "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1746
  have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1747
    by (rule MVT) (use assms real_differentiable_def in \<open>force+\<close>)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1748
  then obtain l z where z: "a < z" "z < b" "DERIV f z :> l" and "f b - f a = (b - a) * l"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1749
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1750
  with assms f have "\<not> l > 0"
36777
be5461582d0f avoid using real-specific versions of generic lemmas
huffman
parents: 35216
diff changeset
  1751
    by (metis linorder_not_le mult_le_0_iff diff_le_0_iff_le)
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1752
  with assms z show False
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1753
    by (metis DERIV_unique)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1754
qed
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1755
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1756
lemma DERIV_pos_imp_increasing:
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1757
  fixes a b :: real and f :: "real \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1758
  assumes "a < b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1759
    and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y > 0"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1760
  shows "f a < f b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1761
  by (metis less_le_not_le DERIV_atLeastAtMost_imp_continuous_on DERIV_pos_imp_increasing_open [OF \<open>a < b\<close>] der)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1762
45791
d985ec974815 more systematic lemma name
noschinl
parents: 45600
diff changeset
  1763
lemma DERIV_nonneg_imp_nondecreasing:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1764
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1765
    and f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1766
  assumes "a \<le> b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1767
    and "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y \<ge> 0"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1768
  shows "f a \<le> f b"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1769
proof (rule ccontr, cases "a = b")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1770
  assume "\<not> ?thesis" and "a = b"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1771
  then show False by auto
37891
c26f9d06e82c robustified metis proof
haftmann
parents: 37888
diff changeset
  1772
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1773
  assume *: "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1774
  assume "a \<noteq> b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1775
  with \<open>a \<le> b\<close> have "a < b"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1776
    by linarith
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1777
  moreover have "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1778
    by (meson DERIV_isCont assms(2) atLeastAtMost_iff continuous_at_imp_continuous_on)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1779
  ultimately have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1780
    using assms MVT [OF \<open>a < b\<close>, of f] real_differentiable_def less_eq_real_def by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1781
  then obtain l z where lz: "a < z" "z < b" "DERIV f z :> l" and **: "f b - f a = (b - a) * l"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1782
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1783
  with * have "a < b" "f b < f a" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1784
  with ** have "\<not> l \<ge> 0" by (auto simp add: not_le algebra_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1785
    (metis * add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1786
  with assms lz show False
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1787
    by (metis DERIV_unique order_less_imp_le)
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1788
qed
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1789
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1790
lemma DERIV_neg_imp_decreasing_open:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1791
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1792
    and f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1793
  assumes "a < b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1794
    and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1795
    and con: "continuous_on {a..b} f"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1796
  shows "f a > f b"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1797
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1798
  have "(\<lambda>x. -f x) a < (\<lambda>x. -f x) b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1799
  proof (rule DERIV_pos_imp_increasing_open [of a b])
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1800
    show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> \<exists>y. ((\<lambda>x. - f x) has_real_derivative y) (at x) \<and> 0 < y"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1801
      using assms
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1802
      by simp (metis field_differentiable_minus neg_0_less_iff_less)
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1803
    show "continuous_on {a..b} (\<lambda>x. - f x)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1804
      using con continuous_on_minus by blast
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1805
  qed (use assms in auto)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1806
  then show ?thesis
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1807
    by simp
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1808
qed
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1809
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1810
lemma DERIV_neg_imp_decreasing:
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1811
  fixes a b :: real and f :: "real \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1812
  assumes "a < b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1813
    and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1814
  shows "f a > f b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1815
  by (metis less_le_not_le DERIV_atLeastAtMost_imp_continuous_on DERIV_neg_imp_decreasing_open [OF \<open>a < b\<close>] der)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1816
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1817
lemma DERIV_nonpos_imp_nonincreasing:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1818
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1819
    and f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1820
  assumes "a \<le> b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1821
    and "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y \<le> 0"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1822
  shows "f a \<ge> f b"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1823
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1824
  have "(\<lambda>x. -f x) a \<le> (\<lambda>x. -f x) b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1825
    using DERIV_nonneg_imp_nondecreasing [of a b "\<lambda>x. -f x"] assms DERIV_minus by fastforce
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1826
  then show ?thesis
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1827
    by simp
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1828
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1829
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1830
lemma DERIV_pos_imp_increasing_at_bot:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1831
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1832
  assumes "\<And>x. x \<le> b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1833
    and lim: "(f \<longlongrightarrow> flim) at_bot"
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1834
  shows "flim < f b"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1835
proof -
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1836
  have "\<exists>N. \<forall>n\<le>N. f n \<le> f (b - 1)"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1837
    by (rule_tac x="b - 2" in exI) (force intro: order.strict_implies_order DERIV_pos_imp_increasing assms)
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1838
  then have "flim \<le> f (b - 1)"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1839
     by (auto simp: eventually_at_bot_linorder tendsto_upperbound [OF lim])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1840
  also have "\<dots> < f b"
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1841
    by (force intro: DERIV_pos_imp_increasing [where f=f] assms)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1842
  finally show ?thesis .
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1843
qed
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1844
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1845
lemma DERIV_neg_imp_decreasing_at_top:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1846
  fixes f :: "real \<Rightarrow> real"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1847
  assumes der: "\<And>x. x \<ge> b \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1848
    and lim: "(f \<longlongrightarrow> flim) at_top"
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1849
  shows "flim < f b"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1850
  apply (rule DERIV_pos_imp_increasing_at_bot [where f = "\<lambda>i. f (-i)" and b = "-b", simplified])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1851
   apply (metis DERIV_mirror der le_minus_iff neg_0_less_iff_less)
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1852
  apply (metis filterlim_at_top_mirror lim)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1853
  done
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1854
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1855
text \<open>Derivative of inverse function\<close>
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1856
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1857
lemma DERIV_inverse_function:
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1858
  fixes f g :: "real \<Rightarrow> real"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1859
  assumes der: "DERIV f (g x) :> D"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1860
    and neq: "D \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1861
    and x: "a < x" "x < b"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  1862
    and inj: "\<And>y. \<lbrakk>a < y; y < b\<rbrakk> \<Longrightarrow> f (g y) = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1863
    and cont: "isCont g x"
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1864
  shows "DERIV g x :> inverse D"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1865
unfolding has_field_derivative_iff
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1866
proof (rule LIM_equal2)
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1867
  show "0 < min (x - a) (b - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1868
    using x by arith
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1869
next
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1870
  fix y
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1871
  assume "norm (y - x) < min (x - a) (b - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1872
  then have "a < y" and "y < b"
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1873
    by (simp_all add: abs_less_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1874
  then show "(g y - g x) / (y - x) = inverse ((f (g y) - x) / (g y - g x))"
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1875
    by (simp add: inj)
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1876
next
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1877
  have "(\<lambda>z. (f z - f (g x)) / (z - g x)) \<midarrow>g x\<rightarrow> D"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1878
    by (rule der [unfolded has_field_derivative_iff])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1879
  then have 1: "(\<lambda>z. (f z - x) / (z - g x)) \<midarrow>g x\<rightarrow> D"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1880
    using inj x by simp
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1881
  have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x"
56219
bf80d125406b tuned proofs;
wenzelm
parents: 56217
diff changeset
  1882
  proof (rule exI, safe)
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1883
    show "0 < min (x - a) (b - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1884
      using x by simp
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1885
  next
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1886
    fix y
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1887
    assume "norm (y - x) < min (x - a) (b - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1888
    then have y: "a < y" "y < b"
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1889
      by (simp_all add: abs_less_iff)
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1890
    assume "g y = g x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1891
    then have "f (g y) = f (g x)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1892
    then have "y = x" using inj y x by simp
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1893
    also assume "y \<noteq> x"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1894
    finally show False by simp
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1895
  qed
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1896
  have "(\<lambda>y. (f (g y) - x) / (g y - g x)) \<midarrow>x\<rightarrow> D"
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1897
    using cont 1 2 by (rule isCont_LIM_compose2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1898
  then show "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x))) \<midarrow>x\<rightarrow> inverse D"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44317
diff changeset
  1899
    using neq by (rule tendsto_inverse)
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1900
qed
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1901
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1902
subsection \<open>Generalized Mean Value Theorem\<close>
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1903
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1904
theorem GMVT:
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
  1905
  fixes a b :: real
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1906
  assumes alb: "a < b"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1907
    and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1908
    and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1909
    and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1910
    and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable (at x)"
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1911
  shows "\<exists>g'c f'c c.
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1912
    DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1913
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1914
  let ?h = "\<lambda>x. (f b - f a) * g x - (g b - g a) * f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1915
  have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1916
  proof (rule MVT)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1917
    from assms show "a < b" by simp
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1918
    show "continuous_on {a..b} ?h"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1919
      by (simp add: continuous_at_imp_continuous_on fc gc)
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1920
    show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> ?h differentiable (at x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1921
      using fd gd by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1922
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1923
  then obtain l where l: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1924
  then obtain c where c: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" ..
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1925
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1926
  from c have cint: "a < c \<and> c < b" by auto
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1927
  then obtain g'c where g'c: "DERIV g c :> g'c"
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1928
    using gd real_differentiable_def by blast 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1929
  from c have "a < c \<and> c < b" by auto
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1930
  then obtain f'c where f'c: "DERIV f c :> f'c"
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1931
    using fd real_differentiable_def by blast 
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1932
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1933
  from c have "DERIV ?h c :> l" by auto
41368
8afa26855137 use DERIV_intros
hoelzl
parents: 37891
diff changeset
  1934
  moreover have "DERIV ?h c :>  g'c * (f b - f a) - f'c * (g b - g a)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1935
    using g'c f'c by (auto intro!: derivative_eq_intros)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1936
  ultimately have leq: "l =  g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1937
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1938
  have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1939
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1940
    from c have "?h b - ?h a = (b - a) * l" by auto
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  1941
    also from leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1942
    finally show ?thesis by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1943
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1944
  moreover have "?h b - ?h a = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1945
  proof -
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1946
    have "?h b - ?h a =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1947
      ((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1948
      ((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29472
diff changeset
  1949
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1950
    then show ?thesis  by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1951
  qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1952
  ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1953
  with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1954
  then have "g'c * (f b - f a) = f'c * (g b - g a)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1955
  then have "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: ac_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1956
  with g'c f'c cint show ?thesis by auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1957
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1958
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1959
lemma GMVT':
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1960
  fixes f g :: "real \<Rightarrow> real"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1961
  assumes "a < b"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1962
    and isCont_f: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont f z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1963
    and isCont_g: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont g z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1964
    and DERIV_g: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV g z :> (g' z)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1965
    and DERIV_f: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV f z :> (f' z)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1966
  shows "\<exists>c. a < c \<and> c < b \<and> (f b - f a) * g' c = (g b - g a) * f' c"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1967
proof -
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1968
  have "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1969
      a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1970
    using assms by (intro GMVT) (force simp: real_differentiable_def)+
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1971
  then obtain c where "a < c" "c < b" "(f b - f a) * g' c = (g b - g a) * f' c"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1972
    using DERIV_f DERIV_g by (force dest: DERIV_unique)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1973
  then show ?thesis
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1974
    by auto
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1975
qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1976
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1977
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1978
subsection \<open>L'Hopitals rule\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1979
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1980
lemma isCont_If_ge:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1981
  fixes a :: "'a :: linorder_topology"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1982
  assumes "continuous (at_left a) g" and f: "(f \<longlongrightarrow> g a) (at_right a)"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1983
  shows "isCont (\<lambda>x. if x \<le> a then g x else f x) a" (is "isCont ?gf a")
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1984
proof -
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1985
  have g: "(g \<longlongrightarrow> g a) (at_left a)"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1986
    using assms continuous_within by blast
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1987
  show ?thesis
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1988
    unfolding isCont_def continuous_within
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1989
  proof (intro filterlim_split_at; simp)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1990
    show "(?gf \<longlongrightarrow> g a) (at_left a)"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1991
      by (subst filterlim_cong[OF refl refl, where g=g]) (simp_all add: eventually_at_filter less_le g)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1992
    show "(?gf \<longlongrightarrow> g a) (at_right a)"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1993
      by (subst filterlim_cong[OF refl refl, where g=f]) (simp_all add: eventually_at_filter less_le f)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1994
  qed
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1995
qed
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1996
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1997
lemma lhopital_right_0:
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1998
  fixes f0 g0 :: "real \<Rightarrow> real"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  1999
  assumes f_0: "(f0 \<longlongrightarrow> 0) (at_right 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2000
    and g_0: "(g0 \<longlongrightarrow> 0) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2001
    and ev:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2002
      "eventually (\<lambda>x. g0 x \<noteq> 0) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2003
      "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2004
      "eventually (\<lambda>x. DERIV f0 x :> f' x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2005
      "eventually (\<lambda>x. DERIV g0 x :> g' x) (at_right 0)"
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2006
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) F (at_right 0)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2007
  shows "filterlim (\<lambda> x. f0 x / g0 x) F (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2008
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
  2009
  define f where [abs_def]: "f x = (if x \<le> 0 then 0 else f0 x)" for x
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2010
  then have "f 0 = 0" by simp
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2011
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
  2012
  define g where [abs_def]: "g x = (if x \<le> 0 then 0 else g0 x)" for x
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2013
  then have "g 0 = 0" by simp
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2014
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2015
  have "eventually (\<lambda>x. g0 x \<noteq> 0 \<and> g' x \<noteq> 0 \<and>
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2016
      DERIV f0 x :> (f' x) \<and> DERIV g0 x :> (g' x)) (at_right 0)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2017
    using ev by eventually_elim auto
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2018
  then obtain a where [arith]: "0 < a"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2019
    and g0_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g0 x \<noteq> 0"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2020
    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2021
    and f0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV f0 x :> (f' x)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2022
    and g0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV g0 x :> (g' x)"
56219
bf80d125406b tuned proofs;
wenzelm
parents: 56217
diff changeset
  2023
    unfolding eventually_at by (auto simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2024
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2025
  have g_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g x \<noteq> 0"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2026
    using g0_neq_0 by (simp add: g_def)
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2027
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2028
  have f: "DERIV f x :> (f' x)" if x: "0 < x" "x < a" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2029
    using that
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2030
    by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ f0[OF x]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2031
      (auto simp: f_def eventually_nhds_metric dist_real_def intro!: exI[of _ x])
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2032
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2033
  have g: "DERIV g x :> (g' x)" if x: "0 < x" "x < a" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2034
    using that
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2035
    by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ g0[OF x]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2036
         (auto simp: g_def eventually_nhds_metric dist_real_def intro!: exI[of _ x])
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2037
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2038
  have "isCont f 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2039
    unfolding f_def by (intro isCont_If_ge f_0 continuous_const)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2040
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2041
  have "isCont g 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2042
    unfolding g_def by (intro isCont_If_ge g_0 continuous_const)
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2043
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2044
  have "\<exists>\<zeta>. \<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2045
  proof (rule bchoice, rule ballI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2046
    fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2047
    assume "x \<in> {0 <..< a}"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2048
    then have x[arith]: "0 < x" "x < a" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2049
    with g'_neq_0 g_neq_0 \<open>g 0 = 0\<close> have g': "\<And>x. 0 < x \<Longrightarrow> x < a  \<Longrightarrow> 0 \<noteq> g' x" "g 0 \<noteq> g x"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2050
      by auto
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2051
    have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont f x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2052
      using \<open>isCont f 0\<close> f by (auto intro: DERIV_isCont simp: le_less)
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2053
    moreover have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont g x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2054
      using \<open>isCont g 0\<close> g by (auto intro: DERIV_isCont simp: le_less)
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2055
    ultimately have "\<exists>c. 0 < c \<and> c < x \<and> (f x - f 0) * g' c = (g x - g 0) * f' c"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2056
      using f g \<open>x < a\<close> by (intro GMVT') auto
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  2057
    then obtain c where *: "0 < c" "c < x" "(f x - f 0) * g' c = (g x - g 0) * f' c"
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  2058
      by blast
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2059
    moreover
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  2060
    from * g'(1)[of c] g'(2) have "(f x - f 0)  / (g x - g 0) = f' c / g' c"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2061
      by (simp add: field_simps)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2062
    ultimately show "\<exists>y. 0 < y \<and> y < x \<and> f x / g x = f' y / g' y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2063
      using \<open>f 0 = 0\<close> \<open>g 0 = 0\<close> by (auto intro!: exI[of _ c])
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2064
  qed
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2065
  then obtain \<zeta> where "\<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)" ..
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2066
  then have \<zeta>: "eventually (\<lambda>x. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)) (at_right 0)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2067
    unfolding eventually_at by (intro exI[of _ a]) (auto simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2068
  moreover
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2069
  from \<zeta> have "eventually (\<lambda>x. norm (\<zeta> x) \<le> x) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2070
    by eventually_elim auto
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2071
  then have "((\<lambda>x. norm (\<zeta> x)) \<longlongrightarrow> 0) (at_right 0)"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  2072
    by (rule_tac real_tendsto_sandwich[where f="\<lambda>x. 0" and h="\<lambda>x. x"]) auto
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2073
  then have "(\<zeta> \<longlongrightarrow> 0) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2074
    by (rule tendsto_norm_zero_cancel)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2075
  with \<zeta> have "filterlim \<zeta> (at_right 0) (at_right 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2076
    by (auto elim!: eventually_mono simp: filterlim_at)
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2077
  from this lim have "filterlim (\<lambda>t. f' (\<zeta> t) / g' (\<zeta> t)) F (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2078
    by (rule_tac filterlim_compose[of _ _ _ \<zeta>])
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2079
  ultimately have "filterlim (\<lambda>t. f t / g t) F (at_right 0)" (is ?P)
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2080
    by (rule_tac filterlim_cong[THEN iffD1, OF refl refl])
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2081
       (auto elim: eventually_mono)
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2082
  also have "?P \<longleftrightarrow> ?thesis"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2083
    by (rule filterlim_cong) (auto simp: f_def g_def eventually_at_filter)
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2084
  finally show ?thesis .
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2085
qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2086
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2087
lemma lhopital_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2088
  "(f \<longlongrightarrow> 0) (at_right x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_right x) \<Longrightarrow>
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2089
    eventually (\<lambda>x. g x \<noteq> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2090
    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2091
    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2092
    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2093
    filterlim (\<lambda> x. (f' x / g' x)) F (at_right x) \<Longrightarrow>
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2094
  filterlim (\<lambda> x. f x / g x) F (at_right x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2095
  for x :: real
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2096
  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2097
  by (rule lhopital_right_0)
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2098
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2099
lemma lhopital_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2100
  "(f \<longlongrightarrow> 0) (at_left x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_left x) \<Longrightarrow>
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2101
    eventually (\<lambda>x. g x \<noteq> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2102
    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2103
    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2104
    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2105
    filterlim (\<lambda> x. (f' x / g' x)) F (at_left x) \<Longrightarrow>
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2106
  filterlim (\<lambda> x. f x / g x) F (at_left x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2107
  for x :: real
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2108
  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2109
  by (rule lhopital_right[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2110
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2111
lemma lhopital:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2112
  "(f \<longlongrightarrow> 0) (at x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at x) \<Longrightarrow>
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2113
    eventually (\<lambda>x. g x \<noteq> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2114
    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2115
    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2116
    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2117
    filterlim (\<lambda> x. (f' x / g' x)) F (at x) \<Longrightarrow>
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2118
  filterlim (\<lambda> x. f x / g x) F (at x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2119
  for x :: real
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2120
  unfolding eventually_at_split filterlim_at_split
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2121
  by (auto intro!: lhopital_right[of f x g g' f'] lhopital_left[of f x g g' f'])
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2122
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2123
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2124
lemma lhopital_right_0_at_top:
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2125
  fixes f g :: "real \<Rightarrow> real"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2126
  assumes g_0: "LIM x at_right 0. g x :> at_top"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2127
    and ev:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2128
      "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2129
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2130
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2131
    and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) (at_right 0)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2132
  shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2133
  unfolding tendsto_iff
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2134
proof safe
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2135
  fix e :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2136
  assume "0 < e"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2137
  with lim[unfolded tendsto_iff, rule_format, of "e / 4"]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2138
  have "eventually (\<lambda>t. dist (f' t / g' t) x < e / 4) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2139
    by simp
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2140
  from eventually_conj[OF eventually_conj[OF ev(1) ev(2)] eventually_conj[OF ev(3) this]]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2141
  obtain a where [arith]: "0 < a"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2142
    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2143
    and f0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV f x :> (f' x)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2144
    and g0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV g x :> (g' x)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2145
    and Df: "\<And>t. 0 < t \<Longrightarrow> t < a \<Longrightarrow> dist (f' t / g' t) x < e / 4"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2146
    unfolding eventually_at_le by (auto simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2147
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2148
  from Df have "eventually (\<lambda>t. t < a) (at_right 0)" "eventually (\<lambda>t::real. 0 < t) (at_right 0)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2149
    unfolding eventually_at by (auto intro!: exI[of _ a] simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2150
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2151
  moreover
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2152
  have "eventually (\<lambda>t. 0 < g t) (at_right 0)" "eventually (\<lambda>t. g a < g t) (at_right 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2153
    using g_0 by (auto elim: eventually_mono simp: filterlim_at_top_dense)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2154
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2155
  moreover
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2156
  have inv_g: "((\<lambda>x. inverse (g x)) \<longlongrightarrow> 0) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2157
    using tendsto_inverse_0 filterlim_mono[OF g_0 at_top_le_at_infinity order_refl]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2158
    by (rule filterlim_compose)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2159
  then have "((\<lambda>x. norm (1 - g a * inverse (g x))) \<longlongrightarrow> norm (1 - g a * 0)) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2160
    by (intro tendsto_intros)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2161
  then have "((\<lambda>x. norm (1 - g a / g x)) \<longlongrightarrow> 1) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2162
    by (simp add: inverse_eq_divide)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2163
  from this[unfolded tendsto_iff, rule_format, of 1]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2164
  have "eventually (\<lambda>x. norm (1 - g a / g x) < 2) (at_right 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2165
    by (auto elim!: eventually_mono simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2166
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2167
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2168
  from inv_g have "((\<lambda>t. norm ((f a - x * g a) * inverse (g t))) \<longlongrightarrow> norm ((f a - x * g a) * 0))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2169
      (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2170
    by (intro tendsto_intros)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2171
  then have "((\<lambda>t. norm (f a - x * g a) / norm (g t)) \<longlongrightarrow> 0) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2172
    by (simp add: inverse_eq_divide)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2173
  from this[unfolded tendsto_iff, rule_format, of "e / 2"] \<open>0 < e\<close>
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2174
  have "eventually (\<lambda>t. norm (f a - x * g a) / norm (g t) < e / 2) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2175
    by (auto simp: dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2176
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2177
  ultimately show "eventually (\<lambda>t. dist (f t / g t) x < e) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2178
  proof eventually_elim
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2179
    fix t assume t[arith]: "0 < t" "t < a" "g a < g t" "0 < g t"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2180
    assume ineq: "norm (1 - g a / g t) < 2" "norm (f a - x * g a) / norm (g t) < e / 2"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2181
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2182
    have "\<exists>y. t < y \<and> y < a \<and> (g a - g t) * f' y = (f a - f t) * g' y"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2183
      using f0 g0 t(1,2) by (intro GMVT') (force intro!: DERIV_isCont)+
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2184
    then obtain y where [arith]: "t < y" "y < a"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2185
      and D_eq0: "(g a - g t) * f' y = (f a - f t) * g' y"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2186
      by blast
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2187
    from D_eq0 have D_eq: "(f t - f a) / (g t - g a) = f' y / g' y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2188
      using \<open>g a < g t\<close> g'_neq_0[of y] by (auto simp add: field_simps)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2189
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2190
    have *: "f t / g t - x = ((f t - f a) / (g t - g a) - x) * (1 - g a / g t) + (f a - x * g a) / g t"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2191
      by (simp add: field_simps)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2192
    have "norm (f t / g t - x) \<le>
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2193
        norm (((f t - f a) / (g t - g a) - x) * (1 - g a / g t)) + norm ((f a - x * g a) / g t)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2194
      unfolding * by (rule norm_triangle_ineq)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2195
    also have "\<dots> = dist (f' y / g' y) x * norm (1 - g a / g t) + norm (f a - x * g a) / norm (g t)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2196
      by (simp add: abs_mult D_eq dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2197
    also have "\<dots> < (e / 4) * 2 + e / 2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2198
      using ineq Df[of y] \<open>0 < e\<close> by (intro add_le_less_mono mult_mono) auto
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2199
    finally show "dist (f t / g t) x < e"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2200
      by (simp add: dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2201
  qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2202
qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2203
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2204
lemma lhopital_right_at_top:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2205
  "LIM x at_right x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2206
    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2207
    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2208
    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2209
    ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_right x) \<Longrightarrow>
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2210
    ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_right x)"
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2211
  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2212
  by (rule lhopital_right_0_at_top)
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2213
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2214
lemma lhopital_left_at_top:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2215
  "LIM x at_left x. g x :> at_top \<Longrightarrow>
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2216
    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2217
    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2218
    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2219
    ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_left x) \<Longrightarrow>
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2220
    ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_left x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2221
  for x :: real
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2222
  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2223
  by (rule lhopital_right_at_top[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2224
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2225
lemma lhopital_at_top:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2226
  "LIM x at x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2227
    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2228
    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2229
    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2230
    ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at x) \<Longrightarrow>
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2231
    ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at x)"
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2232
  unfolding eventually_at_split filterlim_at_split
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2233
  by (auto intro!: lhopital_right_at_top[of g x g' f f'] lhopital_left_at_top[of g x g' f f'])
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2234
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2235
lemma lhospital_at_top_at_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2236
  fixes f g :: "real \<Rightarrow> real"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2237
  assumes g_0: "LIM x at_top. g x :> at_top"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2238
    and g': "eventually (\<lambda>x. g' x \<noteq> 0) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2239
    and Df: "eventually (\<lambda>x. DERIV f x :> f' x) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2240
    and Dg: "eventually (\<lambda>x. DERIV g x :> g' x) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2241
    and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) at_top"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2242
  shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2243
  unfolding filterlim_at_top_to_right
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2244
proof (rule lhopital_right_0_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2245
  let ?F = "\<lambda>x. f (inverse x)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2246
  let ?G = "\<lambda>x. g (inverse x)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2247
  let ?R = "at_right (0::real)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2248
  let ?D = "\<lambda>f' x. f' (inverse x) * - (inverse x ^ Suc (Suc 0))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2249
  show "LIM x ?R. ?G x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2250
    using g_0 unfolding filterlim_at_top_to_right .
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2251
  show "eventually (\<lambda>x. DERIV ?G x  :> ?D g' x) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2252
    unfolding eventually_at_right_to_top
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2253
    using Dg eventually_ge_at_top[where c=1]
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2254
    by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2255
  show "eventually (\<lambda>x. DERIV ?F x  :> ?D f' x) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2256
    unfolding eventually_at_right_to_top
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2257
    using Df eventually_ge_at_top[where c=1]
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2258
    by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2259
  show "eventually (\<lambda>x. ?D g' x \<noteq> 0) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2260
    unfolding eventually_at_right_to_top
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2261
    using g' eventually_ge_at_top[where c=1]
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2262
    by eventually_elim auto
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2263
  show "((\<lambda>x. ?D f' x / ?D g' x) \<longlongrightarrow> x) ?R"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2264
    unfolding filterlim_at_right_to_top
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2265
    apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2266
    using eventually_ge_at_top[where c=1]
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2267
    by eventually_elim simp
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2268
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2269
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2270
lemma lhopital_right_at_top_at_top:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2271
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2272
  assumes f_0: "LIM x at_right a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2273
  assumes g_0: "LIM x at_right a. g x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2274
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2275
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2276
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2277
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2278
  shows "filterlim (\<lambda> x. f x / g x) at_top (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2279
proof -
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2280
  from lim have pos: "eventually (\<lambda>x. f' x / g' x > 0) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2281
    unfolding filterlim_at_top_dense by blast
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2282
  have "((\<lambda>x. g x / f x) \<longlongrightarrow> 0) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2283
  proof (rule lhopital_right_at_top)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2284
    from pos show "eventually (\<lambda>x. f' x \<noteq> 0) (at_right a)" by eventually_elim auto
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2285
    from tendsto_inverse_0_at_top[OF lim]
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2286
      show "((\<lambda>x. g' x / f' x) \<longlongrightarrow> 0) (at_right a)" by simp
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2287
  qed fact+
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2288
  moreover from f_0 g_0 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2289
    have "eventually (\<lambda>x. f x > 0) (at_right a)" "eventually (\<lambda>x. g x > 0) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2290
    unfolding filterlim_at_top_dense by blast+
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2291
  hence "eventually (\<lambda>x. g x / f x > 0) (at_right a)" by eventually_elim simp
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2292
  ultimately have "filterlim (\<lambda>x. inverse (g x / f x)) at_top (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2293
    by (rule filterlim_inverse_at_top)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2294
  thus ?thesis by simp
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2295
qed
63717
3b0500bd2240 remove spurious find_theorems
hoelzl
parents: 63713
diff changeset
  2296
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2297
lemma lhopital_right_at_top_at_bot:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2298
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2299
  assumes f_0: "LIM x at_right a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2300
  assumes g_0: "LIM x at_right a. g x :> at_bot"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2301
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2302
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2303
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2304
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2305
  shows "filterlim (\<lambda> x. f x / g x) at_bot (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2306
proof -
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2307
  from ev(2) have ev': "eventually (\<lambda>x. DERIV (\<lambda>x. -g x) x :> -g' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2308
    by eventually_elim (auto intro: derivative_intros)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2309
  have "filterlim (\<lambda>x. f x / (-g x)) at_top (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2310
    by (rule lhopital_right_at_top_at_top[where f' = f' and g' = "\<lambda>x. -g' x"])
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2311
       (insert assms ev', auto simp: filterlim_uminus_at_bot)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2312
  hence "filterlim (\<lambda>x. -(f x / g x)) at_top (at_right a)" by simp
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2313
  thus ?thesis by (simp add: filterlim_uminus_at_bot)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2314
qed
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2315
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2316
lemma lhopital_left_at_top_at_top:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2317
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2318
  assumes f_0: "LIM x at_left a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2319
  assumes g_0: "LIM x at_left a. g x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2320
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2321
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2322
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2323
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2324
  shows "filterlim (\<lambda> x. f x / g x) at_top (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2325
  by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror,
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2326
      rule lhopital_right_at_top_at_top[where f'="\<lambda>x. - f' (- x)"]) 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2327
     (insert assms, auto simp: DERIV_mirror)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2328
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2329
lemma lhopital_left_at_top_at_bot:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2330
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2331
  assumes f_0: "LIM x at_left a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2332
  assumes g_0: "LIM x at_left a. g x :> at_bot"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2333
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2334
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2335
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2336
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2337
  shows "filterlim (\<lambda> x. f x / g x) at_bot (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2338
  by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror,
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2339
      rule lhopital_right_at_top_at_bot[where f'="\<lambda>x. - f' (- x)"]) 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2340
     (insert assms, auto simp: DERIV_mirror)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2341
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2342
lemma lhopital_at_top_at_top:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2343
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2344
  assumes f_0: "LIM x at a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2345
  assumes g_0: "LIM x at a. g x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2346
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2347
      "eventually (\<lambda>x. DERIV f x :> f' x) (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2348
      "eventually (\<lambda>x. DERIV g x :> g' x) (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2349
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2350
  shows "filterlim (\<lambda> x. f x / g x) at_top (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2351
  using assms unfolding eventually_at_split filterlim_at_split
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2352
  by (auto intro!: lhopital_right_at_top_at_top[of f a g f' g'] 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2353
                   lhopital_left_at_top_at_top[of f a g f' g'])
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2354
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2355
lemma lhopital_at_top_at_bot:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2356
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2357
  assumes f_0: "LIM x at a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2358
  assumes g_0: "LIM x at a. g x :> at_bot"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2359
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2360
      "eventually (\<lambda>x. DERIV f x :> f' x) (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2361
      "eventually (\<lambda>x. DERIV g x :> g' x) (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2362
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2363
  shows "filterlim (\<lambda> x. f x / g x) at_bot (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2364
  using assms unfolding eventually_at_split filterlim_at_split
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2365
  by (auto intro!: lhopital_right_at_top_at_bot[of f a g f' g'] 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2366
                   lhopital_left_at_top_at_bot[of f a g f' g'])
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2367
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  2368
end