62479
|
1 |
(* Title: HOL/Nonstandard_Analysis/CStar.thy
|
|
2 |
Author: Jacques D. Fleuriot
|
|
3 |
Copyright: 2001 University of Edinburgh
|
27468
|
4 |
*)
|
|
5 |
|
64604
|
6 |
section \<open>Star-transforms in NSA, Extending Sets of Complex Numbers and Complex Functions\<close>
|
27468
|
7 |
|
|
8 |
theory CStar
|
64604
|
9 |
imports NSCA
|
27468
|
10 |
begin
|
|
11 |
|
64604
|
12 |
subsection \<open>Properties of the \<open>*\<close>-Transform Applied to Sets of Reals\<close>
|
27468
|
13 |
|
64604
|
14 |
lemma STARC_hcomplex_of_complex_Int: "*s* X \<inter> SComplex = hcomplex_of_complex ` X"
|
|
15 |
by (auto simp: Standard_def)
|
27468
|
16 |
|
64604
|
17 |
lemma lemma_not_hcomplexA: "x \<notin> hcomplex_of_complex ` A \<Longrightarrow> \<forall>y \<in> A. x \<noteq> hcomplex_of_complex y"
|
|
18 |
by auto
|
|
19 |
|
27468
|
20 |
|
64604
|
21 |
subsection \<open>Theorems about Nonstandard Extensions of Functions\<close>
|
27468
|
22 |
|
64604
|
23 |
lemma starfunC_hcpow: "\<And>Z. ( *f* (\<lambda>z. z ^ n)) Z = Z pow hypnat_of_nat n"
|
|
24 |
by transfer (rule refl)
|
27468
|
25 |
|
|
26 |
lemma starfunCR_cmod: "*f* cmod = hcmod"
|
64604
|
27 |
by transfer (rule refl)
|
27468
|
28 |
|
64604
|
29 |
|
|
30 |
subsection \<open>Internal Functions - Some Redundancy With \<open>*f*\<close> Now\<close>
|
27468
|
31 |
|
|
32 |
(** subtraction: ( *fn) - ( *gn) = *(fn - gn) **)
|
|
33 |
(*
|
|
34 |
lemma starfun_n_diff:
|
64604
|
35 |
"( *fn* f) z - ( *fn* g) z = ( *fn* (\<lambda>i x. f i x - g i x)) z"
|
27468
|
36 |
apply (cases z)
|
|
37 |
apply (simp add: starfun_n star_n_diff)
|
|
38 |
done
|
|
39 |
*)
|
|
40 |
(** composition: ( *fn) o ( *gn) = *(fn o gn) **)
|
|
41 |
|
|
42 |
lemma starfun_Re: "( *f* (\<lambda>x. Re (f x))) = (\<lambda>x. hRe (( *f* f) x))"
|
64604
|
43 |
by transfer (rule refl)
|
27468
|
44 |
|
|
45 |
lemma starfun_Im: "( *f* (\<lambda>x. Im (f x))) = (\<lambda>x. hIm (( *f* f) x))"
|
64604
|
46 |
by transfer (rule refl)
|
27468
|
47 |
|
|
48 |
lemma starfunC_eq_Re_Im_iff:
|
64604
|
49 |
"( *f* f) x = z \<longleftrightarrow> ( *f* (\<lambda>x. Re (f x))) x = hRe z \<and> ( *f* (\<lambda>x. Im (f x))) x = hIm z"
|
|
50 |
by (simp add: hcomplex_hRe_hIm_cancel_iff starfun_Re starfun_Im)
|
27468
|
51 |
|
|
52 |
lemma starfunC_approx_Re_Im_iff:
|
64604
|
53 |
"( *f* f) x \<approx> z \<longleftrightarrow> ( *f* (\<lambda>x. Re (f x))) x \<approx> hRe z \<and> ( *f* (\<lambda>x. Im (f x))) x \<approx> hIm z"
|
|
54 |
by (simp add: hcomplex_approx_iff starfun_Re starfun_Im)
|
27468
|
55 |
|
|
56 |
end
|