author | wenzelm |
Tue, 11 May 2021 20:19:07 +0200 | |
changeset 73675 | 6c56f2ebe157 |
parent 70228 | 2d5b122aa0ff |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/HyperNat.thy |
2 |
Author: Jacques D. Fleuriot |
|
3 |
Copyright: 1998 University of Cambridge |
|
27468 | 4 |
|
62378
85ed00c1fe7c
generalize more theorems to support enat and ennreal
hoelzl
parents:
61981
diff
changeset
|
5 |
Converted to Isar and polished by lcp |
27468 | 6 |
*) |
7 |
||
64435 | 8 |
section \<open>Hypernatural numbers\<close> |
27468 | 9 |
|
10 |
theory HyperNat |
|
64435 | 11 |
imports StarDef |
27468 | 12 |
begin |
13 |
||
42463 | 14 |
type_synonym hypnat = "nat star" |
27468 | 15 |
|
64435 | 16 |
abbreviation hypnat_of_nat :: "nat \<Rightarrow> nat star" |
17 |
where "hypnat_of_nat \<equiv> star_of" |
|
27468 | 18 |
|
64435 | 19 |
definition hSuc :: "hypnat \<Rightarrow> hypnat" |
20 |
where hSuc_def [transfer_unfold]: "hSuc = *f* Suc" |
|
27468 | 21 |
|
64435 | 22 |
|
23 |
subsection \<open>Properties Transferred from Naturals\<close> |
|
27468 | 24 |
|
25 |
lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0" |
|
64435 | 26 |
by transfer (rule Suc_not_Zero) |
27468 | 27 |
|
28 |
lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m" |
|
64435 | 29 |
by transfer (rule Zero_not_Suc) |
27468 | 30 |
|
64435 | 31 |
lemma hSuc_hSuc_eq [iff]: "\<And>m n. hSuc m = hSuc n \<longleftrightarrow> m = n" |
32 |
by transfer (rule nat.inject) |
|
27468 | 33 |
|
34 |
lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n" |
|
64435 | 35 |
by transfer (rule zero_less_Suc) |
27468 | 36 |
|
64435 | 37 |
lemma hypnat_minus_zero [simp]: "\<And>z::hypnat. z - z = 0" |
38 |
by transfer (rule diff_self_eq_0) |
|
27468 | 39 |
|
64435 | 40 |
lemma hypnat_diff_0_eq_0 [simp]: "\<And>n::hypnat. 0 - n = 0" |
41 |
by transfer (rule diff_0_eq_0) |
|
27468 | 42 |
|
64435 | 43 |
lemma hypnat_add_is_0 [iff]: "\<And>m n::hypnat. m + n = 0 \<longleftrightarrow> m = 0 \<and> n = 0" |
44 |
by transfer (rule add_is_0) |
|
27468 | 45 |
|
64435 | 46 |
lemma hypnat_diff_diff_left: "\<And>i j k::hypnat. i - j - k = i - (j + k)" |
47 |
by transfer (rule diff_diff_left) |
|
27468 | 48 |
|
64435 | 49 |
lemma hypnat_diff_commute: "\<And>i j k::hypnat. i - j - k = i - k - j" |
50 |
by transfer (rule diff_commute) |
|
27468 | 51 |
|
64435 | 52 |
lemma hypnat_diff_add_inverse [simp]: "\<And>m n::hypnat. n + m - n = m" |
53 |
by transfer (rule diff_add_inverse) |
|
27468 | 54 |
|
64435 | 55 |
lemma hypnat_diff_add_inverse2 [simp]: "\<And>m n::hypnat. m + n - n = m" |
56 |
by transfer (rule diff_add_inverse2) |
|
27468 | 57 |
|
64435 | 58 |
lemma hypnat_diff_cancel [simp]: "\<And>k m n::hypnat. (k + m) - (k + n) = m - n" |
59 |
by transfer (rule diff_cancel) |
|
27468 | 60 |
|
64435 | 61 |
lemma hypnat_diff_cancel2 [simp]: "\<And>k m n::hypnat. (m + k) - (n + k) = m - n" |
62 |
by transfer (rule diff_cancel2) |
|
27468 | 63 |
|
64435 | 64 |
lemma hypnat_diff_add_0 [simp]: "\<And>m n::hypnat. n - (n + m) = 0" |
65 |
by transfer (rule diff_add_0) |
|
27468 | 66 |
|
64435 | 67 |
lemma hypnat_diff_mult_distrib: "\<And>k m n::hypnat. (m - n) * k = (m * k) - (n * k)" |
68 |
by transfer (rule diff_mult_distrib) |
|
27468 | 69 |
|
64435 | 70 |
lemma hypnat_diff_mult_distrib2: "\<And>k m n::hypnat. k * (m - n) = (k * m) - (k * n)" |
71 |
by transfer (rule diff_mult_distrib2) |
|
27468 | 72 |
|
64435 | 73 |
lemma hypnat_le_zero_cancel [iff]: "\<And>n::hypnat. n \<le> 0 \<longleftrightarrow> n = 0" |
74 |
by transfer (rule le_0_eq) |
|
27468 | 75 |
|
64435 | 76 |
lemma hypnat_mult_is_0 [simp]: "\<And>m n::hypnat. m * n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" |
77 |
by transfer (rule mult_is_0) |
|
27468 | 78 |
|
64435 | 79 |
lemma hypnat_diff_is_0_eq [simp]: "\<And>m n::hypnat. m - n = 0 \<longleftrightarrow> m \<le> n" |
80 |
by transfer (rule diff_is_0_eq) |
|
27468 | 81 |
|
64435 | 82 |
lemma hypnat_not_less0 [iff]: "\<And>n::hypnat. \<not> n < 0" |
83 |
by transfer (rule not_less0) |
|
84 |
||
85 |
lemma hypnat_less_one [iff]: "\<And>n::hypnat. n < 1 \<longleftrightarrow> n = 0" |
|
86 |
by transfer (rule less_one) |
|
27468 | 87 |
|
64435 | 88 |
lemma hypnat_add_diff_inverse: "\<And>m n::hypnat. \<not> m < n \<Longrightarrow> n + (m - n) = m" |
89 |
by transfer (rule add_diff_inverse) |
|
27468 | 90 |
|
64435 | 91 |
lemma hypnat_le_add_diff_inverse [simp]: "\<And>m n::hypnat. n \<le> m \<Longrightarrow> n + (m - n) = m" |
92 |
by transfer (rule le_add_diff_inverse) |
|
27468 | 93 |
|
64435 | 94 |
lemma hypnat_le_add_diff_inverse2 [simp]: "\<And>m n::hypnat. n \<le> m \<Longrightarrow> (m - n) + n = m" |
95 |
by transfer (rule le_add_diff_inverse2) |
|
27468 | 96 |
|
97 |
declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le] |
|
98 |
||
64435 | 99 |
lemma hypnat_le0 [iff]: "\<And>n::hypnat. 0 \<le> n" |
100 |
by transfer (rule le0) |
|
27468 | 101 |
|
64435 | 102 |
lemma hypnat_le_add1 [simp]: "\<And>x n::hypnat. x \<le> x + n" |
103 |
by transfer (rule le_add1) |
|
27468 | 104 |
|
64435 | 105 |
lemma hypnat_add_self_le [simp]: "\<And>x n::hypnat. x \<le> n + x" |
106 |
by transfer (rule le_add2) |
|
27468 | 107 |
|
64435 | 108 |
lemma hypnat_add_one_self_less [simp]: "x < x + 1" for x :: hypnat |
62378
85ed00c1fe7c
generalize more theorems to support enat and ennreal
hoelzl
parents:
61981
diff
changeset
|
109 |
by (fact less_add_one) |
27468 | 110 |
|
64435 | 111 |
lemma hypnat_neq0_conv [iff]: "\<And>n::hypnat. n \<noteq> 0 \<longleftrightarrow> 0 < n" |
112 |
by transfer (rule neq0_conv) |
|
27468 | 113 |
|
64435 | 114 |
lemma hypnat_gt_zero_iff: "0 < n \<longleftrightarrow> 1 \<le> n" for n :: hypnat |
115 |
by (auto simp add: linorder_not_less [symmetric]) |
|
27468 | 116 |
|
64435 | 117 |
lemma hypnat_gt_zero_iff2: "0 < n \<longleftrightarrow> (\<exists>m. n = m + 1)" for n :: hypnat |
62378
85ed00c1fe7c
generalize more theorems to support enat and ennreal
hoelzl
parents:
61981
diff
changeset
|
118 |
by (auto intro!: add_nonneg_pos exI[of _ "n - 1"] simp: hypnat_gt_zero_iff) |
27468 | 119 |
|
64435 | 120 |
lemma hypnat_add_self_not_less: "\<not> x + y < x" for x y :: hypnat |
121 |
by (simp add: linorder_not_le [symmetric] add.commute [of x]) |
|
27468 | 122 |
|
64435 | 123 |
lemma hypnat_diff_split: "P (a - b) \<longleftrightarrow> (a < b \<longrightarrow> P 0) \<and> (\<forall>d. a = b + d \<longrightarrow> P d)" |
124 |
for a b :: hypnat |
|
125 |
\<comment> \<open>elimination of \<open>-\<close> on \<open>hypnat\<close>\<close> |
|
126 |
proof (cases "a < b" rule: case_split) |
|
27468 | 127 |
case True |
64435 | 128 |
then show ?thesis |
129 |
by (auto simp add: hypnat_add_self_not_less order_less_imp_le hypnat_diff_is_0_eq [THEN iffD2]) |
|
27468 | 130 |
next |
131 |
case False |
|
64435 | 132 |
then show ?thesis |
133 |
by (auto simp add: linorder_not_less dest: order_le_less_trans) |
|
27468 | 134 |
qed |
135 |
||
64435 | 136 |
|
137 |
subsection \<open>Properties of the set of embedded natural numbers\<close> |
|
27468 | 138 |
|
139 |
lemma of_nat_eq_star_of [simp]: "of_nat = star_of" |
|
140 |
proof |
|
64435 | 141 |
show "of_nat n = star_of n" for n |
142 |
by transfer simp |
|
27468 | 143 |
qed |
144 |
||
145 |
lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard" |
|
64435 | 146 |
by (auto simp: Nats_def Standard_def) |
27468 | 147 |
|
148 |
lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats" |
|
64435 | 149 |
by (simp add: Nats_eq_Standard) |
27468 | 150 |
|
64435 | 151 |
lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = 1" |
152 |
by transfer simp |
|
27468 | 153 |
|
64435 | 154 |
lemma hypnat_of_nat_Suc [simp]: "hypnat_of_nat (Suc n) = hypnat_of_nat n + 1" |
155 |
by transfer simp |
|
27468 | 156 |
|
70219 | 157 |
lemma of_nat_eq_add: |
158 |
fixes d::hypnat |
|
159 |
shows "of_nat m = of_nat n + d \<Longrightarrow> d \<in> range of_nat" |
|
160 |
proof (induct n arbitrary: d) |
|
161 |
case (Suc n) |
|
162 |
then show ?case |
|
163 |
by (metis Nats_def Nats_eq_Standard Standard_simps(4) hypnat_diff_add_inverse of_nat_in_Nats) |
|
164 |
qed auto |
|
27468 | 165 |
|
64435 | 166 |
lemma Nats_diff [simp]: "a \<in> Nats \<Longrightarrow> b \<in> Nats \<Longrightarrow> a - b \<in> Nats" for a b :: hypnat |
167 |
by (simp add: Nats_eq_Standard) |
|
27468 | 168 |
|
169 |
||
69597 | 170 |
subsection \<open>Infinite Hypernatural Numbers -- \<^term>\<open>HNatInfinite\<close>\<close> |
64435 | 171 |
|
172 |
text \<open>The set of infinite hypernatural numbers.\<close> |
|
173 |
definition HNatInfinite :: "hypnat set" |
|
174 |
where "HNatInfinite = {n. n \<notin> Nats}" |
|
27468 | 175 |
|
64435 | 176 |
lemma Nats_not_HNatInfinite_iff: "x \<in> Nats \<longleftrightarrow> x \<notin> HNatInfinite" |
177 |
by (simp add: HNatInfinite_def) |
|
27468 | 178 |
|
64435 | 179 |
lemma HNatInfinite_not_Nats_iff: "x \<in> HNatInfinite \<longleftrightarrow> x \<notin> Nats" |
180 |
by (simp add: HNatInfinite_def) |
|
27468 | 181 |
|
182 |
lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N" |
|
64435 | 183 |
by (auto simp add: HNatInfinite_def Nats_eq_Standard) |
27468 | 184 |
|
64435 | 185 |
lemma star_of_Suc_lessI: "\<And>N. star_of n < N \<Longrightarrow> star_of (Suc n) \<noteq> N \<Longrightarrow> star_of (Suc n) < N" |
186 |
by transfer (rule Suc_lessI) |
|
27468 | 187 |
|
188 |
lemma star_of_less_HNatInfinite: |
|
189 |
assumes N: "N \<in> HNatInfinite" |
|
190 |
shows "star_of n < N" |
|
191 |
proof (induct n) |
|
192 |
case 0 |
|
64435 | 193 |
from N have "star_of 0 \<noteq> N" |
194 |
by (rule star_of_neq_HNatInfinite) |
|
195 |
then show ?case by simp |
|
27468 | 196 |
next |
197 |
case (Suc n) |
|
64435 | 198 |
from N have "star_of (Suc n) \<noteq> N" |
199 |
by (rule star_of_neq_HNatInfinite) |
|
200 |
with Suc show ?case |
|
201 |
by (rule star_of_Suc_lessI) |
|
27468 | 202 |
qed |
203 |
||
204 |
lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N" |
|
64435 | 205 |
by (rule star_of_less_HNatInfinite [THEN order_less_imp_le]) |
206 |
||
27468 | 207 |
|
61975 | 208 |
subsubsection \<open>Closure Rules\<close> |
27468 | 209 |
|
64435 | 210 |
lemma Nats_less_HNatInfinite: "x \<in> Nats \<Longrightarrow> y \<in> HNatInfinite \<Longrightarrow> x < y" |
211 |
by (auto simp add: Nats_def star_of_less_HNatInfinite) |
|
27468 | 212 |
|
64435 | 213 |
lemma Nats_le_HNatInfinite: "x \<in> Nats \<Longrightarrow> y \<in> HNatInfinite \<Longrightarrow> x \<le> y" |
214 |
by (rule Nats_less_HNatInfinite [THEN order_less_imp_le]) |
|
27468 | 215 |
|
216 |
lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x" |
|
64435 | 217 |
by (simp add: Nats_less_HNatInfinite) |
27468 | 218 |
|
219 |
lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x" |
|
64435 | 220 |
by (simp add: Nats_less_HNatInfinite) |
27468 | 221 |
|
222 |
lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x" |
|
64435 | 223 |
by (simp add: Nats_le_HNatInfinite) |
27468 | 224 |
|
225 |
lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite" |
|
64435 | 226 |
by (simp add: HNatInfinite_def) |
27468 | 227 |
|
64435 | 228 |
lemma Nats_downward_closed: "x \<in> Nats \<Longrightarrow> y \<le> x \<Longrightarrow> y \<in> Nats" for x y :: hypnat |
70219 | 229 |
using HNatInfinite_not_Nats_iff Nats_le_HNatInfinite by fastforce |
27468 | 230 |
|
64435 | 231 |
lemma HNatInfinite_upward_closed: "x \<in> HNatInfinite \<Longrightarrow> x \<le> y \<Longrightarrow> y \<in> HNatInfinite" |
70219 | 232 |
using HNatInfinite_not_Nats_iff Nats_downward_closed by blast |
27468 | 233 |
|
234 |
lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite" |
|
70219 | 235 |
using HNatInfinite_upward_closed hypnat_le_add1 by blast |
27468 | 236 |
|
70219 | 237 |
lemma HNatInfinite_diff: "\<lbrakk>x \<in> HNatInfinite; y \<in> Nats\<rbrakk> \<Longrightarrow> x - y \<in> HNatInfinite" |
238 |
by (metis HNatInfinite_not_Nats_iff Nats_add Nats_le_HNatInfinite le_add_diff_inverse) |
|
27468 | 239 |
|
64435 | 240 |
lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite \<Longrightarrow> \<exists>y. x = y + 1" for x :: hypnat |
70219 | 241 |
using hypnat_gt_zero_iff2 zero_less_HNatInfinite by blast |
27468 | 242 |
|
243 |
||
64435 | 244 |
subsection \<open>Existence of an infinite hypernatural number\<close> |
27468 | 245 |
|
64435 | 246 |
text \<open>\<open>\<omega>\<close> is in fact an infinite hypernatural number = \<open>[<1, 2, 3, \<dots>>]\<close>\<close> |
247 |
definition whn :: hypnat |
|
248 |
where hypnat_omega_def: "whn = star_n (\<lambda>n::nat. n)" |
|
27468 | 249 |
|
250 |
lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn" |
|
64435 | 251 |
by (simp add: FreeUltrafilterNat.singleton' hypnat_omega_def star_of_def star_n_eq_iff) |
27468 | 252 |
|
253 |
lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n" |
|
64435 | 254 |
by (simp add: FreeUltrafilterNat.singleton hypnat_omega_def star_of_def star_n_eq_iff) |
27468 | 255 |
|
256 |
lemma whn_not_Nats [simp]: "whn \<notin> Nats" |
|
64435 | 257 |
by (simp add: Nats_def image_def whn_neq_hypnat_of_nat) |
27468 | 258 |
|
259 |
lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite" |
|
64435 | 260 |
by (simp add: HNatInfinite_def) |
27468 | 261 |
|
60041 | 262 |
lemma lemma_unbounded_set [simp]: "eventually (\<lambda>n::nat. m < n) \<U>" |
263 |
by (rule filter_leD[OF FreeUltrafilterNat.le_cofinite]) |
|
264 |
(auto simp add: cofinite_eq_sequentially eventually_at_top_dense) |
|
27468 | 265 |
|
64435 | 266 |
lemma hypnat_of_nat_eq: "hypnat_of_nat m = star_n (\<lambda>n::nat. m)" |
267 |
by (simp add: star_of_def) |
|
27468 | 268 |
|
269 |
lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}" |
|
64435 | 270 |
by (simp add: Nats_def image_def) |
27468 | 271 |
|
272 |
lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn" |
|
64435 | 273 |
by (simp add: Nats_less_HNatInfinite) |
27468 | 274 |
|
275 |
lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn" |
|
64435 | 276 |
by (simp add: Nats_le_HNatInfinite) |
27468 | 277 |
|
278 |
lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn" |
|
64435 | 279 |
by (simp add: Nats_less_whn) |
27468 | 280 |
|
281 |
lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn" |
|
64435 | 282 |
by (simp add: Nats_le_whn) |
27468 | 283 |
|
284 |
lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn" |
|
64435 | 285 |
by (simp add: Nats_less_whn) |
27468 | 286 |
|
287 |
lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn" |
|
64435 | 288 |
by (simp add: Nats_less_whn) |
27468 | 289 |
|
290 |
||
64435 | 291 |
subsubsection \<open>Alternative characterization of the set of infinite hypernaturals\<close> |
27468 | 292 |
|
69597 | 293 |
text \<open>\<^term>\<open>HNatInfinite = {N. \<forall>n \<in> Nats. n < N}\<close>\<close> |
27468 | 294 |
|
70219 | 295 |
text\<open>unused, but possibly interesting\<close> |
296 |
lemma HNatInfinite_FreeUltrafilterNat_eventually: |
|
297 |
assumes "\<And>k::nat. eventually (\<lambda>n. f n \<noteq> k) \<U>" |
|
298 |
shows "eventually (\<lambda>n. m < f n) \<U>" |
|
299 |
proof (induct m) |
|
300 |
case 0 |
|
301 |
then show ?case |
|
302 |
using assms eventually_mono by fastforce |
|
303 |
next |
|
304 |
case (Suc m) |
|
305 |
then show ?case |
|
306 |
using assms [of "Suc m"] eventually_elim2 by fastforce |
|
307 |
qed |
|
27468 | 308 |
|
309 |
lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}" |
|
70219 | 310 |
using HNatInfinite_def Nats_less_HNatInfinite by auto |
27468 | 311 |
|
312 |
||
69597 | 313 |
subsubsection \<open>Alternative Characterization of \<^term>\<open>HNatInfinite\<close> using Free Ultrafilter\<close> |
27468 | 314 |
|
315 |
lemma HNatInfinite_FreeUltrafilterNat: |
|
64438 | 316 |
"star_n X \<in> HNatInfinite \<Longrightarrow> \<forall>u. eventually (\<lambda>n. u < X n) \<U>" |
70219 | 317 |
by (metis (full_types) starP2_star_of starP_star_n star_less_def star_of_less_HNatInfinite) |
27468 | 318 |
|
319 |
lemma FreeUltrafilterNat_HNatInfinite: |
|
64438 | 320 |
"\<forall>u. eventually (\<lambda>n. u < X n) \<U> \<Longrightarrow> star_n X \<in> HNatInfinite" |
64435 | 321 |
by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq) |
27468 | 322 |
|
323 |
lemma HNatInfinite_FreeUltrafilterNat_iff: |
|
64438 | 324 |
"(star_n X \<in> HNatInfinite) = (\<forall>u. eventually (\<lambda>n. u < X n) \<U>)" |
64435 | 325 |
by (rule iffI [OF HNatInfinite_FreeUltrafilterNat FreeUltrafilterNat_HNatInfinite]) |
326 |
||
27468 | 327 |
|
61975 | 328 |
subsection \<open>Embedding of the Hypernaturals into other types\<close> |
27468 | 329 |
|
64435 | 330 |
definition of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star" |
331 |
where of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat" |
|
27468 | 332 |
|
333 |
lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0" |
|
64435 | 334 |
by transfer (rule of_nat_0) |
27468 | 335 |
|
336 |
lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1" |
|
64435 | 337 |
by transfer (rule of_nat_1) |
27468 | 338 |
|
339 |
lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m" |
|
64435 | 340 |
by transfer (rule of_nat_Suc) |
27468 | 341 |
|
64435 | 342 |
lemma of_hypnat_add [simp]: "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n" |
343 |
by transfer (rule of_nat_add) |
|
27468 | 344 |
|
64435 | 345 |
lemma of_hypnat_mult [simp]: "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n" |
346 |
by transfer (rule of_nat_mult) |
|
27468 | 347 |
|
348 |
lemma of_hypnat_less_iff [simp]: |
|
64435 | 349 |
"\<And>m n. of_hypnat m < (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m < n" |
350 |
by transfer (rule of_nat_less_iff) |
|
27468 | 351 |
|
352 |
lemma of_hypnat_0_less_iff [simp]: |
|
64435 | 353 |
"\<And>n. 0 < (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> 0 < n" |
354 |
by transfer (rule of_nat_0_less_iff) |
|
27468 | 355 |
|
64435 | 356 |
lemma of_hypnat_less_0_iff [simp]: "\<And>m. \<not> (of_hypnat m::'a::linordered_semidom star) < 0" |
357 |
by transfer (rule of_nat_less_0_iff) |
|
27468 | 358 |
|
359 |
lemma of_hypnat_le_iff [simp]: |
|
64435 | 360 |
"\<And>m n. of_hypnat m \<le> (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m \<le> n" |
361 |
by transfer (rule of_nat_le_iff) |
|
27468 | 362 |
|
64435 | 363 |
lemma of_hypnat_0_le_iff [simp]: "\<And>n. 0 \<le> (of_hypnat n::'a::linordered_semidom star)" |
364 |
by transfer (rule of_nat_0_le_iff) |
|
27468 | 365 |
|
64435 | 366 |
lemma of_hypnat_le_0_iff [simp]: "\<And>m. (of_hypnat m::'a::linordered_semidom star) \<le> 0 \<longleftrightarrow> m = 0" |
367 |
by transfer (rule of_nat_le_0_iff) |
|
27468 | 368 |
|
369 |
lemma of_hypnat_eq_iff [simp]: |
|
64435 | 370 |
"\<And>m n. of_hypnat m = (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m = n" |
371 |
by transfer (rule of_nat_eq_iff) |
|
27468 | 372 |
|
64435 | 373 |
lemma of_hypnat_eq_0_iff [simp]: "\<And>m. (of_hypnat m::'a::linordered_semidom star) = 0 \<longleftrightarrow> m = 0" |
374 |
by transfer (rule of_nat_eq_0_iff) |
|
27468 | 375 |
|
376 |
lemma HNatInfinite_of_hypnat_gt_zero: |
|
35028
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
haftmann
parents:
29920
diff
changeset
|
377 |
"N \<in> HNatInfinite \<Longrightarrow> (0::'a::linordered_semidom star) < of_hypnat N" |
64435 | 378 |
by (rule ccontr) (simp add: linorder_not_less) |
27468 | 379 |
|
380 |
end |