doc-src/TutorialI/Misc/document/AdvancedInd.tex
author nipkow
Mon, 18 Dec 2000 16:45:17 +0100
changeset 10696 76d7f6c9a14c
parent 10668 3b84288e60b7
child 10878 b254d5ad6dd4
permissions -rw-r--r--
*** empty log message ***
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
9722
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
     1
%
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
     2
\begin{isabellebody}%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
     3
\def\isabellecontext{AdvancedInd}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     4
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     5
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     6
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     7
Now that we have learned about rules and logic, we take another look at the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
     8
finer points of induction. The two questions we answer are: what to do if the
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
     9
proposition to be proved is not directly amenable to induction
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
    10
(\S\ref{sec:ind-var-in-prems}), and how to utilize (\S\ref{sec:complete-ind})
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
    11
and even derive (\S\ref{sec:derive-ind}) new induction schemas. We conclude
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
    12
with an extended example of induction (\S\ref{sec:CTL-revisited}).%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    13
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    14
%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
    15
\isamarkupsubsection{Massaging the proposition%
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
    16
}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    17
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    18
\begin{isamarkuptext}%
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
    19
\label{sec:ind-var-in-prems}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    20
So far we have assumed that the theorem we want to prove is already in a form
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    21
that is amenable to induction, but this is not always the case:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    22
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    23
\isacommand{lemma}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}\isanewline
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    24
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ xs{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    25
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    26
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    27
(where \isa{hd} and \isa{last} return the first and last element of a
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    28
non-empty list)
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    29
produces the warning
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    30
\begin{quote}\tt
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    31
Induction variable occurs also among premises!
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    32
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    33
and leads to the base case
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
    34
\begin{isabelle}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
    35
\ {\isadigit{1}}{\isachardot}\ xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymLongrightarrow}\ hd\ {\isacharparenleft}rev\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ last\ {\isacharbrackleft}{\isacharbrackright}%
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    36
\end{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    37
which, after simplification, becomes
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    38
\begin{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    39
\ 1.\ xs\ {\isasymnoteq}\ []\ {\isasymLongrightarrow}\ hd\ []\ =\ last\ []
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    40
\end{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    41
We cannot prove this equality because we do not know what \isa{hd} and
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    42
\isa{last} return when applied to \isa{{\isacharbrackleft}{\isacharbrackright}}.
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    43
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    44
The point is that we have violated the above warning. Because the induction
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    45
formula is only the conclusion, the occurrence of \isa{xs} in the premises is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    46
not modified by induction. Thus the case that should have been trivial
10242
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10236
diff changeset
    47
becomes unprovable. Fortunately, the solution is easy:\footnote{A very similar
028f54cd2cc9 *** empty log message ***
nipkow
parents: 10236
diff changeset
    48
heuristic applies to rule inductions; see \S\ref{sec:rtc}.}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    49
\begin{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    50
\emph{Pull all occurrences of the induction variable into the conclusion
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    51
using \isa{{\isasymlongrightarrow}}.}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    52
\end{quote}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    53
This means we should prove%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    54
\end{isamarkuptxt}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    55
\isacommand{lemma}\ hd{\isacharunderscore}rev{\isacharcolon}\ {\isachardoublequote}xs\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd{\isacharparenleft}rev\ xs{\isacharparenright}\ {\isacharequal}\ last\ xs{\isachardoublequote}%
10420
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    56
\begin{isamarkuptxt}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    57
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    58
This time, induction leaves us with the following base case
10420
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    59
\begin{isabelle}%
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    60
\ {\isadigit{1}}{\isachardot}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymnoteq}\ {\isacharbrackleft}{\isacharbrackright}\ {\isasymlongrightarrow}\ hd\ {\isacharparenleft}rev\ {\isacharbrackleft}{\isacharbrackright}{\isacharparenright}\ {\isacharequal}\ last\ {\isacharbrackleft}{\isacharbrackright}%
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
    61
\end{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    62
which is trivial, and \isa{auto} finishes the whole proof.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    63
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    64
If \isa{hd{\isacharunderscore}rev} is meant to be a simplification rule, you are
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    65
done. But if you really need the \isa{{\isasymLongrightarrow}}-version of
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    66
\isa{hd{\isacharunderscore}rev}, for example because you want to apply it as an
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    67
introduction rule, you need to derive it separately, by combining it with
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    68
modus ponens:%
10420
ef006735bee8 *** empty log message ***
nipkow
parents: 10397
diff changeset
    69
\end{isamarkuptxt}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    70
\isacommand{lemmas}\ hd{\isacharunderscore}revI\ {\isacharequal}\ hd{\isacharunderscore}rev{\isacharbrackleft}THEN\ mp{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    71
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    72
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    73
which yields the lemma we originally set out to prove.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    74
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    75
In case there are multiple premises $A@1$, \dots, $A@n$ containing the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    76
induction variable, you should turn the conclusion $C$ into
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    77
\[ A@1 \longrightarrow \cdots A@n \longrightarrow C \]
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    78
(see the remark?? in \S\ref{??}).
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    79
Additionally, you may also have to universally quantify some other variables,
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    80
which can yield a fairly complex conclusion.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    81
Here is a simple example (which is proved by \isa{blast}):%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    82
\end{isamarkuptext}%
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
    83
\isacommand{lemma}\ simple{\isacharcolon}\ {\isachardoublequote}{\isasymforall}y{\isachardot}\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymand}\ A\ y{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    84
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    85
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    86
You can get the desired lemma by explicit
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    87
application of modus ponens and \isa{spec}:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    88
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
    89
\isacommand{lemmas}\ myrule\ {\isacharequal}\ simple{\isacharbrackleft}THEN\ spec{\isacharcomma}\ THEN\ mp{\isacharcomma}\ THEN\ mp{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    90
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    91
\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
    92
or the wholesale stripping of \isa{{\isasymforall}} and
9958
67f2920862c7 *** empty log message ***
nipkow
parents: 9933
diff changeset
    93
\isa{{\isasymlongrightarrow}} in the conclusion via \isa{rule{\isacharunderscore}format}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    94
\end{isamarkuptext}%
9958
67f2920862c7 *** empty log message ***
nipkow
parents: 9933
diff changeset
    95
\isacommand{lemmas}\ myrule\ {\isacharequal}\ simple{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    96
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    97
\noindent
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
    98
yielding \isa{{\isasymlbrakk}A\ y{\isacharsemicolon}\ B\ y{\isasymrbrakk}\ {\isasymLongrightarrow}\ B\ y\ {\isasymand}\ A\ y}.
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
    99
You can go one step further and include these derivations already in the
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   100
statement of your original lemma, thus avoiding the intermediate step:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   101
\end{isamarkuptext}%
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   102
\isacommand{lemma}\ myrule{\isacharbrackleft}rule{\isacharunderscore}format{\isacharbrackright}{\isacharcolon}\ \ {\isachardoublequote}{\isasymforall}y{\isachardot}\ A\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymlongrightarrow}\ B\ y\ {\isasymand}\ A\ y{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   103
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   104
\bigskip
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   105
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   106
A second reason why your proposition may not be amenable to induction is that
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   107
you want to induct on a whole term, rather than an individual variable. In
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   108
general, when inducting on some term $t$ you must rephrase the conclusion $C$
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   109
as
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   110
\[ \forall y@1 \dots y@n.~ x = t \longrightarrow C \]
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   111
where $y@1 \dots y@n$ are the free variables in $t$ and $x$ is new, and
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   112
perform induction on $x$ afterwards. An example appears in
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   113
\S\ref{sec:complete-ind} below.
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   114
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   115
The very same problem may occur in connection with rule induction. Remember
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   116
that it requires a premise of the form $(x@1,\dots,x@k) \in R$, where $R$ is
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   117
some inductively defined set and the $x@i$ are variables.  If instead we have
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   118
a premise $t \in R$, where $t$ is not just an $n$-tuple of variables, we
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   119
replace it with $(x@1,\dots,x@k) \in R$, and rephrase the conclusion $C$ as
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   120
\[ \forall y@1 \dots y@n.~ (x@1,\dots,x@k) = t \longrightarrow C \]
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   121
For an example see \S\ref{sec:CTL-revisited} below.
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   122
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   123
Of course, all premises that share free variables with $t$ need to be pulled into
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   124
the conclusion as well, under the \isa{{\isasymforall}}, again using \isa{{\isasymlongrightarrow}} as shown above.%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   125
\end{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   126
%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   127
\isamarkupsubsection{Beyond structural and recursion induction%
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   128
}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   129
%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   130
\begin{isamarkuptext}%
10217
e61e7e1eacaf *** empty log message ***
nipkow
parents: 10187
diff changeset
   131
\label{sec:complete-ind}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   132
So far, inductive proofs where by structural induction for
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   133
primitive recursive functions and recursion induction for total recursive
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   134
functions. But sometimes structural induction is awkward and there is no
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   135
recursive function in sight either that could furnish a more appropriate
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   136
induction schema. In such cases some existing standard induction schema can
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   137
be helpful. We show how to apply such induction schemas by an example.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   138
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   139
Structural induction on \isa{nat} is
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   140
usually known as ``mathematical induction''. There is also ``complete
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   141
induction'', where you must prove $P(n)$ under the assumption that $P(m)$
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   142
holds for all $m<n$. In Isabelle, this is the theorem \isa{nat{\isacharunderscore}less{\isacharunderscore}induct}:
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   143
\begin{isabelle}%
9834
109b11c4e77e *** empty log message ***
nipkow
parents: 9792
diff changeset
   144
\ \ \ \ \ {\isacharparenleft}{\isasymAnd}n{\isachardot}\ {\isasymforall}m{\isachardot}\ m\ {\isacharless}\ n\ {\isasymlongrightarrow}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   145
\end{isabelle}
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   146
Here is an example of its application.%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   147
\end{isamarkuptext}%
10281
9554ce1c2e54 *** empty log message ***
nipkow
parents: 10242
diff changeset
   148
\isacommand{consts}\ f\ {\isacharcolon}{\isacharcolon}\ {\isachardoublequote}nat\ {\isasymRightarrow}\ nat{\isachardoublequote}\isanewline
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   149
\isacommand{axioms}\ f{\isacharunderscore}ax{\isacharcolon}\ {\isachardoublequote}f{\isacharparenleft}f{\isacharparenleft}n{\isacharparenright}{\isacharparenright}\ {\isacharless}\ f{\isacharparenleft}Suc{\isacharparenleft}n{\isacharparenright}{\isacharparenright}{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   150
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   151
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   152
From the above axiom\footnote{In general, the use of axioms is strongly
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   153
discouraged, because of the danger of inconsistencies. The above axiom does
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   154
not introduce an inconsistency because, for example, the identity function
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   155
satisfies it.}
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   156
for \isa{f} it follows that \isa{n\ {\isasymle}\ f\ n}, which can
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   157
be proved by induction on \isa{f\ n}. Following the recipe outlined
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   158
above, we have to phrase the proposition as follows to allow induction:%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   159
\end{isamarkuptext}%
9673
1b2d4f995b13 updated;
wenzelm
parents: 9670
diff changeset
   160
\isacommand{lemma}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   161
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   162
\noindent
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   163
To perform induction on \isa{k} using \isa{nat{\isacharunderscore}less{\isacharunderscore}induct}, we use
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   164
the same general induction method as for recursion induction (see
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   165
\S\ref{sec:recdef-induction}):%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   166
\end{isamarkuptxt}%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   167
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ k\ rule{\isacharcolon}\ nat{\isacharunderscore}less{\isacharunderscore}induct{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   168
\begin{isamarkuptxt}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   169
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   170
which leaves us with the following proof state:
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   171
\begin{isabelle}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   172
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n{\isachardot}\ {\isasymforall}m{\isachardot}\ m\ {\isacharless}\ n\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ m\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isacharparenright}\ {\isasymLongrightarrow}\isanewline
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   173
\ \ \ \ \ \ \ \ {\isasymforall}i{\isachardot}\ n\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i%
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
   174
\end{isabelle}
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   175
After stripping the \isa{{\isasymforall}i}, the proof continues with a case
10187
0376cccd9118 *** empty log message ***
nipkow
parents: 10186
diff changeset
   176
distinction on \isa{i}. The case \isa{i\ {\isacharequal}\ {\isadigit{0}}} is trivial and we focus on
10363
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   177
the other case:%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   178
\end{isamarkuptxt}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   179
\isacommand{apply}{\isacharparenleft}rule\ allI{\isacharparenright}\isanewline
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   180
\isacommand{apply}{\isacharparenleft}case{\isacharunderscore}tac\ i{\isacharparenright}\isanewline
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   181
\ \isacommand{apply}{\isacharparenleft}simp{\isacharparenright}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   182
\begin{isamarkuptxt}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   183
\begin{isabelle}%
6e8002c1790e *** empty log message ***
nipkow
parents: 10328
diff changeset
   184
\ {\isadigit{1}}{\isachardot}\ {\isasymAnd}n\ i\ nat{\isachardot}\isanewline
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   185
\ \ \ \ \ \ \ {\isasymlbrakk}{\isasymforall}m{\isachardot}\ m\ {\isacharless}\ n\ {\isasymlongrightarrow}\ {\isacharparenleft}{\isasymforall}i{\isachardot}\ m\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isacharparenright}{\isacharsemicolon}\ i\ {\isacharequal}\ Suc\ nat{\isasymrbrakk}\isanewline
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   186
\ \ \ \ \ \ \ {\isasymLongrightarrow}\ n\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i%
9723
a977245dfc8a *** empty log message ***
nipkow
parents: 9722
diff changeset
   187
\end{isabelle}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   188
\end{isamarkuptxt}%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   189
\isacommand{by}{\isacharparenleft}blast\ intro{\isacharbang}{\isacharcolon}\ f{\isacharunderscore}ax\ Suc{\isacharunderscore}leI\ intro{\isacharcolon}\ le{\isacharunderscore}less{\isacharunderscore}trans{\isacharparenright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   190
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   191
\noindent
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   192
It is not surprising if you find the last step puzzling.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   193
The proof goes like this (writing \isa{j} instead of \isa{nat}).
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   194
Since \isa{i\ {\isacharequal}\ Suc\ j} it suffices to show
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   195
\isa{j\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}} (by \isa{Suc{\isacharunderscore}leI}: \isa{m\ {\isacharless}\ n\ {\isasymLongrightarrow}\ Suc\ m\ {\isasymle}\ n}). This is
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   196
proved as follows. From \isa{f{\isacharunderscore}ax} we have \isa{f\ {\isacharparenleft}f\ j{\isacharparenright}\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   197
(1) which implies \isa{f\ j\ {\isasymle}\ f\ {\isacharparenleft}f\ j{\isacharparenright}} (by the induction hypothesis).
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   198
Using (1) once more we obtain \isa{f\ j\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}} (2) by transitivity
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   199
(\isa{le{\isacharunderscore}less{\isacharunderscore}trans}: \isa{{\isasymlbrakk}i\ {\isasymle}\ j{\isacharsemicolon}\ j\ {\isacharless}\ k{\isasymrbrakk}\ {\isasymLongrightarrow}\ i\ {\isacharless}\ k}).
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   200
Using the induction hypothesis once more we obtain \isa{j\ {\isasymle}\ f\ j}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   201
which, together with (2) yields \isa{j\ {\isacharless}\ f\ {\isacharparenleft}Suc\ j{\isacharparenright}} (again by
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   202
\isa{le{\isacharunderscore}less{\isacharunderscore}trans}).
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   203
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   204
This last step shows both the power and the danger of automatic proofs: they
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   205
will usually not tell you how the proof goes, because it can be very hard to
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   206
translate the internal proof into a human-readable format. Therefore
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   207
\S\ref{sec:part2?} introduces a language for writing readable yet concise
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   208
proofs.
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   209
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   210
We can now derive the desired \isa{i\ {\isasymle}\ f\ i} from \isa{f{\isacharunderscore}incr}:%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   211
\end{isamarkuptext}%
9958
67f2920862c7 *** empty log message ***
nipkow
parents: 9933
diff changeset
   212
\isacommand{lemmas}\ f{\isacharunderscore}incr\ {\isacharequal}\ f{\isacharunderscore}incr{\isacharunderscore}lem{\isacharbrackleft}rule{\isacharunderscore}format{\isacharcomma}\ OF\ refl{\isacharbrackright}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   213
\begin{isamarkuptext}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   214
\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   215
The final \isa{refl} gets rid of the premise \isa{{\isacharquery}k\ {\isacharequal}\ f\ {\isacharquery}i}. Again,
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   216
we could have included this derivation in the original statement of the lemma:%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   217
\end{isamarkuptext}%
9958
67f2920862c7 *** empty log message ***
nipkow
parents: 9933
diff changeset
   218
\isacommand{lemma}\ f{\isacharunderscore}incr{\isacharbrackleft}rule{\isacharunderscore}format{\isacharcomma}\ OF\ refl{\isacharbrackright}{\isacharcolon}\ {\isachardoublequote}{\isasymforall}i{\isachardot}\ k\ {\isacharequal}\ f\ i\ {\isasymlongrightarrow}\ i\ {\isasymle}\ f\ i{\isachardoublequote}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   219
\begin{isamarkuptext}%
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   220
\begin{exercise}
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   221
From the above axiom and lemma for \isa{f} show that \isa{f} is the
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   222
identity.
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   223
\end{exercise}
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   224
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   225
In general, \isa{induct{\isacharunderscore}tac} can be applied with any rule $r$
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   226
whose conclusion is of the form ${?}P~?x@1 \dots ?x@n$, in which case the
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   227
format is
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   228
\begin{quote}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   229
\isacommand{apply}\isa{{\isacharparenleft}induct{\isacharunderscore}tac} $y@1 \dots y@n$ \isa{rule{\isacharcolon}} $r$\isa{{\isacharparenright}}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   230
\end{quote}\index{*induct_tac}%
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   231
where $y@1, \dots, y@n$ are variables in the first subgoal.
10236
7626cb4e1407 *** empty log message ***
nipkow
parents: 10217
diff changeset
   232
A further example of a useful induction rule is \isa{length{\isacharunderscore}induct},
7626cb4e1407 *** empty log message ***
nipkow
parents: 10217
diff changeset
   233
induction on the length of a list:\indexbold{*length_induct}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10217
diff changeset
   234
\begin{isabelle}%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10217
diff changeset
   235
\ \ \ \ \ {\isacharparenleft}{\isasymAnd}xs{\isachardot}\ {\isasymforall}ys{\isachardot}\ length\ ys\ {\isacharless}\ length\ xs\ {\isasymlongrightarrow}\ P\ ys\ {\isasymLongrightarrow}\ P\ xs{\isacharparenright}\ {\isasymLongrightarrow}\ P\ xs%
7626cb4e1407 *** empty log message ***
nipkow
parents: 10217
diff changeset
   236
\end{isabelle}
7626cb4e1407 *** empty log message ***
nipkow
parents: 10217
diff changeset
   237
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   238
In fact, \isa{induct{\isacharunderscore}tac} even allows the conclusion of
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   239
$r$ to be an (iterated) conjunction of formulae of the above form, in
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   240
which case the application is
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   241
\begin{quote}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   242
\isacommand{apply}\isa{{\isacharparenleft}induct{\isacharunderscore}tac} $y@1 \dots y@n$ \isa{and} \dots\ \isa{and} $z@1 \dots z@m$ \isa{rule{\isacharcolon}} $r$\isa{{\isacharparenright}}
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   243
\end{quote}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   244
\end{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   245
%
10397
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   246
\isamarkupsubsection{Derivation of new induction schemas%
e2d0dda41f2c auto update
paulson
parents: 10396
diff changeset
   247
}
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   248
%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   249
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   250
\label{sec:derive-ind}
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   251
Induction schemas are ordinary theorems and you can derive new ones
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   252
whenever you wish.  This section shows you how to, using the example
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   253
of \isa{nat{\isacharunderscore}less{\isacharunderscore}induct}. Assume we only have structural induction
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   254
available for \isa{nat} and want to derive complete induction. This
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   255
requires us to generalize the statement first:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   256
\end{isamarkuptext}%
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   257
\isacommand{lemma}\ induct{\isacharunderscore}lem{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m{\isachardoublequote}\isanewline
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   258
\isacommand{apply}{\isacharparenleft}induct{\isacharunderscore}tac\ n{\isacharparenright}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   259
\begin{isamarkuptxt}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   260
\noindent
9933
9feb1e0c4cb3 *** empty log message ***
nipkow
parents: 9924
diff changeset
   261
The base case is trivially true. For the induction step (\isa{m\ {\isacharless}\ Suc\ n}) we distinguish two cases: case \isa{m\ {\isacharless}\ n} is true by induction
9feb1e0c4cb3 *** empty log message ***
nipkow
parents: 9924
diff changeset
   262
hypothesis and case \isa{m\ {\isacharequal}\ n} follows from the assumption, again using
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   263
the induction hypothesis:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   264
\end{isamarkuptxt}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   265
\isacommand{apply}{\isacharparenleft}blast{\isacharparenright}\isanewline
9933
9feb1e0c4cb3 *** empty log message ***
nipkow
parents: 9924
diff changeset
   266
\isacommand{by}{\isacharparenleft}blast\ elim{\isacharcolon}less{\isacharunderscore}SucE{\isacharparenright}%
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   267
\begin{isamarkuptext}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   268
\noindent
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   269
The elimination rule \isa{less{\isacharunderscore}SucE} expresses the case distinction:
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   270
\begin{isabelle}%
10696
76d7f6c9a14c *** empty log message ***
nipkow
parents: 10668
diff changeset
   271
\ \ \ \ \ {\isasymlbrakk}m\ {\isacharless}\ Suc\ n{\isacharsemicolon}\ m\ {\isacharless}\ n\ {\isasymLongrightarrow}\ P{\isacharsemicolon}\ m\ {\isacharequal}\ n\ {\isasymLongrightarrow}\ P{\isasymrbrakk}\ {\isasymLongrightarrow}\ P%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   272
\end{isabelle}
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   273
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   274
Now it is straightforward to derive the original version of
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   275
\isa{nat{\isacharunderscore}less{\isacharunderscore}induct} by manipulting the conclusion of the above lemma:
9792
bbefb6ce5cb2 *** empty log message ***
nipkow
parents: 9723
diff changeset
   276
instantiate \isa{n} by \isa{Suc\ n} and \isa{m} by \isa{n} and
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   277
remove the trivial condition \isa{n\ {\isacharless}\ Suc\ n}. Fortunately, this
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   278
happens automatically when we add the lemma as a new premise to the
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   279
desired goal:%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   280
\end{isamarkuptext}%
9924
3370f6aa3200 updated;
wenzelm
parents: 9834
diff changeset
   281
\isacommand{theorem}\ nat{\isacharunderscore}less{\isacharunderscore}induct{\isacharcolon}\ {\isachardoublequote}{\isacharparenleft}{\isasymAnd}n{\isacharcolon}{\isacharcolon}nat{\isachardot}\ {\isasymforall}m{\isacharless}n{\isachardot}\ P\ m\ {\isasymLongrightarrow}\ P\ n{\isacharparenright}\ {\isasymLongrightarrow}\ P\ n{\isachardoublequote}\isanewline
9698
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   282
\isacommand{by}{\isacharparenleft}insert\ induct{\isacharunderscore}lem{\isacharcomma}\ blast{\isacharparenright}%
f0740137a65d updated;
wenzelm
parents: 9673
diff changeset
   283
\begin{isamarkuptext}%
10396
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   284
Finally we should remind the reader that HOL already provides the mother of
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   285
all inductions, well-founded induction (see \S\ref{sec:Well-founded}).  For
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   286
example theorem \isa{nat{\isacharunderscore}less{\isacharunderscore}induct} can be viewed (and derived) as
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   287
a special case of \isa{wf{\isacharunderscore}induct} where \isa{r} is \isa{{\isacharless}} on
5ab08609e6c8 *** empty log message ***
nipkow
parents: 10395
diff changeset
   288
\isa{nat}. The details can be found in the HOL library.%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   289
\end{isamarkuptext}%
9722
a5f86aed785b *** empty log message ***
nipkow
parents: 9721
diff changeset
   290
\end{isabellebody}%
9670
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   291
%%% Local Variables:
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   292
%%% mode: latex
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   293
%%% TeX-master: "root"
820cca8573f8 *** empty log message ***
nipkow
parents:
diff changeset
   294
%%% End: