| author | paulson <lp15@cam.ac.uk> | 
| Thu, 10 Apr 2025 17:07:18 +0100 | |
| changeset 82470 | 785615e37846 | 
| parent 82026 | 57b4e44f5bc4 | 
| child 82593 | 88043331f166 | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 60758 | 5 | section \<open>Abstract orderings\<close> | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35115diff
changeset | 8 | imports HOL | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46884diff
changeset | 9 | keywords "print_orders" :: diag | 
| 15524 | 10 | begin | 
| 11 | ||
| 60758 | 12 | subsection \<open>Abstract ordering\<close> | 
| 51487 | 13 | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 14 | locale partial_preordering = | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 15 | fixes less_eq :: \<open>'a \<Rightarrow> 'a \<Rightarrow> bool\<close> (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 16 | assumes refl: \<open>a \<^bold>\<le> a\<close> \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 17 | and trans: \<open>a \<^bold>\<le> b \<Longrightarrow> b \<^bold>\<le> c \<Longrightarrow> a \<^bold>\<le> c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 18 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 19 | locale preordering = partial_preordering + | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 20 | fixes less :: \<open>'a \<Rightarrow> 'a \<Rightarrow> bool\<close> (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 21 | assumes strict_iff_not: \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> \<not> b \<^bold>\<le> a\<close> | 
| 51487 | 22 | begin | 
| 23 | ||
| 24 | lemma strict_implies_order: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 25 | \<open>a \<^bold>< b \<Longrightarrow> a \<^bold>\<le> b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 26 | by (simp add: strict_iff_not) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 27 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 28 | lemma irrefl: \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 29 | \<open>\<not> a \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 30 | by (simp add: strict_iff_not) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 31 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 32 | lemma asym: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 33 | \<open>a \<^bold>< b \<Longrightarrow> b \<^bold>< a \<Longrightarrow> False\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 34 | by (auto simp add: strict_iff_not) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 35 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 36 | lemma strict_trans1: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 37 | \<open>a \<^bold>\<le> b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 38 | by (auto simp add: strict_iff_not intro: trans) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 39 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 40 | lemma strict_trans2: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 41 | \<open>a \<^bold>< b \<Longrightarrow> b \<^bold>\<le> c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 42 | by (auto simp add: strict_iff_not intro: trans) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 43 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 44 | lemma strict_trans: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 45 | \<open>a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 46 | by (auto intro: strict_trans1 strict_implies_order) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 47 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 48 | end | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 49 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 50 | lemma preordering_strictI: \<comment> \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 51 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 52 | and less (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 53 | assumes less_eq_less: \<open>\<And>a b. a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 54 | assumes asym: \<open>\<And>a b. a \<^bold>< b \<Longrightarrow> \<not> b \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 55 | assumes irrefl: \<open>\<And>a. \<not> a \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 56 | assumes trans: \<open>\<And>a b c. a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 57 | shows \<open>preordering (\<^bold>\<le>) (\<^bold><)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 58 | proof | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 59 | fix a b | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 60 | show \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> \<not> b \<^bold>\<le> a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 61 | by (auto simp add: less_eq_less asym irrefl) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 62 | next | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 63 | fix a | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 64 | show \<open>a \<^bold>\<le> a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 65 | by (auto simp add: less_eq_less) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 66 | next | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 67 | fix a b c | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 68 | assume \<open>a \<^bold>\<le> b\<close> and \<open>b \<^bold>\<le> c\<close> then show \<open>a \<^bold>\<le> c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 69 | by (auto simp add: less_eq_less intro: trans) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 70 | qed | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 71 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 72 | lemma preordering_dualI: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 73 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 74 | and less (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 75 | assumes \<open>preordering (\<lambda>a b. b \<^bold>\<le> a) (\<lambda>a b. b \<^bold>< a)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 76 | shows \<open>preordering (\<^bold>\<le>) (\<^bold><)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 77 | proof - | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 78 | from assms interpret preordering \<open>\<lambda>a b. b \<^bold>\<le> a\<close> \<open>\<lambda>a b. b \<^bold>< a\<close> . | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 79 | show ?thesis | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 80 | by standard (auto simp: strict_iff_not refl intro: trans) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 81 | qed | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 82 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 83 | locale ordering = partial_preordering + | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 84 | fixes less :: \<open>'a \<Rightarrow> 'a \<Rightarrow> bool\<close> (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 85 | assumes strict_iff_order: \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<noteq> b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 86 | assumes antisym: \<open>a \<^bold>\<le> b \<Longrightarrow> b \<^bold>\<le> a \<Longrightarrow> a = b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 87 | begin | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 88 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 89 | sublocale preordering \<open>(\<^bold>\<le>)\<close> \<open>(\<^bold><)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 90 | proof | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 91 | show \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> \<not> b \<^bold>\<le> a\<close> for a b | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 92 | by (auto simp add: strict_iff_order intro: antisym) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 93 | qed | 
| 51487 | 94 | |
| 95 | lemma strict_implies_not_eq: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 96 | \<open>a \<^bold>< b \<Longrightarrow> a \<noteq> b\<close> | 
| 51487 | 97 | by (simp add: strict_iff_order) | 
| 98 | ||
| 99 | lemma not_eq_order_implies_strict: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 100 | \<open>a \<noteq> b \<Longrightarrow> a \<^bold>\<le> b \<Longrightarrow> a \<^bold>< b\<close> | 
| 51487 | 101 | by (simp add: strict_iff_order) | 
| 102 | ||
| 103 | lemma order_iff_strict: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 104 | \<open>a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b\<close> | 
| 51487 | 105 | by (auto simp add: strict_iff_order refl) | 
| 106 | ||
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 107 | lemma eq_iff: \<open>a = b \<longleftrightarrow> a \<^bold>\<le> b \<and> b \<^bold>\<le> a\<close> | 
| 71851 | 108 | by (auto simp add: refl intro: antisym) | 
| 109 | ||
| 51487 | 110 | end | 
| 111 | ||
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 112 | lemma ordering_strictI: \<comment> \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 113 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 114 | and less (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 115 | assumes less_eq_less: \<open>\<And>a b. a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 116 | assumes asym: \<open>\<And>a b. a \<^bold>< b \<Longrightarrow> \<not> b \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 117 | assumes irrefl: \<open>\<And>a. \<not> a \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 118 | assumes trans: \<open>\<And>a b c. a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 119 | shows \<open>ordering (\<^bold>\<le>) (\<^bold><)\<close> | 
| 63819 | 120 | proof | 
| 121 | fix a b | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 122 | show \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<noteq> b\<close> | 
| 63819 | 123 | by (auto simp add: less_eq_less asym irrefl) | 
| 124 | next | |
| 125 | fix a | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 126 | show \<open>a \<^bold>\<le> a\<close> | 
| 63819 | 127 | by (auto simp add: less_eq_less) | 
| 128 | next | |
| 129 | fix a b c | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 130 | assume \<open>a \<^bold>\<le> b\<close> and \<open>b \<^bold>\<le> c\<close> then show \<open>a \<^bold>\<le> c\<close> | 
| 63819 | 131 | by (auto simp add: less_eq_less intro: trans) | 
| 132 | next | |
| 133 | fix a b | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 134 | assume \<open>a \<^bold>\<le> b\<close> and \<open>b \<^bold>\<le> a\<close> then show \<open>a = b\<close> | 
| 63819 | 135 | by (auto simp add: less_eq_less asym) | 
| 136 | qed | |
| 137 | ||
| 138 | lemma ordering_dualI: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 139 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 140 | and less (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 141 | assumes \<open>ordering (\<lambda>a b. b \<^bold>\<le> a) (\<lambda>a b. b \<^bold>< a)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 142 | shows \<open>ordering (\<^bold>\<le>) (\<^bold><)\<close> | 
| 63819 | 143 | proof - | 
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 144 | from assms interpret ordering \<open>\<lambda>a b. b \<^bold>\<le> a\<close> \<open>\<lambda>a b. b \<^bold>< a\<close> . | 
| 63819 | 145 | show ?thesis | 
| 146 | by standard (auto simp: strict_iff_order refl intro: antisym trans) | |
| 147 | qed | |
| 148 | ||
| 51487 | 149 | locale ordering_top = ordering + | 
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 150 | fixes top :: \<open>'a\<close> (\<open>\<^bold>\<top>\<close>) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 151 | assumes extremum [simp]: \<open>a \<^bold>\<le> \<^bold>\<top>\<close> | 
| 51487 | 152 | begin | 
| 153 | ||
| 154 | lemma extremum_uniqueI: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 155 | \<open>\<^bold>\<top> \<^bold>\<le> a \<Longrightarrow> a = \<^bold>\<top>\<close> | 
| 51487 | 156 | by (rule antisym) auto | 
| 157 | ||
| 158 | lemma extremum_unique: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 159 | \<open>\<^bold>\<top> \<^bold>\<le> a \<longleftrightarrow> a = \<^bold>\<top>\<close> | 
| 51487 | 160 | by (auto intro: antisym) | 
| 161 | ||
| 162 | lemma extremum_strict [simp]: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 163 | \<open>\<not> (\<^bold>\<top> \<^bold>< a)\<close> | 
| 51487 | 164 | using extremum [of a] by (auto simp add: order_iff_strict intro: asym irrefl) | 
| 165 | ||
| 166 | lemma not_eq_extremum: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 167 | \<open>a \<noteq> \<^bold>\<top> \<longleftrightarrow> a \<^bold>< \<^bold>\<top>\<close> | 
| 51487 | 168 | by (auto simp add: order_iff_strict intro: not_eq_order_implies_strict extremum) | 
| 169 | ||
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 170 | end | 
| 51487 | 171 | |
| 172 | ||
| 60758 | 173 | subsection \<open>Syntactic orders\<close> | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 174 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 175 | class ord = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 176 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 177 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 178 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 179 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 180 | notation | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 181 | less_eq (\<open>'(\<le>')\<close>) and | 
| 80934 | 182 | less_eq (\<open>(\<open>notation=\<open>infix \<le>\<close>\<close>_/ \<le> _)\<close> [51, 51] 50) and | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 183 | less (\<open>'(<')\<close>) and | 
| 80934 | 184 | less (\<open>(\<open>notation=\<open>infix <\<close>\<close>_/ < _)\<close> [51, 51] 50) | 
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 185 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 186 | abbreviation (input) | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 187 | greater_eq (infix \<open>\<ge>\<close> 50) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 188 | where "x \<ge> y \<equiv> y \<le> x" | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 189 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 190 | abbreviation (input) | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 191 | greater (infix \<open>>\<close> 50) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 192 | where "x > y \<equiv> y < x" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 193 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 194 | notation (ASCII) | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 195 | less_eq (\<open>'(<=')\<close>) and | 
| 80934 | 196 | less_eq (\<open>(\<open>notation=\<open>infix <=\<close>\<close>_/ <= _)\<close> [51, 51] 50) | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 197 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 198 | notation (input) | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 199 | greater_eq (infix \<open>>=\<close> 50) | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 200 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 201 | end | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 202 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 203 | |
| 60758 | 204 | subsection \<open>Quasi orders\<close> | 
| 15524 | 205 | |
| 27682 | 206 | class preorder = ord + | 
| 207 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 208 | and order_refl [iff]: "x \<le> x" | 
| 209 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 210 | begin | 
| 211 | ||
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 212 | sublocale order: preordering less_eq less + dual_order: preordering greater_eq greater | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 213 | proof - | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 214 | interpret preordering less_eq less | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 215 | by standard (auto intro: order_trans simp add: less_le_not_le) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 216 | show \<open>preordering less_eq less\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 217 | by (fact preordering_axioms) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 218 | then show \<open>preordering greater_eq greater\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 219 | by (rule preordering_dualI) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 220 | qed | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 221 | |
| 60758 | 222 | text \<open>Reflexivity.\<close> | 
| 15524 | 223 | |
| 25062 | 224 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 61799 | 225 | \<comment> \<open>This form is useful with the classical reasoner.\<close> | 
| 23212 | 226 | by (erule ssubst) (rule order_refl) | 
| 15524 | 227 | |
| 25062 | 228 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 229 | by (simp add: less_le_not_le) | 
| 230 | ||
| 231 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 63172 | 232 | by (simp add: less_le_not_le) | 
| 27682 | 233 | |
| 234 | ||
| 60758 | 235 | text \<open>Asymmetry.\<close> | 
| 27682 | 236 | |
| 237 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 238 | by (simp add: less_le_not_le) | |
| 239 | ||
| 240 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 241 | by (drule less_not_sym, erule contrapos_np) simp | |
| 242 | ||
| 243 | ||
| 60758 | 244 | text \<open>Transitivity.\<close> | 
| 27682 | 245 | |
| 246 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 247 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 248 | |
| 249 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 250 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 251 | |
| 252 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 253 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 254 | |
| 255 | ||
| 60758 | 256 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 27682 | 257 | |
| 258 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 259 | by (blast elim: less_asym) | |
| 260 | ||
| 261 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 262 | by (blast elim: less_asym) | |
| 263 | ||
| 264 | ||
| 60758 | 265 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 27682 | 266 | |
| 267 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 268 | by (rule less_asym) | |
| 269 | ||
| 270 | ||
| 60758 | 271 | text \<open>Dual order\<close> | 
| 27682 | 272 | |
| 273 | lemma dual_preorder: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 274 | \<open>class.preorder (\<ge>) (>)\<close> | 
| 63819 | 275 | by standard (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 276 | |
| 277 | end | |
| 278 | ||
| 73794 | 279 | lemma preordering_preorderI: | 
| 280 | \<open>class.preorder (\<^bold>\<le>) (\<^bold><)\<close> if \<open>preordering (\<^bold>\<le>) (\<^bold><)\<close> | |
| 281 | for less_eq (infix \<open>\<^bold>\<le>\<close> 50) and less (infix \<open>\<^bold><\<close> 50) | |
| 282 | proof - | |
| 283 | from that interpret preordering \<open>(\<^bold>\<le>)\<close> \<open>(\<^bold><)\<close> . | |
| 284 | show ?thesis | |
| 285 | by standard (auto simp add: strict_iff_not refl intro: trans) | |
| 286 | qed | |
| 287 | ||
| 288 | ||
| 27682 | 289 | |
| 60758 | 290 | subsection \<open>Partial orders\<close> | 
| 27682 | 291 | |
| 292 | class order = preorder + | |
| 73411 | 293 | assumes order_antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | 
| 27682 | 294 | begin | 
| 295 | ||
| 51487 | 296 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | 
| 73411 | 297 | by (auto simp add: less_le_not_le intro: order_antisym) | 
| 51487 | 298 | |
| 63819 | 299 | sublocale order: ordering less_eq less + dual_order: ordering greater_eq greater | 
| 300 | proof - | |
| 301 | interpret ordering less_eq less | |
| 73411 | 302 | by standard (auto intro: order_antisym order_trans simp add: less_le) | 
| 63819 | 303 | show "ordering less_eq less" | 
| 304 | by (fact ordering_axioms) | |
| 305 | then show "ordering greater_eq greater" | |
| 306 | by (rule ordering_dualI) | |
| 307 | qed | |
| 51487 | 308 | |
| 60758 | 309 | text \<open>Reflexivity.\<close> | 
| 15524 | 310 | |
| 25062 | 311 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 61799 | 312 | \<comment> \<open>NOT suitable for iff, since it can cause PROOF FAILED.\<close> | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 313 | by (fact order.order_iff_strict) | 
| 15524 | 314 | |
| 25062 | 315 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 63172 | 316 | by (simp add: less_le) | 
| 15524 | 317 | |
| 21329 | 318 | |
| 60758 | 319 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 21329 | 320 | |
| 25062 | 321 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 322 | by auto | 
| 21329 | 323 | |
| 25062 | 324 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 325 | by auto | 
| 21329 | 326 | |
| 327 | ||
| 60758 | 328 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 21329 | 329 | |
| 25062 | 330 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 331 | by (fact order.not_eq_order_implies_strict) | 
| 21329 | 332 | |
| 25062 | 333 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 334 | by (rule order.not_eq_order_implies_strict) | 
| 21329 | 335 | |
| 15524 | 336 | |
| 60758 | 337 | text \<open>Asymmetry.\<close> | 
| 15524 | 338 | |
| 73411 | 339 | lemma order_eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 71851 | 340 | by (fact order.eq_iff) | 
| 15524 | 341 | |
| 25062 | 342 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 73411 | 343 | by (simp add: order.eq_iff) | 
| 15524 | 344 | |
| 25062 | 345 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 71851 | 346 | by (fact order.strict_implies_not_eq) | 
| 21248 | 347 | |
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 348 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 349 | by (simp add: local.le_less) | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 350 | |
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 351 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 352 | by (simp add: local.less_le) | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 353 | |
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 354 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 73411 | 355 | by (auto simp: less_le order.antisym) | 
| 21083 | 356 | |
| 60758 | 357 | text \<open>Least value operator\<close> | 
| 27107 | 358 | |
| 27299 | 359 | definition (in ord) | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 360 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder \<open>LEAST \<close> 10) where
 | 
| 27107 | 361 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | 
| 362 | ||
| 363 | lemma Least_equality: | |
| 364 | assumes "P x" | |
| 365 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 366 | shows "Least P = x" | |
| 367 | unfolding Least_def by (rule the_equality) | |
| 73411 | 368 | (blast intro: assms order.antisym)+ | 
| 27107 | 369 | |
| 370 | lemma LeastI2_order: | |
| 371 | assumes "P x" | |
| 372 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 373 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 374 | shows "Q (Least P)" | |
| 375 | unfolding Least_def by (rule theI2) | |
| 73411 | 376 | (blast intro: assms order.antisym)+ | 
| 27107 | 377 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 378 | lemma Least_ex1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 379 | assumes "\<exists>!x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 380 | shows Least1I: "P (Least P)" and Least1_le: "P z \<Longrightarrow> Least P \<le> z" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 381 | using theI'[OF assms] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 382 | unfolding Least_def | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 383 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 384 | |
| 65963 | 385 | text \<open>Greatest value operator\<close> | 
| 386 | ||
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 387 | definition Greatest :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder \<open>GREATEST \<close> 10) where
 | 
| 65963 | 388 | "Greatest P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<ge> y))" | 
| 389 | ||
| 390 | lemma GreatestI2_order: | |
| 391 | "\<lbrakk> P x; | |
| 392 | \<And>y. P y \<Longrightarrow> x \<ge> y; | |
| 393 | \<And>x. \<lbrakk> P x; \<forall>y. P y \<longrightarrow> x \<ge> y \<rbrakk> \<Longrightarrow> Q x \<rbrakk> | |
| 394 | \<Longrightarrow> Q (Greatest P)" | |
| 395 | unfolding Greatest_def | |
| 73411 | 396 | by (rule theI2) (blast intro: order.antisym)+ | 
| 65963 | 397 | |
| 398 | lemma Greatest_equality: | |
| 399 | "\<lbrakk> P x; \<And>y. P y \<Longrightarrow> x \<ge> y \<rbrakk> \<Longrightarrow> Greatest P = x" | |
| 400 | unfolding Greatest_def | |
| 73411 | 401 | by (rule the_equality) (blast intro: order.antisym)+ | 
| 65963 | 402 | |
| 21248 | 403 | end | 
| 15524 | 404 | |
| 63819 | 405 | lemma ordering_orderI: | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 406 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 407 | and less (infix \<open>\<^bold><\<close> 50) | 
| 63819 | 408 | assumes "ordering less_eq less" | 
| 409 | shows "class.order less_eq less" | |
| 410 | proof - | |
| 411 | from assms interpret ordering less_eq less . | |
| 412 | show ?thesis | |
| 413 | by standard (auto intro: antisym trans simp add: refl strict_iff_order) | |
| 414 | qed | |
| 56545 | 415 | |
| 416 | lemma order_strictI: | |
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 417 | fixes less (infix \<open>\<^bold><\<close> 50) | 
| 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 418 | and less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 73794 | 419 | assumes "\<And>a b. a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b" | 
| 420 | assumes "\<And>a b. a \<^bold>< b \<Longrightarrow> \<not> b \<^bold>< a" | |
| 421 | assumes "\<And>a. \<not> a \<^bold>< a" | |
| 422 | assumes "\<And>a b c. a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c" | |
| 56545 | 423 | shows "class.order less_eq less" | 
| 63819 | 424 | by (rule ordering_orderI) (rule ordering_strictI, (fact assms)+) | 
| 425 | ||
| 426 | context order | |
| 427 | begin | |
| 428 | ||
| 429 | text \<open>Dual order\<close> | |
| 430 | ||
| 431 | lemma dual_order: | |
| 67398 | 432 | "class.order (\<ge>) (>)" | 
| 63819 | 433 | using dual_order.ordering_axioms by (rule ordering_orderI) | 
| 434 | ||
| 435 | end | |
| 56545 | 436 | |
| 437 | ||
| 60758 | 438 | subsection \<open>Linear (total) orders\<close> | 
| 21329 | 439 | |
| 22316 | 440 | class linorder = order + | 
| 25207 | 441 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 442 | begin | 
| 443 | ||
| 25062 | 444 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 445 | unfolding less_le using less_le linear by blast | 
| 21248 | 446 | |
| 25062 | 447 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 448 | by (simp add: le_less less_linear) | 
| 21248 | 449 | |
| 450 | lemma le_cases [case_names le ge]: | |
| 25062 | 451 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 452 | using linear by blast | 
| 21248 | 453 | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 454 | lemma (in linorder) le_cases3: | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 455 | "\<lbrakk>\<lbrakk>x \<le> y; y \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> x; x \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>x \<le> z; z \<le> y\<rbrakk> \<Longrightarrow> P; | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 456 | \<lbrakk>z \<le> y; y \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> z; z \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>z \<le> x; x \<le> y\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 457 | by (blast intro: le_cases) | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 458 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 459 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 460 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 461 | using less_linear by blast | 
| 21248 | 462 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 463 | lemma linorder_wlog[case_names le sym]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 464 | "(\<And>a b. a \<le> b \<Longrightarrow> P a b) \<Longrightarrow> (\<And>a b. P b a \<Longrightarrow> P a b) \<Longrightarrow> P a b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 465 | by (cases rule: le_cases[of a b]) blast+ | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 466 | |
| 25062 | 467 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 468 | unfolding less_le | 
| 73411 | 469 | using linear by (blast intro: order.antisym) | 
| 23212 | 470 | |
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 471 | lemma not_less_iff_gr_or_eq: "\<not>(x < y) \<longleftrightarrow> (x > y \<or> x = y)" | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 472 | by (auto simp add:not_less le_less) | 
| 15524 | 473 | |
| 25062 | 474 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 475 | unfolding less_le | 
| 73411 | 476 | using linear by (blast intro: order.antisym) | 
| 15524 | 477 | |
| 25062 | 478 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 479 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 480 | |
| 25062 | 481 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 482 | by (simp add: neq_iff) blast | 
| 15524 | 483 | |
| 25062 | 484 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 73411 | 485 | by (blast intro: order.antisym dest: not_less [THEN iffD1]) | 
| 15524 | 486 | |
| 25062 | 487 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 488 | unfolding not_less . | 
| 16796 | 489 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 490 | lemma not_le_imp_less: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 491 | unfolding not_le . | 
| 21248 | 492 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 493 | lemma linorder_less_wlog[case_names less refl sym]: | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 494 | "\<lbrakk>\<And>a b. a < b \<Longrightarrow> P a b; \<And>a. P a a; \<And>a b. P b a \<Longrightarrow> P a b\<rbrakk> \<Longrightarrow> P a b" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 495 | using antisym_conv3 by blast | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 496 | |
| 60758 | 497 | text \<open>Dual order\<close> | 
| 22916 | 498 | |
| 26014 | 499 | lemma dual_linorder: | 
| 67398 | 500 | "class.linorder (\<ge>) (>)" | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 501 | by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 502 | |
| 21248 | 503 | end | 
| 504 | ||
| 23948 | 505 | |
| 60758 | 506 | text \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 56545 | 507 | |
| 508 | lemma linorder_strictI: | |
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 509 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 510 | and less (infix \<open>\<^bold><\<close> 50) | 
| 56545 | 511 | assumes "class.order less_eq less" | 
| 63819 | 512 | assumes trichotomy: "\<And>a b. a \<^bold>< b \<or> a = b \<or> b \<^bold>< a" | 
| 56545 | 513 | shows "class.linorder less_eq less" | 
| 514 | proof - | |
| 515 | interpret order less_eq less | |
| 60758 | 516 | by (fact \<open>class.order less_eq less\<close>) | 
| 56545 | 517 | show ?thesis | 
| 518 | proof | |
| 519 | fix a b | |
| 63819 | 520 | show "a \<^bold>\<le> b \<or> b \<^bold>\<le> a" | 
| 56545 | 521 | using trichotomy by (auto simp add: le_less) | 
| 522 | qed | |
| 523 | qed | |
| 524 | ||
| 525 | ||
| 60758 | 526 | subsection \<open>Reasoning tools setup\<close> | 
| 21083 | 527 | |
| 76226 | 528 | ML_file \<open>~~/src/Provers/order_procedure.ML\<close> | 
| 529 | ML_file \<open>~~/src/Provers/order_tac.ML\<close> | |
| 530 | ||
| 60758 | 531 | ML \<open> | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 532 | structure Logic_Signature : LOGIC_SIGNATURE = struct | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 533 | val mk_Trueprop = HOLogic.mk_Trueprop | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 534 | val dest_Trueprop = HOLogic.dest_Trueprop | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 535 | val Trueprop_conv = HOLogic.Trueprop_conv | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 536 | val Not = HOLogic.Not | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 537 | val conj = HOLogic.conj | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 538 | val disj = HOLogic.disj | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 539 | |
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 540 |   val notI = @{thm notI}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 541 |   val ccontr = @{thm ccontr}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 542 |   val conjI = @{thm conjI}  
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 543 |   val conjE = @{thm conjE}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 544 |   val disjE = @{thm disjE}
 | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 545 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 546 |   val not_not_conv = Conv.rewr_conv @{thm eq_reflection[OF not_not]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 547 |   val de_Morgan_conj_conv = Conv.rewr_conv @{thm eq_reflection[OF de_Morgan_conj]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 548 |   val de_Morgan_disj_conv = Conv.rewr_conv @{thm eq_reflection[OF de_Morgan_disj]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 549 |   val conj_disj_distribL_conv = Conv.rewr_conv @{thm eq_reflection[OF conj_disj_distribL]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 550 |   val conj_disj_distribR_conv = Conv.rewr_conv @{thm eq_reflection[OF conj_disj_distribR]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 551 | end | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 552 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 553 | structure HOL_Base_Order_Tac = Base_Order_Tac( | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 554 | structure Logic_Sig = Logic_Signature; | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 555 | (* Exclude types with specialised solvers. *) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 556 | val excluded_types = [HOLogic.natT, HOLogic.intT, HOLogic.realT] | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 557 | ) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 558 | |
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 559 | structure HOL_Order_Tac = Order_Tac(structure Base_Tac = HOL_Base_Order_Tac) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 560 | |
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 561 | fun print_orders ctxt0 = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 562 | let | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 563 | val ctxt = Config.put show_sorts true ctxt0 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 564 | val orders = HOL_Order_Tac.Data.get (Context.Proof ctxt) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 565 | fun pretty_term t = Pretty.block | 
| 24920 | 566 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 567 | Pretty.str "::", Pretty.brk 1, | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 568 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t)), Pretty.brk 1] | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 569 |     fun pretty_order ({kind = kind, ops = ops, ...}, _) =
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 570 |       Pretty.block ([Pretty.str (@{make_string} kind), Pretty.str ":", Pretty.brk 1]
 | 
| 82026 
57b4e44f5bc4
add hook to insert premises in the order solver
 Lukas Stevens <mail@lukas-stevens.de> parents: 
80934diff
changeset | 571 | @ map pretty_term [#eq ops, #le ops, #lt ops]) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 572 | in | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 573 | Pretty.writeln (Pretty.big_list "order structures:" (map pretty_order orders)) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 574 | end | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 575 | |
| 56508 | 576 | val _ = | 
| 69593 | 577 | Outer_Syntax.command \<^command_keyword>\<open>print_orders\<close> | 
| 76226 | 578 | "print order structures available to order reasoner" | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 579 | (Scan.succeed (Toplevel.keep (print_orders o Toplevel.context_of))) | 
| 56508 | 580 | |
| 60758 | 581 | \<close> | 
| 21091 | 582 | |
| 60758 | 583 | method_setup order = \<open> | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 584 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (HOL_Order_Tac.tac [] ctxt)) | 
| 76226 | 585 | \<close> "partial and linear order reasoner" | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 586 | |
| 78334 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 587 | text \<open> | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 588 |   The method @{method order} allows one to use the order tactic located in
 | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 589 | \<^file>\<open>../Provers/order_tac.ML\<close> in a standalone fashion. | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 590 | |
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 591 | The tactic rearranges the goal to prove \<^const>\<open>False\<close>, then retrieves order literals of partial | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 592 | and linear orders (i.e. \<^term>\<open>x = y\<close>, \<^term>\<open>x \<le> y\<close>, \<^term>\<open>x < y\<close>, and their negated versions) | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 593 | from the premises and finally tries to derive a contradiction. Its main use case is as a solver to | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 594 |   @{method simp} (see below), where it e.g. solves premises of conditional rewrite rules.
 | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 595 | |
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 596 | The tactic has two configuration attributes that control its behaviour: | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 597 |   \<^item> @{attribute order_trace} toggles tracing for the solver.
 | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 598 |   \<^item> @{attribute order_split_limit} limits the number of order literals of the form
 | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 599 | \<^term>\<open>\<not> (x::'a::order) < y\<close> that are passed to the tactic. | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 600 | This is helpful since these literals lead to case splitting and thus exponential runtime. | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 601 | This only applies to partial orders. | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 602 | |
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 603 |   We setup the solver for HOL with the structure @{ML_structure HOL_Order_Tac} here but the prover
 | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 604 | is agnostic to the object logic. | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 605 | It is possible to register orders with the prover using the functions | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 606 |   @{ML HOL_Order_Tac.declare_order} and @{ML HOL_Order_Tac.declare_linorder}, which we do below
 | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 607 |   for the type classes @{class order} and @{class linorder}.
 | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 608 | If possible, one should instantiate these type classes instead of registering new orders with the | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 609 |   solver. One can also interpret the type class locales @{locale order} and @{locale linorder}.
 | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 610 | An example can be seen in \<^file>\<open>Library/Sublist.thy\<close>, which contains e.g. the prefix order on lists. | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 611 | |
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 612 |   The diagnostic command @{command print_orders} shows all orders known to the tactic in the current
 | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 613 | context. | 
| 
530f8dc04d83
added docs for order method in Orderings;
 Lukas Stevens <mail@lukas-stevens.de> parents: 
76226diff
changeset | 614 | \<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 615 | |
| 60758 | 616 | text \<open>Declarations to set up transitivity reasoner of partial and linear orders.\<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 617 | |
| 25076 | 618 | context order | 
| 619 | begin | |
| 620 | ||
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 621 | lemma nless_le: "(\<not> a < b) \<longleftrightarrow> (\<not> a \<le> b) \<or> a = b" | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 622 | using local.dual_order.order_iff_strict by blast | 
| 27689 | 623 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 624 | local_setup \<open> | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 625 |   HOL_Order_Tac.declare_order {
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 626 |     ops = {eq = @{term \<open>(=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool\<close>}, le = @{term \<open>(\<le>)\<close>}, lt = @{term \<open>(<)\<close>}},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 627 |     thms = {trans = @{thm order_trans}, refl = @{thm order_refl}, eqD1 = @{thm eq_refl},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 628 |             eqD2 = @{thm eq_refl[OF sym]}, antisym = @{thm order_antisym}, contr = @{thm notE}},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 629 |     conv_thms = {less_le = @{thm eq_reflection[OF less_le]},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 630 |                  nless_le = @{thm eq_reflection[OF nless_le]}}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 631 | } | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 632 | \<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 633 | |
| 25076 | 634 | end | 
| 635 | ||
| 636 | context linorder | |
| 637 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 638 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 639 | lemma nle_le: "(\<not> a \<le> b) \<longleftrightarrow> b \<le> a \<and> b \<noteq> a" | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 640 | using not_le less_le by simp | 
| 25076 | 641 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 642 | local_setup \<open> | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 643 |   HOL_Order_Tac.declare_linorder {
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 644 |     ops = {eq = @{term \<open>(=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool\<close>}, le = @{term \<open>(\<le>)\<close>}, lt = @{term \<open>(<)\<close>}},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 645 |     thms = {trans = @{thm order_trans}, refl = @{thm order_refl}, eqD1 = @{thm eq_refl},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 646 |             eqD2 = @{thm eq_refl[OF sym]}, antisym = @{thm order_antisym}, contr = @{thm notE}},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 647 |     conv_thms = {less_le = @{thm eq_reflection[OF less_le]},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 648 |                  nless_le = @{thm eq_reflection[OF not_less]},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 649 |                  nle_le = @{thm eq_reflection[OF nle_le]}}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 650 | } | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 651 | \<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 652 | |
| 25076 | 653 | end | 
| 654 | ||
| 60758 | 655 | setup \<open> | 
| 56509 | 656 | map_theory_simpset (fn ctxt0 => ctxt0 addSolver | 
| 76226 | 657 | mk_solver "partial and linear orders" (fn ctxt => HOL_Order_Tac.tac (Simplifier.prems_of ctxt) ctxt)) | 
| 60758 | 658 | \<close> | 
| 15524 | 659 | |
| 60758 | 660 | ML \<open> | 
| 56509 | 661 | local | 
| 662 | fun prp t thm = Thm.prop_of thm = t; (* FIXME proper aconv!? *) | |
| 663 | in | |
| 15524 | 664 | |
| 56509 | 665 | fun antisym_le_simproc ctxt ct = | 
| 59582 | 666 | (case Thm.term_of ct of | 
| 56509 | 667 | (le as Const (_, T)) $ r $ s => | 
| 668 | (let | |
| 669 | val prems = Simplifier.prems_of ctxt; | |
| 69593 | 670 | val less = Const (\<^const_name>\<open>less\<close>, T); | 
| 56509 | 671 | val t = HOLogic.mk_Trueprop(le $ s $ r); | 
| 672 | in | |
| 673 | (case find_first (prp t) prems of | |
| 674 | NONE => | |
| 675 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) in | |
| 676 | (case find_first (prp t) prems of | |
| 677 | NONE => NONE | |
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 678 |               | SOME thm => SOME(mk_meta_eq(thm RS @{thm antisym_conv1})))
 | 
| 56509 | 679 | end | 
| 680 |          | SOME thm => SOME (mk_meta_eq (thm RS @{thm order_class.antisym_conv})))
 | |
| 681 | end handle THM _ => NONE) | |
| 682 | | _ => NONE); | |
| 15524 | 683 | |
| 56509 | 684 | fun antisym_less_simproc ctxt ct = | 
| 59582 | 685 | (case Thm.term_of ct of | 
| 56509 | 686 | NotC $ ((less as Const(_,T)) $ r $ s) => | 
| 687 | (let | |
| 688 | val prems = Simplifier.prems_of ctxt; | |
| 69593 | 689 | val le = Const (\<^const_name>\<open>less_eq\<close>, T); | 
| 56509 | 690 | val t = HOLogic.mk_Trueprop(le $ r $ s); | 
| 691 | in | |
| 692 | (case find_first (prp t) prems of | |
| 693 | NONE => | |
| 694 | let val t = HOLogic.mk_Trueprop (NotC $ (less $ s $ r)) in | |
| 695 | (case find_first (prp t) prems of | |
| 696 | NONE => NONE | |
| 697 |               | SOME thm => SOME (mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})))
 | |
| 698 | end | |
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 699 |         | SOME thm => SOME (mk_meta_eq (thm RS @{thm antisym_conv2})))
 | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 700 | end handle THM _ => NONE) | 
| 56509 | 701 | | _ => NONE); | 
| 21083 | 702 | |
| 56509 | 703 | end; | 
| 60758 | 704 | \<close> | 
| 15524 | 705 | |
| 56509 | 706 | simproc_setup antisym_le ("(x::'a::order) \<le> y") = "K antisym_le_simproc"
 | 
| 707 | simproc_setup antisym_less ("\<not> (x::'a::linorder) < y") = "K antisym_less_simproc"
 | |
| 708 | ||
| 15524 | 709 | |
| 60758 | 710 | subsection \<open>Bounded quantifiers\<close> | 
| 21083 | 711 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 712 | syntax (ASCII) | 
| 80934 | 713 | "_All_less" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder ALL\<close>\<close>ALL _<_./ _)\<close> [0, 0, 10] 10) | 
| 714 | "_Ex_less" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder EX\<close>\<close>EX _<_./ _)\<close> [0, 0, 10] 10) | |
| 715 | "_All_less_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder ALL\<close>\<close>ALL _<=_./ _)\<close> [0, 0, 10] 10) | |
| 716 | "_Ex_less_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder EX\<close>\<close>EX _<=_./ _)\<close> [0, 0, 10] 10) | |
| 21083 | 717 | |
| 80934 | 718 | "_All_greater" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder ALL\<close>\<close>ALL _>_./ _)\<close> [0, 0, 10] 10) | 
| 719 | "_Ex_greater" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder EX\<close>\<close>EX _>_./ _)\<close> [0, 0, 10] 10) | |
| 720 | "_All_greater_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder ALL\<close>\<close>ALL _>=_./ _)\<close> [0, 0, 10] 10) | |
| 721 | "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder EX\<close>\<close>EX _>=_./ _)\<close> [0, 0, 10] 10) | |
| 21083 | 722 | |
| 80934 | 723 | "_All_neq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder ALL\<close>\<close>ALL _~=_./ _)\<close> [0, 0, 10] 10) | 
| 724 | "_Ex_neq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder EX\<close>\<close>EX _~=_./ _)\<close> [0, 0, 10] 10) | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 725 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 726 | syntax | 
| 80934 | 727 | "_All_less" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<forall>\<close>\<close>\<forall>_<_./ _)\<close> [0, 0, 10] 10) | 
| 728 | "_Ex_less" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<exists>\<close>\<close>\<exists>_<_./ _)\<close> [0, 0, 10] 10) | |
| 729 | "_All_less_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<forall>\<close>\<close>\<forall>_\<le>_./ _)\<close> [0, 0, 10] 10) | |
| 730 | "_Ex_less_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<exists>\<close>\<close>\<exists>_\<le>_./ _)\<close> [0, 0, 10] 10) | |
| 21083 | 731 | |
| 80934 | 732 | "_All_greater" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<forall>\<close>\<close>\<forall>_>_./ _)\<close> [0, 0, 10] 10) | 
| 733 | "_Ex_greater" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<exists>\<close>\<close>\<exists>_>_./ _)\<close> [0, 0, 10] 10) | |
| 734 | "_All_greater_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<forall>\<close>\<close>\<forall>_\<ge>_./ _)\<close> [0, 0, 10] 10) | |
| 735 | "_Ex_greater_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<exists>\<close>\<close>\<exists>_\<ge>_./ _)\<close> [0, 0, 10] 10) | |
| 21083 | 736 | |
| 80934 | 737 | "_All_neq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<forall>\<close>\<close>\<forall>_\<noteq>_./ _)\<close> [0, 0, 10] 10) | 
| 738 | "_Ex_neq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder \<exists>\<close>\<close>\<exists>_\<noteq>_./ _)\<close> [0, 0, 10] 10) | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 739 | |
| 62521 | 740 | syntax (input) | 
| 80934 | 741 | "_All_less" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder !\<close>\<close>! _<_./ _)\<close> [0, 0, 10] 10) | 
| 742 | "_Ex_less" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder ?\<close>\<close>? _<_./ _)\<close> [0, 0, 10] 10) | |
| 743 | "_All_less_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder !\<close>\<close>! _<=_./ _)\<close> [0, 0, 10] 10) | |
| 744 | "_Ex_less_eq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder ?\<close>\<close>? _<=_./ _)\<close> [0, 0, 10] 10) | |
| 745 | "_All_neq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder !\<close>\<close>! _~=_./ _)\<close> [0, 0, 10] 10) | |
| 746 | "_Ex_neq" :: "[idt, 'a, bool] => bool" (\<open>(\<open>indent=3 notation=\<open>binder ?\<close>\<close>? _~=_./ _)\<close> [0, 0, 10] 10) | |
| 21083 | 747 | |
| 80760 | 748 | syntax_consts | 
| 749 | "_All_less" "_All_less_eq" "_All_greater" "_All_greater_eq" "_All_neq" \<rightleftharpoons> All and | |
| 750 | "_Ex_less" "_Ex_less_eq" "_Ex_greater" "_Ex_greater_eq" "_Ex_neq" \<rightleftharpoons> Ex | |
| 751 | ||
| 21083 | 752 | translations | 
| 67091 | 753 | "\<forall>x<y. P" \<rightharpoonup> "\<forall>x. x < y \<longrightarrow> P" | 
| 754 | "\<exists>x<y. P" \<rightharpoonup> "\<exists>x. x < y \<and> P" | |
| 755 | "\<forall>x\<le>y. P" \<rightharpoonup> "\<forall>x. x \<le> y \<longrightarrow> P" | |
| 756 | "\<exists>x\<le>y. P" \<rightharpoonup> "\<exists>x. x \<le> y \<and> P" | |
| 757 | "\<forall>x>y. P" \<rightharpoonup> "\<forall>x. x > y \<longrightarrow> P" | |
| 758 | "\<exists>x>y. P" \<rightharpoonup> "\<exists>x. x > y \<and> P" | |
| 759 | "\<forall>x\<ge>y. P" \<rightharpoonup> "\<forall>x. x \<ge> y \<longrightarrow> P" | |
| 760 | "\<exists>x\<ge>y. P" \<rightharpoonup> "\<exists>x. x \<ge> y \<and> P" | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 761 | "\<forall>x\<noteq>y. P" \<rightharpoonup> "\<forall>x. x \<noteq> y \<longrightarrow> P" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 762 | "\<exists>x\<noteq>y. P" \<rightharpoonup> "\<exists>x. x \<noteq> y \<and> P" | 
| 21083 | 763 | |
| 60758 | 764 | print_translation \<open> | 
| 21083 | 765 | let | 
| 69593 | 766 | val All_binder = Mixfix.binder_name \<^const_syntax>\<open>All\<close>; | 
| 767 | val Ex_binder = Mixfix.binder_name \<^const_syntax>\<open>Ex\<close>; | |
| 768 | val impl = \<^const_syntax>\<open>HOL.implies\<close>; | |
| 769 | val conj = \<^const_syntax>\<open>HOL.conj\<close>; | |
| 770 | val less = \<^const_syntax>\<open>less\<close>; | |
| 771 | val less_eq = \<^const_syntax>\<open>less_eq\<close>; | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 772 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 773 | val trans = | 
| 35115 | 774 | [((All_binder, impl, less), | 
| 69593 | 775 | (\<^syntax_const>\<open>_All_less\<close>, \<^syntax_const>\<open>_All_greater\<close>)), | 
| 35115 | 776 | ((All_binder, impl, less_eq), | 
| 69593 | 777 | (\<^syntax_const>\<open>_All_less_eq\<close>, \<^syntax_const>\<open>_All_greater_eq\<close>)), | 
| 35115 | 778 | ((Ex_binder, conj, less), | 
| 69593 | 779 | (\<^syntax_const>\<open>_Ex_less\<close>, \<^syntax_const>\<open>_Ex_greater\<close>)), | 
| 35115 | 780 | ((Ex_binder, conj, less_eq), | 
| 69593 | 781 | (\<^syntax_const>\<open>_Ex_less_eq\<close>, \<^syntax_const>\<open>_Ex_greater_eq\<close>))]; | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 782 | |
| 35115 | 783 | fun matches_bound v t = | 
| 784 | (case t of | |
| 69593 | 785 | Const (\<^syntax_const>\<open>_bound\<close>, _) $ Free (v', _) => v = v' | 
| 35115 | 786 | | _ => false); | 
| 787 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 788 | fun mk x c n P = Syntax.const c $ Syntax_Trans.mark_bound_body x $ n $ P; | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 789 | |
| 52143 | 790 | fun tr' q = (q, fn _ => | 
| 69593 | 791 | (fn [Const (\<^syntax_const>\<open>_bound\<close>, _) $ Free (v, T), | 
| 35364 | 792 | Const (c, _) $ (Const (d, _) $ t $ u) $ P] => | 
| 67398 | 793 | (case AList.lookup (=) trans (q, c, d) of | 
| 35115 | 794 | NONE => raise Match | 
| 795 | | SOME (l, g) => | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 796 | if matches_bound v t andalso not (contains_var v u) then mk (v, T) l u P | 
| 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 797 | else if matches_bound v u andalso not (contains_var v t) then mk (v, T) g t P | 
| 35115 | 798 | else raise Match) | 
| 52143 | 799 | | _ => raise Match)); | 
| 21524 | 800 | in [tr' All_binder, tr' Ex_binder] end | 
| 60758 | 801 | \<close> | 
| 21083 | 802 | |
| 803 | ||
| 60758 | 804 | subsection \<open>Transitivity reasoning\<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | |
| 25193 | 806 | context ord | 
| 807 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 808 | |
| 25193 | 809 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 810 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 811 | |
| 25193 | 812 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 813 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 814 | |
| 25193 | 815 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 816 | by (rule subst) | |
| 817 | ||
| 818 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 819 | by (rule ssubst) | |
| 820 | ||
| 821 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 822 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 823 | lemma order_less_subst2: "(a::'a::order) < b \<Longrightarrow> f b < (c::'c::order) \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 824 | (!!x y. x < y \<Longrightarrow> f x < f y) \<Longrightarrow> f a < c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 825 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 826 | assume r: "!!x y. x < y \<Longrightarrow> f x < f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 827 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 828 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 829 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 830 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 831 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 832 | lemma order_less_subst1: "(a::'a::order) < f b \<Longrightarrow> (b::'b::order) < c \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 833 | (!!x y. x < y \<Longrightarrow> f x < f y) \<Longrightarrow> a < f c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 834 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 835 | assume r: "!!x y. x < y \<Longrightarrow> f x < f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 836 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 837 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 838 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 839 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 840 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 841 | lemma order_le_less_subst2: "(a::'a::order) <= b \<Longrightarrow> f b < (c::'c::order) \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 842 | (!!x y. x <= y \<Longrightarrow> f x <= f y) \<Longrightarrow> f a < c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 843 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 844 | assume r: "!!x y. x <= y \<Longrightarrow> f x <= f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 845 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 846 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 847 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 848 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 849 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 850 | lemma order_le_less_subst1: "(a::'a::order) <= f b \<Longrightarrow> (b::'b::order) < c \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 851 | (!!x y. x < y \<Longrightarrow> f x < f y) \<Longrightarrow> a < f c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 852 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 853 | assume r: "!!x y. x < y \<Longrightarrow> f x < f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 854 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 855 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 856 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 857 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 858 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 859 | lemma order_less_le_subst2: "(a::'a::order) < b \<Longrightarrow> f b <= (c::'c::order) \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 860 | (!!x y. x < y \<Longrightarrow> f x < f y) \<Longrightarrow> f a < c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 861 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 862 | assume r: "!!x y. x < y \<Longrightarrow> f x < f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 863 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 864 | also assume "f b <= c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 865 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 866 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 867 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 868 | lemma order_less_le_subst1: "(a::'a::order) < f b \<Longrightarrow> (b::'b::order) <= c \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 869 | (!!x y. x <= y \<Longrightarrow> f x <= f y) \<Longrightarrow> a < f c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 870 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 871 | assume r: "!!x y. x <= y \<Longrightarrow> f x <= f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 872 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 873 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 874 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 875 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 877 | lemma order_subst1: "(a::'a::order) <= f b \<Longrightarrow> (b::'b::order) <= c \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 878 | (!!x y. x <= y \<Longrightarrow> f x <= f y) \<Longrightarrow> a <= f c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 879 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 880 | assume r: "!!x y. x <= y \<Longrightarrow> f x <= f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 881 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 882 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 883 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 884 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 885 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 886 | lemma order_subst2: "(a::'a::order) <= b \<Longrightarrow> f b <= (c::'c::order) \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 887 | (!!x y. x <= y \<Longrightarrow> f x <= f y) \<Longrightarrow> f a <= c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 888 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 889 | assume r: "!!x y. x <= y \<Longrightarrow> f x <= f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 890 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 891 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 892 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 893 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 894 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 895 | lemma ord_le_eq_subst: "a <= b \<Longrightarrow> f b = c \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 896 | (!!x y. x <= y \<Longrightarrow> f x <= f y) \<Longrightarrow> f a <= c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 897 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 898 | assume r: "!!x y. x <= y \<Longrightarrow> f x <= f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 899 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 900 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 901 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 902 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 903 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 904 | lemma ord_eq_le_subst: "a = f b \<Longrightarrow> b <= c \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 905 | (!!x y. x <= y \<Longrightarrow> f x <= f y) \<Longrightarrow> a <= f c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 906 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 907 | assume r: "!!x y. x <= y \<Longrightarrow> f x <= f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 908 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 909 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 910 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 911 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 912 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 913 | lemma ord_less_eq_subst: "a < b \<Longrightarrow> f b = c \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 914 | (!!x y. x < y \<Longrightarrow> f x < f y) \<Longrightarrow> f a < c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 915 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 916 | assume r: "!!x y. x < y \<Longrightarrow> f x < f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 917 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 918 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 919 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 920 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 921 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 922 | lemma ord_eq_less_subst: "a = f b \<Longrightarrow> b < c \<Longrightarrow> | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 923 | (!!x y. x < y \<Longrightarrow> f x < f y) \<Longrightarrow> a < f c" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 924 | proof - | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 925 | assume r: "!!x y. x < y \<Longrightarrow> f x < f y" | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 926 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 927 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 928 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 929 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 930 | |
| 60758 | 931 | text \<open> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 932 | Note that this list of rules is in reverse order of priorities. | 
| 60758 | 933 | \<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 934 | |
| 27682 | 935 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 936 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 937 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 938 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 939 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 940 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 941 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 942 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 943 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 944 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 945 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 946 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 947 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 948 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 949 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 950 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 951 | mp | 
| 27682 | 952 | |
| 953 | lemmas (in order) [trans] = | |
| 954 | neq_le_trans | |
| 955 | le_neq_trans | |
| 956 | ||
| 957 | lemmas (in preorder) [trans] = | |
| 958 | less_trans | |
| 959 | less_asym' | |
| 960 | le_less_trans | |
| 961 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 962 | order_trans | 
| 27682 | 963 | |
| 964 | lemmas (in order) [trans] = | |
| 73411 | 965 | order.antisym | 
| 27682 | 966 | |
| 967 | lemmas (in ord) [trans] = | |
| 968 | ord_le_eq_trans | |
| 969 | ord_eq_le_trans | |
| 970 | ord_less_eq_trans | |
| 971 | ord_eq_less_trans | |
| 972 | ||
| 973 | lemmas [trans] = | |
| 974 | trans | |
| 975 | ||
| 976 | lemmas order_trans_rules = | |
| 977 | order_less_subst2 | |
| 978 | order_less_subst1 | |
| 979 | order_le_less_subst2 | |
| 980 | order_le_less_subst1 | |
| 981 | order_less_le_subst2 | |
| 982 | order_less_le_subst1 | |
| 983 | order_subst2 | |
| 984 | order_subst1 | |
| 985 | ord_le_eq_subst | |
| 986 | ord_eq_le_subst | |
| 987 | ord_less_eq_subst | |
| 988 | ord_eq_less_subst | |
| 989 | forw_subst | |
| 990 | back_subst | |
| 991 | rev_mp | |
| 992 | mp | |
| 993 | neq_le_trans | |
| 994 | le_neq_trans | |
| 995 | less_trans | |
| 996 | less_asym' | |
| 997 | le_less_trans | |
| 998 | less_le_trans | |
| 999 | order_trans | |
| 73411 | 1000 | order.antisym | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1001 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1002 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1003 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1004 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1005 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1006 | |
| 60758 | 1007 | text \<open>These support proving chains of decreasing inequalities | 
| 75670 
acf86c9f7698
fix document build error
 Lukas Stevens <mail@lukas-stevens.de> parents: 
75669diff
changeset | 1008 | a \<open>\<ge>\<close> b \<open>\<ge>\<close> c ... in Isar proofs.\<close> | 
| 21083 | 1009 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1010 | lemma xt1 [no_atp]: | 
| 67091 | 1011 | "a = b \<Longrightarrow> b > c \<Longrightarrow> a > c" | 
| 1012 | "a > b \<Longrightarrow> b = c \<Longrightarrow> a > c" | |
| 1013 | "a = b \<Longrightarrow> b \<ge> c \<Longrightarrow> a \<ge> c" | |
| 1014 | "a \<ge> b \<Longrightarrow> b = c \<Longrightarrow> a \<ge> c" | |
| 1015 | "(x::'a::order) \<ge> y \<Longrightarrow> y \<ge> x \<Longrightarrow> x = y" | |
| 1016 | "(x::'a::order) \<ge> y \<Longrightarrow> y \<ge> z \<Longrightarrow> x \<ge> z" | |
| 1017 | "(x::'a::order) > y \<Longrightarrow> y \<ge> z \<Longrightarrow> x > z" | |
| 1018 | "(x::'a::order) \<ge> y \<Longrightarrow> y > z \<Longrightarrow> x > z" | |
| 1019 | "(a::'a::order) > b \<Longrightarrow> b > a \<Longrightarrow> P" | |
| 1020 | "(x::'a::order) > y \<Longrightarrow> y > z \<Longrightarrow> x > z" | |
| 1021 | "(a::'a::order) \<ge> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a > b" | |
| 1022 | "(a::'a::order) \<noteq> b \<Longrightarrow> a \<ge> b \<Longrightarrow> a > b" | |
| 1023 | "a = f b \<Longrightarrow> b > c \<Longrightarrow> (\<And>x y. x > y \<Longrightarrow> f x > f y) \<Longrightarrow> a > f c" | |
| 1024 | "a > b \<Longrightarrow> f b = c \<Longrightarrow> (\<And>x y. x > y \<Longrightarrow> f x > f y) \<Longrightarrow> f a > c" | |
| 1025 | "a = f b \<Longrightarrow> b \<ge> c \<Longrightarrow> (\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> a \<ge> f c" | |
| 1026 | "a \<ge> b \<Longrightarrow> f b = c \<Longrightarrow> (\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> f a \<ge> c" | |
| 25076 | 1027 | by auto | 
| 21083 | 1028 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1029 | lemma xt2 [no_atp]: | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1030 | assumes "(a::'a::order) \<ge> f b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1031 | and "b \<ge> c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1032 | and "\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1033 | shows "a \<ge> f c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1034 | using assms by force | 
| 21083 | 1035 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1036 | lemma xt3 [no_atp]: | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1037 | assumes "(a::'a::order) \<ge> b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1038 | and "(f b::'b::order) \<ge> c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1039 | and "\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1040 | shows "f a \<ge> c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1041 | using assms by force | 
| 21083 | 1042 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1043 | lemma xt4 [no_atp]: | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1044 | assumes "(a::'a::order) > f b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1045 | and "(b::'b::order) \<ge> c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1046 | and "\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1047 | shows "a > f c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1048 | using assms by force | 
| 21083 | 1049 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1050 | lemma xt5 [no_atp]: | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1051 | assumes "(a::'a::order) > b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1052 | and "(f b::'b::order) \<ge> c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1053 | and "\<And>x y. x > y \<Longrightarrow> f x > f y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1054 | shows "f a > c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1055 | using assms by force | 
| 21083 | 1056 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1057 | lemma xt6 [no_atp]: | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1058 | assumes "(a::'a::order) \<ge> f b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1059 | and "b > c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1060 | and "\<And>x y. x > y \<Longrightarrow> f x > f y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1061 | shows "a > f c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1062 | using assms by force | 
| 21083 | 1063 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1064 | lemma xt7 [no_atp]: | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1065 | assumes "(a::'a::order) \<ge> b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1066 | and "(f b::'b::order) > c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1067 | and "\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1068 | shows "f a > c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1069 | using assms by force | 
| 21083 | 1070 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1071 | lemma xt8 [no_atp]: | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1072 | assumes "(a::'a::order) > f b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1073 | and "(b::'b::order) > c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1074 | and "\<And>x y. x > y \<Longrightarrow> f x > f y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1075 | shows "a > f c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1076 | using assms by force | 
| 21083 | 1077 | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1078 | lemma xt9 [no_atp]: | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1079 | assumes "(a::'a::order) > b" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1080 | and "(f b::'b::order) > c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1081 | and "\<And>x y. x > y \<Longrightarrow> f x > f y" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1082 | shows "f a > c" | 
| 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1083 | using assms by force | 
| 21083 | 1084 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53216diff
changeset | 1085 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | 
| 21083 | 1086 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1087 | (* | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1088 | Since "a \<ge> b" abbreviates "b \<le> a", the abbreviation "..." stands | 
| 21083 | 1089 | for the wrong thing in an Isar proof. | 
| 1090 | ||
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1091 | The extra transitivity rules can be used as follows: | 
| 21083 | 1092 | |
| 1093 | lemma "(a::'a::order) > z" | |
| 1094 | proof - | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1095 | have "a \<ge> b" (is "_ \<ge> ?rhs") | 
| 21083 | 1096 | sorry | 
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1097 | also have "?rhs \<ge> c" (is "_ \<ge> ?rhs") | 
| 21083 | 1098 | sorry | 
| 1099 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 1100 | sorry | |
| 75669 
43f5dfb7fa35
tuned (some HOL lints, by Yecine Megdiche);
 Fabian Huch <huch@in.tum.de> parents: 
75582diff
changeset | 1101 | also (xtrans) have "?rhs \<ge> e" (is "_ \<ge> ?rhs") | 
| 21083 | 1102 | sorry | 
| 1103 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 1104 | sorry | |
| 1105 | also (xtrans) have "?rhs > z" | |
| 1106 | sorry | |
| 1107 | finally (xtrans) show ?thesis . | |
| 1108 | qed | |
| 1109 | ||
| 1110 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 1111 | leave out the "(xtrans)" above. | |
| 1112 | *) | |
| 1113 | ||
| 23881 | 1114 | |
| 60758 | 1115 | subsection \<open>min and max -- fundamental\<close> | 
| 54860 | 1116 | |
| 1117 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1118 | "min a b = (if a \<le> b then a else b)" | |
| 1119 | ||
| 1120 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1121 | "max a b = (if a \<le> b then b else a)" | |
| 1122 | ||
| 45931 | 1123 | lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1124 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1125 | |
| 54857 | 1126 | lemma max_absorb2: "x \<le> y \<Longrightarrow> max x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1127 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1128 | |
| 61076 | 1129 | lemma min_absorb2: "(y::'a::order) \<le> x \<Longrightarrow> min x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1130 | by (simp add:min_def) | 
| 45893 | 1131 | |
| 61076 | 1132 | lemma max_absorb1: "(y::'a::order) \<le> x \<Longrightarrow> max x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1133 | by (simp add: max_def) | 
| 45893 | 1134 | |
| 61630 | 1135 | lemma max_min_same [simp]: | 
| 1136 | fixes x y :: "'a :: linorder" | |
| 1137 | shows "max x (min x y) = x" "max (min x y) x = x" "max (min x y) y = y" "max y (min x y) = y" | |
| 1138 | by(auto simp add: max_def min_def) | |
| 45893 | 1139 | |
| 66936 | 1140 | |
| 60758 | 1141 | subsection \<open>(Unique) top and bottom elements\<close> | 
| 28685 | 1142 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1143 | class bot = | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 1144 | fixes bot :: 'a (\<open>\<bottom>\<close>) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1145 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1146 | class order_bot = order + bot + | 
| 51487 | 1147 | assumes bot_least: "\<bottom> \<le> a" | 
| 54868 | 1148 | begin | 
| 51487 | 1149 | |
| 61605 | 1150 | sublocale bot: ordering_top greater_eq greater bot | 
| 61169 | 1151 | by standard (fact bot_least) | 
| 51487 | 1152 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1153 | lemma le_bot: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1154 | "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>" | 
| 51487 | 1155 | by (fact bot.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1156 | |
| 43816 | 1157 | lemma bot_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1158 | "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>" | 
| 51487 | 1159 | by (fact bot.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1160 | |
| 51487 | 1161 | lemma not_less_bot: | 
| 1162 | "\<not> a < \<bottom>" | |
| 1163 | by (fact bot.extremum_strict) | |
| 43816 | 1164 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1165 | lemma bot_less: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1166 | "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a" | 
| 51487 | 1167 | by (fact bot.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1168 | |
| 67452 | 1169 | lemma max_bot[simp]: "max bot x = x" | 
| 1170 | by(simp add: max_def bot_unique) | |
| 1171 | ||
| 1172 | lemma max_bot2[simp]: "max x bot = x" | |
| 1173 | by(simp add: max_def bot_unique) | |
| 1174 | ||
| 1175 | lemma min_bot[simp]: "min bot x = bot" | |
| 1176 | by(simp add: min_def bot_unique) | |
| 1177 | ||
| 1178 | lemma min_bot2[simp]: "min x bot = bot" | |
| 1179 | by(simp add: min_def bot_unique) | |
| 1180 | ||
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1181 | end | 
| 41082 | 1182 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1183 | class top = | 
| 80932 
261cd8722677
standardize mixfix annotations via "isabelle update -u mixfix_cartouches -l Pure HOL" --- to simplify systematic editing;
 wenzelm parents: 
80760diff
changeset | 1184 | fixes top :: 'a (\<open>\<top>\<close>) | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1185 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1186 | class order_top = order + top + | 
| 51487 | 1187 | assumes top_greatest: "a \<le> \<top>" | 
| 54868 | 1188 | begin | 
| 51487 | 1189 | |
| 61605 | 1190 | sublocale top: ordering_top less_eq less top | 
| 61169 | 1191 | by standard (fact top_greatest) | 
| 51487 | 1192 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1193 | lemma top_le: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1194 | "\<top> \<le> a \<Longrightarrow> a = \<top>" | 
| 51487 | 1195 | by (fact top.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1196 | |
| 43816 | 1197 | lemma top_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1198 | "\<top> \<le> a \<longleftrightarrow> a = \<top>" | 
| 51487 | 1199 | by (fact top.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1200 | |
| 51487 | 1201 | lemma not_top_less: | 
| 1202 | "\<not> \<top> < a" | |
| 1203 | by (fact top.extremum_strict) | |
| 43816 | 1204 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1205 | lemma less_top: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1206 | "a \<noteq> \<top> \<longleftrightarrow> a < \<top>" | 
| 51487 | 1207 | by (fact top.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1208 | |
| 67452 | 1209 | lemma max_top[simp]: "max top x = top" | 
| 1210 | by(simp add: max_def top_unique) | |
| 1211 | ||
| 1212 | lemma max_top2[simp]: "max x top = top" | |
| 1213 | by(simp add: max_def top_unique) | |
| 1214 | ||
| 1215 | lemma min_top[simp]: "min top x = x" | |
| 1216 | by(simp add: min_def top_unique) | |
| 1217 | ||
| 1218 | lemma min_top2[simp]: "min x top = x" | |
| 1219 | by(simp add: min_def top_unique) | |
| 1220 | ||
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1221 | end | 
| 28685 | 1222 | |
| 1223 | ||
| 60758 | 1224 | subsection \<open>Dense orders\<close> | 
| 27823 | 1225 | |
| 53216 | 1226 | class dense_order = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1227 | assumes dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1228 | |
| 53216 | 1229 | class dense_linorder = linorder + dense_order | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1230 | begin | 
| 27823 | 1231 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1232 | lemma dense_le: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1233 | fixes y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1234 | assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1235 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1236 | proof (rule ccontr) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1237 | assume "\<not> ?thesis" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1238 | hence "z < y" by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1239 | from dense[OF this] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1240 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1241 | moreover have "x \<le> z" using assms[OF \<open>x < y\<close>] . | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1242 | ultimately show False by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1243 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1244 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1245 | lemma dense_le_bounded: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1246 | fixes x y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1247 | assumes "x < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1248 | assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1249 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1250 | proof (rule dense_le) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1251 | fix w assume "w < y" | 
| 60758 | 1252 | from dense[OF \<open>x < y\<close>] obtain u where "x < u" "u < y" by safe | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1253 | from linear[of u w] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1254 | show "w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1255 | proof (rule disjE) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1256 | assume "u \<le> w" | 
| 60758 | 1257 | from less_le_trans[OF \<open>x < u\<close> \<open>u \<le> w\<close>] \<open>w < y\<close> | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1258 | show "w \<le> z" by (rule *) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1259 | next | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1260 | assume "w \<le> u" | 
| 60758 | 1261 | from \<open>w \<le> u\<close> *[OF \<open>x < u\<close> \<open>u < y\<close>] | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1262 | show "w \<le> z" by (rule order_trans) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1263 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1264 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1265 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1266 | lemma dense_ge: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1267 | fixes y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1268 | assumes "\<And>x. z < x \<Longrightarrow> y \<le> x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1269 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1270 | proof (rule ccontr) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1271 | assume "\<not> ?thesis" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1272 | hence "z < y" by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1273 | from dense[OF this] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1274 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1275 | moreover have "y \<le> x" using assms[OF \<open>z < x\<close>] . | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1276 | ultimately show False by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1277 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1278 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1279 | lemma dense_ge_bounded: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1280 | fixes x y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1281 | assumes "z < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1282 | assumes *: "\<And>w. \<lbrakk> z < w ; w < x \<rbrakk> \<Longrightarrow> y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1283 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1284 | proof (rule dense_ge) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1285 | fix w assume "z < w" | 
| 60758 | 1286 | from dense[OF \<open>z < x\<close>] obtain u where "z < u" "u < x" by safe | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1287 | from linear[of u w] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1288 | show "y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1289 | proof (rule disjE) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1290 | assume "w \<le> u" | 
| 60758 | 1291 | from \<open>z < w\<close> le_less_trans[OF \<open>w \<le> u\<close> \<open>u < x\<close>] | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1292 | show "y \<le> w" by (rule *) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1293 | next | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1294 | assume "u \<le> w" | 
| 60758 | 1295 | from *[OF \<open>z < u\<close> \<open>u < x\<close>] \<open>u \<le> w\<close> | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1296 | show "y \<le> w" by (rule order_trans) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1297 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1298 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1299 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1300 | end | 
| 27823 | 1301 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1302 | class no_top = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1303 | assumes gt_ex: "\<exists>y. x < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1304 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1305 | class no_bot = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1306 | assumes lt_ex: "\<exists>y. y < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1307 | |
| 53216 | 1308 | class unbounded_dense_linorder = dense_linorder + no_top + no_bot | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1309 | |
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 1310 | |
| 60758 | 1311 | subsection \<open>Wellorders\<close> | 
| 27823 | 1312 | |
| 1313 | class wellorder = linorder + | |
| 1314 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1315 | begin | |
| 1316 | ||
| 1317 | lemma wellorder_Least_lemma: | |
| 1318 | fixes k :: 'a | |
| 1319 | assumes "P k" | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1320 | shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" | 
| 27823 | 1321 | proof - | 
| 1322 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1323 | using assms proof (induct k rule: less_induct) | |
| 1324 | case (less x) then have "P x" by simp | |
| 1325 | show ?case proof (rule classical) | |
| 1326 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1327 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1328 | proof (rule classical) | |
| 1329 | fix y | |
| 38705 | 1330 | assume "P y" and "\<not> x \<le> y" | 
| 27823 | 1331 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | 
| 1332 | by (auto simp add: not_le) | |
| 1333 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1334 | by auto | |
| 1335 | then show "x \<le> y" by auto | |
| 1336 | qed | |
| 60758 | 1337 | with \<open>P x\<close> have Least: "(LEAST a. P a) = x" | 
| 27823 | 1338 | by (rule Least_equality) | 
| 60758 | 1339 | with \<open>P x\<close> show ?thesis by simp | 
| 27823 | 1340 | qed | 
| 1341 | qed | |
| 1342 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1343 | qed | |
| 1344 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67405diff
changeset | 1345 | \<comment> \<open>The following 3 lemmas are due to Brian Huffman\<close> | 
| 27823 | 1346 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | 
| 1347 | by (erule exE) (erule LeastI) | |
| 1348 | ||
| 1349 | lemma LeastI2: | |
| 1350 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1351 | by (blast intro: LeastI) | |
| 1352 | ||
| 1353 | lemma LeastI2_ex: | |
| 1354 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1355 | by (blast intro: LeastI_ex) | |
| 1356 | ||
| 38705 | 1357 | lemma LeastI2_wellorder: | 
| 1358 | assumes "P a" | |
| 1359 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | |
| 1360 | shows "Q (Least P)" | |
| 1361 | proof (rule LeastI2_order) | |
| 60758 | 1362 | show "P (Least P)" using \<open>P a\<close> by (rule LeastI) | 
| 38705 | 1363 | next | 
| 1364 | fix y assume "P y" thus "Least P \<le> y" by (rule Least_le) | |
| 1365 | next | |
| 1366 | fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2)) | |
| 1367 | qed | |
| 1368 | ||
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1369 | lemma LeastI2_wellorder_ex: | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1370 | assumes "\<exists>x. P x" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1371 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1372 | shows "Q (Least P)" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1373 | using assms by clarify (blast intro!: LeastI2_wellorder) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1374 | |
| 27823 | 1375 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | 
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1376 | apply (simp add: not_le [symmetric]) | 
| 27823 | 1377 | apply (erule contrapos_nn) | 
| 1378 | apply (erule Least_le) | |
| 1379 | done | |
| 1380 | ||
| 64287 | 1381 | lemma exists_least_iff: "(\<exists>n. P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 1382 | proof | |
| 1383 | assume ?rhs thus ?lhs by blast | |
| 1384 | next | |
| 1385 | assume H: ?lhs then obtain n where n: "P n" by blast | |
| 1386 | let ?x = "Least P" | |
| 1387 |   { fix m assume m: "m < ?x"
 | |
| 1388 | from not_less_Least[OF m] have "\<not> P m" . } | |
| 1389 | with LeastI_ex[OF H] show ?rhs by blast | |
| 1390 | qed | |
| 1391 | ||
| 38705 | 1392 | end | 
| 27823 | 1393 | |
| 28685 | 1394 | |
| 69593 | 1395 | subsection \<open>Order on \<^typ>\<open>bool\<close>\<close> | 
| 28685 | 1396 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1397 | instantiation bool :: "{order_bot, order_top, linorder}"
 | 
| 28685 | 1398 | begin | 
| 1399 | ||
| 1400 | definition | |
| 41080 | 1401 | le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | 
| 28685 | 1402 | |
| 1403 | definition | |
| 61076 | 1404 | [simp]: "(P::bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | 
| 28685 | 1405 | |
| 1406 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1407 | [simp]: "\<bottom> \<longleftrightarrow> False" | 
| 28685 | 1408 | |
| 1409 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1410 | [simp]: "\<top> \<longleftrightarrow> True" | 
| 28685 | 1411 | |
| 1412 | instance proof | |
| 41080 | 1413 | qed auto | 
| 28685 | 1414 | |
| 15524 | 1415 | end | 
| 28685 | 1416 | |
| 1417 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 41080 | 1418 | by simp | 
| 28685 | 1419 | |
| 1420 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 41080 | 1421 | by simp | 
| 28685 | 1422 | |
| 1423 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 41080 | 1424 | by simp | 
| 28685 | 1425 | |
| 1426 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 41080 | 1427 | by simp | 
| 32899 | 1428 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1429 | lemma bot_boolE: "\<bottom> \<Longrightarrow> P" | 
| 41080 | 1430 | by simp | 
| 32899 | 1431 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1432 | lemma top_boolI: \<top> | 
| 41080 | 1433 | by simp | 
| 28685 | 1434 | |
| 1435 | lemma [code]: | |
| 1436 | "False \<le> b \<longleftrightarrow> True" | |
| 1437 | "True \<le> b \<longleftrightarrow> b" | |
| 1438 | "False < b \<longleftrightarrow> b" | |
| 1439 | "True < b \<longleftrightarrow> False" | |
| 41080 | 1440 | by simp_all | 
| 28685 | 1441 | |
| 1442 | ||
| 69593 | 1443 | subsection \<open>Order on \<^typ>\<open>_ \<Rightarrow> _\<close>\<close> | 
| 28685 | 1444 | |
| 1445 | instantiation "fun" :: (type, ord) ord | |
| 1446 | begin | |
| 1447 | ||
| 1448 | definition | |
| 37767 | 1449 | le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | 
| 28685 | 1450 | |
| 1451 | definition | |
| 61076 | 1452 | "(f::'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | 
| 28685 | 1453 | |
| 1454 | instance .. | |
| 1455 | ||
| 1456 | end | |
| 1457 | ||
| 1458 | instance "fun" :: (type, preorder) preorder proof | |
| 1459 | qed (auto simp add: le_fun_def less_fun_def | |
| 73411 | 1460 | intro: order_trans order.antisym) | 
| 28685 | 1461 | |
| 1462 | instance "fun" :: (type, order) order proof | |
| 73411 | 1463 | qed (auto simp add: le_fun_def intro: order.antisym) | 
| 28685 | 1464 | |
| 41082 | 1465 | instantiation "fun" :: (type, bot) bot | 
| 1466 | begin | |
| 1467 | ||
| 1468 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1469 | "\<bottom> = (\<lambda>x. \<bottom>)" | 
| 41082 | 1470 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1471 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1472 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1473 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1474 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1475 | instantiation "fun" :: (type, order_bot) order_bot | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1476 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1477 | |
| 49769 | 1478 | lemma bot_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1479 | "\<bottom> x = \<bottom>" | 
| 41082 | 1480 | by (simp add: bot_fun_def) | 
| 1481 | ||
| 1482 | instance proof | |
| 46884 | 1483 | qed (simp add: le_fun_def) | 
| 41082 | 1484 | |
| 1485 | end | |
| 1486 | ||
| 28685 | 1487 | instantiation "fun" :: (type, top) top | 
| 1488 | begin | |
| 1489 | ||
| 1490 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1491 | [no_atp]: "\<top> = (\<lambda>x. \<top>)" | 
| 28685 | 1492 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1493 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1494 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1495 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1496 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1497 | instantiation "fun" :: (type, order_top) order_top | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1498 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1499 | |
| 49769 | 1500 | lemma top_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1501 | "\<top> x = \<top>" | 
| 41080 | 1502 | by (simp add: top_fun_def) | 
| 1503 | ||
| 28685 | 1504 | instance proof | 
| 46884 | 1505 | qed (simp add: le_fun_def) | 
| 28685 | 1506 | |
| 1507 | end | |
| 1508 | ||
| 1509 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1510 | unfolding le_fun_def by simp | |
| 1511 | ||
| 1512 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1513 | unfolding le_fun_def by simp | |
| 1514 | ||
| 1515 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 54860 | 1516 | by (rule le_funE) | 
| 28685 | 1517 | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1518 | |
| 60758 | 1519 | subsection \<open>Order on unary and binary predicates\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1520 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1521 | lemma predicate1I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1522 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1523 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1524 | apply (rule le_funI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1525 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1526 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1527 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1528 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1529 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1530 | lemma predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1531 | "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1532 | apply (erule le_funE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1533 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1534 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1535 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1536 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1537 | lemma rev_predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1538 | "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1539 | by (rule predicate1D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1540 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1541 | lemma predicate2I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1542 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1543 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1544 | apply (rule le_funI)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1545 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1546 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1547 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1548 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1549 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1550 | lemma predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1551 | "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1552 | apply (erule le_funE)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1553 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1554 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1555 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1556 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1557 | lemma rev_predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1558 | "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1559 | by (rule predicate2D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1560 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1561 | lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1562 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1563 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1564 | lemma bot2E: "\<bottom> x y \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1565 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1566 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1567 | lemma top1I: "\<top> x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1568 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1569 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1570 | lemma top2I: "\<top> x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1571 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1572 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1573 | |
| 60758 | 1574 | subsection \<open>Name duplicates\<close> | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1575 | |
| 73411 | 1576 | lemmas antisym = order.antisym | 
| 1577 | lemmas eq_iff = order.eq_iff | |
| 1578 | ||
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1579 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1580 | lemmas order_less_irrefl = preorder_class.less_irrefl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1581 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1582 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1583 | lemmas order_less_asym = preorder_class.less_asym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1584 | lemmas order_less_trans = preorder_class.less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1585 | lemmas order_le_less_trans = preorder_class.le_less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1586 | lemmas order_less_le_trans = preorder_class.less_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1587 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1588 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1589 | lemmas order_less_asym' = preorder_class.less_asym' | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1590 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1591 | lemmas order_less_le = order_class.less_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1592 | lemmas order_le_less = order_class.le_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1593 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1594 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1595 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1596 | lemmas order_neq_le_trans = order_class.neq_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1597 | lemmas order_le_neq_trans = order_class.le_neq_trans | 
| 73411 | 1598 | lemmas order_eq_iff = order_class.order.eq_iff | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1599 | lemmas order_antisym_conv = order_class.antisym_conv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1600 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1601 | lemmas linorder_linear = linorder_class.linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1602 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1603 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1604 | lemmas linorder_le_cases = linorder_class.le_cases | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1605 | lemmas linorder_not_less = linorder_class.not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1606 | lemmas linorder_not_le = linorder_class.not_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1607 | lemmas linorder_neq_iff = linorder_class.neq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1608 | lemmas linorder_neqE = linorder_class.neqE | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1609 | |
| 28685 | 1610 | end |