author | haftmann |
Wed, 30 Jan 2008 10:57:44 +0100 | |
changeset 26013 | 8764a1f1253b |
parent 16417 | 9bc16273c2d4 |
child 37456 | 0a1cc2675958 |
permissions | -rw-r--r-- |
6481 | 1 |
(* Title: HOL/ex/Recdefs.thy |
5124 | 2 |
ID: $Id$ |
3 |
Author: Konrad Slind and Lawrence C Paulson |
|
4 |
Copyright 1996 University of Cambridge |
|
5 |
||
6 |
Examples of recdef definitions. Most, but not all, are handled automatically. |
|
7 |
*) |
|
8 |
||
11024 | 9 |
header {* Examples of recdef definitions *} |
10 |
||
16417 | 11 |
theory Recdefs imports Main begin |
5124 | 12 |
|
13 |
consts fact :: "nat => nat" |
|
11024 | 14 |
recdef fact less_than |
15 |
"fact x = (if x = 0 then 1 else x * fact (x - 1))" |
|
5124 | 16 |
|
17 |
consts Fact :: "nat => nat" |
|
11024 | 18 |
recdef Fact less_than |
19 |
"Fact 0 = 1" |
|
20 |
"Fact (Suc x) = Fact x * Suc x" |
|
5124 | 21 |
|
14953 | 22 |
consts fib :: "int => int" |
23 |
recdef fib "measure nat" |
|
24 |
eqn: "fib n = (if n < 1 then 0 |
|
25 |
else if n=1 then 1 |
|
26 |
else fib(n - 2) + fib(n - 1))"; |
|
27 |
||
28 |
lemma "fib 7 = 13" |
|
29 |
by simp |
|
30 |
||
31 |
||
5124 | 32 |
consts map2 :: "('a => 'b => 'c) * 'a list * 'b list => 'c list" |
11024 | 33 |
recdef map2 "measure(\<lambda>(f, l1, l2). size l1)" |
34 |
"map2 (f, [], []) = []" |
|
35 |
"map2 (f, h # t, []) = []" |
|
36 |
"map2 (f, h1 # t1, h2 # t2) = f h1 h2 # map2 (f, t1, t2)" |
|
5124 | 37 |
|
11024 | 38 |
consts finiteRchain :: "('a => 'a => bool) * 'a list => bool" |
39 |
recdef finiteRchain "measure (\<lambda>(R, l). size l)" |
|
40 |
"finiteRchain(R, []) = True" |
|
41 |
"finiteRchain(R, [x]) = True" |
|
42 |
"finiteRchain(R, x # y # rst) = (R x y \<and> finiteRchain (R, y # rst))" |
|
5124 | 43 |
|
11024 | 44 |
text {* Not handled automatically: too complicated. *} |
5124 | 45 |
consts variant :: "nat * nat list => nat" |
14244
f58598341d30
InductiveInvariant_examples illustrates advanced recursive function definitions
paulson
parents:
12023
diff
changeset
|
46 |
recdef (permissive) variant "measure (\<lambda>(n,ns). size (filter (\<lambda>y. n \<le> y) ns))" |
11024 | 47 |
"variant (x, L) = (if x mem L then variant (Suc x, L) else x)" |
5124 | 48 |
|
49 |
consts gcd :: "nat * nat => nat" |
|
11024 | 50 |
recdef gcd "measure (\<lambda>(x, y). x + y)" |
51 |
"gcd (0, y) = y" |
|
52 |
"gcd (Suc x, 0) = Suc x" |
|
53 |
"gcd (Suc x, Suc y) = |
|
54 |
(if y \<le> x then gcd (x - y, Suc y) else gcd (Suc x, y - x))" |
|
55 |
||
56 |
||
57 |
text {* |
|
58 |
\medskip The silly @{term g} function: example of nested recursion. |
|
59 |
Not handled automatically. In fact, @{term g} is the zero constant |
|
60 |
function. |
|
61 |
*} |
|
5124 | 62 |
|
11024 | 63 |
consts g :: "nat => nat" |
11626 | 64 |
recdef (permissive) g less_than |
11024 | 65 |
"g 0 = 0" |
66 |
"g (Suc x) = g (g x)" |
|
67 |
||
68 |
lemma g_terminates: "g x < Suc x" |
|
69 |
apply (induct x rule: g.induct) |
|
70 |
apply (auto simp add: g.simps) |
|
71 |
done |
|
72 |
||
73 |
lemma g_zero: "g x = 0" |
|
74 |
apply (induct x rule: g.induct) |
|
75 |
apply (simp_all add: g.simps g_terminates) |
|
76 |
done |
|
77 |
||
5124 | 78 |
|
79 |
consts Div :: "nat * nat => nat * nat" |
|
11024 | 80 |
recdef Div "measure fst" |
81 |
"Div (0, x) = (0, 0)" |
|
82 |
"Div (Suc x, y) = |
|
83 |
(let (q, r) = Div (x, y) |
|
84 |
in if y \<le> Suc r then (Suc q, 0) else (q, Suc r))" |
|
85 |
||
86 |
text {* |
|
87 |
\medskip Not handled automatically. Should be the predecessor |
|
88 |
function, but there is an unnecessary "looping" recursive call in |
|
12023 | 89 |
@{text "k 1"}. |
11024 | 90 |
*} |
5124 | 91 |
|
11024 | 92 |
consts k :: "nat => nat" |
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11626
diff
changeset
|
93 |
|
11626 | 94 |
recdef (permissive) k less_than |
11024 | 95 |
"k 0 = 0" |
96 |
"k (Suc n) = |
|
97 |
(let x = k 1 |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11626
diff
changeset
|
98 |
in if False then k (Suc 1) else n)" |
11024 | 99 |
|
100 |
consts part :: "('a => bool) * 'a list * 'a list * 'a list => 'a list * 'a list" |
|
101 |
recdef part "measure (\<lambda>(P, l, l1, l2). size l)" |
|
102 |
"part (P, [], l1, l2) = (l1, l2)" |
|
103 |
"part (P, h # rst, l1, l2) = |
|
104 |
(if P h then part (P, rst, h # l1, l2) |
|
105 |
else part (P, rst, l1, h # l2))" |
|
5124 | 106 |
|
11024 | 107 |
consts fqsort :: "('a => 'a => bool) * 'a list => 'a list" |
11626 | 108 |
recdef (permissive) fqsort "measure (size o snd)" |
11024 | 109 |
"fqsort (ord, []) = []" |
110 |
"fqsort (ord, x # rst) = |
|
111 |
(let (less, more) = part ((\<lambda>y. ord y x), rst, ([], [])) |
|
112 |
in fqsort (ord, less) @ [x] @ fqsort (ord, more))" |
|
113 |
||
114 |
text {* |
|
115 |
\medskip Silly example which demonstrates the occasional need for |
|
116 |
additional congruence rules (here: @{thm [source] map_cong}). If |
|
117 |
the congruence rule is removed, an unprovable termination condition |
|
118 |
is generated! Termination not proved automatically. TFL requires |
|
119 |
@{term [source] "\<lambda>x. mapf x"} instead of @{term [source] mapf}. |
|
120 |
*} |
|
5124 | 121 |
|
11024 | 122 |
consts mapf :: "nat => nat list" |
11626 | 123 |
recdef (permissive) mapf "measure (\<lambda>m. m)" |
11024 | 124 |
"mapf 0 = []" |
125 |
"mapf (Suc n) = concat (map (\<lambda>x. mapf x) (replicate n n))" |
|
126 |
(hints cong: map_cong) |
|
5124 | 127 |
|
11024 | 128 |
recdef_tc mapf_tc: mapf |
129 |
apply (rule allI) |
|
130 |
apply (case_tac "n = 0") |
|
131 |
apply simp_all |
|
132 |
done |
|
133 |
||
134 |
text {* Removing the termination condition from the generated thms: *} |
|
135 |
||
136 |
lemma "mapf (Suc n) = concat (map mapf (replicate n n))" |
|
137 |
apply (simp add: mapf.simps mapf_tc) |
|
138 |
done |
|
139 |
||
140 |
lemmas mapf_induct = mapf.induct [OF mapf_tc] |
|
5124 | 141 |
|
142 |
end |