src/HOL/UNITY/WFair.ML
author paulson
Fri, 24 Sep 1999 16:33:57 +0200
changeset 7594 8a188ef6545e
parent 7524 15e4a6db638a
child 7826 c6a8b73b6c2a
permissions -rw-r--r--
working version with co-guarantees-leadsto results
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
     1
(*  Title:      HOL/UNITY/WFair
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
     2
    ID:         $Id$
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
     3
    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
     4
    Copyright   1998  University of Cambridge
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
     5
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
     6
Weak Fairness versions of transient, ensures, leadsTo.
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
     7
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
     8
From Misra, "A Logic for Concurrent Programming", 1994
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
     9
*)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    10
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    11
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    12
overload_1st_set "WFair.transient";
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    13
overload_1st_set "WFair.ensures";
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    14
overload_1st_set "WFair.op leadsTo";
5340
d75c03cf77b5 Misc changes
paulson
parents: 5277
diff changeset
    15
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    16
(*** transient ***)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    17
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
    18
Goalw [stable_def, constrains_def, transient_def]
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    19
    "[| F : stable A; F : transient A |] ==> A = {}";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    20
by (Blast_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    21
qed "stable_transient_empty";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    22
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
    23
Goalw [transient_def]
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    24
    "[| F : transient A; B<=A |] ==> F : transient B";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    25
by (Clarify_tac 1);
6012
1894bfc4aee9 Addition of the States component; parts of Comp not working
paulson
parents: 5971
diff changeset
    26
by (blast_tac (claset() addSIs [rev_bexI]) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    27
qed "transient_strengthen";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    28
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
    29
Goalw [transient_def]
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    30
    "[| act: Acts F;  A <= Domain act;  act^^A <= -A |] ==> F : transient A";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    31
by (Blast_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    32
qed "transient_mem";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    33
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    34
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    35
(*** ensures ***)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    36
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
    37
Goalw [ensures_def]
7524
paulson
parents: 6801
diff changeset
    38
    "[| F : (A-B) co (A Un B); F : transient (A-B) |] ==> F : A ensures B";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    39
by (Blast_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    40
qed "ensuresI";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    41
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
    42
Goalw [ensures_def]
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    43
    "F : A ensures B ==> F : (A-B) co (A Un B) & F : transient (A-B)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    44
by (Blast_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    45
qed "ensuresD";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    46
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    47
(*The L-version (precondition strengthening) doesn't hold for ENSURES*)
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
    48
Goalw [ensures_def]
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    49
    "[| F : A ensures A'; A'<=B' |] ==> F : A ensures B'";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    50
by (blast_tac (claset() addIs [constrains_weaken, transient_strengthen]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    51
qed "ensures_weaken_R";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    52
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
    53
Goalw [ensures_def, constrains_def, transient_def]
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    54
    "F : A ensures UNIV";
5340
d75c03cf77b5 Misc changes
paulson
parents: 5277
diff changeset
    55
by Auto_tac;
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    56
qed "ensures_UNIV";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    57
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
    58
Goalw [ensures_def]
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    59
    "[| F : stable C; \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    60
\       F : (C Int (A - A')) co (A Un A'); \
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    61
\       F : transient (C Int (A-A')) |]   \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    62
\   ==> F : (C Int A) ensures (C Int A')";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    63
by (asm_simp_tac (simpset() addsimps [Int_Un_distrib RS sym,
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    64
				      Diff_Int_distrib RS sym,
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    65
				      stable_constrains_Int]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    66
qed "stable_ensures_Int";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    67
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    68
Goal "[| F : stable A;  F : transient C;  A <= B Un C |] ==> F : A ensures B";
5640
4a59d99b5ca3 new theorems
paulson
parents: 5620
diff changeset
    69
by (asm_full_simp_tac (simpset() addsimps [ensures_def, stable_def]) 1);
4a59d99b5ca3 new theorems
paulson
parents: 5620
diff changeset
    70
by (blast_tac (claset() addIs [constrains_weaken, transient_strengthen]) 1);
4a59d99b5ca3 new theorems
paulson
parents: 5620
diff changeset
    71
qed "stable_transient_ensures";
4a59d99b5ca3 new theorems
paulson
parents: 5620
diff changeset
    72
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    73
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    74
(*** leadsTo ***)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    75
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    76
Goalw [leadsTo_def] "F : A ensures B ==> F : A leadsTo B";
6801
9e0037839d63 renamed the underlying relation of leadsTo from "leadsto"
paulson
parents: 6714
diff changeset
    77
by (blast_tac (claset() addIs [leads.Basis]) 1);
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    78
qed "leadsTo_Basis";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    79
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    80
Goalw [leadsTo_def]
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    81
     "[| F : A leadsTo B;  F : B leadsTo C |] ==> F : A leadsTo C";
6801
9e0037839d63 renamed the underlying relation of leadsTo from "leadsto"
paulson
parents: 6714
diff changeset
    82
by (blast_tac (claset() addIs [leads.Trans]) 1);
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    83
qed "leadsTo_Trans";
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
    84
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    85
Goal "F : transient A ==> F : A leadsTo (-A)";
5640
4a59d99b5ca3 new theorems
paulson
parents: 5620
diff changeset
    86
by (asm_simp_tac 
4a59d99b5ca3 new theorems
paulson
parents: 5620
diff changeset
    87
    (simpset() addsimps [leadsTo_Basis, ensuresI, Compl_partition]) 1);
4a59d99b5ca3 new theorems
paulson
parents: 5620
diff changeset
    88
qed "transient_imp_leadsTo";
4a59d99b5ca3 new theorems
paulson
parents: 5620
diff changeset
    89
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    90
Goal "F : A leadsTo UNIV";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    91
by (blast_tac (claset() addIs [ensures_UNIV RS leadsTo_Basis]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    92
qed "leadsTo_UNIV";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    93
Addsimps [leadsTo_UNIV];
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    94
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    95
(*Useful with cancellation, disjunction*)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
    96
Goal "F : A leadsTo (A' Un A') ==> F : A leadsTo A'";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    97
by (asm_full_simp_tac (simpset() addsimps Un_ac) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    98
qed "leadsTo_Un_duplicate";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
    99
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   100
Goal "F : A leadsTo (A' Un C Un C) ==> F : A leadsTo (A' Un C)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   101
by (asm_full_simp_tac (simpset() addsimps Un_ac) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   102
qed "leadsTo_Un_duplicate2";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   103
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   104
(*The Union introduction rule as we should have liked to state it*)
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   105
val prems = Goalw [leadsTo_def]
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   106
    "(!!A. A : S ==> F : A leadsTo B) ==> F : (Union S) leadsTo B";
6801
9e0037839d63 renamed the underlying relation of leadsTo from "leadsto"
paulson
parents: 6714
diff changeset
   107
by (blast_tac (claset() addIs [leads.Union] addDs prems) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   108
qed "leadsTo_Union";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   109
6295
351b3c2b0d83 removed the infernal States, eqStates, compatible, etc.
paulson
parents: 6012
diff changeset
   110
val prems = Goalw [leadsTo_def]
7524
paulson
parents: 6801
diff changeset
   111
 "(!!A. A : S ==> F : (A Int C) leadsTo B) ==> F : (Union S Int C) leadsTo B";
6295
351b3c2b0d83 removed the infernal States, eqStates, compatible, etc.
paulson
parents: 6012
diff changeset
   112
by (simp_tac (HOL_ss addsimps [Int_Union_Union]) 1);
6801
9e0037839d63 renamed the underlying relation of leadsTo from "leadsto"
paulson
parents: 6714
diff changeset
   113
by (blast_tac (claset() addIs [leads.Union] addDs prems) 1);
6295
351b3c2b0d83 removed the infernal States, eqStates, compatible, etc.
paulson
parents: 6012
diff changeset
   114
qed "leadsTo_Union_Int";
351b3c2b0d83 removed the infernal States, eqStates, compatible, etc.
paulson
parents: 6012
diff changeset
   115
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   116
val prems = Goal
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   117
    "(!!i. i : I ==> F : (A i) leadsTo B) ==> F : (UN i:I. A i) leadsTo B";
6295
351b3c2b0d83 removed the infernal States, eqStates, compatible, etc.
paulson
parents: 6012
diff changeset
   118
by (stac (Union_image_eq RS sym) 1);
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   119
by (blast_tac (claset() addIs leadsTo_Union::prems) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   120
qed "leadsTo_UN";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   121
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   122
(*Binary union introduction rule*)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   123
Goal "[| F : A leadsTo C; F : B leadsTo C |] ==> F : (A Un B) leadsTo C";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   124
by (stac Un_eq_Union 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   125
by (blast_tac (claset() addIs [leadsTo_Union]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   126
qed "leadsTo_Un";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   127
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   128
val prems = 
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   129
Goal "(!!x. x : A ==> F : {x} leadsTo B) ==> F : A leadsTo B";
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   130
by (stac (UN_singleton RS sym) 1 THEN rtac leadsTo_UN 1);
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   131
by (blast_tac (claset() addIs prems) 1);
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   132
qed "single_leadsTo_I";
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   133
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   134
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   135
(*The INDUCTION rule as we should have liked to state it*)
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   136
val major::prems = Goalw [leadsTo_def]
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   137
  "[| F : za leadsTo zb;  \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   138
\     !!A B. F : A ensures B ==> P A B; \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   139
\     !!A B C. [| F : A leadsTo B; P A B; F : B leadsTo C; P B C |] \
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   140
\              ==> P A C; \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   141
\     !!B S. ALL A:S. F : A leadsTo B & P A B ==> P (Union S) B \
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   142
\  |] ==> P za zb";
6801
9e0037839d63 renamed the underlying relation of leadsTo from "leadsto"
paulson
parents: 6714
diff changeset
   143
by (rtac (major RS CollectD RS leads.induct) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   144
by (REPEAT (blast_tac (claset() addIs prems) 1));
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   145
qed "leadsTo_induct";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   146
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   147
7594
8a188ef6545e working version with co-guarantees-leadsto results
paulson
parents: 7524
diff changeset
   148
Goal "A<=B ==> F : A ensures B";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   149
by (rewrite_goals_tac [ensures_def, constrains_def, transient_def]);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   150
by (Blast_tac 1);
7594
8a188ef6545e working version with co-guarantees-leadsto results
paulson
parents: 7524
diff changeset
   151
qed "subset_imp_ensures";
8a188ef6545e working version with co-guarantees-leadsto results
paulson
parents: 7524
diff changeset
   152
8a188ef6545e working version with co-guarantees-leadsto results
paulson
parents: 7524
diff changeset
   153
bind_thm ("subset_imp_leadsTo", subset_imp_ensures RS leadsTo_Basis);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   154
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   155
bind_thm ("empty_leadsTo", empty_subsetI RS subset_imp_leadsTo);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   156
Addsimps [empty_leadsTo];
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   157
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   158
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   159
Goal "[| F : A leadsTo A'; A'<=B' |] ==> F : A leadsTo B'";
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   160
by (blast_tac (claset() addIs [subset_imp_leadsTo, leadsTo_Trans]) 1);
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   161
qed "leadsTo_weaken_R";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   162
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   163
Goal "[| F : A leadsTo A'; B<=A |] ==> F : B leadsTo A'";
6295
351b3c2b0d83 removed the infernal States, eqStates, compatible, etc.
paulson
parents: 6012
diff changeset
   164
by (blast_tac (claset() addIs [leadsTo_Trans, subset_imp_leadsTo]) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   165
qed_spec_mp "leadsTo_weaken_L";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   166
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   167
(*Distributes over binary unions*)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   168
Goal "F : (A Un B) leadsTo C  =  (F : A leadsTo C & F : B leadsTo C)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   169
by (blast_tac (claset() addIs [leadsTo_Un, leadsTo_weaken_L]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   170
qed "leadsTo_Un_distrib";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   171
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   172
Goal "F : (UN i:I. A i) leadsTo B  =  (ALL i : I. F : (A i) leadsTo B)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   173
by (blast_tac (claset() addIs [leadsTo_UN, leadsTo_weaken_L]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   174
qed "leadsTo_UN_distrib";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   175
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   176
Goal "F : (Union S) leadsTo B  =  (ALL A : S. F : A leadsTo B)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   177
by (blast_tac (claset() addIs [leadsTo_Union, leadsTo_weaken_L]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   178
qed "leadsTo_Union_distrib";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   179
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   180
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   181
Goal "[| F : A leadsTo A'; B<=A; A'<=B' |] ==> F : B leadsTo B'";
5340
d75c03cf77b5 Misc changes
paulson
parents: 5277
diff changeset
   182
by (blast_tac (claset() addIs [leadsTo_weaken_R, leadsTo_weaken_L,
d75c03cf77b5 Misc changes
paulson
parents: 5277
diff changeset
   183
			       leadsTo_Trans]) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   184
qed "leadsTo_weaken";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   185
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   186
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   187
(*Set difference: maybe combine with leadsTo_weaken_L??*)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   188
Goal "[| F : (A-B) leadsTo C; F : B leadsTo C |]   ==> F : A leadsTo C";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   189
by (blast_tac (claset() addIs [leadsTo_Un, leadsTo_weaken]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   190
qed "leadsTo_Diff";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   191
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   192
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   193
(** Meta or object quantifier ???
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   194
    see ball_constrains_UN in UNITY.ML***)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   195
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   196
val prems = goal thy
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   197
   "(!! i. i:I ==> F : (A i) leadsTo (A' i)) \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   198
\   ==> F : (UN i:I. A i) leadsTo (UN i:I. A' i)";
6295
351b3c2b0d83 removed the infernal States, eqStates, compatible, etc.
paulson
parents: 6012
diff changeset
   199
by (simp_tac (HOL_ss addsimps [Union_image_eq RS sym]) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   200
by (blast_tac (claset() addIs [leadsTo_Union, leadsTo_weaken_R] 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   201
                        addIs prems) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   202
qed "leadsTo_UN_UN";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   203
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   204
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   205
(*Version with no index set*)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   206
val prems = goal thy
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   207
   "(!! i. F : (A i) leadsTo (A' i)) \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   208
\   ==> F : (UN i. A i) leadsTo (UN i. A' i)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   209
by (blast_tac (claset() addIs [leadsTo_UN_UN] 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   210
                        addIs prems) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   211
qed "leadsTo_UN_UN_noindex";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   212
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   213
(*Version with no index set*)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   214
Goal "ALL i. F : (A i) leadsTo (A' i) \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   215
\   ==> F : (UN i. A i) leadsTo (UN i. A' i)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   216
by (blast_tac (claset() addIs [leadsTo_UN_UN]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   217
qed "all_leadsTo_UN_UN";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   218
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   219
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   220
(*Binary union version*)
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   221
Goal "[| F : A leadsTo A'; F : B leadsTo B' |] \
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   222
\     ==> F : (A Un B) leadsTo (A' Un B')";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   223
by (blast_tac (claset() addIs [leadsTo_Un, 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   224
			       leadsTo_weaken_R]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   225
qed "leadsTo_Un_Un";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   226
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   227
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   228
(** The cancellation law **)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   229
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   230
Goal "[| F : A leadsTo (A' Un B); F : B leadsTo B' |] \
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   231
\     ==> F : A leadsTo (A' Un B')";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   232
by (blast_tac (claset() addIs [leadsTo_Un_Un, 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   233
			       subset_imp_leadsTo, leadsTo_Trans]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   234
qed "leadsTo_cancel2";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   235
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   236
Goal "[| F : A leadsTo (A' Un B); F : (B-A') leadsTo B' |] \
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   237
\     ==> F : A leadsTo (A' Un B')";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   238
by (rtac leadsTo_cancel2 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   239
by (assume_tac 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   240
by (ALLGOALS Asm_simp_tac);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   241
qed "leadsTo_cancel_Diff2";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   242
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   243
Goal "[| F : A leadsTo (B Un A'); F : B leadsTo B' |] \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   244
\   ==> F : A leadsTo (B' Un A')";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   245
by (asm_full_simp_tac (simpset() addsimps [Un_commute]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   246
by (blast_tac (claset() addSIs [leadsTo_cancel2]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   247
qed "leadsTo_cancel1";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   248
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   249
Goal "[| F : A leadsTo (B Un A'); F : (B-A') leadsTo B' |] \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   250
\   ==> F : A leadsTo (B' Un A')";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   251
by (rtac leadsTo_cancel1 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   252
by (assume_tac 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   253
by (ALLGOALS Asm_simp_tac);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   254
qed "leadsTo_cancel_Diff1";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   255
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   256
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   257
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   258
(** The impossibility law **)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   259
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   260
Goal "F : A leadsTo B ==> B={} --> A={}";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   261
by (etac leadsTo_induct 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   262
by (ALLGOALS Asm_simp_tac);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   263
by (rewrite_goals_tac [ensures_def, constrains_def, transient_def]);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   264
by (Blast_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   265
val lemma = result() RS mp;
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   266
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   267
Goal "F : A leadsTo {} ==> A={}";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   268
by (blast_tac (claset() addSIs [lemma]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   269
qed "leadsTo_empty";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   270
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   271
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   272
(** PSP: Progress-Safety-Progress **)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   273
5640
4a59d99b5ca3 new theorems
paulson
parents: 5620
diff changeset
   274
(*Special case of PSP: Misra's "stable conjunction"*)
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
   275
Goalw [stable_def]
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   276
   "[| F : A leadsTo A'; F : stable B |] \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   277
\   ==> F : (A Int B) leadsTo (A' Int B)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   278
by (etac leadsTo_induct 1);
6295
351b3c2b0d83 removed the infernal States, eqStates, compatible, etc.
paulson
parents: 6012
diff changeset
   279
by (blast_tac (claset() addIs [leadsTo_Union_Int]) 3);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   280
by (blast_tac (claset() addIs [leadsTo_Trans]) 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   281
by (rtac leadsTo_Basis 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   282
by (asm_full_simp_tac
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   283
    (simpset() addsimps [ensures_def, 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   284
			 Diff_Int_distrib2 RS sym, Int_Un_distrib2 RS sym]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   285
by (blast_tac (claset() addIs [transient_strengthen, constrains_Int]) 1);
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   286
qed "psp_stable";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   287
7524
paulson
parents: 6801
diff changeset
   288
Goal
paulson
parents: 6801
diff changeset
   289
   "[| F : A leadsTo A'; F : stable B |] ==> F : (B Int A) leadsTo (B Int A')";
5536
130f3d891fb2 tidying and deleting needless parentheses
paulson
parents: 5521
diff changeset
   290
by (asm_simp_tac (simpset() addsimps psp_stable::Int_ac) 1);
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   291
qed "psp_stable2";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   292
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   293
Goalw [ensures_def, constrains_def]
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   294
   "[| F : A ensures A'; F : B co B' |] \
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   295
\   ==> F : (A Int B') ensures ((A' Int B) Un (B' - B))";
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   296
by (Clarify_tac 1);  (*speeds up the proof*)
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   297
by (blast_tac (claset() addIs [transient_strengthen]) 1);
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   298
qed "psp_ensures";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   299
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   300
Goal "[| F : A leadsTo A'; F : B co B' |] \
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   301
\     ==> F : (A Int B') leadsTo ((A' Int B) Un (B' - B))";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   302
by (etac leadsTo_induct 1);
6295
351b3c2b0d83 removed the infernal States, eqStates, compatible, etc.
paulson
parents: 6012
diff changeset
   303
by (blast_tac (claset() addIs [leadsTo_Union_Int]) 3);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   304
(*Transitivity case has a delicate argument involving "cancellation"*)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   305
by (rtac leadsTo_Un_duplicate2 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   306
by (etac leadsTo_cancel_Diff1 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   307
by (asm_full_simp_tac (simpset() addsimps [Int_Diff, Diff_triv]) 2);
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   308
by (blast_tac (claset() addIs [leadsTo_weaken_L] 
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   309
                        addDs [constrains_imp_subset]) 2);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   310
(*Basis case*)
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   311
by (blast_tac (claset() addIs [leadsTo_Basis, psp_ensures]) 1);
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   312
qed "psp";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   313
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   314
Goal "[| F : A leadsTo A'; F : B co B' |] \
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   315
\   ==> F : (B' Int A) leadsTo ((B Int A') Un (B' - B))";
5536
130f3d891fb2 tidying and deleting needless parentheses
paulson
parents: 5521
diff changeset
   316
by (asm_simp_tac (simpset() addsimps psp::Int_ac) 1);
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   317
qed "psp2";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   318
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   319
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
   320
Goalw [unless_def]
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   321
   "[| F : A leadsTo A';  F : B unless B' |] \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   322
\   ==> F : (A Int B) leadsTo ((A' Int B) Un B')";
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   323
by (dtac psp 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   324
by (assume_tac 1);
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   325
by (blast_tac (claset() addIs [leadsTo_weaken]) 1);
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   326
qed "psp_unless";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   327
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   328
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   329
(*** Proving the induction rules ***)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   330
5257
c03e3ba9cbcc Indentation, comments
paulson
parents: 5253
diff changeset
   331
(** The most general rule: r is any wf relation; f is any variant function **)
c03e3ba9cbcc Indentation, comments
paulson
parents: 5253
diff changeset
   332
5239
2fd94efb9d64 Tidying
paulson
parents: 5232
diff changeset
   333
Goal "[| wf r;     \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   334
\        ALL m. F : (A Int f-``{m}) leadsTo                     \
7524
paulson
parents: 6801
diff changeset
   335
\                   ((A Int f-``(r^-1 ^^ {m})) Un B) |] \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   336
\     ==> F : (A Int f-``{m}) leadsTo B";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   337
by (eres_inst_tac [("a","m")] wf_induct 1);
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   338
by (subgoal_tac "F : (A Int (f -`` (r^-1 ^^ {x}))) leadsTo B" 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   339
by (stac vimage_eq_UN 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   340
by (asm_simp_tac (HOL_ss addsimps (UN_simps RL [sym])) 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   341
by (blast_tac (claset() addIs [leadsTo_UN]) 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   342
by (blast_tac (claset() addIs [leadsTo_cancel1, leadsTo_Un_duplicate]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   343
val lemma = result();
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   344
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   345
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   346
(** Meta or object quantifier ????? **)
5239
2fd94efb9d64 Tidying
paulson
parents: 5232
diff changeset
   347
Goal "[| wf r;     \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   348
\        ALL m. F : (A Int f-``{m}) leadsTo                     \
7524
paulson
parents: 6801
diff changeset
   349
\                   ((A Int f-``(r^-1 ^^ {m})) Un B) |] \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   350
\     ==> F : A leadsTo B";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   351
by (res_inst_tac [("t", "A")] subst 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   352
by (rtac leadsTo_UN 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   353
by (etac lemma 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   354
by (REPEAT (assume_tac 2));
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   355
by (Fast_tac 1);    (*Blast_tac: Function unknown's argument not a parameter*)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   356
qed "leadsTo_wf_induct";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   357
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   358
5239
2fd94efb9d64 Tidying
paulson
parents: 5232
diff changeset
   359
Goal "[| wf r;     \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   360
\        ALL m:I. F : (A Int f-``{m}) leadsTo                   \
7524
paulson
parents: 6801
diff changeset
   361
\                     ((A Int f-``(r^-1 ^^ {m})) Un B) |] \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   362
\     ==> F : A leadsTo ((A - (f-``I)) Un B)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   363
by (etac leadsTo_wf_induct 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   364
by Safe_tac;
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   365
by (case_tac "m:I" 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   366
by (blast_tac (claset() addIs [leadsTo_weaken]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   367
by (blast_tac (claset() addIs [subset_imp_leadsTo]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   368
qed "bounded_induct";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   369
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   370
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   371
(*Alternative proof is via the lemma F : (A Int f-``(lessThan m)) leadsTo B*)
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   372
Goal "[| ALL m. F : (A Int f-``{m}) leadsTo                     \
7524
paulson
parents: 6801
diff changeset
   373
\                   ((A Int f-``(lessThan m)) Un B) |] \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   374
\     ==> F : A leadsTo B";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   375
by (rtac (wf_less_than RS leadsTo_wf_induct) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   376
by (Asm_simp_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   377
qed "lessThan_induct";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   378
7524
paulson
parents: 6801
diff changeset
   379
Goal "[| ALL m:(greaterThan l).    \
paulson
parents: 6801
diff changeset
   380
\           F : (A Int f-``{m}) leadsTo ((A Int f-``(lessThan m)) Un B) |] \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   381
\     ==> F : A leadsTo ((A Int (f-``(atMost l))) Un B)";
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   382
by (simp_tac (HOL_ss addsimps [Diff_eq RS sym, vimage_Compl, 
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   383
			       Compl_greaterThan RS sym]) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   384
by (rtac (wf_less_than RS bounded_induct) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   385
by (Asm_simp_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   386
qed "lessThan_bounded_induct";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   387
7524
paulson
parents: 6801
diff changeset
   388
Goal "[| ALL m:(lessThan l).    \
paulson
parents: 6801
diff changeset
   389
\           F : (A Int f-``{m}) leadsTo ((A Int f-``(greaterThan m)) Un B) |] \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   390
\     ==> F : A leadsTo ((A Int (f-``(atLeast l))) Un B)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   391
by (res_inst_tac [("f","f"),("f1", "%k. l - k")]
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   392
    (wf_less_than RS wf_inv_image RS leadsTo_wf_induct) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   393
by (simp_tac (simpset() addsimps [inv_image_def, Image_singleton]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   394
by (Clarify_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   395
by (case_tac "m<l" 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   396
by (blast_tac (claset() addIs [not_leE, subset_imp_leadsTo]) 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   397
by (blast_tac (claset() addIs [leadsTo_weaken_R, diff_less_mono2]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   398
qed "greaterThan_bounded_induct";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   399
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   400
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   401
(*** wlt ****)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   402
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   403
(*Misra's property W3*)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   404
Goalw [wlt_def] "F : (wlt F B) leadsTo B";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   405
by (blast_tac (claset() addSIs [leadsTo_Union]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   406
qed "wlt_leadsTo";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   407
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   408
Goalw [wlt_def] "F : A leadsTo B ==> A <= wlt F B";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   409
by (blast_tac (claset() addSIs [leadsTo_Union]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   410
qed "leadsTo_subset";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   411
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   412
(*Misra's property W2*)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   413
Goal "F : A leadsTo B = (A <= wlt F B)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   414
by (blast_tac (claset() addSIs [leadsTo_subset, 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   415
				wlt_leadsTo RS leadsTo_weaken_L]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   416
qed "leadsTo_eq_subset_wlt";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   417
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   418
(*Misra's property W4*)
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   419
Goal "B <= wlt F B";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   420
by (asm_simp_tac (simpset() addsimps [leadsTo_eq_subset_wlt RS sym,
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   421
				      subset_imp_leadsTo]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   422
qed "wlt_increasing";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   423
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   424
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   425
(*Used in the Trans case below*)
5069
3ea049f7979d isatool fixgoal;
wenzelm
parents: 4776
diff changeset
   426
Goalw [constrains_def]
5111
8f4b72f0c15d Uncurried functions LeadsTo and reach
paulson
parents: 5069
diff changeset
   427
   "[| B <= A2;  \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   428
\      F : (A1 - B) co (A1 Un B); \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   429
\      F : (A2 - C) co (A2 Un C) |] \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   430
\   ==> F : (A1 Un A2 - C) co (A1 Un A2 Un C)";
5669
f5d9caafc3bd added Clarify_tac to speed up proofs
paulson
parents: 5648
diff changeset
   431
by (Clarify_tac 1);
5620
3ac11c4af76a tidying and renaming
paulson
parents: 5608
diff changeset
   432
by (Blast_tac 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   433
val lemma1 = result();
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   434
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   435
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   436
(*Lemma (1,2,3) of Misra's draft book, Chapter 4, "Progress"*)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   437
Goal "F : A leadsTo A' ==> \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   438
\     EX B. A<=B & F : B leadsTo A' & F : (B-A') co (B Un A')";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   439
by (etac leadsTo_induct 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   440
(*Basis*)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   441
by (blast_tac (claset() addIs [leadsTo_Basis]
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   442
                        addDs [ensuresD]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   443
(*Trans*)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   444
by (Clarify_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   445
by (res_inst_tac [("x", "Ba Un Bb")] exI 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   446
by (blast_tac (claset() addIs [lemma1, leadsTo_Un_Un, leadsTo_cancel1,
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   447
			       leadsTo_Un_duplicate]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   448
(*Union*)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   449
by (clarify_tac (claset() addSDs [ball_conj_distrib RS iffD1,
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   450
				  bchoice, ball_constrains_UN]) 1);;
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   451
by (res_inst_tac [("x", "UN A:S. f A")] exI 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   452
by (blast_tac (claset() addIs [leadsTo_UN, constrains_weaken]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   453
qed "leadsTo_123";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   454
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   455
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   456
(*Misra's property W5*)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   457
Goal "F : (wlt F B - B) co (wlt F B)";
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   458
by (cut_inst_tac [("F","F")] (wlt_leadsTo RS leadsTo_123) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   459
by (Clarify_tac 1);
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   460
by (subgoal_tac "Ba = wlt F B" 1);
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   461
by (blast_tac (claset() addDs [leadsTo_eq_subset_wlt RS iffD1]) 2);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   462
by (Clarify_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   463
by (asm_full_simp_tac (simpset() addsimps [wlt_increasing, Un_absorb2]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   464
qed "wlt_constrains_wlt";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   465
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   466
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   467
(*** Completion: Binary and General Finite versions ***)
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   468
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   469
Goal "[| F : A leadsTo A';  F : stable A';   \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   470
\        F : B leadsTo B';  F : stable B' |] \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   471
\   ==> F : (A Int B) leadsTo (A' Int B')";
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   472
by (subgoal_tac "F : stable (wlt F B')" 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   473
by (asm_full_simp_tac (simpset() addsimps [stable_def]) 2);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   474
by (EVERY [etac (constrains_Un RS constrains_weaken) 2,
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   475
	   rtac wlt_constrains_wlt 2,
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   476
	   fast_tac (claset() addEs [wlt_increasing RSN (2,rev_subsetD)]) 3,
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   477
	   Blast_tac 2]);
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   478
by (subgoal_tac "F : (A Int wlt F B') leadsTo (A' Int wlt F B')" 1);
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   479
by (blast_tac (claset() addIs [psp_stable]) 2);
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   480
by (subgoal_tac "F : (A' Int wlt F B') leadsTo (A' Int B')" 1);
5277
e4297d03e5d2 A higher-level treatment of LeadsTo, minimizing use of "reachable"
paulson
parents: 5257
diff changeset
   481
by (blast_tac (claset() addIs [wlt_leadsTo, psp_stable2]) 2);
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   482
by (subgoal_tac "F : (A Int B) leadsTo (A Int wlt F B')" 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   483
by (blast_tac (claset() addIs [leadsTo_subset RS subsetD, 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   484
			       subset_imp_leadsTo]) 2);
5479
5a5dfb0f0d7d fixed PROOF FAILED
paulson
parents: 5456
diff changeset
   485
by (blast_tac (claset() addIs [leadsTo_Trans]) 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   486
qed "stable_completion";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   487
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   488
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   489
Goal "finite I ==> (ALL i:I. F : (A i) leadsTo (A' i)) -->  \
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   490
\                  (ALL i:I. F : stable (A' i)) -->         \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   491
\                  F : (INT i:I. A i) leadsTo (INT i:I. A' i)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   492
by (etac finite_induct 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   493
by (Asm_simp_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   494
by (asm_simp_tac 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   495
    (simpset() addsimps [stable_completion, stable_def, 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   496
			 ball_constrains_INT]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   497
qed_spec_mp "finite_stable_completion";
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   498
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   499
5648
fe887910e32e specifications as sets of programs
paulson
parents: 5640
diff changeset
   500
Goal "[| W = wlt F (B' Un C);     \
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   501
\      F : A leadsTo (A' Un C);  F : A' co (A' Un C);   \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   502
\      F : B leadsTo (B' Un C);  F : B' co (B' Un C) |] \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   503
\   ==> F : (A Int B) leadsTo ((A' Int B') Un C)";
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   504
by (subgoal_tac "F : (W-C) co (W Un B' Un C)" 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   505
by (blast_tac (claset() addIs [[asm_rl, wlt_constrains_wlt] 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   506
			       MRS constrains_Un RS constrains_weaken]) 2);
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   507
by (subgoal_tac "F : (W-C) co W" 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   508
by (asm_full_simp_tac 
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   509
    (simpset() addsimps [wlt_increasing, Un_assoc, Un_absorb2]) 2);
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   510
by (subgoal_tac "F : (A Int W - C) leadsTo (A' Int W Un C)" 1);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   511
by (simp_tac (simpset() addsimps [Int_Diff]) 2);
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   512
by (blast_tac (claset() addIs [wlt_leadsTo, psp RS leadsTo_weaken]) 2);
5456
paulson
parents: 5340
diff changeset
   513
(** LEVEL 7 **)
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   514
by (subgoal_tac "F : (A' Int W Un C) leadsTo (A' Int B' Un C)" 1);
6714
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   515
by (rtac leadsTo_Un_duplicate2 2);
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   516
by (blast_tac (claset() addIs [leadsTo_Un_Un, 
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   517
                               wlt_leadsTo RS psp2 RS leadsTo_weaken, 
6b2b4ec58178 new rule single_leadsTo_I; stronger PSP rule
paulson
parents: 6564
diff changeset
   518
                               subset_refl RS subset_imp_leadsTo]) 2);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   519
by (dtac leadsTo_Diff 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   520
by (blast_tac (claset() addIs [subset_imp_leadsTo]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   521
by (subgoal_tac "A Int B <= A Int W" 1);
5456
paulson
parents: 5340
diff changeset
   522
by (blast_tac (claset() addSDs [leadsTo_subset]
paulson
parents: 5340
diff changeset
   523
			addSIs [subset_refl RS Int_mono]) 2);
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   524
by (blast_tac (claset() addIs [leadsTo_Trans, subset_imp_leadsTo]) 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   525
bind_thm("completion", refl RS result());
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   526
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   527
6536
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   528
Goal "finite I ==> (ALL i:I. F : (A i) leadsTo (A' i Un C)) -->  \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   529
\                  (ALL i:I. F : (A' i) co (A' i Un C)) --> \
281d44905cab made many specification operators infix
paulson
parents: 6295
diff changeset
   530
\                  F : (INT i:I. A i) leadsTo ((INT i:I. A' i) Un C)";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   531
by (etac finite_induct 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   532
by (ALLGOALS Asm_simp_tac);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   533
by (Clarify_tac 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   534
by (dtac ball_constrains_INT 1);
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   535
by (asm_full_simp_tac (simpset() addsimps [completion]) 1); 
6564
paulson
parents: 6536
diff changeset
   536
qed_spec_mp "finite_completion";
4776
1f9362e769c1 New UNITY theory
paulson
parents:
diff changeset
   537