| author | wenzelm | 
| Wed, 18 Sep 2013 15:09:15 +0200 | |
| changeset 53711 | 8ce7795256e1 | 
| parent 46953 | 2b6e55924af3 | 
| child 58871 | c399ae4b836f | 
| permissions | -rw-r--r-- | 
| 1478 | 1  | 
(* Title: ZF/OrderArith.thy  | 
2  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
| 437 | 3  | 
Copyright 1994 University of Cambridge  | 
4  | 
*)  | 
|
5  | 
||
| 13356 | 6  | 
header{*Combining Orderings: Foundations of Ordinal Arithmetic*}
 | 
7  | 
||
| 16417 | 8  | 
theory OrderArith imports Order Sum Ordinal begin  | 
| 437 | 9  | 
|
| 24893 | 10  | 
definition  | 
| 437 | 11  | 
(*disjoint sum of two relations; underlies ordinal addition*)  | 
| 24893 | 12  | 
radd :: "[i,i,i,i]=>i" where  | 
| 46953 | 13  | 
"radd(A,r,B,s) ==  | 
14  | 
                {z: (A+B) * (A+B).
 | 
|
15  | 
(\<exists>x y. z = <Inl(x), Inr(y)>) |  | 
|
16  | 
(\<exists>x' x. z = <Inl(x'), Inl(x)> & <x',x>:r) |  | 
|
| 46820 | 17  | 
(\<exists>y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}"  | 
| 437 | 18  | 
|
| 24893 | 19  | 
definition  | 
| 437 | 20  | 
(*lexicographic product of two relations; underlies ordinal multiplication*)  | 
| 24893 | 21  | 
rmult :: "[i,i,i,i]=>i" where  | 
| 46953 | 22  | 
"rmult(A,r,B,s) ==  | 
23  | 
                {z: (A*B) * (A*B).
 | 
|
24  | 
\<exists>x' y' x y. z = <<x',y'>, <x,y>> &  | 
|
| 1155 | 25  | 
(<x',x>: r | (x'=x & <y',y>: s))}"  | 
| 437 | 26  | 
|
| 24893 | 27  | 
definition  | 
| 437 | 28  | 
(*inverse image of a relation*)  | 
| 24893 | 29  | 
rvimage :: "[i,i,i]=>i" where  | 
| 46953 | 30  | 
    "rvimage(A,f,r) == {z \<in> A*A. \<exists>x y. z = <x,y> & <f`x,f`y>: r}"
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
31  | 
|
| 24893 | 32  | 
definition  | 
33  | 
measure :: "[i, i\<Rightarrow>i] \<Rightarrow> i" where  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
34  | 
    "measure(A,f) == {<x,y>: A*A. f(x) < f(y)}"
 | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
35  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
36  | 
|
| 13356 | 37  | 
subsection{*Addition of Relations -- Disjoint Sum*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
38  | 
|
| 13512 | 39  | 
subsubsection{*Rewrite rules.  Can be used to obtain introduction rules*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
40  | 
|
| 46953 | 41  | 
lemma radd_Inl_Inr_iff [iff]:  | 
42  | 
"<Inl(a), Inr(b)> \<in> radd(A,r,B,s) \<longleftrightarrow> a \<in> A & b \<in> B"  | 
|
| 13356 | 43  | 
by (unfold radd_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
44  | 
|
| 46953 | 45  | 
lemma radd_Inl_iff [iff]:  | 
46  | 
"<Inl(a'), Inl(a)> \<in> radd(A,r,B,s) \<longleftrightarrow> a':A & a \<in> A & <a',a>:r"  | 
|
| 13356 | 47  | 
by (unfold radd_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
48  | 
|
| 46953 | 49  | 
lemma radd_Inr_iff [iff]:  | 
50  | 
"<Inr(b'), Inr(b)> \<in> radd(A,r,B,s) \<longleftrightarrow> b':B & b \<in> B & <b',b>:s"  | 
|
| 13356 | 51  | 
by (unfold radd_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
52  | 
|
| 46953 | 53  | 
lemma radd_Inr_Inl_iff [simp]:  | 
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
54  | 
"<Inr(b), Inl(a)> \<in> radd(A,r,B,s) \<longleftrightarrow> False"  | 
| 13356 | 55  | 
by (unfold radd_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
56  | 
|
| 46953 | 57  | 
declare radd_Inr_Inl_iff [THEN iffD1, dest!]  | 
| 13823 | 58  | 
|
| 13512 | 59  | 
subsubsection{*Elimination Rule*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
60  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
61  | 
lemma raddE:  | 
| 46953 | 62  | 
"[| <p',p> \<in> radd(A,r,B,s);  | 
63  | 
!!x y. [| p'=Inl(x); x \<in> A; p=Inr(y); y \<in> B |] ==> Q;  | 
|
64  | 
!!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x \<in> A |] ==> Q;  | 
|
65  | 
!!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y \<in> B |] ==> Q  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
66  | 
|] ==> Q"  | 
| 46953 | 67  | 
by (unfold radd_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
68  | 
|
| 13512 | 69  | 
subsubsection{*Type checking*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
70  | 
|
| 46820 | 71  | 
lemma radd_type: "radd(A,r,B,s) \<subseteq> (A+B) * (A+B)"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
72  | 
apply (unfold radd_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
73  | 
apply (rule Collect_subset)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
74  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
75  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
76  | 
lemmas field_radd = radd_type [THEN field_rel_subset]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
77  | 
|
| 13512 | 78  | 
subsubsection{*Linearity*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
79  | 
|
| 46953 | 80  | 
lemma linear_radd:  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
81  | 
"[| linear(A,r); linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))"  | 
| 46953 | 82  | 
by (unfold linear_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
83  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
84  | 
|
| 13512 | 85  | 
subsubsection{*Well-foundedness*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
86  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
87  | 
lemma wf_on_radd: "[| wf[A](r); wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
88  | 
apply (rule wf_onI2)  | 
| 46820 | 89  | 
apply (subgoal_tac "\<forall>x\<in>A. Inl (x) \<in> Ba")  | 
| 13512 | 90  | 
 --{*Proving the lemma, which is needed twice!*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
91  | 
prefer 2  | 
| 46820 | 92  | 
apply (erule_tac V = "y \<in> A + B" in thin_rl)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
93  | 
apply (rule_tac ballI)  | 
| 13784 | 94  | 
apply (erule_tac r = r and a = x in wf_on_induct, assumption)  | 
| 46953 | 95  | 
apply blast  | 
| 13512 | 96  | 
txt{*Returning to main part of proof*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
97  | 
apply safe  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
98  | 
apply blast  | 
| 46953 | 99  | 
apply (erule_tac r = s and a = ya in wf_on_induct, assumption, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
100  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
101  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
102  | 
lemma wf_radd: "[| wf(r); wf(s) |] ==> wf(radd(field(r),r,field(s),s))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
103  | 
apply (simp add: wf_iff_wf_on_field)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
104  | 
apply (rule wf_on_subset_A [OF _ field_radd])  | 
| 46953 | 105  | 
apply (blast intro: wf_on_radd)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
106  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
107  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
108  | 
lemma well_ord_radd:  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
109  | 
"[| well_ord(A,r); well_ord(B,s) |] ==> well_ord(A+B, radd(A,r,B,s))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
110  | 
apply (rule well_ordI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
111  | 
apply (simp add: well_ord_def wf_on_radd)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
112  | 
apply (simp add: well_ord_def tot_ord_def linear_radd)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
113  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
114  | 
|
| 13512 | 115  | 
subsubsection{*An @{term ord_iso} congruence law*}
 | 
| 437 | 116  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
117  | 
lemma sum_bij:  | 
| 46953 | 118  | 
"[| f \<in> bij(A,C); g \<in> bij(B,D) |]  | 
| 46820 | 119  | 
==> (\<lambda>z\<in>A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) \<in> bij(A+B, C+D)"  | 
| 46953 | 120  | 
apply (rule_tac d = "case (%x. Inl (converse(f)`x), %y. Inr(converse(g)`y))"  | 
| 13356 | 121  | 
in lam_bijective)  | 
| 46953 | 122  | 
apply (typecheck add: bij_is_inj inj_is_fun)  | 
123  | 
apply (auto simp add: left_inverse_bij right_inverse_bij)  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
124  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
125  | 
|
| 46953 | 126  | 
lemma sum_ord_iso_cong:  | 
127  | 
"[| f \<in> ord_iso(A,r,A',r'); g \<in> ord_iso(B,s,B',s') |] ==>  | 
|
128  | 
(\<lambda>z\<in>A+B. case(%x. Inl(f`x), %y. Inr(g`y), z))  | 
|
| 46820 | 129  | 
\<in> ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
130  | 
apply (unfold ord_iso_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
131  | 
apply (safe intro!: sum_bij)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
132  | 
(*Do the beta-reductions now*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
133  | 
apply (auto cong add: conj_cong simp add: bij_is_fun [THEN apply_type])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
134  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
135  | 
|
| 46953 | 136  | 
(*Could we prove an ord_iso result? Perhaps  | 
| 46820 | 137  | 
ord_iso(A+B, radd(A,r,B,s), A \<union> B, r \<union> s) *)  | 
| 46953 | 138  | 
lemma sum_disjoint_bij: "A \<inter> B = 0 ==>  | 
| 46820 | 139  | 
(\<lambda>z\<in>A+B. case(%x. x, %y. y, z)) \<in> bij(A+B, A \<union> B)"  | 
| 46953 | 140  | 
apply (rule_tac d = "%z. if z \<in> A then Inl (z) else Inr (z) " in lam_bijective)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
141  | 
apply auto  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
142  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
143  | 
|
| 13512 | 144  | 
subsubsection{*Associativity*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
145  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
146  | 
lemma sum_assoc_bij:  | 
| 46953 | 147  | 
"(\<lambda>z\<in>(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  | 
| 46820 | 148  | 
\<in> bij((A+B)+C, A+(B+C))"  | 
| 46953 | 149  | 
apply (rule_tac d = "case (%x. Inl (Inl (x)), case (%x. Inl (Inr (x)), Inr))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
150  | 
in lam_bijective)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
151  | 
apply auto  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
152  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
153  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
154  | 
lemma sum_assoc_ord_iso:  | 
| 46953 | 155  | 
"(\<lambda>z\<in>(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z))  | 
156  | 
\<in> ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t),  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
157  | 
A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))"  | 
| 13356 | 158  | 
by (rule sum_assoc_bij [THEN ord_isoI], auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
159  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
160  | 
|
| 13356 | 161  | 
subsection{*Multiplication of Relations -- Lexicographic Product*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
162  | 
|
| 13512 | 163  | 
subsubsection{*Rewrite rule.  Can be used to obtain introduction rules*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
164  | 
|
| 46953 | 165  | 
lemma rmult_iff [iff]:  | 
166  | 
"<<a',b'>, <a,b>> \<in> rmult(A,r,B,s) \<longleftrightarrow>  | 
|
167  | 
(<a',a>: r & a':A & a \<in> A & b': B & b \<in> B) |  | 
|
168  | 
(<b',b>: s & a'=a & a \<in> A & b': B & b \<in> B)"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
169  | 
|
| 13356 | 170  | 
by (unfold rmult_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
171  | 
|
| 46953 | 172  | 
lemma rmultE:  | 
173  | 
"[| <<a',b'>, <a,b>> \<in> rmult(A,r,B,s);  | 
|
174  | 
[| <a',a>: r; a':A; a \<in> A; b':B; b \<in> B |] ==> Q;  | 
|
175  | 
[| <b',b>: s; a \<in> A; a'=a; b':B; b \<in> B |] ==> Q  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
176  | 
|] ==> Q"  | 
| 46953 | 177  | 
by blast  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
178  | 
|
| 13512 | 179  | 
subsubsection{*Type checking*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
180  | 
|
| 46820 | 181  | 
lemma rmult_type: "rmult(A,r,B,s) \<subseteq> (A*B) * (A*B)"  | 
| 13356 | 182  | 
by (unfold rmult_def, rule Collect_subset)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
183  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
184  | 
lemmas field_rmult = rmult_type [THEN field_rel_subset]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
185  | 
|
| 13512 | 186  | 
subsubsection{*Linearity*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
187  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
188  | 
lemma linear_rmult:  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
189  | 
"[| linear(A,r); linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))"  | 
| 46953 | 190  | 
by (simp add: linear_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
191  | 
|
| 13512 | 192  | 
subsubsection{*Well-foundedness*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
193  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
194  | 
lemma wf_on_rmult: "[| wf[A](r); wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
195  | 
apply (rule wf_onI2)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
196  | 
apply (erule SigmaE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
197  | 
apply (erule ssubst)  | 
| 46820 | 198  | 
apply (subgoal_tac "\<forall>b\<in>B. <x,b>: Ba", blast)  | 
| 13784 | 199  | 
apply (erule_tac a = x in wf_on_induct, assumption)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
200  | 
apply (rule ballI)  | 
| 13784 | 201  | 
apply (erule_tac a = b in wf_on_induct, assumption)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
202  | 
apply (best elim!: rmultE bspec [THEN mp])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
203  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
204  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
205  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
206  | 
lemma wf_rmult: "[| wf(r); wf(s) |] ==> wf(rmult(field(r),r,field(s),s))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
207  | 
apply (simp add: wf_iff_wf_on_field)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
208  | 
apply (rule wf_on_subset_A [OF _ field_rmult])  | 
| 46953 | 209  | 
apply (blast intro: wf_on_rmult)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
210  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
211  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
212  | 
lemma well_ord_rmult:  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
213  | 
"[| well_ord(A,r); well_ord(B,s) |] ==> well_ord(A*B, rmult(A,r,B,s))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
214  | 
apply (rule well_ordI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
215  | 
apply (simp add: well_ord_def wf_on_rmult)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
216  | 
apply (simp add: well_ord_def tot_ord_def linear_rmult)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
217  | 
done  | 
| 9883 | 218  | 
|
219  | 
||
| 13512 | 220  | 
subsubsection{*An @{term ord_iso} congruence law*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
221  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
222  | 
lemma prod_bij:  | 
| 46953 | 223  | 
"[| f \<in> bij(A,C); g \<in> bij(B,D) |]  | 
| 46820 | 224  | 
==> (lam <x,y>:A*B. <f`x, g`y>) \<in> bij(A*B, C*D)"  | 
| 46953 | 225  | 
apply (rule_tac d = "%<x,y>. <converse (f) `x, converse (g) `y>"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
226  | 
in lam_bijective)  | 
| 46953 | 227  | 
apply (typecheck add: bij_is_inj inj_is_fun)  | 
228  | 
apply (auto simp add: left_inverse_bij right_inverse_bij)  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
229  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
230  | 
|
| 46953 | 231  | 
lemma prod_ord_iso_cong:  | 
232  | 
"[| f \<in> ord_iso(A,r,A',r'); g \<in> ord_iso(B,s,B',s') |]  | 
|
233  | 
==> (lam <x,y>:A*B. <f`x, g`y>)  | 
|
| 46820 | 234  | 
\<in> ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
235  | 
apply (unfold ord_iso_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
236  | 
apply (safe intro!: prod_bij)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
237  | 
apply (simp_all add: bij_is_fun [THEN apply_type])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
238  | 
apply (blast intro: bij_is_inj [THEN inj_apply_equality])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
239  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
240  | 
|
| 46820 | 241  | 
lemma singleton_prod_bij: "(\<lambda>z\<in>A. <x,z>) \<in> bij(A, {x}*A)"
 | 
| 13784 | 242  | 
by (rule_tac d = snd in lam_bijective, auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
243  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
244  | 
(*Used??*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
245  | 
lemma singleton_prod_ord_iso:  | 
| 46953 | 246  | 
     "well_ord({x},xr) ==>
 | 
| 46820 | 247  | 
          (\<lambda>z\<in>A. <x,z>) \<in> ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))"
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
248  | 
apply (rule singleton_prod_bij [THEN ord_isoI])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
249  | 
apply (simp (no_asm_simp))  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
250  | 
apply (blast dest: well_ord_is_wf [THEN wf_on_not_refl])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
251  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
252  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
253  | 
(*Here we build a complicated function term, then simplify it using  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
254  | 
case_cong, id_conv, comp_lam, case_case.*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
255  | 
lemma prod_sum_singleton_bij:  | 
| 46953 | 256  | 
"a\<notin>C ==>  | 
257  | 
(\<lambda>x\<in>C*B + D. case(%x. x, %y.<a,y>, x))  | 
|
| 46820 | 258  | 
       \<in> bij(C*B + D, C*B \<union> {a}*D)"
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
259  | 
apply (rule subst_elem)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
260  | 
apply (rule id_bij [THEN sum_bij, THEN comp_bij])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
261  | 
apply (rule singleton_prod_bij)  | 
| 13269 | 262  | 
apply (rule sum_disjoint_bij, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
263  | 
apply (simp (no_asm_simp) cong add: case_cong)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
264  | 
apply (rule comp_lam [THEN trans, symmetric])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
265  | 
apply (fast elim!: case_type)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
266  | 
apply (simp (no_asm_simp) add: case_case)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
267  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
268  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
269  | 
lemma prod_sum_singleton_ord_iso:  | 
| 46953 | 270  | 
"[| a \<in> A; well_ord(A,r) |] ==>  | 
271  | 
(\<lambda>x\<in>pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x))  | 
|
272  | 
\<in> ord_iso(pred(A,a,r)*B + pred(B,b,s),  | 
|
273  | 
radd(A*B, rmult(A,r,B,s), B, s),  | 
|
| 46820 | 274  | 
              pred(A,a,r)*B \<union> {a}*pred(B,b,s), rmult(A,r,B,s))"
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
275  | 
apply (rule prod_sum_singleton_bij [THEN ord_isoI])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
276  | 
apply (simp (no_asm_simp) add: pred_iff well_ord_is_wf [THEN wf_on_not_refl])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
277  | 
apply (auto elim!: well_ord_is_wf [THEN wf_on_asym] predE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
278  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
279  | 
|
| 13512 | 280  | 
subsubsection{*Distributive law*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
281  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
282  | 
lemma sum_prod_distrib_bij:  | 
| 46953 | 283  | 
"(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  | 
| 46820 | 284  | 
\<in> bij((A+B)*C, (A*C)+(B*C))"  | 
| 46953 | 285  | 
by (rule_tac d = "case (%<x,y>.<Inl (x),y>, %<x,y>.<Inr (x),y>) "  | 
| 13356 | 286  | 
in lam_bijective, auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
287  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
288  | 
lemma sum_prod_distrib_ord_iso:  | 
| 46953 | 289  | 
"(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x))  | 
290  | 
\<in> ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t),  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
291  | 
(A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))"  | 
| 13356 | 292  | 
by (rule sum_prod_distrib_bij [THEN ord_isoI], auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
293  | 
|
| 13512 | 294  | 
subsubsection{*Associativity*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
295  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
296  | 
lemma prod_assoc_bij:  | 
| 46820 | 297  | 
"(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) \<in> bij((A*B)*C, A*(B*C))"  | 
| 13356 | 298  | 
by (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective, auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
299  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
300  | 
lemma prod_assoc_ord_iso:  | 
| 46953 | 301  | 
"(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>)  | 
302  | 
\<in> ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t),  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
303  | 
A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))"  | 
| 13356 | 304  | 
by (rule prod_assoc_bij [THEN ord_isoI], auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
305  | 
|
| 13356 | 306  | 
subsection{*Inverse Image of a Relation*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
307  | 
|
| 13512 | 308  | 
subsubsection{*Rewrite rule*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
309  | 
|
| 46953 | 310  | 
lemma rvimage_iff: "<a,b> \<in> rvimage(A,f,r) \<longleftrightarrow> <f`a,f`b>: r & a \<in> A & b \<in> A"  | 
| 13269 | 311  | 
by (unfold rvimage_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
312  | 
|
| 13512 | 313  | 
subsubsection{*Type checking*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
314  | 
|
| 46820 | 315  | 
lemma rvimage_type: "rvimage(A,f,r) \<subseteq> A*A"  | 
| 13784 | 316  | 
by (unfold rvimage_def, rule Collect_subset)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
317  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
318  | 
lemmas field_rvimage = rvimage_type [THEN field_rel_subset]  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
319  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
320  | 
lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))"  | 
| 13269 | 321  | 
by (unfold rvimage_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
322  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
323  | 
|
| 13512 | 324  | 
subsubsection{*Partial Ordering Properties*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
325  | 
|
| 46953 | 326  | 
lemma irrefl_rvimage:  | 
327  | 
"[| f \<in> inj(A,B); irrefl(B,r) |] ==> irrefl(A, rvimage(A,f,r))"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
328  | 
apply (unfold irrefl_def rvimage_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
329  | 
apply (blast intro: inj_is_fun [THEN apply_type])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
330  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
331  | 
|
| 46953 | 332  | 
lemma trans_on_rvimage:  | 
333  | 
"[| f \<in> inj(A,B); trans[B](r) |] ==> trans[A](rvimage(A,f,r))"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
334  | 
apply (unfold trans_on_def rvimage_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
335  | 
apply (blast intro: inj_is_fun [THEN apply_type])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
336  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
337  | 
|
| 46953 | 338  | 
lemma part_ord_rvimage:  | 
339  | 
"[| f \<in> inj(A,B); part_ord(B,r) |] ==> part_ord(A, rvimage(A,f,r))"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
340  | 
apply (unfold part_ord_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
341  | 
apply (blast intro!: irrefl_rvimage trans_on_rvimage)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
342  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
343  | 
|
| 13512 | 344  | 
subsubsection{*Linearity*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
345  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
346  | 
lemma linear_rvimage:  | 
| 46953 | 347  | 
"[| f \<in> inj(A,B); linear(B,r) |] ==> linear(A,rvimage(A,f,r))"  | 
348  | 
apply (simp add: inj_def linear_def rvimage_iff)  | 
|
349  | 
apply (blast intro: apply_funtype)  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
350  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
351  | 
|
| 46953 | 352  | 
lemma tot_ord_rvimage:  | 
353  | 
"[| f \<in> inj(A,B); tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
354  | 
apply (unfold tot_ord_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
355  | 
apply (blast intro!: part_ord_rvimage linear_rvimage)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
356  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
357  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
358  | 
|
| 13512 | 359  | 
subsubsection{*Well-foundedness*}
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
360  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
361  | 
lemma wf_rvimage [intro!]: "wf(r) ==> wf(rvimage(A,f,r))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
362  | 
apply (simp (no_asm_use) add: rvimage_def wf_eq_minimal)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
363  | 
apply clarify  | 
| 46953 | 364  | 
apply (subgoal_tac "\<exists>w. w \<in> {w: {f`x. x \<in> Q}. \<exists>x. x \<in> Q & (f`x = w) }")
 | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
365  | 
apply (erule allE)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
366  | 
apply (erule impE)  | 
| 13269 | 367  | 
apply assumption  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
368  | 
apply blast  | 
| 46953 | 369  | 
apply blast  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
370  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
371  | 
|
| 13544 | 372  | 
text{*But note that the combination of @{text wf_imp_wf_on} and
 | 
| 22710 | 373  | 
 @{text wf_rvimage} gives @{prop "wf(r) ==> wf[C](rvimage(A,f,r))"}*}
 | 
| 46953 | 374  | 
lemma wf_on_rvimage: "[| f \<in> A->B; wf[B](r) |] ==> wf[A](rvimage(A,f,r))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
375  | 
apply (rule wf_onI2)  | 
| 46953 | 376  | 
apply (subgoal_tac "\<forall>z\<in>A. f`z=f`y \<longrightarrow> z \<in> Ba")  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
377  | 
apply blast  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
378  | 
apply (erule_tac a = "f`y" in wf_on_induct)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
379  | 
apply (blast intro!: apply_funtype)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
380  | 
apply (blast intro!: apply_funtype dest!: rvimage_iff [THEN iffD1])  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
381  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
382  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
383  | 
(*Note that we need only wf[A](...) and linear(A,...) to get the result!*)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
384  | 
lemma well_ord_rvimage:  | 
| 46953 | 385  | 
"[| f \<in> inj(A,B); well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))"  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
386  | 
apply (rule well_ordI)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
387  | 
apply (unfold well_ord_def tot_ord_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
388  | 
apply (blast intro!: wf_on_rvimage inj_is_fun)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
389  | 
apply (blast intro!: linear_rvimage)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
390  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
391  | 
|
| 46953 | 392  | 
lemma ord_iso_rvimage:  | 
393  | 
"f \<in> bij(A,B) ==> f \<in> ord_iso(A, rvimage(A,f,s), B, s)"  | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
394  | 
apply (unfold ord_iso_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
395  | 
apply (simp add: rvimage_iff)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
396  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
397  | 
|
| 46953 | 398  | 
lemma ord_iso_rvimage_eq:  | 
399  | 
"f \<in> ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r \<inter> A*A"  | 
|
| 13356 | 400  | 
by (unfold ord_iso_def rvimage_def, blast)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
401  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
402  | 
|
| 13634 | 403  | 
subsection{*Every well-founded relation is a subset of some inverse image of
 | 
404  | 
an ordinal*}  | 
|
405  | 
||
406  | 
lemma wf_rvimage_Ord: "Ord(i) \<Longrightarrow> wf(rvimage(A, f, Memrel(i)))"  | 
|
407  | 
by (blast intro: wf_rvimage wf_Memrel)  | 
|
408  | 
||
409  | 
||
| 24893 | 410  | 
definition  | 
411  | 
wfrank :: "[i,i]=>i" where  | 
|
| 13634 | 412  | 
    "wfrank(r,a) == wfrec(r, a, %x f. \<Union>y \<in> r-``{x}. succ(f`y))"
 | 
413  | 
||
| 24893 | 414  | 
definition  | 
415  | 
wftype :: "i=>i" where  | 
|
| 13634 | 416  | 
"wftype(r) == \<Union>y \<in> range(r). succ(wfrank(r,y))"  | 
417  | 
||
418  | 
lemma wfrank: "wf(r) ==> wfrank(r,a) = (\<Union>y \<in> r-``{a}. succ(wfrank(r,y)))"
 | 
|
419  | 
by (subst wfrank_def [THEN def_wfrec], simp_all)  | 
|
420  | 
||
421  | 
lemma Ord_wfrank: "wf(r) ==> Ord(wfrank(r,a))"  | 
|
422  | 
apply (rule_tac a=a in wf_induct, assumption)  | 
|
423  | 
apply (subst wfrank, assumption)  | 
|
424  | 
apply (rule Ord_succ [THEN Ord_UN], blast)  | 
|
425  | 
done  | 
|
426  | 
||
427  | 
lemma wfrank_lt: "[|wf(r); <a,b> \<in> r|] ==> wfrank(r,a) < wfrank(r,b)"  | 
|
428  | 
apply (rule_tac a1 = b in wfrank [THEN ssubst], assumption)  | 
|
429  | 
apply (rule UN_I [THEN ltI])  | 
|
430  | 
apply (simp add: Ord_wfrank vimage_iff)+  | 
|
431  | 
done  | 
|
432  | 
||
433  | 
lemma Ord_wftype: "wf(r) ==> Ord(wftype(r))"  | 
|
434  | 
by (simp add: wftype_def Ord_wfrank)  | 
|
435  | 
||
436  | 
lemma wftypeI: "\<lbrakk>wf(r); x \<in> field(r)\<rbrakk> \<Longrightarrow> wfrank(r,x) \<in> wftype(r)"  | 
|
437  | 
apply (simp add: wftype_def)  | 
|
438  | 
apply (blast intro: wfrank_lt [THEN ltD])  | 
|
439  | 
done  | 
|
440  | 
||
441  | 
||
442  | 
lemma wf_imp_subset_rvimage:  | 
|
| 46820 | 443  | 
"[|wf(r); r \<subseteq> A*A|] ==> \<exists>i f. Ord(i) & r \<subseteq> rvimage(A, f, Memrel(i))"  | 
| 13634 | 444  | 
apply (rule_tac x="wftype(r)" in exI)  | 
445  | 
apply (rule_tac x="\<lambda>x\<in>A. wfrank(r,x)" in exI)  | 
|
446  | 
apply (simp add: Ord_wftype, clarify)  | 
|
447  | 
apply (frule subsetD, assumption, clarify)  | 
|
448  | 
apply (simp add: rvimage_iff wfrank_lt [THEN ltD])  | 
|
449  | 
apply (blast intro: wftypeI)  | 
|
450  | 
done  | 
|
451  | 
||
452  | 
theorem wf_iff_subset_rvimage:  | 
|
| 
46821
 
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
 
paulson 
parents: 
46820 
diff
changeset
 | 
453  | 
"relation(r) ==> wf(r) \<longleftrightarrow> (\<exists>i f A. Ord(i) & r \<subseteq> rvimage(A, f, Memrel(i)))"  | 
| 13634 | 454  | 
by (blast dest!: relation_field_times_field wf_imp_subset_rvimage  | 
455  | 
intro: wf_rvimage_Ord [THEN wf_subset])  | 
|
456  | 
||
457  | 
||
| 13544 | 458  | 
subsection{*Other Results*}
 | 
459  | 
||
| 46820 | 460  | 
lemma wf_times: "A \<inter> B = 0 ==> wf(A*B)"  | 
| 13544 | 461  | 
by (simp add: wf_def, blast)  | 
462  | 
||
463  | 
text{*Could also be used to prove @{text wf_radd}*}
 | 
|
464  | 
lemma wf_Un:  | 
|
| 46820 | 465  | 
"[| range(r) \<inter> domain(s) = 0; wf(r); wf(s) |] ==> wf(r \<union> s)"  | 
| 46953 | 466  | 
apply (simp add: wf_def, clarify)  | 
467  | 
apply (rule equalityI)  | 
|
468  | 
prefer 2 apply blast  | 
|
469  | 
apply clarify  | 
|
| 13544 | 470  | 
apply (drule_tac x=Z in spec)  | 
| 46820 | 471  | 
apply (drule_tac x="Z \<inter> domain(s)" in spec)  | 
| 46953 | 472  | 
apply simp  | 
473  | 
apply (blast intro: elim: equalityE)  | 
|
| 13544 | 474  | 
done  | 
475  | 
||
476  | 
subsubsection{*The Empty Relation*}
 | 
|
477  | 
||
478  | 
lemma wf0: "wf(0)"  | 
|
479  | 
by (simp add: wf_def, blast)  | 
|
480  | 
||
481  | 
lemma linear0: "linear(0,0)"  | 
|
482  | 
by (simp add: linear_def)  | 
|
483  | 
||
484  | 
lemma well_ord0: "well_ord(0,0)"  | 
|
485  | 
by (blast intro: wf_imp_wf_on well_ordI wf0 linear0)  | 
|
| 13512 | 486  | 
|
487  | 
subsubsection{*The "measure" relation is useful with wfrec*}
 | 
|
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
488  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
489  | 
lemma measure_eq_rvimage_Memrel:  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
490  | 
"measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))"  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
491  | 
apply (simp (no_asm) add: measure_def rvimage_def Memrel_iff)  | 
| 13269 | 492  | 
apply (rule equalityI, auto)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
493  | 
apply (auto intro: Ord_in_Ord simp add: lt_def)  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
494  | 
done  | 
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
495  | 
|
| 
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
496  | 
lemma wf_measure [iff]: "wf(measure(A,f))"  | 
| 13356 | 497  | 
by (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
498  | 
|
| 46953 | 499  | 
lemma measure_iff [iff]: "<x,y> \<in> measure(A,f) \<longleftrightarrow> x \<in> A & y \<in> A & f(x)<f(y)"  | 
| 13356 | 500  | 
by (simp (no_asm) add: measure_def)  | 
| 
13140
 
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
 
paulson 
parents: 
9883 
diff
changeset
 | 
501  | 
|
| 46953 | 502  | 
lemma linear_measure:  | 
| 13544 | 503  | 
assumes Ordf: "!!x. x \<in> A ==> Ord(f(x))"  | 
504  | 
and inj: "!!x y. [|x \<in> A; y \<in> A; f(x) = f(y) |] ==> x=y"  | 
|
505  | 
shows "linear(A, measure(A,f))"  | 
|
| 46953 | 506  | 
apply (auto simp add: linear_def)  | 
507  | 
apply (rule_tac i="f(x)" and j="f(y)" in Ord_linear_lt)  | 
|
508  | 
apply (simp_all add: Ordf)  | 
|
509  | 
apply (blast intro: inj)  | 
|
| 13544 | 510  | 
done  | 
511  | 
||
512  | 
lemma wf_on_measure: "wf[B](measure(A,f))"  | 
|
513  | 
by (rule wf_imp_wf_on [OF wf_measure])  | 
|
514  | 
||
| 46953 | 515  | 
lemma well_ord_measure:  | 
| 13544 | 516  | 
assumes Ordf: "!!x. x \<in> A ==> Ord(f(x))"  | 
517  | 
and inj: "!!x y. [|x \<in> A; y \<in> A; f(x) = f(y) |] ==> x=y"  | 
|
518  | 
shows "well_ord(A, measure(A,f))"  | 
|
519  | 
apply (rule well_ordI)  | 
|
| 46953 | 520  | 
apply (rule wf_on_measure)  | 
521  | 
apply (blast intro: linear_measure Ordf inj)  | 
|
| 13544 | 522  | 
done  | 
523  | 
||
| 46820 | 524  | 
lemma measure_type: "measure(A,f) \<subseteq> A*A"  | 
| 13544 | 525  | 
by (auto simp add: measure_def)  | 
526  | 
||
| 13512 | 527  | 
subsubsection{*Well-foundedness of Unions*}
 | 
528  | 
||
529  | 
lemma wf_on_Union:  | 
|
530  | 
assumes wfA: "wf[A](r)"  | 
|
531  | 
and wfB: "!!a. a\<in>A ==> wf[B(a)](s)"  | 
|
| 46953 | 532  | 
and ok: "!!a u v. [|<u,v> \<in> s; v \<in> B(a); a \<in> A|]  | 
| 13512 | 533  | 
==> (\<exists>a'\<in>A. <a',a> \<in> r & u \<in> B(a')) | u \<in> B(a)"  | 
534  | 
shows "wf[\<Union>a\<in>A. B(a)](s)"  | 
|
535  | 
apply (rule wf_onI2)  | 
|
536  | 
apply (erule UN_E)  | 
|
537  | 
apply (subgoal_tac "\<forall>z \<in> B(a). z \<in> Ba", blast)  | 
|
538  | 
apply (rule_tac a = a in wf_on_induct [OF wfA], assumption)  | 
|
539  | 
apply (rule ballI)  | 
|
540  | 
apply (rule_tac a = z in wf_on_induct [OF wfB], assumption, assumption)  | 
|
| 46953 | 541  | 
apply (rename_tac u)  | 
542  | 
apply (drule_tac x=u in bspec, blast)  | 
|
| 13512 | 543  | 
apply (erule mp, clarify)  | 
| 46953 | 544  | 
apply (frule ok, assumption+, blast)  | 
| 13512 | 545  | 
done  | 
546  | 
||
| 14120 | 547  | 
subsubsection{*Bijections involving Powersets*}
 | 
548  | 
||
549  | 
lemma Pow_sum_bij:  | 
|
| 46953 | 550  | 
    "(\<lambda>Z \<in> Pow(A+B). <{x \<in> A. Inl(x) \<in> Z}, {y \<in> B. Inr(y) \<in> Z}>)
 | 
| 14120 | 551  | 
\<in> bij(Pow(A+B), Pow(A)*Pow(B))"  | 
| 46953 | 552  | 
apply (rule_tac d = "%<X,Y>. {Inl (x). x \<in> X} \<union> {Inr (y). y \<in> Y}"
 | 
| 14120 | 553  | 
in lam_bijective)  | 
554  | 
apply force+  | 
|
555  | 
done  | 
|
556  | 
||
557  | 
text{*As a special case, we have @{term "bij(Pow(A*B), A -> Pow(B))"} *}
 | 
|
558  | 
lemma Pow_Sigma_bij:  | 
|
| 46953 | 559  | 
    "(\<lambda>r \<in> Pow(Sigma(A,B)). \<lambda>x \<in> A. r``{x})
 | 
| 
14171
 
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
 
skalberg 
parents: 
14120 
diff
changeset
 | 
560  | 
\<in> bij(Pow(Sigma(A,B)), \<Pi> x \<in> A. Pow(B(x)))"  | 
| 14120 | 561  | 
apply (rule_tac d = "%f. \<Union>x \<in> A. \<Union>y \<in> f`x. {<x,y>}" in lam_bijective)
 | 
562  | 
apply (blast intro: lam_type)  | 
|
563  | 
apply (blast dest: apply_type, simp_all)  | 
|
564  | 
apply fast (*strange, but blast can't do it*)  | 
|
565  | 
apply (rule fun_extension, auto)  | 
|
566  | 
by blast  | 
|
567  | 
||
| 437 | 568  | 
end  |