| author | wenzelm | 
| Wed, 28 Oct 2009 00:23:39 +0100 | |
| changeset 33267 | 8fb01a2f9406 | 
| parent 30738 | 0842e906300c | 
| child 37757 | dc78d2d9e90a | 
| permissions | -rw-r--r-- | 
| 22803 | 1 | (* Title: HOL/Library/While_Combinator.thy | 
| 10251 | 2 | Author: Tobias Nipkow | 
| 3 | Copyright 2000 TU Muenchen | |
| 4 | *) | |
| 5 | ||
| 14706 | 6 | header {* A general ``while'' combinator *}
 | 
| 10251 | 7 | |
| 15131 | 8 | theory While_Combinator | 
| 30738 | 9 | imports Main | 
| 15131 | 10 | begin | 
| 10251 | 11 | |
| 23821 | 12 | text {* 
 | 
| 13 | We define the while combinator as the "mother of all tail recursive functions". | |
| 10251 | 14 | *} | 
| 15 | ||
| 23821 | 16 | function (tailrec) while :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
 | 
| 17 | where | |
| 18 | while_unfold[simp del]: "while b c s = (if b s then while b c (c s) else s)" | |
| 19 | by auto | |
| 10251 | 20 | |
| 23821 | 21 | declare while_unfold[code] | 
| 10984 | 22 | |
| 18372 | 23 | lemma def_while_unfold: | 
| 24 | assumes fdef: "f == while test do" | |
| 25 | shows "f x = (if test x then f(do x) else x)" | |
| 14300 | 26 | proof - | 
| 27 | have "f x = while test do x" using fdef by simp | |
| 28 | also have "\<dots> = (if test x then while test do (do x) else x)" | |
| 29 | by(rule while_unfold) | |
| 30 | also have "\<dots> = (if test x then f(do x) else x)" by(simp add:fdef[symmetric]) | |
| 31 | finally show ?thesis . | |
| 32 | qed | |
| 33 | ||
| 34 | ||
| 10251 | 35 | text {*
 | 
| 36 |  The proof rule for @{term while}, where @{term P} is the invariant.
 | |
| 37 | *} | |
| 38 | ||
| 18372 | 39 | theorem while_rule_lemma: | 
| 40 | assumes invariant: "!!s. P s ==> b s ==> P (c s)" | |
| 41 | and terminate: "!!s. P s ==> \<not> b s ==> Q s" | |
| 42 |     and wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"
 | |
| 43 | shows "P s \<Longrightarrow> Q (while b c s)" | |
| 19736 | 44 | using wf | 
| 45 | apply (induct s) | |
| 18372 | 46 | apply simp | 
| 47 | apply (subst while_unfold) | |
| 48 | apply (simp add: invariant terminate) | |
| 49 | done | |
| 10251 | 50 | |
| 10653 | 51 | theorem while_rule: | 
| 10984 | 52 | "[| P s; | 
| 53 | !!s. [| P s; b s |] ==> P (c s); | |
| 54 | !!s. [| P s; \<not> b s |] ==> Q s; | |
| 10997 | 55 | wf r; | 
| 10984 | 56 | !!s. [| P s; b s |] ==> (c s, s) \<in> r |] ==> | 
| 57 | Q (while b c s)" | |
| 19736 | 58 | apply (rule while_rule_lemma) | 
| 59 | prefer 4 apply assumption | |
| 60 | apply blast | |
| 61 | apply blast | |
| 62 | apply (erule wf_subset) | |
| 63 | apply blast | |
| 64 | done | |
| 10653 | 65 | |
| 10984 | 66 | text {*
 | 
| 67 |  \medskip An application: computation of the @{term lfp} on finite
 | |
| 68 | sets via iteration. | |
| 69 | *} | |
| 70 | ||
| 71 | theorem lfp_conv_while: | |
| 72 | "[| mono f; finite U; f U = U |] ==> | |
| 73 |     lfp f = fst (while (\<lambda>(A, fA). A \<noteq> fA) (\<lambda>(A, fA). (fA, f fA)) ({}, f {}))"
 | |
| 74 | apply (rule_tac P = "\<lambda>(A, B). (A \<subseteq> U \<and> B = f A \<and> A \<subseteq> B \<and> B \<subseteq> lfp f)" and | |
| 11047 | 75 | r = "((Pow U \<times> UNIV) \<times> (Pow U \<times> UNIV)) \<inter> | 
| 10984 | 76 | inv_image finite_psubset (op - U o fst)" in while_rule) | 
| 77 | apply (subst lfp_unfold) | |
| 78 | apply assumption | |
| 79 | apply (simp add: monoD) | |
| 80 | apply (subst lfp_unfold) | |
| 81 | apply assumption | |
| 82 | apply clarsimp | |
| 83 | apply (blast dest: monoD) | |
| 84 | apply (fastsimp intro!: lfp_lowerbound) | |
| 85 | apply (blast intro: wf_finite_psubset Int_lower2 [THEN [2] wf_subset]) | |
| 19769 
c40ce2de2020
Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
 krauss parents: 
19736diff
changeset | 86 | apply (clarsimp simp add: finite_psubset_def order_less_le) | 
| 10984 | 87 | apply (blast intro!: finite_Diff dest: monoD) | 
| 88 | done | |
| 89 | ||
| 90 | ||
| 91 | text {*
 | |
| 14589 | 92 |  An example of using the @{term while} combinator.
 | 
| 10984 | 93 | *} | 
| 94 | ||
| 15197 | 95 | text{* Cannot use @{thm[source]set_eq_subset} because it leads to
 | 
| 96 | looping because the antisymmetry simproc turns the subset relationship | |
| 97 | back into equality. *} | |
| 98 | ||
| 14589 | 99 | theorem "P (lfp (\<lambda>N::int set. {0} \<union> {(n + 2) mod 6 | n. n \<in> N})) =
 | 
| 100 |   P {0, 4, 2}"
 | |
| 10997 | 101 | proof - | 
| 19736 | 102 | have seteq: "!!A B. (A = B) = ((!a : A. a:B) & (!b:B. b:A))" | 
| 103 | by blast | |
| 10997 | 104 |   have aux: "!!f A B. {f n | n. A n \<or> B n} = {f n | n. A n} \<union> {f n | n. B n}"
 | 
| 10984 | 105 | apply blast | 
| 10997 | 106 | done | 
| 107 | show ?thesis | |
| 11914 | 108 |     apply (subst lfp_conv_while [where ?U = "{0, 1, 2, 3, 4, 5}"])
 | 
| 10997 | 109 | apply (rule monoI) | 
| 110 | apply blast | |
| 111 | apply simp | |
| 112 | apply (simp add: aux set_eq_subset) | |
| 113 |     txt {* The fixpoint computation is performed purely by rewriting: *}
 | |
| 15197 | 114 | apply (simp add: while_unfold aux seteq del: subset_empty) | 
| 10997 | 115 | done | 
| 116 | qed | |
| 10251 | 117 | |
| 118 | end |