src/HOL/Multivariate_Analysis/Complex_Analysis_Basics.thy
author hoelzl
Wed, 09 Apr 2014 09:37:47 +0200
changeset 56479 91958d4b30f7
parent 56409 36489d77c484
child 56889 48a745e1bde7
permissions -rw-r--r--
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     1
(*  Author: John Harrison, Marco Maggesi, Graziano Gentili, Gianni Ciolli, Valentina Bruno
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     2
    Ported from "hol_light/Multivariate/canal.ml" by L C Paulson (2014)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     3
*)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     4
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     5
header {* Complex Analysis Basics *}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     6
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     7
theory Complex_Analysis_Basics
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     8
imports  "~~/src/HOL/Multivariate_Analysis/Cartesian_Euclidean_Space"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     9
begin
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    11
subsection{*General lemmas*}
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    12
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    13
lemma has_derivative_mult_right:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    14
  fixes c:: "'a :: real_normed_algebra"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    15
  shows "((op * c) has_derivative (op * c)) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    16
by (rule has_derivative_mult_right [OF has_derivative_id])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    17
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    18
lemma has_derivative_of_real[derivative_intros, simp]: 
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    19
  "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_derivative (\<lambda>x. of_real (f' x))) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    20
  using bounded_linear.has_derivative[OF bounded_linear_of_real] .
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    21
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    22
lemma has_vector_derivative_real_complex:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    23
  "DERIV f (of_real a) :> f' \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    24
  using has_derivative_compose[of of_real of_real a UNIV f "op * f'"]
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    25
  by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    26
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
    27
lemma fact_cancel:
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
    28
  fixes c :: "'a::real_field"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
    29
  shows "of_nat (Suc n) * c / of_nat (fact (Suc n)) = c / of_nat (fact n)"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    30
  by (simp add: of_nat_mult del: of_nat_Suc times_nat.simps)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    31
lemma linear_times:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    32
  fixes c::"'a::real_algebra" shows "linear (\<lambda>x. c * x)"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    33
  by (auto simp: linearI distrib_left)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    34
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    35
lemma bilinear_times:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    36
  fixes c::"'a::real_algebra" shows "bilinear (\<lambda>x y::'a. x*y)"
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    37
  by (auto simp: bilinear_def distrib_left distrib_right intro!: linearI)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    38
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    39
lemma linear_cnj: "linear cnj"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
    40
  using bounded_linear.linear[OF bounded_linear_cnj] .
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    41
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    42
lemma tendsto_mult_left:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    43
  fixes c::"'a::real_normed_algebra" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    44
  shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. c * (f x)) ---> c * l) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    45
by (rule tendsto_mult [OF tendsto_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    46
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    47
lemma tendsto_mult_right:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    48
  fixes c::"'a::real_normed_algebra" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    49
  shows "(f ---> l) F \<Longrightarrow> ((\<lambda>x. (f x) * c) ---> l * c) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    50
by (rule tendsto_mult [OF _ tendsto_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    51
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    52
lemma tendsto_Re_upper:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    53
  assumes "~ (trivial_limit F)" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    54
          "(f ---> l) F" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    55
          "eventually (\<lambda>x. Re(f x) \<le> b) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    56
    shows  "Re(l) \<le> b"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    57
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Re)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    58
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    59
lemma tendsto_Re_lower:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    60
  assumes "~ (trivial_limit F)" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    61
          "(f ---> l) F" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    62
          "eventually (\<lambda>x. b \<le> Re(f x)) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    63
    shows  "b \<le> Re(l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    64
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Re)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    65
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    66
lemma tendsto_Im_upper:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    67
  assumes "~ (trivial_limit F)" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    68
          "(f ---> l) F" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    69
          "eventually (\<lambda>x. Im(f x) \<le> b) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    70
    shows  "Im(l) \<le> b"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    71
  by (metis assms tendsto_le [OF _ tendsto_const]  tendsto_Im)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    72
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    73
lemma tendsto_Im_lower:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    74
  assumes "~ (trivial_limit F)" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    75
          "(f ---> l) F" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    76
          "eventually (\<lambda>x. b \<le> Im(f x)) F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    77
    shows  "b \<le> Im(l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    78
  by (metis assms tendsto_le [OF _ _ tendsto_const]  tendsto_Im)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    79
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    80
lemma lambda_zero: "(\<lambda>h::'a::mult_zero. 0) = op * 0"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    81
  by auto
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    82
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    83
lemma lambda_one: "(\<lambda>x::'a::monoid_mult. x) = op * 1"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    84
  by auto
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    85
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    86
lemma has_real_derivative:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    87
  fixes f :: "real \<Rightarrow> real" 
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    88
  assumes "(f has_derivative f') F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    89
  obtains c where "(f has_real_derivative c) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    90
proof -
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    91
  obtain c where "f' = (\<lambda>x. x * c)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    92
    by (metis assms has_derivative_bounded_linear real_bounded_linear)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    93
  then show ?thesis
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    94
    by (metis assms that has_field_derivative_def mult_commute_abs)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    95
qed
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    96
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    97
lemma has_real_derivative_iff:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    98
  fixes f :: "real \<Rightarrow> real" 
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
    99
  shows "(\<exists>c. (f has_real_derivative c) F) = (\<exists>D. (f has_derivative D) F)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   100
  by (metis has_field_derivative_def has_real_derivative)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   101
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   102
lemma continuous_mult_left:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
  fixes c::"'a::real_normed_algebra" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   104
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   105
by (rule continuous_mult [OF continuous_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   106
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   107
lemma continuous_mult_right:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   108
  fixes c::"'a::real_normed_algebra" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   109
  shows "continuous F f \<Longrightarrow> continuous F (\<lambda>x. f x * c)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   110
by (rule continuous_mult [OF _ continuous_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   111
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   112
lemma continuous_on_mult_left:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   113
  fixes c::"'a::real_normed_algebra" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   114
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   115
by (rule continuous_on_mult [OF continuous_on_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   116
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   117
lemma continuous_on_mult_right:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   118
  fixes c::"'a::real_normed_algebra" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   119
  shows "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. f x * c)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   120
by (rule continuous_on_mult [OF _ continuous_on_const])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   121
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56370
diff changeset
   122
lemma uniformly_continuous_on_cmul_right [continuous_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   123
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
   124
  shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. f x * c)"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   125
  using bounded_linear.uniformly_continuous_on[OF bounded_linear_mult_left] . 
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   126
56371
fb9ae0727548 extend continuous_intros; remove continuous_on_intros and isCont_intros
hoelzl
parents: 56370
diff changeset
   127
lemma uniformly_continuous_on_cmul_left[continuous_intros]:
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   128
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   129
  assumes "uniformly_continuous_on s f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   130
    shows "uniformly_continuous_on s (\<lambda>x. c * f x)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   131
by (metis assms bounded_linear.uniformly_continuous_on bounded_linear_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   132
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   133
lemma continuous_within_norm_id [continuous_intros]: "continuous (at x within S) norm"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   134
  by (rule continuous_norm [OF continuous_ident])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   135
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   136
lemma continuous_on_norm_id [continuous_intros]: "continuous_on S norm"
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   137
  by (intro continuous_on_id continuous_on_norm)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   138
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   139
subsection{*DERIV stuff*}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   140
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   141
lemma DERIV_zero_connected_constant:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   142
  fixes f :: "'a::{real_normed_field,euclidean_space} \<Rightarrow> 'a"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   143
  assumes "connected s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   144
      and "open s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   145
      and "finite k"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   146
      and "continuous_on s f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   147
      and "\<forall>x\<in>(s - k). DERIV f x :> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   148
    obtains c where "\<And>x. x \<in> s \<Longrightarrow> f(x) = c"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   149
using has_derivative_zero_connected_constant [OF assms(1-4)] assms
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   150
by (metis DERIV_const has_derivative_const Diff_iff at_within_open frechet_derivative_at has_field_derivative_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   151
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   152
lemma DERIV_zero_constant:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   153
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   154
  shows    "\<lbrakk>convex s;
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   155
             \<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)\<rbrakk> 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   156
             \<Longrightarrow> \<exists>c. \<forall>x \<in> s. f(x) = c"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   157
  by (auto simp: has_field_derivative_def lambda_zero intro: has_derivative_zero_constant)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   158
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   159
lemma DERIV_zero_unique:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   160
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   161
  assumes "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   162
      and d0: "\<And>x. x\<in>s \<Longrightarrow> (f has_field_derivative 0) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   163
      and "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   164
      and "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   165
    shows "f x = f a"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   166
  by (rule has_derivative_zero_unique [OF assms(1) _ assms(4,3)])
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
   167
     (metis d0 has_field_derivative_imp_has_derivative lambda_zero)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   168
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   169
lemma DERIV_zero_connected_unique:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   170
  fixes f :: "'a::{real_normed_field, real_inner} \<Rightarrow> 'a"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   171
  assumes "connected s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   172
      and "open s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   173
      and d0: "\<And>x. x\<in>s \<Longrightarrow> DERIV f x :> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   174
      and "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   175
      and "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   176
    shows "f x = f a" 
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   177
    by (rule has_derivative_zero_unique_connected [OF assms(2,1) _ assms(5,4)])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   178
       (metis has_field_derivative_def lambda_zero d0)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   179
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   180
lemma DERIV_transform_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   181
  assumes "(f has_field_derivative f') (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   182
      and "0 < d" "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   183
      and "\<And>x. x\<in>s \<Longrightarrow> dist x a < d \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   184
    shows "(g has_field_derivative f') (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   185
  using assms unfolding has_field_derivative_def
56332
289dd9166d04 tuned proofs
hoelzl
parents: 56261
diff changeset
   186
  by (blast intro: has_derivative_transform_within)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   187
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   188
lemma DERIV_transform_within_open:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   189
  assumes "DERIV f a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   190
      and "open s" "a \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   191
      and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   192
    shows "DERIV g a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   193
  using assms unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   194
by (metis has_derivative_transform_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   195
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   196
lemma DERIV_transform_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   197
  assumes "DERIV f a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   198
      and "0 < d"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   199
      and "\<And>x. dist x a < d \<Longrightarrow> f x = g x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   200
    shows "DERIV g a :> f'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   201
  by (blast intro: assms DERIV_transform_within)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   202
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   203
subsection {*Some limit theorems about real part of real series etc.*}
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   204
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   205
(*MOVE? But not to Finite_Cartesian_Product*)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   206
lemma sums_vec_nth :
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   207
  assumes "f sums a"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   208
  shows "(\<lambda>x. f x $ i) sums a $ i"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   209
using assms unfolding sums_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   210
by (auto dest: tendsto_vec_nth [where i=i])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   211
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   212
lemma summable_vec_nth :
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   213
  assumes "summable f"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   214
  shows "summable (\<lambda>x. f x $ i)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   215
using assms unfolding summable_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   216
by (blast intro: sums_vec_nth)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   217
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   218
subsection {*Complex number lemmas *}
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   219
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   220
lemma
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   221
  shows open_halfspace_Re_lt: "open {z. Re(z) < b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   222
    and open_halfspace_Re_gt: "open {z. Re(z) > b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   223
    and closed_halfspace_Re_ge: "closed {z. Re(z) \<ge> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   224
    and closed_halfspace_Re_le: "closed {z. Re(z) \<le> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   225
    and closed_halfspace_Re_eq: "closed {z. Re(z) = b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   226
    and open_halfspace_Im_lt: "open {z. Im(z) < b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   227
    and open_halfspace_Im_gt: "open {z. Im(z) > b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   228
    and closed_halfspace_Im_ge: "closed {z. Im(z) \<ge> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   229
    and closed_halfspace_Im_le: "closed {z. Im(z) \<le> b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   230
    and closed_halfspace_Im_eq: "closed {z. Im(z) = b}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   231
  by (intro open_Collect_less closed_Collect_le closed_Collect_eq isCont_Re
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   232
            isCont_Im isCont_ident isCont_const)+
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   233
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   234
lemma closed_complex_Reals: "closed (Reals :: complex set)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   235
proof -
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   236
  have "(Reals :: complex set) = {z. Im z = 0}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   237
    by (auto simp: complex_is_Real_iff)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   238
  then show ?thesis
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   239
    by (metis closed_halfspace_Im_eq)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   240
qed
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   241
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   242
lemma real_lim:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   243
  fixes l::complex
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   244
  assumes "(f ---> l) F" and "~(trivial_limit F)" and "eventually P F" and "\<And>a. P a \<Longrightarrow> f a \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   245
  shows  "l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   246
proof (rule Lim_in_closed_set[OF closed_complex_Reals _ assms(2,1)])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   247
  show "eventually (\<lambda>x. f x \<in> \<real>) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   248
    using assms(3, 4) by (auto intro: eventually_mono)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   249
qed
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   250
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   251
lemma real_lim_sequentially:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   252
  fixes l::complex
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   253
  shows "(f ---> l) sequentially \<Longrightarrow> (\<exists>N. \<forall>n\<ge>N. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   254
by (rule real_lim [where F=sequentially]) (auto simp: eventually_sequentially)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   255
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   256
lemma real_series: 
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   257
  fixes l::complex
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   258
  shows "f sums l \<Longrightarrow> (\<And>n. f n \<in> \<real>) \<Longrightarrow> l \<in> \<real>"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   259
unfolding sums_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   260
by (metis real_lim_sequentially setsum_in_Reals)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   261
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   262
lemma Lim_null_comparison_Re:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   263
   "eventually (\<lambda>x. norm(f x) \<le> Re(g x)) F \<Longrightarrow>  (g ---> 0) F \<Longrightarrow> (f ---> 0) F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   264
  by (metis Lim_null_comparison complex_Re_zero tendsto_Re)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   265
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   266
subsection{*Holomorphic functions*}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   267
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   268
definition complex_differentiable :: "[complex \<Rightarrow> complex, complex filter] \<Rightarrow> bool"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   269
           (infixr "(complex'_differentiable)" 50)  
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   270
  where "f complex_differentiable F \<equiv> \<exists>f'. (f has_field_derivative f') F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   271
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   272
lemma complex_differentiable_imp_continuous_at:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   273
    "f complex_differentiable (at x within s) \<Longrightarrow> continuous (at x within s) f"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   274
  by (metis DERIV_continuous complex_differentiable_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   275
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   276
lemma complex_differentiable_within_subset:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   277
    "\<lbrakk>f complex_differentiable (at x within s); t \<subseteq> s\<rbrakk>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   278
     \<Longrightarrow> f complex_differentiable (at x within t)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   279
  by (metis DERIV_subset complex_differentiable_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   280
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   281
lemma complex_differentiable_at_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   282
    "\<lbrakk>f complex_differentiable (at x)\<rbrakk>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   283
     \<Longrightarrow> f complex_differentiable (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   284
  unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   285
  by (metis DERIV_subset top_greatest)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   286
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   287
lemma complex_differentiable_linear: "(op * c) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   288
proof -
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   289
  show ?thesis
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   290
    unfolding complex_differentiable_def has_field_derivative_def mult_commute_abs
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   291
    by (force intro: has_derivative_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   292
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   293
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   294
lemma complex_differentiable_const: "(\<lambda>z. c) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   295
  unfolding complex_differentiable_def has_field_derivative_def
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   296
  by (rule exI [where x=0])
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   297
     (metis has_derivative_const lambda_zero) 
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   298
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   299
lemma complex_differentiable_ident: "(\<lambda>z. z) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   300
  unfolding complex_differentiable_def has_field_derivative_def
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   301
  by (rule exI [where x=1])
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   302
     (simp add: lambda_one [symmetric])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   303
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   304
lemma complex_differentiable_id: "id complex_differentiable F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   305
  unfolding id_def by (rule complex_differentiable_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   306
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   307
lemma complex_differentiable_minus:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   308
  "f complex_differentiable F \<Longrightarrow> (\<lambda>z. - (f z)) complex_differentiable F"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   309
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   310
  by (metis field_differentiable_minus)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   311
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   312
lemma complex_differentiable_add:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   313
  assumes "f complex_differentiable F" "g complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   314
    shows "(\<lambda>z. f z + g z) complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   315
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   316
  by (metis field_differentiable_add)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   317
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   318
lemma complex_differentiable_setsum:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   319
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) complex_differentiable F) \<Longrightarrow> (\<lambda>z. \<Sum>i\<in>I. f i z) complex_differentiable F"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   320
  by (induct I rule: infinite_finite_induct)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   321
     (auto intro: complex_differentiable_add complex_differentiable_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   322
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   323
lemma complex_differentiable_diff:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   324
  assumes "f complex_differentiable F" "g complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   325
    shows "(\<lambda>z. f z - g z) complex_differentiable F"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   326
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   327
  by (metis field_differentiable_diff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   328
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   329
lemma complex_differentiable_inverse:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   330
  assumes "f complex_differentiable (at a within s)" "f a \<noteq> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   331
  shows "(\<lambda>z. inverse (f z)) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   332
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   333
  by (metis DERIV_inverse_fun)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   334
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   335
lemma complex_differentiable_mult:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   336
  assumes "f complex_differentiable (at a within s)" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   337
          "g complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   338
    shows "(\<lambda>z. f z * g z) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   339
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   340
  by (metis DERIV_mult [of f _ a s g])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   341
  
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   342
lemma complex_differentiable_divide:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   343
  assumes "f complex_differentiable (at a within s)" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   344
          "g complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   345
          "g a \<noteq> 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   346
    shows "(\<lambda>z. f z / g z) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   347
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   348
  by (metis DERIV_divide [of f _ a s g])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   349
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   350
lemma complex_differentiable_power:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   351
  assumes "f complex_differentiable (at a within s)" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   352
    shows "(\<lambda>z. f z ^ n) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   353
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   354
  by (metis DERIV_power)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   355
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   356
lemma complex_differentiable_transform_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   357
  "0 < d \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   358
        x \<in> s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   359
        (\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x') \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   360
        f complex_differentiable (at x within s)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   361
        \<Longrightarrow> g complex_differentiable (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   362
  unfolding complex_differentiable_def has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   363
  by (blast intro: has_derivative_transform_within)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   364
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   365
lemma complex_differentiable_compose_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   366
  assumes "f complex_differentiable (at a within s)" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   367
          "g complex_differentiable (at (f a) within f`s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   368
    shows "(g o f) complex_differentiable (at a within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   369
  using assms unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   370
  by (metis DERIV_image_chain)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   371
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   372
lemma complex_differentiable_compose:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   373
  "f complex_differentiable at z \<Longrightarrow> g complex_differentiable at (f z)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   374
          \<Longrightarrow> (g o f) complex_differentiable at z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   375
by (metis complex_differentiable_at_within complex_differentiable_compose_within)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   376
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   377
lemma complex_differentiable_within_open:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   378
     "\<lbrakk>a \<in> s; open s\<rbrakk> \<Longrightarrow> f complex_differentiable at a within s \<longleftrightarrow> 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   379
                          f complex_differentiable at a"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   380
  unfolding complex_differentiable_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   381
  by (metis at_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   382
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   383
subsection{*Caratheodory characterization.*}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   384
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   385
lemma complex_differentiable_caratheodory_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   386
  "f complex_differentiable (at z) \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   387
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z) g)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   388
  using CARAT_DERIV [of f]
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   389
  by (simp add: complex_differentiable_def has_field_derivative_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   390
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   391
lemma complex_differentiable_caratheodory_within:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   392
  "f complex_differentiable (at z within s) \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   393
         (\<exists>g. (\<forall>w. f(w) - f(z) = g(w) * (w - z)) \<and> continuous (at z within s) g)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   394
  using DERIV_caratheodory_within [of f]
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   395
  by (simp add: complex_differentiable_def has_field_derivative_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   396
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   397
subsection{*Holomorphic*}
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   398
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   399
definition holomorphic_on :: "[complex \<Rightarrow> complex, complex set] \<Rightarrow> bool"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   400
           (infixl "(holomorphic'_on)" 50)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   401
  where "f holomorphic_on s \<equiv> \<forall>x\<in>s. f complex_differentiable (at x within s)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   402
  
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   403
lemma holomorphic_on_empty: "f holomorphic_on {}"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   404
  by (simp add: holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   405
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   406
lemma holomorphic_on_open:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   407
    "open s \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>f'. DERIV f x :> f')"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   408
  by (auto simp: holomorphic_on_def complex_differentiable_def has_field_derivative_def at_within_open [of _ s])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   409
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   410
lemma holomorphic_on_imp_continuous_on: 
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   411
    "f holomorphic_on s \<Longrightarrow> continuous_on s f"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   412
  by (metis complex_differentiable_imp_continuous_at continuous_on_eq_continuous_within holomorphic_on_def) 
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   413
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   414
lemma holomorphic_on_subset:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   415
    "f holomorphic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f holomorphic_on t"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   416
  unfolding holomorphic_on_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   417
  by (metis complex_differentiable_within_subset subsetD)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   418
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   419
lemma holomorphic_transform: "\<lbrakk>f holomorphic_on s; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> g holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   420
  by (metis complex_differentiable_transform_within linordered_field_no_ub holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   421
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   422
lemma holomorphic_cong: "s = t ==> (\<And>x. x \<in> s \<Longrightarrow> f x = g x) \<Longrightarrow> f holomorphic_on s \<longleftrightarrow> g holomorphic_on t"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   423
  by (metis holomorphic_transform)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   424
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   425
lemma holomorphic_on_linear: "(op * c) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   426
  unfolding holomorphic_on_def by (metis complex_differentiable_linear)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   427
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   428
lemma holomorphic_on_const: "(\<lambda>z. c) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   429
  unfolding holomorphic_on_def by (metis complex_differentiable_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   430
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   431
lemma holomorphic_on_ident: "(\<lambda>x. x) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   432
  unfolding holomorphic_on_def by (metis complex_differentiable_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   433
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   434
lemma holomorphic_on_id: "id holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   435
  unfolding id_def by (rule holomorphic_on_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   436
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   437
lemma holomorphic_on_compose:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   438
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on (f ` s) \<Longrightarrow> (g o f) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   439
  using complex_differentiable_compose_within[of f _ s g]
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   440
  by (auto simp: holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   441
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   442
lemma holomorphic_on_compose_gen:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   443
  "f holomorphic_on s \<Longrightarrow> g holomorphic_on t \<Longrightarrow> f ` s \<subseteq> t \<Longrightarrow> (g o f) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   444
  by (metis holomorphic_on_compose holomorphic_on_subset)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   445
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   446
lemma holomorphic_on_minus: "f holomorphic_on s \<Longrightarrow> (\<lambda>z. -(f z)) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   447
  by (metis complex_differentiable_minus holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   448
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   449
lemma holomorphic_on_add:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   450
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z + g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   451
  unfolding holomorphic_on_def by (metis complex_differentiable_add)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   452
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   453
lemma holomorphic_on_diff:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   454
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z - g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   455
  unfolding holomorphic_on_def by (metis complex_differentiable_diff)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   456
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   457
lemma holomorphic_on_mult:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   458
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s\<rbrakk> \<Longrightarrow> (\<lambda>z. f z * g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   459
  unfolding holomorphic_on_def by (metis complex_differentiable_mult)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   460
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   461
lemma holomorphic_on_inverse:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   462
  "\<lbrakk>f holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. inverse (f z)) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   463
  unfolding holomorphic_on_def by (metis complex_differentiable_inverse)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   464
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   465
lemma holomorphic_on_divide:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   466
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; \<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0\<rbrakk> \<Longrightarrow> (\<lambda>z. f z / g z) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   467
  unfolding holomorphic_on_def by (metis complex_differentiable_divide)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   468
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   469
lemma holomorphic_on_power:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   470
  "f holomorphic_on s \<Longrightarrow> (\<lambda>z. (f z)^n) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   471
  unfolding holomorphic_on_def by (metis complex_differentiable_power)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   472
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   473
lemma holomorphic_on_setsum:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   474
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) holomorphic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   475
  unfolding holomorphic_on_def by (metis complex_differentiable_setsum)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   476
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   477
definition deriv :: "('a \<Rightarrow> 'a::real_normed_field) \<Rightarrow> 'a \<Rightarrow> 'a" where
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   478
  "deriv f x \<equiv> THE D. DERIV f x :> D"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   479
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   480
lemma DERIV_imp_deriv: "DERIV f x :> f' \<Longrightarrow> deriv f x = f'"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   481
  unfolding deriv_def by (metis the_equality DERIV_unique)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   482
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   483
lemma DERIV_deriv_iff_real_differentiable:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   484
  fixes x :: real
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   485
  shows "DERIV f x :> deriv f x \<longleftrightarrow> f differentiable at x"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   486
  unfolding differentiable_def by (metis DERIV_imp_deriv has_real_derivative_iff)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   487
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   488
lemma real_derivative_chain:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   489
  fixes x :: real
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   490
  shows "f differentiable at x \<Longrightarrow> g differentiable at (f x)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   491
    \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   492
  by (metis DERIV_deriv_iff_real_differentiable DERIV_chain DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   493
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   494
lemma DERIV_deriv_iff_complex_differentiable:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   495
  "DERIV f x :> deriv f x \<longleftrightarrow> f complex_differentiable at x"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   496
  unfolding complex_differentiable_def by (metis DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   497
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   498
lemma complex_derivative_chain:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   499
  "f complex_differentiable at x \<Longrightarrow> g complex_differentiable at (f x)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   500
    \<Longrightarrow> deriv (g o f) x = deriv g (f x) * deriv f x"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   501
  by (metis DERIV_deriv_iff_complex_differentiable DERIV_chain DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   502
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   503
lemma complex_derivative_linear: "deriv (\<lambda>w. c * w) = (\<lambda>z. c)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   504
  by (metis DERIV_imp_deriv DERIV_cmult_Id)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   505
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   506
lemma complex_derivative_ident: "deriv (\<lambda>w. w) = (\<lambda>z. 1)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   507
  by (metis DERIV_imp_deriv DERIV_ident)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   508
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   509
lemma complex_derivative_const: "deriv (\<lambda>w. c) = (\<lambda>z. 0)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   510
  by (metis DERIV_imp_deriv DERIV_const)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   511
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   512
lemma complex_derivative_add:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   513
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>  
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   514
   \<Longrightarrow> deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   515
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   516
  by (auto intro!: DERIV_imp_deriv derivative_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   517
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   518
lemma complex_derivative_diff:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   519
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>  
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   520
   \<Longrightarrow> deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   521
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   522
  by (auto intro!: DERIV_imp_deriv derivative_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   523
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   524
lemma complex_derivative_mult:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   525
  "\<lbrakk>f complex_differentiable at z; g complex_differentiable at z\<rbrakk>  
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   526
   \<Longrightarrow> deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   527
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   528
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   529
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   530
lemma complex_derivative_cmult:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   531
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. c * f w) z = c * deriv f z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   532
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   533
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   534
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   535
lemma complex_derivative_cmult_right:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   536
  "f complex_differentiable at z \<Longrightarrow> deriv (\<lambda>w. f w * c) z = deriv f z * c"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   537
  unfolding DERIV_deriv_iff_complex_differentiable[symmetric]
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   538
  by (auto intro!: DERIV_imp_deriv derivative_eq_intros)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   539
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   540
lemma complex_derivative_transform_within_open:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   541
  "\<lbrakk>f holomorphic_on s; g holomorphic_on s; open s; z \<in> s; \<And>w. w \<in> s \<Longrightarrow> f w = g w\<rbrakk> 
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   542
   \<Longrightarrow> deriv f z = deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   543
  unfolding holomorphic_on_def
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   544
  by (rule DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   545
     (metis DERIV_deriv_iff_complex_differentiable DERIV_transform_within_open at_within_open)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   546
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   547
lemma complex_derivative_compose_linear:
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   548
  "f complex_differentiable at (c * z) \<Longrightarrow> deriv (\<lambda>w. f (c * w)) z = c * deriv f (c * z)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   549
apply (rule DERIV_imp_deriv)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   550
apply (simp add: DERIV_deriv_iff_complex_differentiable [symmetric])
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   551
apply (metis DERIV_chain' DERIV_cmult_Id comm_semiring_1_class.normalizing_semiring_rules(7))  
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   552
done
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   553
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   554
subsection{*analyticity on a set*}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   555
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   556
definition analytic_on (infixl "(analytic'_on)" 50)  
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   557
  where
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   558
   "f analytic_on s \<equiv> \<forall>x \<in> s. \<exists>e. 0 < e \<and> f holomorphic_on (ball x e)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   559
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   560
lemma analytic_imp_holomorphic: "f analytic_on s \<Longrightarrow> f holomorphic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   561
  by (simp add: at_within_open [OF _ open_ball] analytic_on_def holomorphic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   562
     (metis centre_in_ball complex_differentiable_at_within)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   563
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   564
lemma analytic_on_open: "open s \<Longrightarrow> f analytic_on s \<longleftrightarrow> f holomorphic_on s"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   565
apply (auto simp: analytic_imp_holomorphic)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   566
apply (auto simp: analytic_on_def holomorphic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   567
by (metis holomorphic_on_def holomorphic_on_subset open_contains_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   568
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   569
lemma analytic_on_imp_differentiable_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   570
  "f analytic_on s \<Longrightarrow> x \<in> s \<Longrightarrow> f complex_differentiable (at x)"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   571
 apply (auto simp: analytic_on_def holomorphic_on_def)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   572
by (metis Topology_Euclidean_Space.open_ball centre_in_ball complex_differentiable_within_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   573
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   574
lemma analytic_on_subset: "f analytic_on s \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f analytic_on t"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   575
  by (auto simp: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   576
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   577
lemma analytic_on_Un: "f analytic_on (s \<union> t) \<longleftrightarrow> f analytic_on s \<and> f analytic_on t"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   578
  by (auto simp: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   579
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   580
lemma analytic_on_Union: "f analytic_on (\<Union> s) \<longleftrightarrow> (\<forall>t \<in> s. f analytic_on t)"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   581
  by (auto simp: analytic_on_def)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   582
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   583
lemma analytic_on_UN: "f analytic_on (\<Union>i\<in>I. s i) \<longleftrightarrow> (\<forall>i\<in>I. f analytic_on (s i))"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   584
  by (auto simp: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   585
  
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   586
lemma analytic_on_holomorphic:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   587
  "f analytic_on s \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f holomorphic_on t)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   588
  (is "?lhs = ?rhs")
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   589
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   590
  have "?lhs \<longleftrightarrow> (\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   591
  proof safe
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   592
    assume "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   593
    then show "\<exists>t. open t \<and> s \<subseteq> t \<and> f analytic_on t"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   594
      apply (simp add: analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   595
      apply (rule exI [where x="\<Union>{u. open u \<and> f analytic_on u}"], auto)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   596
      apply (metis Topology_Euclidean_Space.open_ball analytic_on_open centre_in_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   597
      by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   598
  next
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   599
    fix t
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   600
    assume "open t" "s \<subseteq> t" "f analytic_on t" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   601
    then show "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   602
        by (metis analytic_on_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   603
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   604
  also have "... \<longleftrightarrow> ?rhs"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   605
    by (auto simp: analytic_on_open)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   606
  finally show ?thesis .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   607
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   608
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   609
lemma analytic_on_linear: "(op * c) analytic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   610
  by (auto simp add: analytic_on_holomorphic holomorphic_on_linear)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   611
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   612
lemma analytic_on_const: "(\<lambda>z. c) analytic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   613
  by (metis analytic_on_def holomorphic_on_const zero_less_one)
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   614
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   615
lemma analytic_on_ident: "(\<lambda>x. x) analytic_on s"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   616
  by (simp add: analytic_on_def holomorphic_on_ident gt_ex)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   617
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   618
lemma analytic_on_id: "id analytic_on s"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   619
  unfolding id_def by (rule analytic_on_ident)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   620
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   621
lemma analytic_on_compose:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   622
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   623
      and g: "g analytic_on (f ` s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   624
    shows "(g o f) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   625
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   626
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   627
  fix x
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   628
  assume x: "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   629
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball x e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   630
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   631
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball (f x) e'" using g
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   632
    by (metis analytic_on_def g image_eqI x) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   633
  have "isCont f x"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   634
    by (metis analytic_on_imp_differentiable_at complex_differentiable_imp_continuous_at f x)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   635
  with e' obtain d where d: "0 < d" and fd: "f ` ball x d \<subseteq> ball (f x) e'"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   636
     by (auto simp: continuous_at_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   637
  have "g \<circ> f holomorphic_on ball x (min d e)" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   638
    apply (rule holomorphic_on_compose)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   639
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   640
    by (metis fd gh holomorphic_on_subset image_mono min.cobounded1 subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   641
  then show "\<exists>e>0. g \<circ> f holomorphic_on ball x e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   642
    by (metis d e min_less_iff_conj) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   643
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   644
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   645
lemma analytic_on_compose_gen:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   646
  "f analytic_on s \<Longrightarrow> g analytic_on t \<Longrightarrow> (\<And>z. z \<in> s \<Longrightarrow> f z \<in> t)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   647
             \<Longrightarrow> g o f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   648
by (metis analytic_on_compose analytic_on_subset image_subset_iff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   649
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   650
lemma analytic_on_neg:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   651
  "f analytic_on s \<Longrightarrow> (\<lambda>z. -(f z)) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   652
by (metis analytic_on_holomorphic holomorphic_on_minus)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   653
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   654
lemma analytic_on_add:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   655
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   656
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   657
    shows "(\<lambda>z. f z + g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   658
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   659
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   660
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   661
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   662
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   663
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   664
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   665
    by (metis analytic_on_def g z) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   666
  have "(\<lambda>z. f z + g z) holomorphic_on ball z (min e e')" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   667
    apply (rule holomorphic_on_add) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   668
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   669
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   670
  then show "\<exists>e>0. (\<lambda>z. f z + g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   671
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   672
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   673
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   674
lemma analytic_on_diff:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   675
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   676
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   677
    shows "(\<lambda>z. f z - g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   678
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   679
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   680
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   681
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   682
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   683
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   684
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   685
    by (metis analytic_on_def g z) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   686
  have "(\<lambda>z. f z - g z) holomorphic_on ball z (min e e')" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   687
    apply (rule holomorphic_on_diff) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   688
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   689
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   690
  then show "\<exists>e>0. (\<lambda>z. f z - g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   691
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   692
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   693
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   694
lemma analytic_on_mult:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   695
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   696
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   697
    shows "(\<lambda>z. f z * g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   698
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   699
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   700
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   701
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   702
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   703
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   704
  obtain e' where e': "0 < e'" and gh: "g holomorphic_on ball z e'" using g
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   705
    by (metis analytic_on_def g z) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   706
  have "(\<lambda>z. f z * g z) holomorphic_on ball z (min e e')" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   707
    apply (rule holomorphic_on_mult) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   708
    apply (metis fh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   709
    by (metis gh holomorphic_on_subset min.bounded_iff order_refl subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   710
  then show "\<exists>e>0. (\<lambda>z. f z * g z) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   711
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   712
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   713
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   714
lemma analytic_on_inverse:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   715
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   716
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> f z \<noteq> 0)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   717
    shows "(\<lambda>z. inverse (f z)) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   718
unfolding analytic_on_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   719
proof (intro ballI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   720
  fix z
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   721
  assume z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   722
  then obtain e where e: "0 < e" and fh: "f holomorphic_on ball z e" using f
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   723
    by (metis analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   724
  have "continuous_on (ball z e) f"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   725
    by (metis fh holomorphic_on_imp_continuous_on)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   726
  then obtain e' where e': "0 < e'" and nz': "\<And>y. dist z y < e' \<Longrightarrow> f y \<noteq> 0" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   727
    by (metis Topology_Euclidean_Space.open_ball centre_in_ball continuous_on_open_avoid e z nz)  
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   728
  have "(\<lambda>z. inverse (f z)) holomorphic_on ball z (min e e')" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   729
    apply (rule holomorphic_on_inverse)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   730
    apply (metis fh holomorphic_on_subset min.cobounded2 min.commute subset_ball)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   731
    by (metis nz' mem_ball min_less_iff_conj) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   732
  then show "\<exists>e>0. (\<lambda>z. inverse (f z)) holomorphic_on ball z e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   733
    by (metis e e' min_less_iff_conj)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   734
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   735
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   736
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   737
lemma analytic_on_divide:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   738
  assumes f: "f analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   739
      and g: "g analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   740
      and nz: "(\<And>z. z \<in> s \<Longrightarrow> g z \<noteq> 0)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   741
    shows "(\<lambda>z. f z / g z) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   742
unfolding divide_inverse
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   743
by (metis analytic_on_inverse analytic_on_mult f g nz)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   744
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   745
lemma analytic_on_power:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   746
  "f analytic_on s \<Longrightarrow> (\<lambda>z. (f z) ^ n) analytic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   747
by (induct n) (auto simp: analytic_on_const analytic_on_mult)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   748
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   749
lemma analytic_on_setsum:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   750
  "(\<And>i. i \<in> I \<Longrightarrow> (f i) analytic_on s) \<Longrightarrow> (\<lambda>x. setsum (\<lambda>i. f i x) I) analytic_on s"
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
   751
  by (induct I rule: infinite_finite_induct) (auto simp: analytic_on_const analytic_on_add)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   752
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   753
subsection{*analyticity at a point.*}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   754
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   755
lemma analytic_at_ball:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   756
  "f analytic_on {z} \<longleftrightarrow> (\<exists>e. 0<e \<and> f holomorphic_on ball z e)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   757
by (metis analytic_on_def singleton_iff)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   758
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   759
lemma analytic_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   760
    "f analytic_on {z} \<longleftrightarrow> (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   761
by (metis analytic_on_holomorphic empty_subsetI insert_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   762
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   763
lemma analytic_on_analytic_at:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   764
    "f analytic_on s \<longleftrightarrow> (\<forall>z \<in> s. f analytic_on {z})"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   765
by (metis analytic_at_ball analytic_on_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   766
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   767
lemma analytic_at_two:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   768
  "f analytic_on {z} \<and> g analytic_on {z} \<longleftrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   769
   (\<exists>s. open s \<and> z \<in> s \<and> f holomorphic_on s \<and> g holomorphic_on s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   770
  (is "?lhs = ?rhs")
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   771
proof 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   772
  assume ?lhs
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   773
  then obtain s t 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   774
    where st: "open s" "z \<in> s" "f holomorphic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   775
              "open t" "z \<in> t" "g holomorphic_on t"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   776
    by (auto simp: analytic_at)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   777
  show ?rhs
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   778
    apply (rule_tac x="s \<inter> t" in exI)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   779
    using st
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   780
    apply (auto simp: Diff_subset holomorphic_on_subset)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   781
    done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   782
next
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   783
  assume ?rhs 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   784
  then show ?lhs
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   785
    by (force simp add: analytic_at)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   786
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   787
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   788
subsection{*Combining theorems for derivative with ``analytic at'' hypotheses*}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   789
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   790
lemma 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   791
  assumes "f analytic_on {z}" "g analytic_on {z}"
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   792
  shows complex_derivative_add_at: "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   793
    and complex_derivative_diff_at: "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   794
    and complex_derivative_mult_at: "deriv (\<lambda>w. f w * g w) z =
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   795
           f z * deriv g z + deriv f z * g z"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   796
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   797
  obtain s where s: "open s" "z \<in> s" "f holomorphic_on s" "g holomorphic_on s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   798
    using assms by (metis analytic_at_two)
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   799
  show "deriv (\<lambda>w. f w + g w) z = deriv f z + deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   800
    apply (rule DERIV_imp_deriv [OF DERIV_add])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   801
    using s
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   802
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   803
    done
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   804
  show "deriv (\<lambda>w. f w - g w) z = deriv f z - deriv g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   805
    apply (rule DERIV_imp_deriv [OF DERIV_diff])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   806
    using s
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   807
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   808
    done
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   809
  show "deriv (\<lambda>w. f w * g w) z = f z * deriv g z + deriv f z * g z"
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   810
    apply (rule DERIV_imp_deriv [OF DERIV_mult'])
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   811
    using s
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   812
    apply (auto simp: holomorphic_on_open complex_differentiable_def DERIV_deriv_iff_complex_differentiable)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   813
    done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   814
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   815
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   816
lemma complex_derivative_cmult_at:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   817
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. c * f w) z = c * deriv f z"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   818
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   819
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   820
lemma complex_derivative_cmult_right_at:
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   821
  "f analytic_on {z} \<Longrightarrow>  deriv (\<lambda>w. f w * c) z = deriv f z * c"
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   822
by (auto simp: complex_derivative_mult_at complex_derivative_const analytic_on_const)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   823
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   824
subsection{*Complex differentiation of sequences and series*}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   825
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   826
lemma has_complex_derivative_sequence:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   827
  fixes s :: "complex set"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   828
  assumes cvs: "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   829
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   830
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s \<longrightarrow> norm (f' n x - g' x) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   831
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) ---> l) sequentially"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   832
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) ---> g x) sequentially \<and> 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   833
                       (g has_field_derivative (g' x)) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   834
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   835
  from assms obtain x l where x: "x \<in> s" and tf: "((\<lambda>n. f n x) ---> l) sequentially"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   836
    by blast
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   837
  { fix e::real assume e: "e > 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   838
    then obtain N where N: "\<forall>n\<ge>N. \<forall>x. x \<in> s \<longrightarrow> cmod (f' n x - g' x) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   839
      by (metis conv)    
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   840
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   841
    proof (rule exI [of _ N], clarify)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   842
      fix n y h
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   843
      assume "N \<le> n" "y \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   844
      then have "cmod (f' n y - g' y) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   845
        by (metis N)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   846
      then have "cmod h * cmod (f' n y - g' y) \<le> cmod h * e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   847
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   848
      then show "cmod (f' n y * h - g' y * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   849
        by (simp add: norm_mult [symmetric] field_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   850
    qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   851
  } note ** = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   852
  show ?thesis
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   853
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   854
  proof (rule has_derivative_sequence [OF cvs _ _ x])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   855
    show "\<forall>n. \<forall>x\<in>s. (f n has_derivative (op * (f' n x))) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   856
      by (metis has_field_derivative_def df)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   857
  next show "(\<lambda>n. f n x) ----> l"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   858
    by (rule tf)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   859
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod (f' n x * h - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   860
    by (blast intro: **)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   861
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   862
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   863
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   864
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   865
lemma has_complex_derivative_series:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   866
  fixes s :: "complex set"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   867
  assumes cvs: "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   868
      and df:  "\<And>n x. x \<in> s \<Longrightarrow> (f n has_field_derivative f' n x) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   869
      and conv: "\<And>e. 0 < e \<Longrightarrow> \<exists>N. \<forall>n x. n \<ge> N \<longrightarrow> x \<in> s 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   870
                \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   871
      and "\<exists>x l. x \<in> s \<and> ((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   872
    shows "\<exists>g. \<forall>x \<in> s. ((\<lambda>n. f n x) sums g x) \<and> ((g has_field_derivative g' x) (at x within s))"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   873
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   874
  from assms obtain x l where x: "x \<in> s" and sf: "((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   875
    by blast
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   876
  { fix e::real assume e: "e > 0"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   877
    then obtain N where N: "\<forall>n x. n \<ge> N \<longrightarrow> x \<in> s 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   878
            \<longrightarrow> cmod ((\<Sum>i<n. f' i x) - g' x) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   879
      by (metis conv)    
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   880
    have "\<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   881
    proof (rule exI [of _ N], clarify)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   882
      fix n y h
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   883
      assume "N \<le> n" "y \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   884
      then have "cmod ((\<Sum>i<n. f' i y) - g' y) \<le> e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   885
        by (metis N)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   886
      then have "cmod h * cmod ((\<Sum>i<n. f' i y) - g' y) \<le> cmod h * e"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   887
        by (auto simp: antisym_conv2 mult_le_cancel_left norm_triangle_ineq2)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   888
      then show "cmod ((\<Sum>i<n. h * f' i y) - g' y * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   889
        by (simp add: norm_mult [symmetric] field_simps setsum_right_distrib)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   890
    qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   891
  } note ** = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   892
  show ?thesis
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   893
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   894
  proof (rule has_derivative_series [OF cvs _ _ x])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   895
    fix n x
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   896
    assume "x \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   897
    then show "((f n) has_derivative (\<lambda>z. z * f' n x)) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   898
      by (metis df has_field_derivative_def mult_commute_abs)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   899
  next show " ((\<lambda>n. f n x) sums l)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   900
    by (rule sf)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   901
  next show "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. \<forall>x\<in>s. \<forall>h. cmod ((\<Sum>i<n. h * f' i x) - g' x * h) \<le> e * cmod h"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   902
    by (blast intro: **)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   903
  qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   904
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   905
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   906
subsection{*Bound theorem*}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   907
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   908
lemma complex_differentiable_bound:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   909
  fixes s :: "complex set"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   910
  assumes cvs: "convex s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   911
      and df:  "\<And>z. z \<in> s \<Longrightarrow> (f has_field_derivative f' z) (at z within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   912
      and dn:  "\<And>z. z \<in> s \<Longrightarrow> norm (f' z) \<le> B"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   913
      and "x \<in> s"  "y \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   914
    shows "norm(f x - f y) \<le> B * norm(x - y)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   915
  apply (rule differentiable_bound [OF cvs])
56223
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   916
  apply (rule ballI, erule df [unfolded has_field_derivative_def])
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   917
  apply (rule ballI, rule onorm_le, simp add: norm_mult mult_right_mono dn)
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   918
  apply fact
7696903b9e61 generalize theory of operator norms to work with class real_normed_vector
huffman
parents: 56217
diff changeset
   919
  apply fact
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   920
  done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   921
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   922
subsection{*Inverse function theorem for complex derivatives.*}
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   923
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   924
lemma has_complex_derivative_inverse_basic:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   925
  fixes f :: "complex \<Rightarrow> complex"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   926
  shows "DERIV f (g y) :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   927
        f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   928
        continuous (at y) g \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   929
        open t \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   930
        y \<in> t \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   931
        (\<And>z. z \<in> t \<Longrightarrow> f (g z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   932
        \<Longrightarrow> DERIV g y :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   933
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   934
  apply (rule has_derivative_inverse_basic)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   935
  apply (auto simp:  bounded_linear_mult_right)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   936
  done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   937
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   938
(*Used only once, in Multivariate/cauchy.ml. *)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   939
lemma has_complex_derivative_inverse_strong:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   940
  fixes f :: "complex \<Rightarrow> complex"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   941
  shows "DERIV f x :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   942
         f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   943
         open s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   944
         x \<in> s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   945
         continuous_on s f \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   946
         (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   947
         \<Longrightarrow> DERIV g (f x) :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   948
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   949
  apply (rule has_derivative_inverse_strong [of s x f g ])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   950
  using assms 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   951
  by auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   952
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   953
lemma has_complex_derivative_inverse_strong_x:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   954
  fixes f :: "complex \<Rightarrow> complex"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   955
  shows  "DERIV f (g y) :> f' \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   956
          f' \<noteq> 0 \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   957
          open s \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   958
          continuous_on s f \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   959
          g y \<in> s \<Longrightarrow> f(g y) = y \<Longrightarrow>
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   960
          (\<And>z. z \<in> s \<Longrightarrow> g (f z) = z)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   961
          \<Longrightarrow> DERIV g y :> inverse (f')"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   962
  unfolding has_field_derivative_def
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   963
  apply (rule has_derivative_inverse_strong_x [of s g y f])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   964
  using assms 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   965
  by auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   966
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
   967
subsection {* Taylor on Complex Numbers *}
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   968
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   969
lemma setsum_Suc_reindex:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   970
  fixes f :: "nat \<Rightarrow> 'a::ab_group_add"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   971
    shows  "setsum f {0..n} = f 0 - f (Suc n) + setsum (\<lambda>i. f (Suc i)) {0..n}"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   972
by (induct n) auto
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   973
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   974
lemma complex_taylor:
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   975
  assumes s: "convex s" 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   976
      and f: "\<And>i x. x \<in> s \<Longrightarrow> i \<le> n \<Longrightarrow> (f i has_field_derivative f (Suc i) x) (at x within s)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   977
      and B: "\<And>x. x \<in> s \<Longrightarrow> cmod (f (Suc n) x) \<le> B"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   978
      and w: "w \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   979
      and z: "z \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   980
    shows "cmod(f 0 z - (\<Sum>i\<le>n. f i w * (z-w) ^ i / of_nat (fact i)))
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   981
          \<le> B * cmod(z - w)^(Suc n) / fact n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   982
proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   983
  have wzs: "closed_segment w z \<subseteq> s" using assms
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   984
    by (metis convex_contains_segment)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   985
  { fix u
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   986
    assume "u \<in> closed_segment w z"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   987
    then have "u \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   988
      by (metis wzs subsetD)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   989
    have "(\<Sum>i\<le>n. f i u * (- of_nat i * (z-u)^(i - 1)) / of_nat (fact i) +
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   990
                      f (Suc i) u * (z-u)^i / of_nat (fact i)) = 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   991
              f (Suc n) u * (z-u) ^ n / of_nat (fact n)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   992
    proof (induction n)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   993
      case 0 show ?case by simp
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   994
    next
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   995
      case (Suc n)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   996
      have "(\<Sum>i\<le>Suc n. f i u * (- of_nat i * (z-u) ^ (i - 1)) / of_nat (fact i) +
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   997
                             f (Suc i) u * (z-u) ^ i / of_nat (fact i)) =  
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   998
           f (Suc n) u * (z-u) ^ n / of_nat (fact n) +
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   999
           f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n) / of_nat (fact (Suc n)) -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1000
           f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n) / of_nat (fact (Suc n))"
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  1001
        using Suc by simp
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1002
      also have "... = f (Suc (Suc n)) u * (z-u) ^ Suc n / of_nat (fact (Suc n))"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1003
      proof -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1004
        have "of_nat(fact(Suc n)) *
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1005
             (f(Suc n) u *(z-u) ^ n / of_nat(fact n) +
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1006
               f(Suc(Suc n)) u *((z-u) *(z-u) ^ n) / of_nat(fact(Suc n)) -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1007
               f(Suc n) u *((1 + of_nat n) *(z-u) ^ n) / of_nat(fact(Suc n))) =
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1008
            (of_nat(fact(Suc n)) *(f(Suc n) u *(z-u) ^ n)) / of_nat(fact n) +
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1009
            (of_nat(fact(Suc n)) *(f(Suc(Suc n)) u *((z-u) *(z-u) ^ n)) / of_nat(fact(Suc n))) -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1010
            (of_nat(fact(Suc n)) *(f(Suc n) u *(of_nat(Suc n) *(z-u) ^ n))) / of_nat(fact(Suc n))"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1011
          by (simp add: algebra_simps del: fact_Suc)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1012
        also have "... =
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1013
                   (of_nat (fact (Suc n)) * (f (Suc n) u * (z-u) ^ n)) / of_nat (fact n) +
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1014
                   (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1015
                   (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1016
          by (simp del: fact_Suc)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1017
        also have "... = 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1018
                   (of_nat (Suc n) * (f (Suc n) u * (z-u) ^ n)) +
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1019
                   (f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)) -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1020
                   (f (Suc n) u * ((1 + of_nat n) * (z-u) ^ n))"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1021
          by (simp only: fact_Suc of_nat_mult mult_ac) simp
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1022
        also have "... = f (Suc (Suc n)) u * ((z-u) * (z-u) ^ n)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1023
          by (simp add: algebra_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1024
        finally show ?thesis
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1025
        by (simp add: mult_left_cancel [where c = "of_nat (fact (Suc n))", THEN iffD1] del: fact_Suc)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1026
      qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1027
      finally show ?case .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1028
    qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1029
    then have "((\<lambda>v. (\<Sum>i\<le>n. f i v * (z - v)^i / of_nat (fact i))) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1030
                has_field_derivative f (Suc n) u * (z-u) ^ n / of_nat (fact n))
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1031
               (at u within s)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1032
      apply (intro derivative_eq_intros)
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1033
      apply (blast intro: assms `u \<in> s`)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1034
      apply (rule refl)+
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1035
      apply (auto simp: field_simps)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1036
      done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1037
  } note sum_deriv = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1038
  { fix u
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1039
    assume u: "u \<in> closed_segment w z"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1040
    then have us: "u \<in> s"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1041
      by (metis wzs subsetD)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1042
    have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> cmod (f (Suc n) u) * cmod (u - z) ^ n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1043
      by (metis norm_minus_commute order_refl)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1044
    also have "... \<le> cmod (f (Suc n) u) * cmod (z - w) ^ n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1045
      by (metis mult_left_mono norm_ge_zero power_mono segment_bound [OF u])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1046
    also have "... \<le> B * cmod (z - w) ^ n"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1047
      by (metis norm_ge_zero zero_le_power mult_right_mono  B [OF us])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1048
    finally have "cmod (f (Suc n) u) * cmod (z - u) ^ n \<le> B * cmod (z - w) ^ n" .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1049
  } note cmod_bound = this
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1050
  have "(\<Sum>i\<le>n. f i z * (z - z) ^ i / of_nat (fact i)) = (\<Sum>i\<le>n. (f i z / of_nat (fact i)) * 0 ^ i)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1051
    by simp
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1052
  also have "\<dots> = f 0 z / of_nat (fact 0)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1053
    by (subst setsum_zero_power) simp
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1054
  finally have "cmod (f 0 z - (\<Sum>i\<le>n. f i w * (z - w) ^ i / of_nat (fact i))) 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1055
            \<le> cmod ((\<Sum>i\<le>n. f i w * (z - w) ^ i / of_nat (fact i)) -
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1056
                    (\<Sum>i\<le>n. f i z * (z - z) ^ i / of_nat (fact i)))"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1057
    by (simp add: norm_minus_commute)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1058
  also have "... \<le> B * cmod (z - w) ^ n / real_of_nat (fact n) * cmod (w - z)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1059
    apply (rule complex_differentiable_bound 
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1060
      [where f' = "\<lambda>w. f (Suc n) w * (z - w)^n / of_nat(fact n)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1061
         and s = "closed_segment w z", OF convex_segment])
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1062
    apply (auto simp: ends_in_segment real_of_nat_def DERIV_subset [OF sum_deriv wzs]
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1063
                  norm_divide norm_mult norm_power divide_le_cancel cmod_bound)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1064
    done
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1065
  also have "...  \<le> B * cmod (z - w) ^ Suc n / real (fact n)"
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1066
    by (simp add: algebra_simps norm_minus_commute real_of_nat_def)
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1067
  finally show ?thesis .
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1068
qed
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1069
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1070
text{* Something more like the traditional MVT for real components.*}
56370
7c717ba55a0b reorder Complex_Analysis_Basics; rename DD to deriv
hoelzl
parents: 56369
diff changeset
  1071
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1072
lemma complex_mvt_line:
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
  1073
  assumes "\<And>u. u \<in> closed_segment w z \<Longrightarrow> (f has_field_derivative f'(u)) (at u)"
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1074
    shows "\<exists>u. u \<in> open_segment w z \<and> Re(f z) - Re(f w) = Re(f'(u) * (z - w))"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1075
proof -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1076
  have twz: "\<And>t. (1 - t) *\<^sub>R w + t *\<^sub>R z = w + t *\<^sub>R (z - w)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1077
    by (simp add: real_vector.scale_left_diff_distrib real_vector.scale_right_diff_distrib)
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1078
  note assms[unfolded has_field_derivative_def, derivative_intros]
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1079
  show ?thesis
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1080
    apply (cut_tac mvt_simple
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1081
                     [of 0 1 "Re o f o (\<lambda>t. (1 - t) *\<^sub>R w +  t *\<^sub>R z)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1082
                      "\<lambda>u. Re o (\<lambda>h. f'((1 - u) *\<^sub>R w + u *\<^sub>R z) * h) o (\<lambda>t. t *\<^sub>R (z - w))"])
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1083
    apply auto
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1084
    apply (rule_tac x="(1 - x) *\<^sub>R w + x *\<^sub>R z" in exI)
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
  1085
    apply (auto simp add: open_segment_def twz) []
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1086
    apply (intro derivative_eq_intros has_derivative_at_within)
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
  1087
    apply simp_all
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56332
diff changeset
  1088
    apply (simp add: fun_eq_iff real_vector.scale_right_diff_distrib)
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1089
    apply (force simp add: twz closed_segment_def)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1090
    done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1091
qed
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1092
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1093
lemma complex_taylor_mvt:
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1094
  assumes "\<And>i x. \<lbrakk>x \<in> closed_segment w z; i \<le> n\<rbrakk> \<Longrightarrow> ((f i) has_field_derivative f (Suc i) x) (at x)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1095
    shows "\<exists>u. u \<in> closed_segment w z \<and>
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1096
            Re (f 0 z) =
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1097
            Re ((\<Sum>i = 0..n. f i w * (z - w) ^ i / of_nat (fact i)) +
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1098
                (f (Suc n) u * (z-u)^n / of_nat (fact n)) * (z - w))"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1099
proof -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1100
  { fix u
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1101
    assume u: "u \<in> closed_segment w z"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1102
    have "(\<Sum>i = 0..n.
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1103
               (f (Suc i) u * (z-u) ^ i - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) /
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1104
               of_nat (fact i)) =
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1105
          f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1106
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1107
             of_nat (fact (Suc n)) +
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1108
             (\<Sum>i = 0..n.
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1109
                 (f (Suc (Suc i)) u * ((z-u) ^ Suc i) - of_nat (Suc i) * (f (Suc i) u * (z-u) ^ i)) /
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1110
                 of_nat (fact (Suc i)))"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1111
       by (subst setsum_Suc_reindex) simp
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1112
    also have "... = f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1113
             (f (Suc (Suc n)) u * ((z-u) ^ Suc n) - (of_nat (Suc n)) * (z-u) ^ n * f (Suc n) u) /
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1114
             of_nat (fact (Suc n)) +
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1115
             (\<Sum>i = 0..n.
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1116
                 f (Suc (Suc i)) u * ((z-u) ^ Suc i) / of_nat (fact (Suc i))  - 
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1117
                 f (Suc i) u * (z-u) ^ i / of_nat (fact i))"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1118
      by (simp only: diff_divide_distrib fact_cancel mult_ac)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1119
    also have "... = f (Suc 0) u -
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1120
             (f (Suc (Suc n)) u * (z-u) ^ Suc n - of_nat (Suc n) * (z-u) ^ n * f (Suc n) u) /
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1121
             of_nat (fact (Suc n)) +
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1122
             f (Suc (Suc n)) u * (z-u) ^ Suc n / of_nat (fact (Suc n)) - f (Suc 0) u"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1123
      by (subst setsum_Suc_diff) auto
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1124
    also have "... = f (Suc n) u * (z-u) ^ n / of_nat (fact n)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1125
      by (simp only: algebra_simps diff_divide_distrib fact_cancel)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1126
    finally have "(\<Sum>i = 0..n. (f (Suc i) u * (z - u) ^ i 
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1127
                             - of_nat i * (f i u * (z-u) ^ (i - Suc 0))) / of_nat (fact i)) =
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1128
                  f (Suc n) u * (z - u) ^ n / of_nat (fact n)" .
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1129
    then have "((\<lambda>u. \<Sum>i = 0..n. f i u * (z - u) ^ i / of_nat (fact i)) has_field_derivative
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1130
                f (Suc n) u * (z - u) ^ n / of_nat (fact n))  (at u)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1131
      apply (intro derivative_eq_intros)+
56238
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1132
      apply (force intro: u assms)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1133
      apply (rule refl)+
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1134
      apply (auto simp: mult_ac)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1135
      done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1136
  }
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1137
  then show ?thesis
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1138
    apply (cut_tac complex_mvt_line [of w z "\<lambda>u. \<Sum>i = 0..n. f i u * (z-u) ^ i / of_nat (fact i)"
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1139
               "\<lambda>u. (f (Suc n) u * (z-u)^n / of_nat (fact n))"])
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1140
    apply (auto simp add: intro: open_closed_segment)
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1141
    done
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1142
qed
5d147e1e18d1 a few new lemmas and generalisations of old ones
paulson <lp15@cam.ac.uk>
parents: 56223
diff changeset
  1143
56215
fcf90317383d New complex analysis material
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  1144
end