| author | berghofe | 
| Tue, 18 Jul 2006 17:10:22 +0200 | |
| changeset 20145 | 922b4e7b8efd | 
| parent 19984 | 29bb4659f80a | 
| child 21199 | 2d83f93c3580 | 
| permissions | -rw-r--r-- | 
| 12396 | 1 | (* Title: HOL/Finite_Set.thy | 
| 2 | ID: $Id$ | |
| 3 | Author: Tobias Nipkow, Lawrence C Paulson and Markus Wenzel | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 4 | with contributions by Jeremy Avigad | 
| 12396 | 5 | *) | 
| 6 | ||
| 7 | header {* Finite sets *}
 | |
| 8 | ||
| 15131 | 9 | theory Finite_Set | 
| 16760 | 10 | imports Power Inductive Lattice_Locales | 
| 15131 | 11 | begin | 
| 12396 | 12 | |
| 15392 | 13 | subsection {* Definition and basic properties *}
 | 
| 12396 | 14 | |
| 15 | consts Finites :: "'a set set" | |
| 19363 | 16 | abbreviation | 
| 17 | "finite A == A : Finites" | |
| 12396 | 18 | |
| 19 | inductive Finites | |
| 20 | intros | |
| 21 |     emptyI [simp, intro!]: "{} : Finites"
 | |
| 22 | insertI [simp, intro!]: "A : Finites ==> insert a A : Finites" | |
| 23 | ||
| 24 | axclass finite \<subseteq> type | |
| 25 | finite: "finite UNIV" | |
| 26 | ||
| 13737 | 27 | lemma ex_new_if_finite: -- "does not depend on def of finite at all" | 
| 14661 | 28 | assumes "\<not> finite (UNIV :: 'a set)" and "finite A" | 
| 29 | shows "\<exists>a::'a. a \<notin> A" | |
| 30 | proof - | |
| 31 | from prems have "A \<noteq> UNIV" by blast | |
| 32 | thus ?thesis by blast | |
| 33 | qed | |
| 12396 | 34 | |
| 35 | lemma finite_induct [case_names empty insert, induct set: Finites]: | |
| 36 | "finite F ==> | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 37 |     P {} ==> (!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)) ==> P F"
 | 
| 12396 | 38 |   -- {* Discharging @{text "x \<notin> F"} entails extra work. *}
 | 
| 39 | proof - | |
| 13421 | 40 |   assume "P {}" and
 | 
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 41 | insert: "!!x F. finite F ==> x \<notin> F ==> P F ==> P (insert x F)" | 
| 12396 | 42 | assume "finite F" | 
| 43 | thus "P F" | |
| 44 | proof induct | |
| 45 |     show "P {}" .
 | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 46 | fix x F assume F: "finite F" and P: "P F" | 
| 12396 | 47 | show "P (insert x F)" | 
| 48 | proof cases | |
| 49 | assume "x \<in> F" | |
| 50 | hence "insert x F = F" by (rule insert_absorb) | |
| 51 | with P show ?thesis by (simp only:) | |
| 52 | next | |
| 53 | assume "x \<notin> F" | |
| 54 | from F this P show ?thesis by (rule insert) | |
| 55 | qed | |
| 56 | qed | |
| 57 | qed | |
| 58 | ||
| 15484 | 59 | lemma finite_ne_induct[case_names singleton insert, consumes 2]: | 
| 60 | assumes fin: "finite F" shows "F \<noteq> {} \<Longrightarrow>
 | |
| 61 |  \<lbrakk> \<And>x. P{x};
 | |
| 62 |    \<And>x F. \<lbrakk> finite F; F \<noteq> {}; x \<notin> F; P F \<rbrakk> \<Longrightarrow> P (insert x F) \<rbrakk>
 | |
| 63 | \<Longrightarrow> P F" | |
| 64 | using fin | |
| 65 | proof induct | |
| 66 | case empty thus ?case by simp | |
| 67 | next | |
| 68 | case (insert x F) | |
| 69 | show ?case | |
| 70 | proof cases | |
| 71 |     assume "F = {}" thus ?thesis using insert(4) by simp
 | |
| 72 | next | |
| 73 |     assume "F \<noteq> {}" thus ?thesis using insert by blast
 | |
| 74 | qed | |
| 75 | qed | |
| 76 | ||
| 12396 | 77 | lemma finite_subset_induct [consumes 2, case_names empty insert]: | 
| 78 | "finite F ==> F \<subseteq> A ==> | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 79 |     P {} ==> (!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)) ==>
 | 
| 12396 | 80 | P F" | 
| 81 | proof - | |
| 13421 | 82 |   assume "P {}" and insert:
 | 
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 83 | "!!a F. finite F ==> a \<in> A ==> a \<notin> F ==> P F ==> P (insert a F)" | 
| 12396 | 84 | assume "finite F" | 
| 85 | thus "F \<subseteq> A ==> P F" | |
| 86 | proof induct | |
| 87 |     show "P {}" .
 | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 88 | fix x F assume "finite F" and "x \<notin> F" | 
| 12396 | 89 | and P: "F \<subseteq> A ==> P F" and i: "insert x F \<subseteq> A" | 
| 90 | show "P (insert x F)" | |
| 91 | proof (rule insert) | |
| 92 | from i show "x \<in> A" by blast | |
| 93 | from i have "F \<subseteq> A" by blast | |
| 94 | with P show "P F" . | |
| 95 | qed | |
| 96 | qed | |
| 97 | qed | |
| 98 | ||
| 15392 | 99 | text{* Finite sets are the images of initial segments of natural numbers: *}
 | 
| 100 | ||
| 15510 | 101 | lemma finite_imp_nat_seg_image_inj_on: | 
| 102 | assumes fin: "finite A" | |
| 103 |   shows "\<exists> (n::nat) f. A = f ` {i. i<n} & inj_on f {i. i<n}"
 | |
| 15392 | 104 | using fin | 
| 105 | proof induct | |
| 106 | case empty | |
| 15510 | 107 | show ?case | 
| 108 |   proof show "\<exists>f. {} = f ` {i::nat. i < 0} & inj_on f {i. i<0}" by simp 
 | |
| 109 | qed | |
| 15392 | 110 | next | 
| 111 | case (insert a A) | |
| 15510 | 112 | have notinA: "a \<notin> A" . | 
| 113 | from insert.hyps obtain n f | |
| 114 |     where "A = f ` {i::nat. i < n}" "inj_on f {i. i < n}" by blast
 | |
| 115 |   hence "insert a A = f(n:=a) ` {i. i < Suc n}"
 | |
| 116 |         "inj_on (f(n:=a)) {i. i < Suc n}" using notinA
 | |
| 117 | by (auto simp add: image_def Ball_def inj_on_def less_Suc_eq) | |
| 15392 | 118 | thus ?case by blast | 
| 119 | qed | |
| 120 | ||
| 121 | lemma nat_seg_image_imp_finite: | |
| 122 |   "!!f A. A = f ` {i::nat. i<n} \<Longrightarrow> finite A"
 | |
| 123 | proof (induct n) | |
| 124 | case 0 thus ?case by simp | |
| 125 | next | |
| 126 | case (Suc n) | |
| 127 |   let ?B = "f ` {i. i < n}"
 | |
| 128 | have finB: "finite ?B" by(rule Suc.hyps[OF refl]) | |
| 129 | show ?case | |
| 130 | proof cases | |
| 131 | assume "\<exists>k<n. f n = f k" | |
| 132 | hence "A = ?B" using Suc.prems by(auto simp:less_Suc_eq) | |
| 133 | thus ?thesis using finB by simp | |
| 134 | next | |
| 135 | assume "\<not>(\<exists> k<n. f n = f k)" | |
| 136 | hence "A = insert (f n) ?B" using Suc.prems by(auto simp:less_Suc_eq) | |
| 137 | thus ?thesis using finB by simp | |
| 138 | qed | |
| 139 | qed | |
| 140 | ||
| 141 | lemma finite_conv_nat_seg_image: | |
| 142 |   "finite A = (\<exists> (n::nat) f. A = f ` {i::nat. i<n})"
 | |
| 15510 | 143 | by(blast intro: nat_seg_image_imp_finite dest: finite_imp_nat_seg_image_inj_on) | 
| 15392 | 144 | |
| 145 | subsubsection{* Finiteness and set theoretic constructions *}
 | |
| 146 | ||
| 12396 | 147 | lemma finite_UnI: "finite F ==> finite G ==> finite (F Un G)" | 
| 148 |   -- {* The union of two finite sets is finite. *}
 | |
| 149 | by (induct set: Finites) simp_all | |
| 150 | ||
| 151 | lemma finite_subset: "A \<subseteq> B ==> finite B ==> finite A" | |
| 152 |   -- {* Every subset of a finite set is finite. *}
 | |
| 153 | proof - | |
| 154 | assume "finite B" | |
| 155 | thus "!!A. A \<subseteq> B ==> finite A" | |
| 156 | proof induct | |
| 157 | case empty | |
| 158 | thus ?case by simp | |
| 159 | next | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 160 | case (insert x F A) | 
| 12396 | 161 |     have A: "A \<subseteq> insert x F" and r: "A - {x} \<subseteq> F ==> finite (A - {x})" .
 | 
| 162 | show "finite A" | |
| 163 | proof cases | |
| 164 | assume x: "x \<in> A" | |
| 165 |       with A have "A - {x} \<subseteq> F" by (simp add: subset_insert_iff)
 | |
| 166 |       with r have "finite (A - {x})" .
 | |
| 167 |       hence "finite (insert x (A - {x}))" ..
 | |
| 168 |       also have "insert x (A - {x}) = A" by (rule insert_Diff)
 | |
| 169 | finally show ?thesis . | |
| 170 | next | |
| 171 | show "A \<subseteq> F ==> ?thesis" . | |
| 172 | assume "x \<notin> A" | |
| 173 | with A show "A \<subseteq> F" by (simp add: subset_insert_iff) | |
| 174 | qed | |
| 175 | qed | |
| 176 | qed | |
| 177 | ||
| 18423 | 178 | lemma finite_Collect_subset[simp]: "finite A \<Longrightarrow> finite{x \<in> A. P x}"
 | 
| 17761 | 179 | using finite_subset[of "{x \<in> A. P x}" "A"] by blast
 | 
| 180 | ||
| 12396 | 181 | lemma finite_Un [iff]: "finite (F Un G) = (finite F & finite G)" | 
| 182 | by (blast intro: finite_subset [of _ "X Un Y", standard] finite_UnI) | |
| 183 | ||
| 184 | lemma finite_Int [simp, intro]: "finite F | finite G ==> finite (F Int G)" | |
| 185 |   -- {* The converse obviously fails. *}
 | |
| 186 | by (blast intro: finite_subset) | |
| 187 | ||
| 188 | lemma finite_insert [simp]: "finite (insert a A) = finite A" | |
| 189 | apply (subst insert_is_Un) | |
| 14208 | 190 | apply (simp only: finite_Un, blast) | 
| 12396 | 191 | done | 
| 192 | ||
| 15281 | 193 | lemma finite_Union[simp, intro]: | 
| 194 | "\<lbrakk> finite A; !!M. M \<in> A \<Longrightarrow> finite M \<rbrakk> \<Longrightarrow> finite(\<Union>A)" | |
| 195 | by (induct rule:finite_induct) simp_all | |
| 196 | ||
| 12396 | 197 | lemma finite_empty_induct: | 
| 198 | "finite A ==> | |
| 199 |   P A ==> (!!a A. finite A ==> a:A ==> P A ==> P (A - {a})) ==> P {}"
 | |
| 200 | proof - | |
| 201 | assume "finite A" | |
| 202 |     and "P A" and "!!a A. finite A ==> a:A ==> P A ==> P (A - {a})"
 | |
| 203 | have "P (A - A)" | |
| 204 | proof - | |
| 205 | fix c b :: "'a set" | |
| 206 | presume c: "finite c" and b: "finite b" | |
| 207 |       and P1: "P b" and P2: "!!x y. finite y ==> x \<in> y ==> P y ==> P (y - {x})"
 | |
| 208 | from c show "c \<subseteq> b ==> P (b - c)" | |
| 209 | proof induct | |
| 210 | case empty | |
| 211 | from P1 show ?case by simp | |
| 212 | next | |
| 15327 
0230a10582d3
changed the order of !!-quantifiers in finite set induction.
 nipkow parents: 
15318diff
changeset | 213 | case (insert x F) | 
| 12396 | 214 |       have "P (b - F - {x})"
 | 
| 215 | proof (rule P2) | |
| 216 | from _ b show "finite (b - F)" by (rule finite_subset) blast | |
| 217 | from insert show "x \<in> b - F" by simp | |
| 218 | from insert show "P (b - F)" by simp | |
| 219 | qed | |
| 220 |       also have "b - F - {x} = b - insert x F" by (rule Diff_insert [symmetric])
 | |
| 221 | finally show ?case . | |
| 222 | qed | |
| 223 | next | |
| 224 | show "A \<subseteq> A" .. | |
| 225 | qed | |
| 226 |   thus "P {}" by simp
 | |
| 227 | qed | |
| 228 | ||
| 229 | lemma finite_Diff [simp]: "finite B ==> finite (B - Ba)" | |
| 230 | by (rule Diff_subset [THEN finite_subset]) | |
| 231 | ||
| 232 | lemma finite_Diff_insert [iff]: "finite (A - insert a B) = finite (A - B)" | |
| 233 | apply (subst Diff_insert) | |
| 234 | apply (case_tac "a : A - B") | |
| 235 | apply (rule finite_insert [symmetric, THEN trans]) | |
| 14208 | 236 | apply (subst insert_Diff, simp_all) | 
| 12396 | 237 | done | 
| 238 | ||
| 19870 | 239 | lemma finite_Diff_singleton [simp]: "finite (A - {a}) = finite A"
 | 
| 240 | by simp | |
| 241 | ||
| 12396 | 242 | |
| 15392 | 243 | text {* Image and Inverse Image over Finite Sets *}
 | 
| 13825 | 244 | |
| 245 | lemma finite_imageI[simp]: "finite F ==> finite (h ` F)" | |
| 246 |   -- {* The image of a finite set is finite. *}
 | |
| 247 | by (induct set: Finites) simp_all | |
| 248 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 249 | lemma finite_surj: "finite A ==> B <= f ` A ==> finite B" | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 250 | apply (frule finite_imageI) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 251 | apply (erule finite_subset, assumption) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 252 | done | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 253 | |
| 13825 | 254 | lemma finite_range_imageI: | 
| 255 | "finite (range g) ==> finite (range (%x. f (g x)))" | |
| 14208 | 256 | apply (drule finite_imageI, simp) | 
| 13825 | 257 | done | 
| 258 | ||
| 12396 | 259 | lemma finite_imageD: "finite (f`A) ==> inj_on f A ==> finite A" | 
| 260 | proof - | |
| 261 |   have aux: "!!A. finite (A - {}) = finite A" by simp
 | |
| 262 | fix B :: "'a set" | |
| 263 | assume "finite B" | |
| 264 | thus "!!A. f`A = B ==> inj_on f A ==> finite A" | |
| 265 | apply induct | |
| 266 | apply simp | |
| 267 |     apply (subgoal_tac "EX y:A. f y = x & F = f ` (A - {y})")
 | |
| 268 | apply clarify | |
| 269 | apply (simp (no_asm_use) add: inj_on_def) | |
| 14208 | 270 | apply (blast dest!: aux [THEN iffD1], atomize) | 
| 12396 | 271 | apply (erule_tac V = "ALL A. ?PP (A)" in thin_rl) | 
| 14208 | 272 | apply (frule subsetD [OF equalityD2 insertI1], clarify) | 
| 12396 | 273 | apply (rule_tac x = xa in bexI) | 
| 274 | apply (simp_all add: inj_on_image_set_diff) | |
| 275 | done | |
| 276 | qed (rule refl) | |
| 277 | ||
| 278 | ||
| 13825 | 279 | lemma inj_vimage_singleton: "inj f ==> f-`{a} \<subseteq> {THE x. f x = a}"
 | 
| 280 |   -- {* The inverse image of a singleton under an injective function
 | |
| 281 | is included in a singleton. *} | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 282 | apply (auto simp add: inj_on_def) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 283 | apply (blast intro: the_equality [symmetric]) | 
| 13825 | 284 | done | 
| 285 | ||
| 286 | lemma finite_vimageI: "[|finite F; inj h|] ==> finite (h -` F)" | |
| 287 |   -- {* The inverse image of a finite set under an injective function
 | |
| 288 | is finite. *} | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 289 | apply (induct set: Finites, simp_all) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 290 | apply (subst vimage_insert) | 
| 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 291 | apply (simp add: finite_Un finite_subset [OF inj_vimage_singleton]) | 
| 13825 | 292 | done | 
| 293 | ||
| 294 | ||
| 15392 | 295 | text {* The finite UNION of finite sets *}
 | 
| 12396 | 296 | |
| 297 | lemma finite_UN_I: "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (UN a:A. B a)" | |
| 298 | by (induct set: Finites) simp_all | |
| 299 | ||
| 300 | text {*
 | |
| 301 | Strengthen RHS to | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 302 |   @{prop "((ALL x:A. finite (B x)) & finite {x. x:A & B x \<noteq> {}})"}?
 | 
| 12396 | 303 | |
| 304 | We'd need to prove | |
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 305 |   @{prop "finite C ==> ALL A B. (UNION A B) <= C --> finite {x. x:A & B x \<noteq> {}}"}
 | 
| 12396 | 306 | by induction. *} | 
| 307 | ||
| 308 | lemma finite_UN [simp]: "finite A ==> finite (UNION A B) = (ALL x:A. finite (B x))" | |
| 309 | by (blast intro: finite_UN_I finite_subset) | |
| 310 | ||
| 311 | ||
| 17022 | 312 | lemma finite_Plus: "[| finite A; finite B |] ==> finite (A <+> B)" | 
| 313 | by (simp add: Plus_def) | |
| 314 | ||
| 15392 | 315 | text {* Sigma of finite sets *}
 | 
| 12396 | 316 | |
| 317 | lemma finite_SigmaI [simp]: | |
| 318 | "finite A ==> (!!a. a:A ==> finite (B a)) ==> finite (SIGMA a:A. B a)" | |
| 319 | by (unfold Sigma_def) (blast intro!: finite_UN_I) | |
| 320 | ||
| 15402 | 321 | lemma finite_cartesian_product: "[| finite A; finite B |] ==> | 
| 322 | finite (A <*> B)" | |
| 323 | by (rule finite_SigmaI) | |
| 324 | ||
| 12396 | 325 | lemma finite_Prod_UNIV: | 
| 326 |     "finite (UNIV::'a set) ==> finite (UNIV::'b set) ==> finite (UNIV::('a * 'b) set)"
 | |
| 327 |   apply (subgoal_tac "(UNIV:: ('a * 'b) set) = Sigma UNIV (%x. UNIV)")
 | |
| 328 | apply (erule ssubst) | |
| 14208 | 329 | apply (erule finite_SigmaI, auto) | 
| 12396 | 330 | done | 
| 331 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 332 | lemma finite_cartesian_productD1: | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 333 |      "[| finite (A <*> B); B \<noteq> {} |] ==> finite A"
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 334 | apply (auto simp add: finite_conv_nat_seg_image) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 335 | apply (drule_tac x=n in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 336 | apply (drule_tac x="fst o f" in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 337 | apply (auto simp add: o_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 338 | prefer 2 apply (force dest!: equalityD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 339 | apply (drule equalityD1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 340 | apply (rename_tac y x) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 341 | apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 342 | prefer 2 apply force | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 343 | apply clarify | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 344 | apply (rule_tac x=k in image_eqI, auto) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 345 | done | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 346 | |
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 347 | lemma finite_cartesian_productD2: | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 348 |      "[| finite (A <*> B); A \<noteq> {} |] ==> finite B"
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 349 | apply (auto simp add: finite_conv_nat_seg_image) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 350 | apply (drule_tac x=n in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 351 | apply (drule_tac x="snd o f" in spec) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 352 | apply (auto simp add: o_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 353 | prefer 2 apply (force dest!: equalityD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 354 | apply (drule equalityD1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 355 | apply (rename_tac x y) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 356 | apply (subgoal_tac "\<exists>k. k<n & f k = (x,y)") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 357 | prefer 2 apply force | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 358 | apply clarify | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 359 | apply (rule_tac x=k in image_eqI, auto) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 360 | done | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 361 | |
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 362 | |
| 15392 | 363 | text {* The powerset of a finite set *}
 | 
| 12396 | 364 | |
| 365 | lemma finite_Pow_iff [iff]: "finite (Pow A) = finite A" | |
| 366 | proof | |
| 367 | assume "finite (Pow A)" | |
| 368 |   with _ have "finite ((%x. {x}) ` A)" by (rule finite_subset) blast
 | |
| 369 | thus "finite A" by (rule finite_imageD [unfolded inj_on_def]) simp | |
| 370 | next | |
| 371 | assume "finite A" | |
| 372 | thus "finite (Pow A)" | |
| 373 | by induct (simp_all add: finite_UnI finite_imageI Pow_insert) | |
| 374 | qed | |
| 375 | ||
| 15392 | 376 | |
| 377 | lemma finite_UnionD: "finite(\<Union>A) \<Longrightarrow> finite A" | |
| 378 | by(blast intro: finite_subset[OF subset_Pow_Union]) | |
| 379 | ||
| 380 | ||
| 12396 | 381 | lemma finite_converse [iff]: "finite (r^-1) = finite r" | 
| 382 | apply (subgoal_tac "r^-1 = (%(x,y). (y,x))`r") | |
| 383 | apply simp | |
| 384 | apply (rule iffI) | |
| 385 | apply (erule finite_imageD [unfolded inj_on_def]) | |
| 386 | apply (simp split add: split_split) | |
| 387 | apply (erule finite_imageI) | |
| 14208 | 388 | apply (simp add: converse_def image_def, auto) | 
| 12396 | 389 | apply (rule bexI) | 
| 390 | prefer 2 apply assumption | |
| 391 | apply simp | |
| 392 | done | |
| 393 | ||
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 394 | |
| 15392 | 395 | text {* \paragraph{Finiteness of transitive closure} (Thanks to Sidi
 | 
| 396 | Ehmety) *} | |
| 12396 | 397 | |
| 398 | lemma finite_Field: "finite r ==> finite (Field r)" | |
| 399 |   -- {* A finite relation has a finite field (@{text "= domain \<union> range"}. *}
 | |
| 400 | apply (induct set: Finites) | |
| 401 | apply (auto simp add: Field_def Domain_insert Range_insert) | |
| 402 | done | |
| 403 | ||
| 404 | lemma trancl_subset_Field2: "r^+ <= Field r \<times> Field r" | |
| 405 | apply clarify | |
| 406 | apply (erule trancl_induct) | |
| 407 | apply (auto simp add: Field_def) | |
| 408 | done | |
| 409 | ||
| 410 | lemma finite_trancl: "finite (r^+) = finite r" | |
| 411 | apply auto | |
| 412 | prefer 2 | |
| 413 | apply (rule trancl_subset_Field2 [THEN finite_subset]) | |
| 414 | apply (rule finite_SigmaI) | |
| 415 | prefer 3 | |
| 13704 
854501b1e957
Transitive closure is now defined inductively as well.
 berghofe parents: 
13595diff
changeset | 416 | apply (blast intro: r_into_trancl' finite_subset) | 
| 12396 | 417 | apply (auto simp add: finite_Field) | 
| 418 | done | |
| 419 | ||
| 420 | ||
| 15392 | 421 | subsection {* A fold functional for finite sets *}
 | 
| 422 | ||
| 423 | text {* The intended behaviour is
 | |
| 15480 | 424 | @{text "fold f g z {x\<^isub>1, ..., x\<^isub>n} = f (g x\<^isub>1) (\<dots> (f (g x\<^isub>n) z)\<dots>)"}
 | 
| 15392 | 425 | if @{text f} is associative-commutative. For an application of @{text fold}
 | 
| 426 | se the definitions of sums and products over finite sets. | |
| 427 | *} | |
| 428 | ||
| 429 | consts | |
| 430 |   foldSet :: "('a => 'a => 'a) => ('b => 'a) => 'a => ('b set \<times> 'a) set"
 | |
| 431 | ||
| 15480 | 432 | inductive "foldSet f g z" | 
| 15392 | 433 | intros | 
| 15480 | 434 | emptyI [intro]: "({}, z) : foldSet f g z"
 | 
| 15506 | 435 | insertI [intro]: | 
| 436 | "\<lbrakk> x \<notin> A; (A, y) : foldSet f g z \<rbrakk> | |
| 437 | \<Longrightarrow> (insert x A, f (g x) y) : foldSet f g z" | |
| 15392 | 438 | |
| 15480 | 439 | inductive_cases empty_foldSetE [elim!]: "({}, x) : foldSet f g z"
 | 
| 15392 | 440 | |
| 441 | constdefs | |
| 442 |   fold :: "('a => 'a => 'a) => ('b => 'a) => 'a => 'b set => 'a"
 | |
| 15480 | 443 | "fold f g z A == THE x. (A, x) : foldSet f g z" | 
| 15392 | 444 | |
| 15498 | 445 | text{*A tempting alternative for the definiens is
 | 
| 446 | @{term "if finite A then THE x. (A, x) : foldSet f g e else e"}.
 | |
| 447 | It allows the removal of finiteness assumptions from the theorems | |
| 448 | @{text fold_commute}, @{text fold_reindex} and @{text fold_distrib}.
 | |
| 449 | The proofs become ugly, with @{text rule_format}. It is not worth the effort.*}
 | |
| 450 | ||
| 451 | ||
| 15392 | 452 | lemma Diff1_foldSet: | 
| 15480 | 453 |   "(A - {x}, y) : foldSet f g z ==> x: A ==> (A, f (g x) y) : foldSet f g z"
 | 
| 15392 | 454 | by (erule insert_Diff [THEN subst], rule foldSet.intros, auto) | 
| 455 | ||
| 15480 | 456 | lemma foldSet_imp_finite: "(A, x) : foldSet f g z ==> finite A" | 
| 15392 | 457 | by (induct set: foldSet) auto | 
| 458 | ||
| 15480 | 459 | lemma finite_imp_foldSet: "finite A ==> EX x. (A, x) : foldSet f g z" | 
| 15392 | 460 | by (induct set: Finites) auto | 
| 461 | ||
| 462 | ||
| 463 | subsubsection {* Commutative monoids *}
 | |
| 15480 | 464 | |
| 15392 | 465 | locale ACf = | 
| 466 | fixes f :: "'a => 'a => 'a" (infixl "\<cdot>" 70) | |
| 467 | assumes commute: "x \<cdot> y = y \<cdot> x" | |
| 468 | and assoc: "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" | |
| 469 | ||
| 470 | locale ACe = ACf + | |
| 471 | fixes e :: 'a | |
| 472 | assumes ident [simp]: "x \<cdot> e = x" | |
| 473 | ||
| 15480 | 474 | locale ACIf = ACf + | 
| 475 | assumes idem: "x \<cdot> x = x" | |
| 476 | ||
| 15392 | 477 | lemma (in ACf) left_commute: "x \<cdot> (y \<cdot> z) = y \<cdot> (x \<cdot> z)" | 
| 478 | proof - | |
| 479 | have "x \<cdot> (y \<cdot> z) = (y \<cdot> z) \<cdot> x" by (simp only: commute) | |
| 480 | also have "... = y \<cdot> (z \<cdot> x)" by (simp only: assoc) | |
| 481 | also have "z \<cdot> x = x \<cdot> z" by (simp only: commute) | |
| 482 | finally show ?thesis . | |
| 483 | qed | |
| 484 | ||
| 485 | lemmas (in ACf) AC = assoc commute left_commute | |
| 486 | ||
| 487 | lemma (in ACe) left_ident [simp]: "e \<cdot> x = x" | |
| 488 | proof - | |
| 489 | have "x \<cdot> e = x" by (rule ident) | |
| 490 | thus ?thesis by (subst commute) | |
| 491 | qed | |
| 492 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 493 | lemma (in ACIf) idem2: "x \<cdot> (x \<cdot> y) = x \<cdot> y" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 494 | proof - | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 495 | have "x \<cdot> (x \<cdot> y) = (x \<cdot> x) \<cdot> y" by(simp add:assoc) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 496 | also have "\<dots> = x \<cdot> y" by(simp add:idem) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 497 | finally show ?thesis . | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 498 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 499 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 500 | lemmas (in ACIf) ACI = AC idem idem2 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 501 | |
| 15765 | 502 | text{* Interpretation of locales: *}
 | 
| 503 | ||
| 504 | interpretation AC_add: ACe ["op +" "0::'a::comm_monoid_add"] | |
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 505 | by unfold_locales (auto intro: add_assoc add_commute) | 
| 15402 | 506 | |
| 15765 | 507 | interpretation AC_mult: ACe ["op *" "1::'a::comm_monoid_mult"] | 
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 508 | by unfold_locales (auto intro: mult_assoc mult_commute) | 
| 15402 | 509 | |
| 15392 | 510 | subsubsection{*From @{term foldSet} to @{term fold}*}
 | 
| 511 | ||
| 15510 | 512 | lemma image_less_Suc: "h ` {i. i < Suc m} = insert (h m) (h ` {i. i < m})"
 | 
| 19868 | 513 | by (auto simp add: less_Suc_eq) | 
| 15510 | 514 | |
| 515 | lemma insert_image_inj_on_eq: | |
| 516 |      "[|insert (h m) A = h ` {i. i < Suc m}; h m \<notin> A; 
 | |
| 517 |         inj_on h {i. i < Suc m}|] 
 | |
| 518 |       ==> A = h ` {i. i < m}"
 | |
| 519 | apply (auto simp add: image_less_Suc inj_on_def) | |
| 520 | apply (blast intro: less_trans) | |
| 521 | done | |
| 522 | ||
| 523 | lemma insert_inj_onE: | |
| 524 |   assumes aA: "insert a A = h`{i::nat. i<n}" and anot: "a \<notin> A" 
 | |
| 525 |       and inj_on: "inj_on h {i::nat. i<n}"
 | |
| 526 |   shows "\<exists>hm m. inj_on hm {i::nat. i<m} & A = hm ` {i. i<m} & m < n"
 | |
| 527 | proof (cases n) | |
| 528 | case 0 thus ?thesis using aA by auto | |
| 529 | next | |
| 530 | case (Suc m) | |
| 531 | have nSuc: "n = Suc m" . | |
| 532 | have mlessn: "m<n" by (simp add: nSuc) | |
| 15532 | 533 | from aA obtain k where hkeq: "h k = a" and klessn: "k<n" by (blast elim!: equalityE) | 
| 15520 | 534 | let ?hm = "swap k m h" | 
| 535 |   have inj_hm: "inj_on ?hm {i. i < n}" using klessn mlessn 
 | |
| 536 | by (simp add: inj_on_swap_iff inj_on) | |
| 15510 | 537 | show ?thesis | 
| 15520 | 538 | proof (intro exI conjI) | 
| 539 |     show "inj_on ?hm {i. i < m}" using inj_hm
 | |
| 15510 | 540 | by (auto simp add: nSuc less_Suc_eq intro: subset_inj_on) | 
| 15520 | 541 | show "m<n" by (rule mlessn) | 
| 542 |     show "A = ?hm ` {i. i < m}" 
 | |
| 543 | proof (rule insert_image_inj_on_eq) | |
| 544 |       show "inj_on (swap k m h) {i. i < Suc m}" using inj_hm nSuc by simp
 | |
| 545 | show "?hm m \<notin> A" by (simp add: swap_def hkeq anot) | |
| 546 |       show "insert (?hm m) A = ?hm ` {i. i < Suc m}"
 | |
| 547 | using aA hkeq nSuc klessn | |
| 548 | by (auto simp add: swap_def image_less_Suc fun_upd_image | |
| 549 | less_Suc_eq inj_on_image_set_diff [OF inj_on]) | |
| 15479 | 550 | qed | 
| 551 | qed | |
| 552 | qed | |
| 553 | ||
| 15392 | 554 | lemma (in ACf) foldSet_determ_aux: | 
| 15510 | 555 |   "!!A x x' h. \<lbrakk> A = h`{i::nat. i<n}; inj_on h {i. i<n}; 
 | 
| 556 | (A,x) : foldSet f g z; (A,x') : foldSet f g z \<rbrakk> | |
| 15392 | 557 | \<Longrightarrow> x' = x" | 
| 15510 | 558 | proof (induct n rule: less_induct) | 
| 559 | case (less n) | |
| 560 | have IH: "!!m h A x x'. | |
| 561 |                \<lbrakk>m<n; A = h ` {i. i<m}; inj_on h {i. i<m}; 
 | |
| 562 | (A,x) \<in> foldSet f g z; (A, x') \<in> foldSet f g z\<rbrakk> \<Longrightarrow> x' = x" . | |
| 563 | have Afoldx: "(A,x) \<in> foldSet f g z" and Afoldx': "(A,x') \<in> foldSet f g z" | |
| 564 |      and A: "A = h`{i. i<n}" and injh: "inj_on h {i. i<n}" .
 | |
| 565 | show ?case | |
| 566 | proof (rule foldSet.cases [OF Afoldx]) | |
| 567 |       assume "(A, x) = ({}, z)"
 | |
| 568 | with Afoldx' show "x' = x" by blast | |
| 15392 | 569 | next | 
| 15510 | 570 | fix B b u | 
| 571 | assume "(A,x) = (insert b B, g b \<cdot> u)" and notinB: "b \<notin> B" | |
| 572 | and Bu: "(B,u) \<in> foldSet f g z" | |
| 573 | hence AbB: "A = insert b B" and x: "x = g b \<cdot> u" by auto | |
| 574 | show "x'=x" | |
| 575 | proof (rule foldSet.cases [OF Afoldx']) | |
| 576 |         assume "(A, x') = ({}, z)"
 | |
| 577 | with AbB show "x' = x" by blast | |
| 15392 | 578 | next | 
| 15510 | 579 | fix C c v | 
| 580 | assume "(A,x') = (insert c C, g c \<cdot> v)" and notinC: "c \<notin> C" | |
| 581 | and Cv: "(C,v) \<in> foldSet f g z" | |
| 582 | hence AcC: "A = insert c C" and x': "x' = g c \<cdot> v" by auto | |
| 583 | 	from A AbB have Beq: "insert b B = h`{i. i<n}" by simp
 | |
| 584 | from insert_inj_onE [OF Beq notinB injh] | |
| 585 |         obtain hB mB where inj_onB: "inj_on hB {i. i < mB}" 
 | |
| 586 |                      and Beq: "B = hB ` {i. i < mB}"
 | |
| 587 | and lessB: "mB < n" by auto | |
| 588 | 	from A AcC have Ceq: "insert c C = h`{i. i<n}" by simp
 | |
| 589 | from insert_inj_onE [OF Ceq notinC injh] | |
| 590 |         obtain hC mC where inj_onC: "inj_on hC {i. i < mC}"
 | |
| 591 |                        and Ceq: "C = hC ` {i. i < mC}"
 | |
| 592 | and lessC: "mC < n" by auto | |
| 593 | show "x'=x" | |
| 15392 | 594 | proof cases | 
| 15510 | 595 | assume "b=c" | 
| 596 | then moreover have "B = C" using AbB AcC notinB notinC by auto | |
| 597 | ultimately show ?thesis using Bu Cv x x' IH[OF lessC Ceq inj_onC] | |
| 598 | by auto | |
| 15392 | 599 | next | 
| 600 | assume diff: "b \<noteq> c" | |
| 601 | 	  let ?D = "B - {c}"
 | |
| 602 | have B: "B = insert c ?D" and C: "C = insert b ?D" | |
| 15510 | 603 | using AbB AcC notinB notinC diff by(blast elim!:equalityE)+ | 
| 15402 | 604 | have "finite A" by(rule foldSet_imp_finite[OF Afoldx]) | 
| 15510 | 605 | with AbB have "finite ?D" by simp | 
| 15480 | 606 | then obtain d where Dfoldd: "(?D,d) \<in> foldSet f g z" | 
| 17589 | 607 | using finite_imp_foldSet by iprover | 
| 15506 | 608 | moreover have cinB: "c \<in> B" using B by auto | 
| 15480 | 609 | ultimately have "(B,g c \<cdot> d) \<in> foldSet f g z" | 
| 15392 | 610 | by(rule Diff1_foldSet) | 
| 15510 | 611 | hence "g c \<cdot> d = u" by (rule IH [OF lessB Beq inj_onB Bu]) | 
| 612 | moreover have "g b \<cdot> d = v" | |
| 613 | proof (rule IH[OF lessC Ceq inj_onC Cv]) | |
| 614 | show "(C, g b \<cdot> d) \<in> foldSet f g z" using C notinB Dfoldd | |
| 15392 | 615 | by fastsimp | 
| 616 | qed | |
| 15510 | 617 | ultimately show ?thesis using x x' by (auto simp: AC) | 
| 15392 | 618 | qed | 
| 619 | qed | |
| 620 | qed | |
| 621 | qed | |
| 622 | ||
| 623 | ||
| 624 | lemma (in ACf) foldSet_determ: | |
| 15510 | 625 | "(A,x) : foldSet f g z ==> (A,y) : foldSet f g z ==> y = x" | 
| 626 | apply (frule foldSet_imp_finite [THEN finite_imp_nat_seg_image_inj_on]) | |
| 627 | apply (blast intro: foldSet_determ_aux [rule_format]) | |
| 15392 | 628 | done | 
| 629 | ||
| 15480 | 630 | lemma (in ACf) fold_equality: "(A, y) : foldSet f g z ==> fold f g z A = y" | 
| 15392 | 631 | by (unfold fold_def) (blast intro: foldSet_determ) | 
| 632 | ||
| 633 | text{* The base case for @{text fold}: *}
 | |
| 634 | ||
| 15480 | 635 | lemma fold_empty [simp]: "fold f g z {} = z"
 | 
| 15392 | 636 | by (unfold fold_def) blast | 
| 637 | ||
| 638 | lemma (in ACf) fold_insert_aux: "x \<notin> A ==> | |
| 15480 | 639 | ((insert x A, v) : foldSet f g z) = | 
| 640 | (EX y. (A, y) : foldSet f g z & v = f (g x) y)" | |
| 15392 | 641 | apply auto | 
| 642 | apply (rule_tac A1 = A and f1 = f in finite_imp_foldSet [THEN exE]) | |
| 643 | apply (fastsimp dest: foldSet_imp_finite) | |
| 644 | apply (blast intro: foldSet_determ) | |
| 645 | done | |
| 646 | ||
| 647 | text{* The recursion equation for @{text fold}: *}
 | |
| 648 | ||
| 649 | lemma (in ACf) fold_insert[simp]: | |
| 15480 | 650 | "finite A ==> x \<notin> A ==> fold f g z (insert x A) = f (g x) (fold f g z A)" | 
| 15392 | 651 | apply (unfold fold_def) | 
| 652 | apply (simp add: fold_insert_aux) | |
| 653 | apply (rule the_equality) | |
| 654 | apply (auto intro: finite_imp_foldSet | |
| 655 | cong add: conj_cong simp add: fold_def [symmetric] fold_equality) | |
| 656 | done | |
| 657 | ||
| 15535 | 658 | lemma (in ACf) fold_rec: | 
| 659 | assumes fin: "finite A" and a: "a:A" | |
| 660 | shows "fold f g z A = f (g a) (fold f g z (A - {a}))"
 | |
| 661 | proof- | |
| 662 |   have A: "A = insert a (A - {a})" using a by blast
 | |
| 663 |   hence "fold f g z A = fold f g z (insert a (A - {a}))" by simp
 | |
| 664 |   also have "\<dots> = f (g a) (fold f g z (A - {a}))"
 | |
| 665 | by(rule fold_insert) (simp add:fin)+ | |
| 666 | finally show ?thesis . | |
| 667 | qed | |
| 668 | ||
| 15392 | 669 | |
| 15480 | 670 | text{* A simplified version for idempotent functions: *}
 | 
| 671 | ||
| 15509 | 672 | lemma (in ACIf) fold_insert_idem: | 
| 15480 | 673 | assumes finA: "finite A" | 
| 15508 | 674 | shows "fold f g z (insert a A) = g a \<cdot> fold f g z A" | 
| 15480 | 675 | proof cases | 
| 676 | assume "a \<in> A" | |
| 677 | then obtain B where A: "A = insert a B" and disj: "a \<notin> B" | |
| 678 | by(blast dest: mk_disjoint_insert) | |
| 679 | show ?thesis | |
| 680 | proof - | |
| 681 | from finA A have finB: "finite B" by(blast intro: finite_subset) | |
| 682 | have "fold f g z (insert a A) = fold f g z (insert a B)" using A by simp | |
| 683 | also have "\<dots> = (g a) \<cdot> (fold f g z B)" | |
| 15506 | 684 | using finB disj by simp | 
| 15480 | 685 | also have "\<dots> = g a \<cdot> fold f g z A" | 
| 686 | using A finB disj by(simp add:idem assoc[symmetric]) | |
| 687 | finally show ?thesis . | |
| 688 | qed | |
| 689 | next | |
| 690 | assume "a \<notin> A" | |
| 691 | with finA show ?thesis by simp | |
| 692 | qed | |
| 693 | ||
| 15484 | 694 | lemma (in ACIf) foldI_conv_id: | 
| 695 | "finite A \<Longrightarrow> fold f g z A = fold f id z (g ` A)" | |
| 15509 | 696 | by(erule finite_induct)(simp_all add: fold_insert_idem del: fold_insert) | 
| 15484 | 697 | |
| 15392 | 698 | subsubsection{*Lemmas about @{text fold}*}
 | 
| 699 | ||
| 700 | lemma (in ACf) fold_commute: | |
| 15487 | 701 | "finite A ==> (!!z. f x (fold f g z A) = fold f g (f x z) A)" | 
| 15392 | 702 | apply (induct set: Finites, simp) | 
| 15487 | 703 | apply (simp add: left_commute [of x]) | 
| 15392 | 704 | done | 
| 705 | ||
| 706 | lemma (in ACf) fold_nest_Un_Int: | |
| 707 | "finite A ==> finite B | |
| 15480 | 708 | ==> fold f g (fold f g z B) A = fold f g (fold f g z (A Int B)) (A Un B)" | 
| 15392 | 709 | apply (induct set: Finites, simp) | 
| 710 | apply (simp add: fold_commute Int_insert_left insert_absorb) | |
| 711 | done | |
| 712 | ||
| 713 | lemma (in ACf) fold_nest_Un_disjoint: | |
| 714 |   "finite A ==> finite B ==> A Int B = {}
 | |
| 15480 | 715 | ==> fold f g z (A Un B) = fold f g (fold f g z B) A" | 
| 15392 | 716 | by (simp add: fold_nest_Un_Int) | 
| 717 | ||
| 718 | lemma (in ACf) fold_reindex: | |
| 15487 | 719 | assumes fin: "finite A" | 
| 720 | shows "inj_on h A \<Longrightarrow> fold f g z (h ` A) = fold f (g \<circ> h) z A" | |
| 15506 | 721 | using fin apply induct | 
| 15392 | 722 | apply simp | 
| 723 | apply simp | |
| 724 | done | |
| 725 | ||
| 726 | lemma (in ACe) fold_Un_Int: | |
| 727 | "finite A ==> finite B ==> | |
| 728 | fold f g e A \<cdot> fold f g e B = | |
| 729 | fold f g e (A Un B) \<cdot> fold f g e (A Int B)" | |
| 730 | apply (induct set: Finites, simp) | |
| 731 | apply (simp add: AC insert_absorb Int_insert_left) | |
| 732 | done | |
| 733 | ||
| 734 | corollary (in ACe) fold_Un_disjoint: | |
| 735 |   "finite A ==> finite B ==> A Int B = {} ==>
 | |
| 736 | fold f g e (A Un B) = fold f g e A \<cdot> fold f g e B" | |
| 737 | by (simp add: fold_Un_Int) | |
| 738 | ||
| 739 | lemma (in ACe) fold_UN_disjoint: | |
| 740 | "\<lbrakk> finite I; ALL i:I. finite (A i); | |
| 741 |      ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {} \<rbrakk>
 | |
| 742 | \<Longrightarrow> fold f g e (UNION I A) = | |
| 743 | fold f (%i. fold f g e (A i)) e I" | |
| 744 | apply (induct set: Finites, simp, atomize) | |
| 745 | apply (subgoal_tac "ALL i:F. x \<noteq> i") | |
| 746 | prefer 2 apply blast | |
| 747 |   apply (subgoal_tac "A x Int UNION F A = {}")
 | |
| 748 | prefer 2 apply blast | |
| 749 | apply (simp add: fold_Un_disjoint) | |
| 750 | done | |
| 751 | ||
| 15506 | 752 | text{*Fusion theorem, as described in
 | 
| 753 | Graham Hutton's paper, | |
| 754 | A Tutorial on the Universality and Expressiveness of Fold, | |
| 755 | JFP 9:4 (355-372), 1999.*} | |
| 756 | lemma (in ACf) fold_fusion: | |
| 757 | includes ACf g | |
| 758 | shows | |
| 759 | "finite A ==> | |
| 760 | (!!x y. h (g x y) = f x (h y)) ==> | |
| 761 | h (fold g j w A) = fold f j (h w) A" | |
| 762 | by (induct set: Finites, simp_all) | |
| 763 | ||
| 15392 | 764 | lemma (in ACf) fold_cong: | 
| 15480 | 765 | "finite A \<Longrightarrow> (!!x. x:A ==> g x = h x) ==> fold f g z A = fold f h z A" | 
| 766 | apply (subgoal_tac "ALL C. C <= A --> (ALL x:C. g x = h x) --> fold f g z C = fold f h z C") | |
| 15392 | 767 | apply simp | 
| 768 | apply (erule finite_induct, simp) | |
| 769 | apply (simp add: subset_insert_iff, clarify) | |
| 770 | apply (subgoal_tac "finite C") | |
| 771 | prefer 2 apply (blast dest: finite_subset [COMP swap_prems_rl]) | |
| 772 |   apply (subgoal_tac "C = insert x (C - {x})")
 | |
| 773 | prefer 2 apply blast | |
| 774 | apply (erule ssubst) | |
| 775 | apply (drule spec) | |
| 776 | apply (erule (1) notE impE) | |
| 777 | apply (simp add: Ball_def del: insert_Diff_single) | |
| 778 | done | |
| 779 | ||
| 780 | lemma (in ACe) fold_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | |
| 781 | fold f (%x. fold f (g x) e (B x)) e A = | |
| 782 | fold f (split g) e (SIGMA x:A. B x)" | |
| 783 | apply (subst Sigma_def) | |
| 15506 | 784 | apply (subst fold_UN_disjoint, assumption, simp) | 
| 15392 | 785 | apply blast | 
| 786 | apply (erule fold_cong) | |
| 15506 | 787 | apply (subst fold_UN_disjoint, simp, simp) | 
| 15392 | 788 | apply blast | 
| 15506 | 789 | apply simp | 
| 15392 | 790 | done | 
| 791 | ||
| 792 | lemma (in ACe) fold_distrib: "finite A \<Longrightarrow> | |
| 793 | fold f (%x. f (g x) (h x)) e A = f (fold f g e A) (fold f h e A)" | |
| 15506 | 794 | apply (erule finite_induct, simp) | 
| 15392 | 795 | apply (simp add:AC) | 
| 796 | done | |
| 797 | ||
| 798 | ||
| 15402 | 799 | subsection {* Generalized summation over a set *}
 | 
| 800 | ||
| 801 | constdefs | |
| 802 |   setsum :: "('a => 'b) => 'a set => 'b::comm_monoid_add"
 | |
| 803 | "setsum f A == if finite A then fold (op +) f 0 A else 0" | |
| 804 | ||
| 19535 | 805 | abbreviation | 
| 806 |   Setsum  ("\<Sum>_" [1000] 999)
 | |
| 807 | "\<Sum>A == setsum (%x. x) A" | |
| 808 | ||
| 15402 | 809 | text{* Now: lot's of fancy syntax. First, @{term "setsum (%x. e) A"} is
 | 
| 810 | written @{text"\<Sum>x\<in>A. e"}. *}
 | |
| 811 | ||
| 812 | syntax | |
| 17189 | 813 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3SUM _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 814 | syntax (xsymbols) | 
| 17189 | 815 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 816 | syntax (HTML output) | 
| 17189 | 817 |   "_setsum" :: "pttrn => 'a set => 'b => 'b::comm_monoid_add"    ("(3\<Sum>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 818 | |
| 819 | translations -- {* Beware of argument permutation! *}
 | |
| 820 | "SUM i:A. b" == "setsum (%i. b) A" | |
| 821 | "\<Sum>i\<in>A. b" == "setsum (%i. b) A" | |
| 822 | ||
| 823 | text{* Instead of @{term"\<Sum>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 824 |  @{text"\<Sum>x|P. e"}. *}
 | |
| 825 | ||
| 826 | syntax | |
| 17189 | 827 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3SUM _ |/ _./ _)" [0,0,10] 10)
 | 
| 15402 | 828 | syntax (xsymbols) | 
| 17189 | 829 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 830 | syntax (HTML output) | 
| 17189 | 831 |   "_qsetsum" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Sum>_ | (_)./ _)" [0,0,10] 10)
 | 
| 15402 | 832 | |
| 833 | translations | |
| 834 |   "SUM x|P. t" => "setsum (%x. t) {x. P}"
 | |
| 835 |   "\<Sum>x|P. t" => "setsum (%x. t) {x. P}"
 | |
| 836 | ||
| 837 | print_translation {*
 | |
| 838 | let | |
| 19535 | 839 |   fun setsum_tr' [Abs(x,Tx,t), Const ("Collect",_) $ Abs(y,Ty,P)] = 
 | 
| 840 | if x<>y then raise Match | |
| 841 | else let val x' = Syntax.mark_bound x | |
| 842 | val t' = subst_bound(x',t) | |
| 843 | val P' = subst_bound(x',P) | |
| 844 | in Syntax.const "_qsetsum" $ Syntax.mark_bound x $ P' $ t' end | |
| 845 | in [("setsum", setsum_tr')] end
 | |
| 15402 | 846 | *} | 
| 847 | ||
| 19535 | 848 | |
| 15402 | 849 | lemma setsum_empty [simp]: "setsum f {} = 0"
 | 
| 850 | by (simp add: setsum_def) | |
| 851 | ||
| 852 | lemma setsum_insert [simp]: | |
| 853 | "finite F ==> a \<notin> F ==> setsum f (insert a F) = f a + setsum f F" | |
| 15765 | 854 | by (simp add: setsum_def) | 
| 15402 | 855 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 856 | lemma setsum_infinite [simp]: "~ finite A ==> setsum f A = 0" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 857 | by (simp add: setsum_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 858 | |
| 15402 | 859 | lemma setsum_reindex: | 
| 860 | "inj_on f B ==> setsum h (f ` B) = setsum (h \<circ> f) B" | |
| 15765 | 861 | by(auto simp add: setsum_def AC_add.fold_reindex dest!:finite_imageD) | 
| 15402 | 862 | |
| 863 | lemma setsum_reindex_id: | |
| 864 | "inj_on f B ==> setsum f B = setsum id (f ` B)" | |
| 865 | by (auto simp add: setsum_reindex) | |
| 866 | ||
| 867 | lemma setsum_cong: | |
| 868 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setsum f A = setsum g B" | |
| 15765 | 869 | by(fastsimp simp: setsum_def intro: AC_add.fold_cong) | 
| 15402 | 870 | |
| 16733 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 871 | lemma strong_setsum_cong[cong]: | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 872 | "A = B ==> (!!x. x:B =simp=> f x = g x) | 
| 
236dfafbeb63
linear arithmetic now takes "&" in assumptions apart.
 nipkow parents: 
16632diff
changeset | 873 | ==> setsum (%x. f x) A = setsum (%x. g x) B" | 
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 874 | by(fastsimp simp: simp_implies_def setsum_def intro: AC_add.fold_cong) | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 875 | |
| 15554 | 876 | lemma setsum_cong2: "\<lbrakk>\<And>x. x \<in> A \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> setsum f A = setsum g A"; | 
| 877 | by (rule setsum_cong[OF refl], auto); | |
| 878 | ||
| 15402 | 879 | lemma setsum_reindex_cong: | 
| 15554 | 880 | "[|inj_on f A; B = f ` A; !!a. a:A \<Longrightarrow> g a = h (f a)|] | 
| 15402 | 881 | ==> setsum h B = setsum g A" | 
| 882 | by (simp add: setsum_reindex cong: setsum_cong) | |
| 883 | ||
| 15542 | 884 | lemma setsum_0[simp]: "setsum (%i. 0) A = 0" | 
| 15402 | 885 | apply (clarsimp simp: setsum_def) | 
| 15765 | 886 | apply (erule finite_induct, auto) | 
| 15402 | 887 | done | 
| 888 | ||
| 15543 | 889 | lemma setsum_0': "ALL a:A. f a = 0 ==> setsum f A = 0" | 
| 890 | by(simp add:setsum_cong) | |
| 15402 | 891 | |
| 892 | lemma setsum_Un_Int: "finite A ==> finite B ==> | |
| 893 | setsum g (A Un B) + setsum g (A Int B) = setsum g A + setsum g B" | |
| 894 |   -- {* The reversed orientation looks more natural, but LOOPS as a simprule! *}
 | |
| 15765 | 895 | by(simp add: setsum_def AC_add.fold_Un_Int [symmetric]) | 
| 15402 | 896 | |
| 897 | lemma setsum_Un_disjoint: "finite A ==> finite B | |
| 898 |   ==> A Int B = {} ==> setsum g (A Un B) = setsum g A + setsum g B"
 | |
| 899 | by (subst setsum_Un_Int [symmetric], auto) | |
| 900 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 901 | (*But we can't get rid of finite I. If infinite, although the rhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 902 | the lhs need not be, since UNION I A could still be finite.*) | 
| 15402 | 903 | lemma setsum_UN_disjoint: | 
| 904 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 905 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 906 | setsum f (UNION I A) = (\<Sum>i\<in>I. setsum f (A i))" | |
| 15765 | 907 | by(simp add: setsum_def AC_add.fold_UN_disjoint cong: setsum_cong) | 
| 15402 | 908 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 909 | text{*No need to assume that @{term C} is finite.  If infinite, the rhs is
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 910 | directly 0, and @{term "Union C"} is also infinite, hence the lhs is also 0.*}
 | 
| 15402 | 911 | lemma setsum_Union_disjoint: | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 912 | "[| (ALL A:C. finite A); | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 913 |       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |]
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 914 | ==> setsum f (Union C) = setsum (setsum f) C" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 915 | apply (cases "finite C") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 916 | prefer 2 apply (force dest: finite_UnionD simp add: setsum_def) | 
| 15402 | 917 | apply (frule setsum_UN_disjoint [of C id f]) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 918 | apply (unfold Union_def id_def, assumption+) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 919 | done | 
| 15402 | 920 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 921 | (*But we can't get rid of finite A. If infinite, although the lhs is 0, | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 922 | the rhs need not be, since SIGMA A B could still be finite.*) | 
| 15402 | 923 | lemma setsum_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | 
| 17189 | 924 | (\<Sum>x\<in>A. (\<Sum>y\<in>B x. f x y)) = (\<Sum>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 15765 | 925 | by(simp add:setsum_def AC_add.fold_Sigma split_def cong:setsum_cong) | 
| 15402 | 926 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 927 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 928 | lemma setsum_cartesian_product: | 
| 17189 | 929 | "(\<Sum>x\<in>A. (\<Sum>y\<in>B. f x y)) = (\<Sum>(x,y) \<in> A <*> B. f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 930 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 931 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 932 | apply (simp add: setsum_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 933 |  apply (cases "A={}", simp)
 | 
| 15543 | 934 | apply (simp) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 935 | apply (auto simp add: setsum_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 936 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 937 | done | 
| 15402 | 938 | |
| 939 | lemma setsum_addf: "setsum (%x. f x + g x) A = (setsum f A + setsum g A)" | |
| 15765 | 940 | by(simp add:setsum_def AC_add.fold_distrib) | 
| 15402 | 941 | |
| 942 | ||
| 943 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 944 | ||
| 945 | lemma setsum_SucD: "setsum f A = Suc n ==> EX a:A. 0 < f a" | |
| 946 | apply (case_tac "finite A") | |
| 947 | prefer 2 apply (simp add: setsum_def) | |
| 948 | apply (erule rev_mp) | |
| 949 | apply (erule finite_induct, auto) | |
| 950 | done | |
| 951 | ||
| 952 | lemma setsum_eq_0_iff [simp]: | |
| 953 | "finite F ==> (setsum f F = 0) = (ALL a:F. f a = (0::nat))" | |
| 954 | by (induct set: Finites) auto | |
| 955 | ||
| 956 | lemma setsum_Un_nat: "finite A ==> finite B ==> | |
| 957 | (setsum f (A Un B) :: nat) = setsum f A + setsum f B - setsum f (A Int B)" | |
| 958 |   -- {* For the natural numbers, we have subtraction. *}
 | |
| 959 | by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps) | |
| 960 | ||
| 961 | lemma setsum_Un: "finite A ==> finite B ==> | |
| 962 | (setsum f (A Un B) :: 'a :: ab_group_add) = | |
| 963 | setsum f A + setsum f B - setsum f (A Int B)" | |
| 964 | by (subst setsum_Un_Int [symmetric], auto simp add: ring_eq_simps) | |
| 965 | ||
| 966 | lemma setsum_diff1_nat: "(setsum f (A - {a}) :: nat) =
 | |
| 967 | (if a:A then setsum f A - f a else setsum f A)" | |
| 968 | apply (case_tac "finite A") | |
| 969 | prefer 2 apply (simp add: setsum_def) | |
| 970 | apply (erule finite_induct) | |
| 971 | apply (auto simp add: insert_Diff_if) | |
| 972 | apply (drule_tac a = a in mk_disjoint_insert, auto) | |
| 973 | done | |
| 974 | ||
| 975 | lemma setsum_diff1: "finite A \<Longrightarrow> | |
| 976 |   (setsum f (A - {a}) :: ('a::ab_group_add)) =
 | |
| 977 | (if a:A then setsum f A - f a else setsum f A)" | |
| 978 | by (erule finite_induct) (auto simp add: insert_Diff_if) | |
| 979 | ||
| 15552 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 980 | lemma setsum_diff1'[rule_format]: "finite A \<Longrightarrow> a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x)"
 | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 981 |   apply (erule finite_induct[where F=A and P="% A. (a \<in> A \<longrightarrow> (\<Sum> x \<in> A. f x) = f a + (\<Sum> x \<in> (A - {a}). f x))"])
 | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 982 | apply (auto simp add: insert_Diff_if add_ac) | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 983 | done | 
| 
8ab8e425410b
added setsum_diff1' which holds in more general cases than setsum_diff1
 obua parents: 
15543diff
changeset | 984 | |
| 15402 | 985 | (* By Jeremy Siek: *) | 
| 986 | ||
| 987 | lemma setsum_diff_nat: | |
| 19535 | 988 | assumes "finite B" | 
| 989 | and "B \<subseteq> A" | |
| 990 | shows "(setsum f (A - B) :: nat) = (setsum f A) - (setsum f B)" | |
| 991 | using prems | |
| 992 | proof induct | |
| 15402 | 993 |   show "setsum f (A - {}) = (setsum f A) - (setsum f {})" by simp
 | 
| 994 | next | |
| 995 | fix F x assume finF: "finite F" and xnotinF: "x \<notin> F" | |
| 996 | and xFinA: "insert x F \<subseteq> A" | |
| 997 | and IH: "F \<subseteq> A \<Longrightarrow> setsum f (A - F) = setsum f A - setsum f F" | |
| 998 | from xnotinF xFinA have xinAF: "x \<in> (A - F)" by simp | |
| 999 |   from xinAF have A: "setsum f ((A - F) - {x}) = setsum f (A - F) - f x"
 | |
| 1000 | by (simp add: setsum_diff1_nat) | |
| 1001 | from xFinA have "F \<subseteq> A" by simp | |
| 1002 | with IH have "setsum f (A - F) = setsum f A - setsum f F" by simp | |
| 1003 |   with A have B: "setsum f ((A - F) - {x}) = setsum f A - setsum f F - f x"
 | |
| 1004 | by simp | |
| 1005 |   from xnotinF have "A - insert x F = (A - F) - {x}" by auto
 | |
| 1006 | with B have C: "setsum f (A - insert x F) = setsum f A - setsum f F - f x" | |
| 1007 | by simp | |
| 1008 | from finF xnotinF have "setsum f (insert x F) = setsum f F + f x" by simp | |
| 1009 | with C have "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" | |
| 1010 | by simp | |
| 1011 | thus "setsum f (A - insert x F) = setsum f A - setsum f (insert x F)" by simp | |
| 1012 | qed | |
| 1013 | ||
| 1014 | lemma setsum_diff: | |
| 1015 | assumes le: "finite A" "B \<subseteq> A" | |
| 1016 |   shows "setsum f (A - B) = setsum f A - ((setsum f B)::('a::ab_group_add))"
 | |
| 1017 | proof - | |
| 1018 | from le have finiteB: "finite B" using finite_subset by auto | |
| 1019 | show ?thesis using finiteB le | |
| 19535 | 1020 | proof (induct) | 
| 1021 | case empty | |
| 1022 | thus ?case by auto | |
| 1023 | next | |
| 1024 | case (insert x F) | |
| 1025 | thus ?case using le finiteB | |
| 1026 | by (simp add: Diff_insert[where a=x and B=F] setsum_diff1 insert_absorb) | |
| 15402 | 1027 | qed | 
| 19535 | 1028 | qed | 
| 15402 | 1029 | |
| 1030 | lemma setsum_mono: | |
| 1031 |   assumes le: "\<And>i. i\<in>K \<Longrightarrow> f (i::'a) \<le> ((g i)::('b::{comm_monoid_add, pordered_ab_semigroup_add}))"
 | |
| 1032 | shows "(\<Sum>i\<in>K. f i) \<le> (\<Sum>i\<in>K. g i)" | |
| 1033 | proof (cases "finite K") | |
| 1034 | case True | |
| 1035 | thus ?thesis using le | |
| 19535 | 1036 | proof induct | 
| 15402 | 1037 | case empty | 
| 1038 | thus ?case by simp | |
| 1039 | next | |
| 1040 | case insert | |
| 19535 | 1041 | thus ?case using add_mono by fastsimp | 
| 15402 | 1042 | qed | 
| 1043 | next | |
| 1044 | case False | |
| 1045 | thus ?thesis | |
| 1046 | by (simp add: setsum_def) | |
| 1047 | qed | |
| 1048 | ||
| 15554 | 1049 | lemma setsum_strict_mono: | 
| 19535 | 1050 |   fixes f :: "'a \<Rightarrow> 'b::{pordered_cancel_ab_semigroup_add,comm_monoid_add}"
 | 
| 1051 |   assumes "finite A"  "A \<noteq> {}"
 | |
| 1052 | and "!!x. x:A \<Longrightarrow> f x < g x" | |
| 1053 | shows "setsum f A < setsum g A" | |
| 1054 | using prems | |
| 15554 | 1055 | proof (induct rule: finite_ne_induct) | 
| 1056 | case singleton thus ?case by simp | |
| 1057 | next | |
| 1058 | case insert thus ?case by (auto simp: add_strict_mono) | |
| 1059 | qed | |
| 1060 | ||
| 15535 | 1061 | lemma setsum_negf: | 
| 19535 | 1062 | "setsum (%x. - (f x)::'a::ab_group_add) A = - setsum f A" | 
| 15535 | 1063 | proof (cases "finite A") | 
| 1064 | case True thus ?thesis by (induct set: Finites, auto) | |
| 1065 | next | |
| 1066 | case False thus ?thesis by (simp add: setsum_def) | |
| 1067 | qed | |
| 15402 | 1068 | |
| 15535 | 1069 | lemma setsum_subtractf: | 
| 19535 | 1070 | "setsum (%x. ((f x)::'a::ab_group_add) - g x) A = | 
| 1071 | setsum f A - setsum g A" | |
| 15535 | 1072 | proof (cases "finite A") | 
| 1073 | case True thus ?thesis by (simp add: diff_minus setsum_addf setsum_negf) | |
| 1074 | next | |
| 1075 | case False thus ?thesis by (simp add: setsum_def) | |
| 1076 | qed | |
| 15402 | 1077 | |
| 15535 | 1078 | lemma setsum_nonneg: | 
| 19535 | 1079 |   assumes nn: "\<forall>x\<in>A. (0::'a::{pordered_ab_semigroup_add,comm_monoid_add}) \<le> f x"
 | 
| 1080 | shows "0 \<le> setsum f A" | |
| 15535 | 1081 | proof (cases "finite A") | 
| 1082 | case True thus ?thesis using nn | |
| 19535 | 1083 | proof (induct) | 
| 1084 | case empty then show ?case by simp | |
| 1085 | next | |
| 1086 | case (insert x F) | |
| 1087 | then have "0 + 0 \<le> f x + setsum f F" by (blast intro: add_mono) | |
| 1088 | with insert show ?case by simp | |
| 1089 | qed | |
| 15535 | 1090 | next | 
| 1091 | case False thus ?thesis by (simp add: setsum_def) | |
| 1092 | qed | |
| 15402 | 1093 | |
| 15535 | 1094 | lemma setsum_nonpos: | 
| 19535 | 1095 |   assumes np: "\<forall>x\<in>A. f x \<le> (0::'a::{pordered_ab_semigroup_add,comm_monoid_add})"
 | 
| 1096 | shows "setsum f A \<le> 0" | |
| 15535 | 1097 | proof (cases "finite A") | 
| 1098 | case True thus ?thesis using np | |
| 19535 | 1099 | proof (induct) | 
| 1100 | case empty then show ?case by simp | |
| 1101 | next | |
| 1102 | case (insert x F) | |
| 1103 | then have "f x + setsum f F \<le> 0 + 0" by (blast intro: add_mono) | |
| 1104 | with insert show ?case by simp | |
| 1105 | qed | |
| 15535 | 1106 | next | 
| 1107 | case False thus ?thesis by (simp add: setsum_def) | |
| 1108 | qed | |
| 15402 | 1109 | |
| 15539 | 1110 | lemma setsum_mono2: | 
| 1111 | fixes f :: "'a \<Rightarrow> 'b :: {pordered_ab_semigroup_add_imp_le,comm_monoid_add}"
 | |
| 1112 | assumes fin: "finite B" and sub: "A \<subseteq> B" and nn: "\<And>b. b \<in> B-A \<Longrightarrow> 0 \<le> f b" | |
| 1113 | shows "setsum f A \<le> setsum f B" | |
| 1114 | proof - | |
| 1115 | have "setsum f A \<le> setsum f A + setsum f (B-A)" | |
| 1116 | by(simp add: add_increasing2[OF setsum_nonneg] nn Ball_def) | |
| 1117 | also have "\<dots> = setsum f (A \<union> (B-A))" using fin finite_subset[OF sub fin] | |
| 1118 | by (simp add:setsum_Un_disjoint del:Un_Diff_cancel) | |
| 1119 | also have "A \<union> (B-A) = B" using sub by blast | |
| 1120 | finally show ?thesis . | |
| 1121 | qed | |
| 15542 | 1122 | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1123 | lemma setsum_mono3: "finite B ==> A <= B ==> | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1124 | ALL x: B - A. | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1125 |       0 <= ((f x)::'a::{comm_monoid_add,pordered_ab_semigroup_add}) ==>
 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1126 | setsum f A <= setsum f B" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1127 | apply (subgoal_tac "setsum f B = setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1128 | apply (erule ssubst) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1129 | apply (subgoal_tac "setsum f A + 0 <= setsum f A + setsum f (B - A)") | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1130 | apply simp | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1131 | apply (rule add_left_mono) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1132 | apply (erule setsum_nonneg) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1133 | apply (subst setsum_Un_disjoint [THEN sym]) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1134 | apply (erule finite_subset, assumption) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1135 | apply (rule finite_subset) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1136 | prefer 2 | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1137 | apply assumption | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1138 | apply auto | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1139 | apply (rule setsum_cong) | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1140 | apply auto | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1141 | done | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1142 | |
| 19279 | 1143 | lemma setsum_right_distrib: | 
| 15402 | 1144 |   fixes f :: "'a => ('b::semiring_0_cancel)"
 | 
| 1145 | shows "r * setsum f A = setsum (%n. r * f n) A" | |
| 1146 | proof (cases "finite A") | |
| 1147 | case True | |
| 1148 | thus ?thesis | |
| 1149 | proof (induct) | |
| 1150 | case empty thus ?case by simp | |
| 1151 | next | |
| 1152 | case (insert x A) thus ?case by (simp add: right_distrib) | |
| 1153 | qed | |
| 1154 | next | |
| 1155 | case False thus ?thesis by (simp add: setsum_def) | |
| 1156 | qed | |
| 1157 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1158 | lemma setsum_left_distrib: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1159 | "setsum f A * (r::'a::semiring_0_cancel) = (\<Sum>n\<in>A. f n * r)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1160 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1161 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1162 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1163 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1164 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1165 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1166 | case (insert x A) thus ?case by (simp add: left_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1167 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1168 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1169 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1170 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1171 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1172 | lemma setsum_divide_distrib: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1173 | "setsum f A / (r::'a::field) = (\<Sum>n\<in>A. f n / r)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1174 | proof (cases "finite A") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1175 | case True | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1176 | then show ?thesis | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1177 | proof induct | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1178 | case empty thus ?case by simp | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1179 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1180 | case (insert x A) thus ?case by (simp add: add_divide_distrib) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1181 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1182 | next | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1183 | case False thus ?thesis by (simp add: setsum_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1184 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1185 | |
| 15535 | 1186 | lemma setsum_abs[iff]: | 
| 15402 | 1187 |   fixes f :: "'a => ('b::lordered_ab_group_abs)"
 | 
| 1188 | shows "abs (setsum f A) \<le> setsum (%i. abs(f i)) A" | |
| 15535 | 1189 | proof (cases "finite A") | 
| 1190 | case True | |
| 1191 | thus ?thesis | |
| 1192 | proof (induct) | |
| 1193 | case empty thus ?case by simp | |
| 1194 | next | |
| 1195 | case (insert x A) | |
| 1196 | thus ?case by (auto intro: abs_triangle_ineq order_trans) | |
| 1197 | qed | |
| 15402 | 1198 | next | 
| 15535 | 1199 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 1200 | qed | 
| 1201 | ||
| 15535 | 1202 | lemma setsum_abs_ge_zero[iff]: | 
| 15402 | 1203 |   fixes f :: "'a => ('b::lordered_ab_group_abs)"
 | 
| 1204 | shows "0 \<le> setsum (%i. abs(f i)) A" | |
| 15535 | 1205 | proof (cases "finite A") | 
| 1206 | case True | |
| 1207 | thus ?thesis | |
| 1208 | proof (induct) | |
| 1209 | case empty thus ?case by simp | |
| 1210 | next | |
| 1211 | case (insert x A) thus ?case by (auto intro: order_trans) | |
| 1212 | qed | |
| 15402 | 1213 | next | 
| 15535 | 1214 | case False thus ?thesis by (simp add: setsum_def) | 
| 15402 | 1215 | qed | 
| 1216 | ||
| 15539 | 1217 | lemma abs_setsum_abs[simp]: | 
| 1218 |   fixes f :: "'a => ('b::lordered_ab_group_abs)"
 | |
| 1219 | shows "abs (\<Sum>a\<in>A. abs(f a)) = (\<Sum>a\<in>A. abs(f a))" | |
| 1220 | proof (cases "finite A") | |
| 1221 | case True | |
| 1222 | thus ?thesis | |
| 1223 | proof (induct) | |
| 1224 | case empty thus ?case by simp | |
| 1225 | next | |
| 1226 | case (insert a A) | |
| 1227 | hence "\<bar>\<Sum>a\<in>insert a A. \<bar>f a\<bar>\<bar> = \<bar>\<bar>f a\<bar> + (\<Sum>a\<in>A. \<bar>f a\<bar>)\<bar>" by simp | |
| 1228 | also have "\<dots> = \<bar>\<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>\<bar>" using insert by simp | |
| 16775 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1229 | also have "\<dots> = \<bar>f a\<bar> + \<bar>\<Sum>a\<in>A. \<bar>f a\<bar>\<bar>" | 
| 
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
 avigad parents: 
16760diff
changeset | 1230 | by (simp del: abs_of_nonneg) | 
| 15539 | 1231 | also have "\<dots> = (\<Sum>a\<in>insert a A. \<bar>f a\<bar>)" using insert by simp | 
| 1232 | finally show ?case . | |
| 1233 | qed | |
| 1234 | next | |
| 1235 | case False thus ?thesis by (simp add: setsum_def) | |
| 1236 | qed | |
| 1237 | ||
| 15402 | 1238 | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1239 | text {* Commuting outer and inner summation *}
 | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1240 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1241 | lemma swap_inj_on: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1242 | "inj_on (%(i, j). (j, i)) (A \<times> B)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1243 | by (unfold inj_on_def) fast | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1244 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1245 | lemma swap_product: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1246 | "(%(i, j). (j, i)) ` (A \<times> B) = B \<times> A" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1247 | by (simp add: split_def image_def) blast | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1248 | |
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1249 | lemma setsum_commute: | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1250 | "(\<Sum>i\<in>A. \<Sum>j\<in>B. f i j) = (\<Sum>j\<in>B. \<Sum>i\<in>A. f i j)" | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1251 | proof (simp add: setsum_cartesian_product) | 
| 17189 | 1252 | have "(\<Sum>(x,y) \<in> A <*> B. f x y) = | 
| 1253 | (\<Sum>(y,x) \<in> (%(i, j). (j, i)) ` (A \<times> B). f x y)" | |
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1254 | (is "?s = _") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1255 | apply (simp add: setsum_reindex [where f = "%(i, j). (j, i)"] swap_inj_on) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1256 | apply (simp add: split_def) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1257 | done | 
| 17189 | 1258 | also have "... = (\<Sum>(y,x)\<in>B \<times> A. f x y)" | 
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1259 | (is "_ = ?t") | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1260 | apply (simp add: swap_product) | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1261 | done | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1262 | finally show "?s = ?t" . | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1263 | qed | 
| 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1264 | |
| 19279 | 1265 | lemma setsum_product: | 
| 1266 |   fixes f :: "nat => ('a::semiring_0_cancel)"
 | |
| 1267 | shows "setsum f A * setsum g B = (\<Sum>i\<in>A. \<Sum>j\<in>B. f i * g j)" | |
| 1268 | by (simp add: setsum_right_distrib setsum_left_distrib) (rule setsum_commute) | |
| 1269 | ||
| 17149 
e2b19c92ef51
Lemmas on dvd, power and finite summation added or strengthened.
 ballarin parents: 
17085diff
changeset | 1270 | |
| 15402 | 1271 | subsection {* Generalized product over a set *}
 | 
| 1272 | ||
| 1273 | constdefs | |
| 1274 |   setprod :: "('a => 'b) => 'a set => 'b::comm_monoid_mult"
 | |
| 1275 | "setprod f A == if finite A then fold (op *) f 1 A else 1" | |
| 1276 | ||
| 19535 | 1277 | abbreviation | 
| 1278 |   Setprod  ("\<Prod>_" [1000] 999)
 | |
| 1279 | "\<Prod>A == setprod (%x. x) A" | |
| 1280 | ||
| 15402 | 1281 | syntax | 
| 17189 | 1282 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3PROD _:_. _)" [0, 51, 10] 10)
 | 
| 15402 | 1283 | syntax (xsymbols) | 
| 17189 | 1284 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 15402 | 1285 | syntax (HTML output) | 
| 17189 | 1286 |   "_setprod" :: "pttrn => 'a set => 'b => 'b::comm_monoid_mult"  ("(3\<Prod>_\<in>_. _)" [0, 51, 10] 10)
 | 
| 16550 | 1287 | |
| 1288 | translations -- {* Beware of argument permutation! *}
 | |
| 1289 | "PROD i:A. b" == "setprod (%i. b) A" | |
| 1290 | "\<Prod>i\<in>A. b" == "setprod (%i. b) A" | |
| 1291 | ||
| 1292 | text{* Instead of @{term"\<Prod>x\<in>{x. P}. e"} we introduce the shorter
 | |
| 1293 |  @{text"\<Prod>x|P. e"}. *}
 | |
| 1294 | ||
| 1295 | syntax | |
| 17189 | 1296 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3PROD _ |/ _./ _)" [0,0,10] 10)
 | 
| 16550 | 1297 | syntax (xsymbols) | 
| 17189 | 1298 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 1299 | syntax (HTML output) | 
| 17189 | 1300 |   "_qsetprod" :: "pttrn \<Rightarrow> bool \<Rightarrow> 'a \<Rightarrow> 'a" ("(3\<Prod>_ | (_)./ _)" [0,0,10] 10)
 | 
| 16550 | 1301 | |
| 15402 | 1302 | translations | 
| 16550 | 1303 |   "PROD x|P. t" => "setprod (%x. t) {x. P}"
 | 
| 1304 |   "\<Prod>x|P. t" => "setprod (%x. t) {x. P}"
 | |
| 1305 | ||
| 15402 | 1306 | |
| 1307 | lemma setprod_empty [simp]: "setprod f {} = 1"
 | |
| 1308 | by (auto simp add: setprod_def) | |
| 1309 | ||
| 1310 | lemma setprod_insert [simp]: "[| finite A; a \<notin> A |] ==> | |
| 1311 | setprod f (insert a A) = f a * setprod f A" | |
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 1312 | by (simp add: setprod_def) | 
| 15402 | 1313 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1314 | lemma setprod_infinite [simp]: "~ finite A ==> setprod f A = 1" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1315 | by (simp add: setprod_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1316 | |
| 15402 | 1317 | lemma setprod_reindex: | 
| 1318 | "inj_on f B ==> setprod h (f ` B) = setprod (h \<circ> f) B" | |
| 15765 | 1319 | by(auto simp: setprod_def AC_mult.fold_reindex dest!:finite_imageD) | 
| 15402 | 1320 | |
| 1321 | lemma setprod_reindex_id: "inj_on f B ==> setprod f B = setprod id (f ` B)" | |
| 1322 | by (auto simp add: setprod_reindex) | |
| 1323 | ||
| 1324 | lemma setprod_cong: | |
| 1325 | "A = B ==> (!!x. x:B ==> f x = g x) ==> setprod f A = setprod g B" | |
| 15765 | 1326 | by(fastsimp simp: setprod_def intro: AC_mult.fold_cong) | 
| 15402 | 1327 | |
| 16632 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1328 | lemma strong_setprod_cong: | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1329 | "A = B ==> (!!x. x:B =simp=> f x = g x) ==> setprod f A = setprod g B" | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1330 | by(fastsimp simp: simp_implies_def setprod_def intro: AC_mult.fold_cong) | 
| 
ad2895beef79
Added strong_setsum_cong and strong_setprod_cong.
 berghofe parents: 
16550diff
changeset | 1331 | |
| 15402 | 1332 | lemma setprod_reindex_cong: "inj_on f A ==> | 
| 1333 | B = f ` A ==> g = h \<circ> f ==> setprod h B = setprod g A" | |
| 1334 | by (frule setprod_reindex, simp) | |
| 1335 | ||
| 1336 | ||
| 1337 | lemma setprod_1: "setprod (%i. 1) A = 1" | |
| 1338 | apply (case_tac "finite A") | |
| 1339 | apply (erule finite_induct, auto simp add: mult_ac) | |
| 1340 | done | |
| 1341 | ||
| 1342 | lemma setprod_1': "ALL a:F. f a = 1 ==> setprod f F = 1" | |
| 1343 | apply (subgoal_tac "setprod f F = setprod (%x. 1) F") | |
| 1344 | apply (erule ssubst, rule setprod_1) | |
| 1345 | apply (rule setprod_cong, auto) | |
| 1346 | done | |
| 1347 | ||
| 1348 | lemma setprod_Un_Int: "finite A ==> finite B | |
| 1349 | ==> setprod g (A Un B) * setprod g (A Int B) = setprod g A * setprod g B" | |
| 15765 | 1350 | by(simp add: setprod_def AC_mult.fold_Un_Int[symmetric]) | 
| 15402 | 1351 | |
| 1352 | lemma setprod_Un_disjoint: "finite A ==> finite B | |
| 1353 |   ==> A Int B = {} ==> setprod g (A Un B) = setprod g A * setprod g B"
 | |
| 1354 | by (subst setprod_Un_Int [symmetric], auto) | |
| 1355 | ||
| 1356 | lemma setprod_UN_disjoint: | |
| 1357 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 1358 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 1359 | setprod f (UNION I A) = setprod (%i. setprod f (A i)) I" | |
| 15765 | 1360 | by(simp add: setprod_def AC_mult.fold_UN_disjoint cong: setprod_cong) | 
| 15402 | 1361 | |
| 1362 | lemma setprod_Union_disjoint: | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1363 | "[| (ALL A:C. finite A); | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1364 |       (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) |] 
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1365 | ==> setprod f (Union C) = setprod (setprod f) C" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1366 | apply (cases "finite C") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1367 | prefer 2 apply (force dest: finite_UnionD simp add: setprod_def) | 
| 15402 | 1368 | apply (frule setprod_UN_disjoint [of C id f]) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1369 | apply (unfold Union_def id_def, assumption+) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1370 | done | 
| 15402 | 1371 | |
| 1372 | lemma setprod_Sigma: "finite A ==> ALL x:A. finite (B x) ==> | |
| 16550 | 1373 | (\<Prod>x\<in>A. (\<Prod>y\<in> B x. f x y)) = | 
| 17189 | 1374 | (\<Prod>(x,y)\<in>(SIGMA x:A. B x). f x y)" | 
| 15765 | 1375 | by(simp add:setprod_def AC_mult.fold_Sigma split_def cong:setprod_cong) | 
| 15402 | 1376 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1377 | text{*Here we can eliminate the finiteness assumptions, by cases.*}
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1378 | lemma setprod_cartesian_product: | 
| 17189 | 1379 | "(\<Prod>x\<in>A. (\<Prod>y\<in> B. f x y)) = (\<Prod>(x,y)\<in>(A <*> B). f x y)" | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1380 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1381 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1382 | apply (simp add: setprod_Sigma) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1383 |  apply (cases "A={}", simp)
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1384 | apply (simp add: setprod_1) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1385 | apply (auto simp add: setprod_def | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1386 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1387 | done | 
| 15402 | 1388 | |
| 1389 | lemma setprod_timesf: | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1390 | "setprod (%x. f x * g x) A = (setprod f A * setprod g A)" | 
| 15765 | 1391 | by(simp add:setprod_def AC_mult.fold_distrib) | 
| 15402 | 1392 | |
| 1393 | ||
| 1394 | subsubsection {* Properties in more restricted classes of structures *}
 | |
| 1395 | ||
| 1396 | lemma setprod_eq_1_iff [simp]: | |
| 1397 | "finite F ==> (setprod f F = 1) = (ALL a:F. f a = (1::nat))" | |
| 1398 | by (induct set: Finites) auto | |
| 1399 | ||
| 1400 | lemma setprod_zero: | |
| 1401 | "finite A ==> EX x: A. f x = (0::'a::comm_semiring_1_cancel) ==> setprod f A = 0" | |
| 1402 | apply (induct set: Finites, force, clarsimp) | |
| 1403 | apply (erule disjE, auto) | |
| 1404 | done | |
| 1405 | ||
| 1406 | lemma setprod_nonneg [rule_format]: | |
| 1407 | "(ALL x: A. (0::'a::ordered_idom) \<le> f x) --> 0 \<le> setprod f A" | |
| 1408 | apply (case_tac "finite A") | |
| 1409 | apply (induct set: Finites, force, clarsimp) | |
| 1410 | apply (subgoal_tac "0 * 0 \<le> f x * setprod f F", force) | |
| 1411 | apply (rule mult_mono, assumption+) | |
| 1412 | apply (auto simp add: setprod_def) | |
| 1413 | done | |
| 1414 | ||
| 1415 | lemma setprod_pos [rule_format]: "(ALL x: A. (0::'a::ordered_idom) < f x) | |
| 1416 | --> 0 < setprod f A" | |
| 1417 | apply (case_tac "finite A") | |
| 1418 | apply (induct set: Finites, force, clarsimp) | |
| 1419 | apply (subgoal_tac "0 * 0 < f x * setprod f F", force) | |
| 1420 | apply (rule mult_strict_mono, assumption+) | |
| 1421 | apply (auto simp add: setprod_def) | |
| 1422 | done | |
| 1423 | ||
| 1424 | lemma setprod_nonzero [rule_format]: | |
| 1425 | "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==> | |
| 1426 | finite A ==> (ALL x: A. f x \<noteq> (0::'a)) --> setprod f A \<noteq> 0" | |
| 1427 | apply (erule finite_induct, auto) | |
| 1428 | done | |
| 1429 | ||
| 1430 | lemma setprod_zero_eq: | |
| 1431 | "(ALL x y. (x::'a::comm_semiring_1_cancel) * y = 0 --> x = 0 | y = 0) ==> | |
| 1432 | finite A ==> (setprod f A = (0::'a)) = (EX x: A. f x = 0)" | |
| 1433 | apply (insert setprod_zero [of A f] setprod_nonzero [of A f], blast) | |
| 1434 | done | |
| 1435 | ||
| 1436 | lemma setprod_nonzero_field: | |
| 1437 | "finite A ==> (ALL x: A. f x \<noteq> (0::'a::field)) ==> setprod f A \<noteq> 0" | |
| 1438 | apply (rule setprod_nonzero, auto) | |
| 1439 | done | |
| 1440 | ||
| 1441 | lemma setprod_zero_eq_field: | |
| 1442 | "finite A ==> (setprod f A = (0::'a::field)) = (EX x: A. f x = 0)" | |
| 1443 | apply (rule setprod_zero_eq, auto) | |
| 1444 | done | |
| 1445 | ||
| 1446 | lemma setprod_Un: "finite A ==> finite B ==> (ALL x: A Int B. f x \<noteq> 0) ==> | |
| 1447 |     (setprod f (A Un B) :: 'a ::{field})
 | |
| 1448 | = setprod f A * setprod f B / setprod f (A Int B)" | |
| 1449 | apply (subst setprod_Un_Int [symmetric], auto) | |
| 1450 | apply (subgoal_tac "finite (A Int B)") | |
| 1451 | apply (frule setprod_nonzero_field [of "A Int B" f], assumption) | |
| 1452 | apply (subst times_divide_eq_right [THEN sym], auto simp add: divide_self) | |
| 1453 | done | |
| 1454 | ||
| 1455 | lemma setprod_diff1: "finite A ==> f a \<noteq> 0 ==> | |
| 1456 |     (setprod f (A - {a}) :: 'a :: {field}) =
 | |
| 1457 | (if a:A then setprod f A / f a else setprod f A)" | |
| 1458 | apply (erule finite_induct) | |
| 1459 | apply (auto simp add: insert_Diff_if) | |
| 1460 | apply (subgoal_tac "f a * setprod f F / f a = setprod f F * f a / f a") | |
| 1461 | apply (erule ssubst) | |
| 1462 | apply (subst times_divide_eq_right [THEN sym]) | |
| 1463 | apply (auto simp add: mult_ac times_divide_eq_right divide_self) | |
| 1464 | done | |
| 1465 | ||
| 1466 | lemma setprod_inversef: "finite A ==> | |
| 1467 |     ALL x: A. f x \<noteq> (0::'a::{field,division_by_zero}) ==>
 | |
| 1468 | setprod (inverse \<circ> f) A = inverse (setprod f A)" | |
| 1469 | apply (erule finite_induct) | |
| 1470 | apply (simp, simp) | |
| 1471 | done | |
| 1472 | ||
| 1473 | lemma setprod_dividef: | |
| 1474 | "[|finite A; | |
| 1475 |         \<forall>x \<in> A. g x \<noteq> (0::'a::{field,division_by_zero})|]
 | |
| 1476 | ==> setprod (%x. f x / g x) A = setprod f A / setprod g A" | |
| 1477 | apply (subgoal_tac | |
| 1478 | "setprod (%x. f x / g x) A = setprod (%x. f x * (inverse \<circ> g) x) A") | |
| 1479 | apply (erule ssubst) | |
| 1480 | apply (subst divide_inverse) | |
| 1481 | apply (subst setprod_timesf) | |
| 1482 | apply (subst setprod_inversef, assumption+, rule refl) | |
| 1483 | apply (rule setprod_cong, rule refl) | |
| 1484 | apply (subst divide_inverse, auto) | |
| 1485 | done | |
| 1486 | ||
| 12396 | 1487 | subsection {* Finite cardinality *}
 | 
| 1488 | ||
| 15402 | 1489 | text {* This definition, although traditional, is ugly to work with:
 | 
| 1490 | @{text "card A == LEAST n. EX f. A = {f i | i. i < n}"}.
 | |
| 1491 | But now that we have @{text setsum} things are easy:
 | |
| 12396 | 1492 | *} | 
| 1493 | ||
| 1494 | constdefs | |
| 1495 | card :: "'a set => nat" | |
| 15402 | 1496 | "card A == setsum (%x. 1::nat) A" | 
| 12396 | 1497 | |
| 1498 | lemma card_empty [simp]: "card {} = 0"
 | |
| 15402 | 1499 | by (simp add: card_def) | 
| 1500 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1501 | lemma card_infinite [simp]: "~ finite A ==> card A = 0" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1502 | by (simp add: card_def) | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1503 | |
| 15402 | 1504 | lemma card_eq_setsum: "card A = setsum (%x. 1) A" | 
| 1505 | by (simp add: card_def) | |
| 12396 | 1506 | |
| 1507 | lemma card_insert_disjoint [simp]: | |
| 1508 | "finite A ==> x \<notin> A ==> card (insert x A) = Suc(card A)" | |
| 15765 | 1509 | by(simp add: card_def) | 
| 15402 | 1510 | |
| 1511 | lemma card_insert_if: | |
| 1512 | "finite A ==> card (insert x A) = (if x:A then card A else Suc(card(A)))" | |
| 1513 | by (simp add: insert_absorb) | |
| 12396 | 1514 | |
| 1515 | lemma card_0_eq [simp]: "finite A ==> (card A = 0) = (A = {})"
 | |
| 1516 | apply auto | |
| 15506 | 1517 | apply (drule_tac a = x in mk_disjoint_insert, clarify, auto) | 
| 12396 | 1518 | done | 
| 1519 | ||
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1520 | lemma card_eq_0_iff: "(card A = 0) = (A = {} | ~ finite A)"
 | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1521 | by auto | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1522 | |
| 12396 | 1523 | lemma card_Suc_Diff1: "finite A ==> x: A ==> Suc (card (A - {x})) = card A"
 | 
| 14302 | 1524 | apply(rule_tac t = A in insert_Diff [THEN subst], assumption) | 
| 1525 | apply(simp del:insert_Diff_single) | |
| 1526 | done | |
| 12396 | 1527 | |
| 1528 | lemma card_Diff_singleton: | |
| 1529 |     "finite A ==> x: A ==> card (A - {x}) = card A - 1"
 | |
| 1530 | by (simp add: card_Suc_Diff1 [symmetric]) | |
| 1531 | ||
| 1532 | lemma card_Diff_singleton_if: | |
| 1533 |     "finite A ==> card (A-{x}) = (if x : A then card A - 1 else card A)"
 | |
| 1534 | by (simp add: card_Diff_singleton) | |
| 1535 | ||
| 1536 | lemma card_insert: "finite A ==> card (insert x A) = Suc (card (A - {x}))"
 | |
| 1537 | by (simp add: card_insert_if card_Suc_Diff1) | |
| 1538 | ||
| 1539 | lemma card_insert_le: "finite A ==> card A <= card (insert x A)" | |
| 1540 | by (simp add: card_insert_if) | |
| 1541 | ||
| 15402 | 1542 | lemma card_mono: "\<lbrakk> finite B; A \<subseteq> B \<rbrakk> \<Longrightarrow> card A \<le> card B" | 
| 15539 | 1543 | by (simp add: card_def setsum_mono2) | 
| 15402 | 1544 | |
| 12396 | 1545 | lemma card_seteq: "finite B ==> (!!A. A <= B ==> card B <= card A ==> A = B)" | 
| 14208 | 1546 | apply (induct set: Finites, simp, clarify) | 
| 12396 | 1547 |   apply (subgoal_tac "finite A & A - {x} <= F")
 | 
| 14208 | 1548 | prefer 2 apply (blast intro: finite_subset, atomize) | 
| 12396 | 1549 |   apply (drule_tac x = "A - {x}" in spec)
 | 
| 1550 | apply (simp add: card_Diff_singleton_if split add: split_if_asm) | |
| 14208 | 1551 | apply (case_tac "card A", auto) | 
| 12396 | 1552 | done | 
| 1553 | ||
| 1554 | lemma psubset_card_mono: "finite B ==> A < B ==> card A < card B" | |
| 1555 | apply (simp add: psubset_def linorder_not_le [symmetric]) | |
| 1556 | apply (blast dest: card_seteq) | |
| 1557 | done | |
| 1558 | ||
| 1559 | lemma card_Un_Int: "finite A ==> finite B | |
| 1560 | ==> card A + card B = card (A Un B) + card (A Int B)" | |
| 15402 | 1561 | by(simp add:card_def setsum_Un_Int) | 
| 12396 | 1562 | |
| 1563 | lemma card_Un_disjoint: "finite A ==> finite B | |
| 1564 |     ==> A Int B = {} ==> card (A Un B) = card A + card B"
 | |
| 1565 | by (simp add: card_Un_Int) | |
| 1566 | ||
| 1567 | lemma card_Diff_subset: | |
| 15402 | 1568 | "finite B ==> B <= A ==> card (A - B) = card A - card B" | 
| 1569 | by(simp add:card_def setsum_diff_nat) | |
| 12396 | 1570 | |
| 1571 | lemma card_Diff1_less: "finite A ==> x: A ==> card (A - {x}) < card A"
 | |
| 1572 | apply (rule Suc_less_SucD) | |
| 1573 | apply (simp add: card_Suc_Diff1) | |
| 1574 | done | |
| 1575 | ||
| 1576 | lemma card_Diff2_less: | |
| 1577 |     "finite A ==> x: A ==> y: A ==> card (A - {x} - {y}) < card A"
 | |
| 1578 | apply (case_tac "x = y") | |
| 1579 | apply (simp add: card_Diff1_less) | |
| 1580 | apply (rule less_trans) | |
| 1581 | prefer 2 apply (auto intro!: card_Diff1_less) | |
| 1582 | done | |
| 1583 | ||
| 1584 | lemma card_Diff1_le: "finite A ==> card (A - {x}) <= card A"
 | |
| 1585 | apply (case_tac "x : A") | |
| 1586 | apply (simp_all add: card_Diff1_less less_imp_le) | |
| 1587 | done | |
| 1588 | ||
| 1589 | lemma card_psubset: "finite B ==> A \<subseteq> B ==> card A < card B ==> A < B" | |
| 14208 | 1590 | by (erule psubsetI, blast) | 
| 12396 | 1591 | |
| 14889 | 1592 | lemma insert_partition: | 
| 15402 | 1593 |   "\<lbrakk> x \<notin> F; \<forall>c1 \<in> insert x F. \<forall>c2 \<in> insert x F. c1 \<noteq> c2 \<longrightarrow> c1 \<inter> c2 = {} \<rbrakk>
 | 
| 1594 |   \<Longrightarrow> x \<inter> \<Union> F = {}"
 | |
| 14889 | 1595 | by auto | 
| 1596 | ||
| 19793 | 1597 | text{* main cardinality theorem *}
 | 
| 14889 | 1598 | lemma card_partition [rule_format]: | 
| 1599 | "finite C ==> | |
| 1600 | finite (\<Union> C) --> | |
| 1601 | (\<forall>c\<in>C. card c = k) --> | |
| 1602 |         (\<forall>c1 \<in> C. \<forall>c2 \<in> C. c1 \<noteq> c2 --> c1 \<inter> c2 = {}) -->  
 | |
| 1603 | k * card(C) = card (\<Union> C)" | |
| 1604 | apply (erule finite_induct, simp) | |
| 1605 | apply (simp add: card_insert_disjoint card_Un_disjoint insert_partition | |
| 1606 | finite_subset [of _ "\<Union> (insert x F)"]) | |
| 1607 | done | |
| 1608 | ||
| 12396 | 1609 | |
| 19793 | 1610 | text{*The form of a finite set of given cardinality*}
 | 
| 1611 | ||
| 1612 | lemma card_eq_SucD: | |
| 1613 | assumes cardeq: "card A = Suc k" and fin: "finite A" | |
| 1614 | shows "\<exists>b B. A = insert b B & b \<notin> B & card B = k" | |
| 1615 | proof - | |
| 1616 | have "card A \<noteq> 0" using cardeq by auto | |
| 1617 | then obtain b where b: "b \<in> A" using fin by auto | |
| 1618 | show ?thesis | |
| 1619 | proof (intro exI conjI) | |
| 1620 |     show "A = insert b (A-{b})" using b by blast
 | |
| 1621 |     show "b \<notin> A - {b}" by blast
 | |
| 1622 |     show "card (A - {b}) = k" by (simp add: fin cardeq b card_Diff_singleton) 
 | |
| 1623 | qed | |
| 1624 | qed | |
| 1625 | ||
| 1626 | ||
| 1627 | lemma card_Suc_eq: | |
| 1628 | "finite A ==> | |
| 1629 | (card A = Suc k) = (\<exists>b B. A = insert b B & b \<notin> B & card B = k)" | |
| 1630 | by (auto dest!: card_eq_SucD) | |
| 1631 | ||
| 1632 | lemma card_1_eq: | |
| 1633 |   "finite A ==> (card A = Suc 0) = (\<exists>x. A = {x})"
 | |
| 1634 | by (auto dest!: card_eq_SucD) | |
| 1635 | ||
| 1636 | lemma card_2_eq: | |
| 1637 |   "finite A ==> (card A = Suc(Suc 0)) = (\<exists>x y. x\<noteq>y & A = {x,y})" 
 | |
| 1638 | by (auto dest!: card_eq_SucD, blast) | |
| 1639 | ||
| 1640 | ||
| 15539 | 1641 | lemma setsum_constant [simp]: "(\<Sum>x \<in> A. y) = of_nat(card A) * y" | 
| 1642 | apply (cases "finite A") | |
| 1643 | apply (erule finite_induct) | |
| 1644 | apply (auto simp add: ring_distrib add_ac) | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1645 | done | 
| 15402 | 1646 | |
| 15539 | 1647 | |
| 16550 | 1648 | lemma setprod_constant: "finite A ==> (\<Prod>x\<in> A. (y::'a::recpower)) = y^(card A)" | 
| 15402 | 1649 | apply (erule finite_induct) | 
| 1650 | apply (auto simp add: power_Suc) | |
| 1651 | done | |
| 1652 | ||
| 15542 | 1653 | lemma setsum_bounded: | 
| 1654 |   assumes le: "\<And>i. i\<in>A \<Longrightarrow> f i \<le> (K::'a::{comm_semiring_1_cancel, pordered_ab_semigroup_add})"
 | |
| 1655 | shows "setsum f A \<le> of_nat(card A) * K" | |
| 1656 | proof (cases "finite A") | |
| 1657 | case True | |
| 1658 | thus ?thesis using le setsum_mono[where K=A and g = "%x. K"] by simp | |
| 1659 | next | |
| 1660 | case False thus ?thesis by (simp add: setsum_def) | |
| 1661 | qed | |
| 1662 | ||
| 15402 | 1663 | |
| 1664 | subsubsection {* Cardinality of unions *}
 | |
| 1665 | ||
| 15539 | 1666 | lemma of_nat_id[simp]: "(of_nat n :: nat) = n" | 
| 1667 | by(induct n, auto) | |
| 1668 | ||
| 15402 | 1669 | lemma card_UN_disjoint: | 
| 1670 | "finite I ==> (ALL i:I. finite (A i)) ==> | |
| 1671 |         (ALL i:I. ALL j:I. i \<noteq> j --> A i Int A j = {}) ==>
 | |
| 1672 | card (UNION I A) = (\<Sum>i\<in>I. card(A i))" | |
| 15539 | 1673 | apply (simp add: card_def del: setsum_constant) | 
| 15402 | 1674 | apply (subgoal_tac | 
| 1675 | "setsum (%i. card (A i)) I = setsum (%i. (setsum (%x. 1) (A i))) I") | |
| 15539 | 1676 | apply (simp add: setsum_UN_disjoint del: setsum_constant) | 
| 1677 | apply (simp cong: setsum_cong) | |
| 15402 | 1678 | done | 
| 1679 | ||
| 1680 | lemma card_Union_disjoint: | |
| 1681 | "finite C ==> (ALL A:C. finite A) ==> | |
| 1682 |         (ALL A:C. ALL B:C. A \<noteq> B --> A Int B = {}) ==>
 | |
| 1683 | card (Union C) = setsum card C" | |
| 1684 | apply (frule card_UN_disjoint [of C id]) | |
| 1685 | apply (unfold Union_def id_def, assumption+) | |
| 1686 | done | |
| 1687 | ||
| 12396 | 1688 | subsubsection {* Cardinality of image *}
 | 
| 1689 | ||
| 15447 | 1690 | text{*The image of a finite set can be expressed using @{term fold}.*}
 | 
| 1691 | lemma image_eq_fold: "finite A ==> f ` A = fold (op Un) (%x. {f x}) {} A"
 | |
| 1692 | apply (erule finite_induct, simp) | |
| 1693 | apply (subst ACf.fold_insert) | |
| 1694 | apply (auto simp add: ACf_def) | |
| 1695 | done | |
| 1696 | ||
| 12396 | 1697 | lemma card_image_le: "finite A ==> card (f ` A) <= card A" | 
| 14208 | 1698 | apply (induct set: Finites, simp) | 
| 12396 | 1699 | apply (simp add: le_SucI finite_imageI card_insert_if) | 
| 1700 | done | |
| 1701 | ||
| 15402 | 1702 | lemma card_image: "inj_on f A ==> card (f ` A) = card A" | 
| 15539 | 1703 | by(simp add:card_def setsum_reindex o_def del:setsum_constant) | 
| 12396 | 1704 | |
| 1705 | lemma endo_inj_surj: "finite A ==> f ` A \<subseteq> A ==> inj_on f A ==> f ` A = A" | |
| 1706 | by (simp add: card_seteq card_image) | |
| 1707 | ||
| 15111 | 1708 | lemma eq_card_imp_inj_on: | 
| 1709 | "[| finite A; card(f ` A) = card A |] ==> inj_on f A" | |
| 15506 | 1710 | apply (induct rule:finite_induct, simp) | 
| 15111 | 1711 | apply(frule card_image_le[where f = f]) | 
| 1712 | apply(simp add:card_insert_if split:if_splits) | |
| 1713 | done | |
| 1714 | ||
| 1715 | lemma inj_on_iff_eq_card: | |
| 1716 | "finite A ==> inj_on f A = (card(f ` A) = card A)" | |
| 1717 | by(blast intro: card_image eq_card_imp_inj_on) | |
| 1718 | ||
| 12396 | 1719 | |
| 15402 | 1720 | lemma card_inj_on_le: | 
| 1721 | "[|inj_on f A; f ` A \<subseteq> B; finite B |] ==> card A \<le> card B" | |
| 1722 | apply (subgoal_tac "finite A") | |
| 1723 | apply (force intro: card_mono simp add: card_image [symmetric]) | |
| 1724 | apply (blast intro: finite_imageD dest: finite_subset) | |
| 1725 | done | |
| 1726 | ||
| 1727 | lemma card_bij_eq: | |
| 1728 | "[|inj_on f A; f ` A \<subseteq> B; inj_on g B; g ` B \<subseteq> A; | |
| 1729 | finite A; finite B |] ==> card A = card B" | |
| 1730 | by (auto intro: le_anti_sym card_inj_on_le) | |
| 1731 | ||
| 1732 | ||
| 1733 | subsubsection {* Cardinality of products *}
 | |
| 1734 | ||
| 1735 | (* | |
| 1736 | lemma SigmaI_insert: "y \<notin> A ==> | |
| 1737 |   (SIGMA x:(insert y A). B x) = (({y} <*> (B y)) \<union> (SIGMA x: A. B x))"
 | |
| 1738 | by auto | |
| 1739 | *) | |
| 1740 | ||
| 1741 | lemma card_SigmaI [simp]: | |
| 1742 | "\<lbrakk> finite A; ALL a:A. finite (B a) \<rbrakk> | |
| 1743 | \<Longrightarrow> card (SIGMA x: A. B x) = (\<Sum>a\<in>A. card (B a))" | |
| 15539 | 1744 | by(simp add:card_def setsum_Sigma del:setsum_constant) | 
| 15402 | 1745 | |
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1746 | lemma card_cartesian_product: "card (A <*> B) = card(A) * card(B)" | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1747 | apply (cases "finite A") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1748 | apply (cases "finite B") | 
| 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1749 | apply (auto simp add: card_eq_0_iff | 
| 15539 | 1750 | dest: finite_cartesian_productD1 finite_cartesian_productD2) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1751 | done | 
| 15402 | 1752 | |
| 1753 | lemma card_cartesian_product_singleton:  "card({x} <*> A) = card(A)"
 | |
| 15539 | 1754 | by (simp add: card_cartesian_product) | 
| 15409 
a063687d24eb
new and stronger lemmas and improved simplification for finite sets
 paulson parents: 
15402diff
changeset | 1755 | |
| 15402 | 1756 | |
| 1757 | ||
| 12396 | 1758 | subsubsection {* Cardinality of the Powerset *}
 | 
| 1759 | ||
| 1760 | lemma card_Pow: "finite A ==> card (Pow A) = Suc (Suc 0) ^ card A" (* FIXME numeral 2 (!?) *) | |
| 1761 | apply (induct set: Finites) | |
| 1762 | apply (simp_all add: Pow_insert) | |
| 14208 | 1763 | apply (subst card_Un_disjoint, blast) | 
| 1764 | apply (blast intro: finite_imageI, blast) | |
| 12396 | 1765 | apply (subgoal_tac "inj_on (insert x) (Pow F)") | 
| 1766 | apply (simp add: card_image Pow_insert) | |
| 1767 | apply (unfold inj_on_def) | |
| 1768 | apply (blast elim!: equalityE) | |
| 1769 | done | |
| 1770 | ||
| 15392 | 1771 | text {* Relates to equivalence classes.  Based on a theorem of
 | 
| 1772 | F. Kammüller's. *} | |
| 12396 | 1773 | |
| 1774 | lemma dvd_partition: | |
| 15392 | 1775 | "finite (Union C) ==> | 
| 12396 | 1776 | ALL c : C. k dvd card c ==> | 
| 14430 
5cb24165a2e1
new material from Avigad, and simplified treatment of division by 0
 paulson parents: 
14331diff
changeset | 1777 |     (ALL c1: C. ALL c2: C. c1 \<noteq> c2 --> c1 Int c2 = {}) ==>
 | 
| 12396 | 1778 | k dvd card (Union C)" | 
| 15392 | 1779 | apply(frule finite_UnionD) | 
| 1780 | apply(rotate_tac -1) | |
| 14208 | 1781 | apply (induct set: Finites, simp_all, clarify) | 
| 12396 | 1782 | apply (subst card_Un_disjoint) | 
| 1783 | apply (auto simp add: dvd_add disjoint_eq_subset_Compl) | |
| 1784 | done | |
| 1785 | ||
| 1786 | ||
| 15392 | 1787 | subsection{* A fold functional for non-empty sets *}
 | 
| 1788 | ||
| 1789 | text{* Does not require start value. *}
 | |
| 12396 | 1790 | |
| 15392 | 1791 | consts | 
| 15506 | 1792 |   fold1Set :: "('a => 'a => 'a) => ('a set \<times> 'a) set"
 | 
| 15392 | 1793 | |
| 15506 | 1794 | inductive "fold1Set f" | 
| 15392 | 1795 | intros | 
| 15506 | 1796 | fold1Set_insertI [intro]: | 
| 1797 | "\<lbrakk> (A,x) \<in> foldSet f id a; a \<notin> A \<rbrakk> \<Longrightarrow> (insert a A, x) \<in> fold1Set f" | |
| 12396 | 1798 | |
| 15392 | 1799 | constdefs | 
| 1800 |   fold1 :: "('a => 'a => 'a) => 'a set => 'a"
 | |
| 15506 | 1801 | "fold1 f A == THE x. (A, x) : fold1Set f" | 
| 1802 | ||
| 1803 | lemma fold1Set_nonempty: | |
| 1804 |  "(A, x) : fold1Set f \<Longrightarrow> A \<noteq> {}"
 | |
| 1805 | by(erule fold1Set.cases, simp_all) | |
| 1806 | ||
| 15392 | 1807 | |
| 15506 | 1808 | inductive_cases empty_fold1SetE [elim!]: "({}, x) : fold1Set f"
 | 
| 1809 | ||
| 1810 | inductive_cases insert_fold1SetE [elim!]: "(insert a X, x) : fold1Set f" | |
| 1811 | ||
| 1812 | ||
| 1813 | lemma fold1Set_sing [iff]: "(({a},b) : fold1Set f) = (a = b)"
 | |
| 1814 | by (blast intro: foldSet.intros elim: foldSet.cases) | |
| 15392 | 1815 | |
| 15508 | 1816 | lemma fold1_singleton[simp]: "fold1 f {a} = a"
 | 
| 1817 | by (unfold fold1_def) blast | |
| 12396 | 1818 | |
| 15508 | 1819 | lemma finite_nonempty_imp_fold1Set: | 
| 1820 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> EX x. (A, x) : fold1Set f"
 | |
| 1821 | apply (induct A rule: finite_induct) | |
| 1822 | apply (auto dest: finite_imp_foldSet [of _ f id]) | |
| 1823 | done | |
| 15506 | 1824 | |
| 1825 | text{*First, some lemmas about @{term foldSet}.*}
 | |
| 15392 | 1826 | |
| 15508 | 1827 | lemma (in ACf) foldSet_insert_swap: | 
| 1828 | assumes fold: "(A,y) \<in> foldSet f id b" | |
| 15521 | 1829 | shows "b \<notin> A \<Longrightarrow> (insert b A, z \<cdot> y) \<in> foldSet f id z" | 
| 15508 | 1830 | using fold | 
| 1831 | proof (induct rule: foldSet.induct) | |
| 1832 | case emptyI thus ?case by (force simp add: fold_insert_aux commute) | |
| 1833 | next | |
| 1834 | case (insertI A x y) | |
| 1835 | have "(insert x (insert b A), x \<cdot> (z \<cdot> y)) \<in> foldSet f (\<lambda>u. u) z" | |
| 15521 | 1836 |       using insertI by force  --{*how does @{term id} get unfolded?*}
 | 
| 15508 | 1837 | thus ?case by (simp add: insert_commute AC) | 
| 1838 | qed | |
| 1839 | ||
| 1840 | lemma (in ACf) foldSet_permute_diff: | |
| 1841 | assumes fold: "(A,x) \<in> foldSet f id b" | |
| 1842 | shows "!!a. \<lbrakk>a \<in> A; b \<notin> A\<rbrakk> \<Longrightarrow> (insert b (A-{a}), x) \<in> foldSet f id a"
 | |
| 1843 | using fold | |
| 1844 | proof (induct rule: foldSet.induct) | |
| 1845 | case emptyI thus ?case by simp | |
| 1846 | next | |
| 1847 | case (insertI A x y) | |
| 15521 | 1848 | have "a = x \<or> a \<in> A" using insertI by simp | 
| 1849 | thus ?case | |
| 1850 | proof | |
| 1851 | assume "a = x" | |
| 1852 | with insertI show ?thesis | |
| 1853 | by (simp add: id_def [symmetric], blast intro: foldSet_insert_swap) | |
| 1854 | next | |
| 1855 | assume ainA: "a \<in> A" | |
| 1856 |     hence "(insert x (insert b (A - {a})), x \<cdot> y) \<in> foldSet f id a"
 | |
| 1857 | using insertI by (force simp: id_def) | |
| 1858 | moreover | |
| 1859 |     have "insert x (insert b (A - {a})) = insert b (insert x A - {a})"
 | |
| 1860 | using ainA insertI by blast | |
| 1861 | ultimately show ?thesis by (simp add: id_def) | |
| 15508 | 1862 | qed | 
| 1863 | qed | |
| 1864 | ||
| 1865 | lemma (in ACf) fold1_eq_fold: | |
| 1866 | "[|finite A; a \<notin> A|] ==> fold1 f (insert a A) = fold f id a A" | |
| 1867 | apply (simp add: fold1_def fold_def) | |
| 1868 | apply (rule the_equality) | |
| 1869 | apply (best intro: foldSet_determ theI dest: finite_imp_foldSet [of _ f id]) | |
| 1870 | apply (rule sym, clarify) | |
| 1871 | apply (case_tac "Aa=A") | |
| 1872 | apply (best intro: the_equality foldSet_determ) | |
| 1873 | apply (subgoal_tac "(A,x) \<in> foldSet f id a") | |
| 1874 | apply (best intro: the_equality foldSet_determ) | |
| 1875 | apply (subgoal_tac "insert aa (Aa - {a}) = A") 
 | |
| 1876 | prefer 2 apply (blast elim: equalityE) | |
| 1877 | apply (auto dest: foldSet_permute_diff [where a=a]) | |
| 1878 | done | |
| 1879 | ||
| 15521 | 1880 | lemma nonempty_iff: "(A \<noteq> {}) = (\<exists>x B. A = insert x B & x \<notin> B)"
 | 
| 1881 | apply safe | |
| 1882 | apply simp | |
| 1883 | apply (drule_tac x=x in spec) | |
| 1884 | apply (drule_tac x="A-{x}" in spec, auto) 
 | |
| 15508 | 1885 | done | 
| 1886 | ||
| 15521 | 1887 | lemma (in ACf) fold1_insert: | 
| 1888 |   assumes nonempty: "A \<noteq> {}" and A: "finite A" "x \<notin> A"
 | |
| 1889 | shows "fold1 f (insert x A) = f x (fold1 f A)" | |
| 1890 | proof - | |
| 1891 | from nonempty obtain a A' where "A = insert a A' & a ~: A'" | |
| 1892 | by (auto simp add: nonempty_iff) | |
| 1893 | with A show ?thesis | |
| 1894 | by (simp add: insert_commute [of x] fold1_eq_fold eq_commute) | |
| 1895 | qed | |
| 1896 | ||
| 15509 | 1897 | lemma (in ACIf) fold1_insert_idem [simp]: | 
| 15521 | 1898 |   assumes nonempty: "A \<noteq> {}" and A: "finite A" 
 | 
| 1899 | shows "fold1 f (insert x A) = f x (fold1 f A)" | |
| 1900 | proof - | |
| 1901 | from nonempty obtain a A' where A': "A = insert a A' & a ~: A'" | |
| 1902 | by (auto simp add: nonempty_iff) | |
| 1903 | show ?thesis | |
| 1904 | proof cases | |
| 1905 | assume "a = x" | |
| 1906 | thus ?thesis | |
| 1907 | proof cases | |
| 1908 |       assume "A' = {}"
 | |
| 1909 | with prems show ?thesis by (simp add: idem) | |
| 1910 | next | |
| 1911 |       assume "A' \<noteq> {}"
 | |
| 1912 | with prems show ?thesis | |
| 1913 | by (simp add: fold1_insert assoc [symmetric] idem) | |
| 1914 | qed | |
| 1915 | next | |
| 1916 | assume "a \<noteq> x" | |
| 1917 | with prems show ?thesis | |
| 1918 | by (simp add: insert_commute fold1_eq_fold fold_insert_idem) | |
| 1919 | qed | |
| 1920 | qed | |
| 15506 | 1921 | |
| 1922 | ||
| 15508 | 1923 | text{* Now the recursion rules for definitions: *}
 | 
| 1924 | ||
| 1925 | lemma fold1_singleton_def: "g \<equiv> fold1 f \<Longrightarrow> g {a} = a"
 | |
| 1926 | by(simp add:fold1_singleton) | |
| 1927 | ||
| 1928 | lemma (in ACf) fold1_insert_def: | |
| 1929 |   "\<lbrakk> g \<equiv> fold1 f; finite A; x \<notin> A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g(insert x A) = x \<cdot> (g A)"
 | |
| 1930 | by(simp add:fold1_insert) | |
| 1931 | ||
| 15509 | 1932 | lemma (in ACIf) fold1_insert_idem_def: | 
| 15508 | 1933 |   "\<lbrakk> g \<equiv> fold1 f; finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> g(insert x A) = x \<cdot> (g A)"
 | 
| 15509 | 1934 | by(simp add:fold1_insert_idem) | 
| 15508 | 1935 | |
| 1936 | subsubsection{* Determinacy for @{term fold1Set} *}
 | |
| 1937 | ||
| 1938 | text{*Not actually used!!*}
 | |
| 12396 | 1939 | |
| 15506 | 1940 | lemma (in ACf) foldSet_permute: | 
| 1941 | "[|(insert a A, x) \<in> foldSet f id b; a \<notin> A; b \<notin> A|] | |
| 1942 | ==> (insert b A, x) \<in> foldSet f id a" | |
| 1943 | apply (case_tac "a=b") | |
| 1944 | apply (auto dest: foldSet_permute_diff) | |
| 1945 | done | |
| 15376 | 1946 | |
| 15506 | 1947 | lemma (in ACf) fold1Set_determ: | 
| 1948 | "(A, x) \<in> fold1Set f ==> (A, y) \<in> fold1Set f ==> y = x" | |
| 1949 | proof (clarify elim!: fold1Set.cases) | |
| 1950 | fix A x B y a b | |
| 1951 | assume Ax: "(A, x) \<in> foldSet f id a" | |
| 1952 | assume By: "(B, y) \<in> foldSet f id b" | |
| 1953 | assume anotA: "a \<notin> A" | |
| 1954 | assume bnotB: "b \<notin> B" | |
| 1955 | assume eq: "insert a A = insert b B" | |
| 1956 | show "y=x" | |
| 1957 | proof cases | |
| 1958 | assume same: "a=b" | |
| 1959 | hence "A=B" using anotA bnotB eq by (blast elim!: equalityE) | |
| 1960 | thus ?thesis using Ax By same by (blast intro: foldSet_determ) | |
| 15392 | 1961 | next | 
| 15506 | 1962 | assume diff: "a\<noteq>b" | 
| 1963 |     let ?D = "B - {a}"
 | |
| 1964 | have B: "B = insert a ?D" and A: "A = insert b ?D" | |
| 1965 | and aB: "a \<in> B" and bA: "b \<in> A" | |
| 1966 | using eq anotA bnotB diff by (blast elim!:equalityE)+ | |
| 1967 | with aB bnotB By | |
| 1968 | have "(insert b ?D, y) \<in> foldSet f id a" | |
| 1969 | by (auto intro: foldSet_permute simp add: insert_absorb) | |
| 1970 | moreover | |
| 1971 | have "(insert b ?D, x) \<in> foldSet f id a" | |
| 1972 | by (simp add: A [symmetric] Ax) | |
| 1973 | ultimately show ?thesis by (blast intro: foldSet_determ) | |
| 15392 | 1974 | qed | 
| 12396 | 1975 | qed | 
| 1976 | ||
| 15506 | 1977 | lemma (in ACf) fold1Set_equality: "(A, y) : fold1Set f ==> fold1 f A = y" | 
| 1978 | by (unfold fold1_def) (blast intro: fold1Set_determ) | |
| 1979 | ||
| 1980 | declare | |
| 1981 | empty_foldSetE [rule del] foldSet.intros [rule del] | |
| 1982 | empty_fold1SetE [rule del] insert_fold1SetE [rule del] | |
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 1983 |   -- {* No more proofs involve these relations. *}
 | 
| 15376 | 1984 | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1985 | subsubsection{* Semi-Lattices *}
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1986 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1987 | locale ACIfSL = ACIf + | 
| 15500 | 1988 | fixes below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubseteq>" 50) | 
| 18493 | 1989 | and strict_below :: "'a \<Rightarrow> 'a \<Rightarrow> bool" (infixl "\<sqsubset>" 50) | 
| 15500 | 1990 | assumes below_def: "(x \<sqsubseteq> y) = (x\<cdot>y = x)" | 
| 18493 | 1991 | defines strict_below_def: "(x \<sqsubset> y) \<equiv> (x \<sqsubseteq> y \<and> x \<noteq> y)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1992 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1993 | locale ACIfSLlin = ACIfSL + | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1994 |   assumes lin: "x\<cdot>y \<in> {x,y}"
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1995 | |
| 15500 | 1996 | lemma (in ACIfSL) below_refl[simp]: "x \<sqsubseteq> x" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1997 | by(simp add: below_def idem) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 1998 | |
| 15500 | 1999 | lemma (in ACIfSL) below_f_conv[simp]: "x \<sqsubseteq> y \<cdot> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2000 | proof | 
| 15500 | 2001 | assume "x \<sqsubseteq> y \<cdot> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2002 | hence xyzx: "x \<cdot> (y \<cdot> z) = x" by(simp add: below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2003 | have "x \<cdot> y = x" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2004 | proof - | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2005 | have "x \<cdot> y = (x \<cdot> (y \<cdot> z)) \<cdot> y" by(rule subst[OF xyzx], rule refl) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2006 | also have "\<dots> = x \<cdot> (y \<cdot> z)" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2007 | also have "\<dots> = x" by(rule xyzx) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2008 | finally show ?thesis . | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2009 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2010 | moreover have "x \<cdot> z = x" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2011 | proof - | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2012 | have "x \<cdot> z = (x \<cdot> (y \<cdot> z)) \<cdot> z" by(rule subst[OF xyzx], rule refl) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2013 | also have "\<dots> = x \<cdot> (y \<cdot> z)" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2014 | also have "\<dots> = x" by(rule xyzx) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2015 | finally show ?thesis . | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2016 | qed | 
| 15500 | 2017 | ultimately show "x \<sqsubseteq> y \<and> x \<sqsubseteq> z" by(simp add: below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2018 | next | 
| 15500 | 2019 | assume a: "x \<sqsubseteq> y \<and> x \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2020 | hence y: "x \<cdot> y = x" and z: "x \<cdot> z = x" by(simp_all add: below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2021 | have "x \<cdot> (y \<cdot> z) = (x \<cdot> y) \<cdot> z" by(simp add:assoc) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2022 | also have "x \<cdot> y = x" using a by(simp_all add: below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2023 | also have "x \<cdot> z = x" using a by(simp_all add: below_def) | 
| 15500 | 2024 | finally show "x \<sqsubseteq> y \<cdot> z" by(simp_all add: below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2025 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2026 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2027 | lemma (in ACIfSLlin) above_f_conv: | 
| 15500 | 2028 | "x \<cdot> y \<sqsubseteq> z = (x \<sqsubseteq> z \<or> y \<sqsubseteq> z)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2029 | proof | 
| 15500 | 2030 | assume a: "x \<cdot> y \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2031 | have "x \<cdot> y = x \<or> x \<cdot> y = y" using lin[of x y] by simp | 
| 15500 | 2032 | thus "x \<sqsubseteq> z \<or> y \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2033 | proof | 
| 15500 | 2034 | assume "x \<cdot> y = x" hence "x \<sqsubseteq> z" by(rule subst)(rule a) thus ?thesis .. | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2035 | next | 
| 15500 | 2036 | assume "x \<cdot> y = y" hence "y \<sqsubseteq> z" by(rule subst)(rule a) thus ?thesis .. | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2037 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2038 | next | 
| 15500 | 2039 | assume "x \<sqsubseteq> z \<or> y \<sqsubseteq> z" | 
| 2040 | thus "x \<cdot> y \<sqsubseteq> z" | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2041 | proof | 
| 15500 | 2042 | assume a: "x \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2043 | have "(x \<cdot> y) \<cdot> z = (x \<cdot> z) \<cdot> y" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2044 | also have "x \<cdot> z = x" using a by(simp add:below_def) | 
| 15500 | 2045 | finally show "x \<cdot> y \<sqsubseteq> z" by(simp add:below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2046 | next | 
| 15500 | 2047 | assume a: "y \<sqsubseteq> z" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2048 | have "(x \<cdot> y) \<cdot> z = x \<cdot> (y \<cdot> z)" by(simp add:ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2049 | also have "y \<cdot> z = y" using a by(simp add:below_def) | 
| 15500 | 2050 | finally show "x \<cdot> y \<sqsubseteq> z" by(simp add:below_def) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2051 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2052 | qed | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2053 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2054 | |
| 18493 | 2055 | lemma (in ACIfSLlin) strict_below_f_conv[simp]: "x \<sqsubset> y \<cdot> z = (x \<sqsubset> y \<and> x \<sqsubset> z)" | 
| 2056 | apply(simp add: strict_below_def) | |
| 2057 | using lin[of y z] by (auto simp:below_def ACI) | |
| 2058 | ||
| 2059 | ||
| 2060 | lemma (in ACIfSLlin) strict_above_f_conv: | |
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 2061 | "x \<cdot> y \<sqsubset> z = (x \<sqsubset> z \<or> y \<sqsubset> z)" | 
| 18493 | 2062 | apply(simp add: strict_below_def above_f_conv) | 
| 2063 | using lin[of y z] lin[of x z] by (auto simp:below_def ACI) | |
| 2064 | ||
| 2065 | ||
| 15502 | 2066 | subsubsection{* Lemmas about @{text fold1} *}
 | 
| 15484 | 2067 | |
| 2068 | lemma (in ACf) fold1_Un: | |
| 2069 | assumes A: "finite A" "A \<noteq> {}"
 | |
| 2070 | shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow> A Int B = {} \<Longrightarrow>
 | |
| 2071 | fold1 f (A Un B) = f (fold1 f A) (fold1 f B)" | |
| 2072 | using A | |
| 2073 | proof(induct rule:finite_ne_induct) | |
| 2074 | case singleton thus ?case by(simp add:fold1_insert) | |
| 2075 | next | |
| 2076 | case insert thus ?case by (simp add:fold1_insert assoc) | |
| 2077 | qed | |
| 2078 | ||
| 2079 | lemma (in ACIf) fold1_Un2: | |
| 2080 | assumes A: "finite A" "A \<noteq> {}"
 | |
| 2081 | shows "finite B \<Longrightarrow> B \<noteq> {} \<Longrightarrow>
 | |
| 2082 | fold1 f (A Un B) = f (fold1 f A) (fold1 f B)" | |
| 2083 | using A | |
| 2084 | proof(induct rule:finite_ne_induct) | |
| 15509 | 2085 | case singleton thus ?case by(simp add:fold1_insert_idem) | 
| 15484 | 2086 | next | 
| 15509 | 2087 | case insert thus ?case by (simp add:fold1_insert_idem assoc) | 
| 15484 | 2088 | qed | 
| 2089 | ||
| 2090 | lemma (in ACf) fold1_in: | |
| 2091 |   assumes A: "finite (A)" "A \<noteq> {}" and elem: "\<And>x y. x\<cdot>y \<in> {x,y}"
 | |
| 2092 | shows "fold1 f A \<in> A" | |
| 2093 | using A | |
| 2094 | proof (induct rule:finite_ne_induct) | |
| 15506 | 2095 | case singleton thus ?case by simp | 
| 15484 | 2096 | next | 
| 2097 | case insert thus ?case using elem by (force simp add:fold1_insert) | |
| 2098 | qed | |
| 2099 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2100 | lemma (in ACIfSL) below_fold1_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2101 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 15500 | 2102 | shows "x \<sqsubseteq> fold1 f A = (\<forall>a\<in>A. x \<sqsubseteq> a)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2103 | using A | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2104 | by(induct rule:finite_ne_induct) simp_all | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2105 | |
| 18493 | 2106 | lemma (in ACIfSLlin) strict_below_fold1_iff: | 
| 2107 |   "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> x \<sqsubset> fold1 f A = (\<forall>a\<in>A. x \<sqsubset> a)"
 | |
| 2108 | by(induct rule:finite_ne_induct) simp_all | |
| 2109 | ||
| 2110 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2111 | lemma (in ACIfSL) fold1_belowI: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2112 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 15500 | 2113 | shows "a \<in> A \<Longrightarrow> fold1 f A \<sqsubseteq> a" | 
| 15484 | 2114 | using A | 
| 2115 | proof (induct rule:finite_ne_induct) | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2116 | case singleton thus ?case by simp | 
| 15484 | 2117 | next | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2118 | case (insert x F) | 
| 15517 | 2119 | from insert(5) have "a = x \<or> a \<in> F" by simp | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2120 | thus ?case | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2121 | proof | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2122 | assume "a = x" thus ?thesis using insert by(simp add:below_def ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2123 | next | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2124 | assume "a \<in> F" | 
| 15508 | 2125 | hence bel: "fold1 f F \<sqsubseteq> a" by(rule insert) | 
| 2126 | have "fold1 f (insert x F) \<cdot> a = x \<cdot> (fold1 f F \<cdot> a)" | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2127 | using insert by(simp add:below_def ACI) | 
| 15508 | 2128 | also have "fold1 f F \<cdot> a = fold1 f F" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2129 | using bel by(simp add:below_def ACI) | 
| 15508 | 2130 | also have "x \<cdot> \<dots> = fold1 f (insert x F)" | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2131 | using insert by(simp add:below_def ACI) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2132 | finally show ?thesis by(simp add:below_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2133 | qed | 
| 15484 | 2134 | qed | 
| 2135 | ||
| 18493 | 2136 | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2137 | lemma (in ACIfSLlin) fold1_below_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2138 | assumes A: "finite A" "A \<noteq> {}"
 | 
| 15500 | 2139 | shows "fold1 f A \<sqsubseteq> x = (\<exists>a\<in>A. a \<sqsubseteq> x)" | 
| 15484 | 2140 | using A | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2141 | by(induct rule:finite_ne_induct)(simp_all add:above_f_conv) | 
| 15484 | 2142 | |
| 18493 | 2143 | lemma (in ACIfSLlin) fold1_strict_below_iff: | 
| 2144 | assumes A: "finite A" "A \<noteq> {}"
 | |
| 2145 | shows "fold1 f A \<sqsubset> x = (\<exists>a\<in>A. a \<sqsubset> x)" | |
| 2146 | using A | |
| 2147 | by(induct rule:finite_ne_induct)(simp_all add:strict_above_f_conv) | |
| 2148 | ||
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2149 | |
| 18423 | 2150 | lemma (in ACIfSLlin) fold1_antimono: | 
| 2151 | assumes "A \<noteq> {}" and "A \<subseteq> B" and "finite B"
 | |
| 2152 | shows "fold1 f B \<sqsubseteq> fold1 f A" | |
| 2153 | proof(cases) | |
| 2154 | assume "A = B" thus ?thesis by simp | |
| 2155 | next | |
| 2156 | assume "A \<noteq> B" | |
| 2157 | have B: "B = A \<union> (B-A)" using `A \<subseteq> B` by blast | |
| 2158 | have "fold1 f B = fold1 f (A \<union> (B-A))" by(subst B)(rule refl) | |
| 2159 | also have "\<dots> = f (fold1 f A) (fold1 f (B-A))" | |
| 2160 | proof - | |
| 2161 | have "finite A" by(rule finite_subset[OF `A \<subseteq> B` `finite B`]) | |
| 18493 | 2162 | moreover have "finite(B-A)" by(rule finite_Diff[OF `finite B`]) (* by(blast intro:finite_Diff prems) fails *) | 
| 18423 | 2163 |     moreover have "(B-A) \<noteq> {}" using prems by blast
 | 
| 2164 |     moreover have "A Int (B-A) = {}" using prems by blast
 | |
| 2165 |     ultimately show ?thesis using `A \<noteq> {}` by(rule_tac fold1_Un)
 | |
| 2166 | qed | |
| 2167 | also have "\<dots> \<sqsubseteq> fold1 f A" by(simp add: above_f_conv) | |
| 2168 | finally show ?thesis . | |
| 2169 | qed | |
| 2170 | ||
| 2171 | ||
| 18493 | 2172 | |
| 15500 | 2173 | subsubsection{* Lattices *}
 | 
| 2174 | ||
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2175 | locale Lattice = lattice + | 
| 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2176 |   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 | 
| 15500 | 2177 |   and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 | 
| 2178 | defines "Inf == fold1 inf" and "Sup == fold1 sup" | |
| 2179 | ||
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2180 | locale Distrib_Lattice = distrib_lattice + Lattice | 
| 15504 | 2181 | |
| 15500 | 2182 | text{* Lattices are semilattices *}
 | 
| 2183 | ||
| 2184 | lemma (in Lattice) ACf_inf: "ACf inf" | |
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2185 | by(blast intro: ACf.intro inf_commute inf_assoc) | 
| 15500 | 2186 | |
| 2187 | lemma (in Lattice) ACf_sup: "ACf sup" | |
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2188 | by(blast intro: ACf.intro sup_commute sup_assoc) | 
| 15500 | 2189 | |
| 2190 | lemma (in Lattice) ACIf_inf: "ACIf inf" | |
| 2191 | apply(rule ACIf.intro) | |
| 2192 | apply(rule ACf_inf) | |
| 2193 | apply(rule ACIf_axioms.intro) | |
| 2194 | apply(rule inf_idem) | |
| 2195 | done | |
| 2196 | ||
| 2197 | lemma (in Lattice) ACIf_sup: "ACIf sup" | |
| 2198 | apply(rule ACIf.intro) | |
| 2199 | apply(rule ACf_sup) | |
| 2200 | apply(rule ACIf_axioms.intro) | |
| 2201 | apply(rule sup_idem) | |
| 2202 | done | |
| 2203 | ||
| 2204 | lemma (in Lattice) ACIfSL_inf: "ACIfSL inf (op \<sqsubseteq>)" | |
| 2205 | apply(rule ACIfSL.intro) | |
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 2206 | apply(rule ACIf.intro) | 
| 15500 | 2207 | apply(rule ACf_inf) | 
| 2208 | apply(rule ACIf.axioms[OF ACIf_inf]) | |
| 2209 | apply(rule ACIfSL_axioms.intro) | |
| 2210 | apply(rule iffI) | |
| 2211 | apply(blast intro: antisym inf_le1 inf_le2 inf_least refl) | |
| 2212 | apply(erule subst) | |
| 2213 | apply(rule inf_le2) | |
| 2214 | done | |
| 2215 | ||
| 2216 | lemma (in Lattice) ACIfSL_sup: "ACIfSL sup (%x y. y \<sqsubseteq> x)" | |
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2217 | (* FIXME: insert ACf_sup and use unfold_locales *) | 
| 15500 | 2218 | apply(rule ACIfSL.intro) | 
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 2219 | apply(rule ACIf.intro) | 
| 15500 | 2220 | apply(rule ACf_sup) | 
| 2221 | apply(rule ACIf.axioms[OF ACIf_sup]) | |
| 2222 | apply(rule ACIfSL_axioms.intro) | |
| 2223 | apply(rule iffI) | |
| 2224 | apply(blast intro: antisym sup_ge1 sup_ge2 sup_greatest refl) | |
| 2225 | apply(erule subst) | |
| 2226 | apply(rule sup_ge2) | |
| 2227 | done | |
| 2228 | ||
| 15505 | 2229 | |
| 2230 | subsubsection{* Fold laws in lattices *}
 | |
| 15500 | 2231 | |
| 15780 | 2232 | lemma (in Lattice) Inf_le_Sup[simp]: "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> \<Sqinter>A \<sqsubseteq> \<Squnion>A"
 | 
| 15500 | 2233 | apply(unfold Sup_def Inf_def) | 
| 2234 | apply(subgoal_tac "EX a. a:A") | |
| 2235 | prefer 2 apply blast | |
| 2236 | apply(erule exE) | |
| 2237 | apply(rule trans) | |
| 2238 | apply(erule (2) ACIfSL.fold1_belowI[OF ACIfSL_inf]) | |
| 2239 | apply(erule (2) ACIfSL.fold1_belowI[OF ACIfSL_sup]) | |
| 2240 | done | |
| 2241 | ||
| 15780 | 2242 | lemma (in Lattice) sup_Inf_absorb[simp]: | 
| 15504 | 2243 |   "\<lbrakk> finite A; A \<noteq> {}; a \<in> A \<rbrakk> \<Longrightarrow> (a \<squnion> \<Sqinter>A) = a"
 | 
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2244 | apply(subst sup_commute) | 
| 15504 | 2245 | apply(simp add:Inf_def sup_absorb ACIfSL.fold1_belowI[OF ACIfSL_inf]) | 
| 2246 | done | |
| 2247 | ||
| 15780 | 2248 | lemma (in Lattice) inf_Sup_absorb[simp]: | 
| 15504 | 2249 |   "\<lbrakk> finite A; A \<noteq> {}; a \<in> A \<rbrakk> \<Longrightarrow> (a \<sqinter> \<Squnion>A) = a"
 | 
| 2250 | by(simp add:Sup_def inf_absorb ACIfSL.fold1_belowI[OF ACIfSL_sup]) | |
| 2251 | ||
| 2252 | ||
| 18423 | 2253 | lemma (in ACIf) hom_fold1_commute: | 
| 2254 | assumes hom: "!!x y. h(f x y) = f (h x) (h y)" | |
| 2255 | and N: "finite N" "N \<noteq> {}" shows "h(fold1 f N) = fold1 f (h ` N)"
 | |
| 2256 | using N proof (induct rule: finite_ne_induct) | |
| 2257 | case singleton thus ?case by simp | |
| 15500 | 2258 | next | 
| 18423 | 2259 | case (insert n N) | 
| 2260 | have "h(fold1 f (insert n N)) = h(f n (fold1 f N))" using insert by(simp) | |
| 2261 | also have "\<dots> = f (h n) (h(fold1 f N))" by(rule hom) | |
| 2262 | also have "h(fold1 f N) = fold1 f (h ` N)" by(rule insert) | |
| 2263 | also have "f (h n) \<dots> = fold1 f (insert (h n) (h ` N))" | |
| 2264 | using insert by(simp) | |
| 2265 | also have "insert (h n) (h ` N) = h ` insert n N" by simp | |
| 15500 | 2266 | finally show ?case . | 
| 2267 | qed | |
| 2268 | ||
| 18423 | 2269 | lemma (in Distrib_Lattice) sup_Inf1_distrib: | 
| 2270 |  "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> (x \<squnion> \<Sqinter>A) = \<Sqinter>{x \<squnion> a|a. a \<in> A}"
 | |
| 2271 | apply(simp add:Inf_def image_def | |
| 2272 | ACIf.hom_fold1_commute[OF ACIf_inf, where h="sup x", OF sup_inf_distrib1]) | |
| 2273 | apply(rule arg_cong, blast) | |
| 2274 | done | |
| 2275 | ||
| 2276 | ||
| 15512 
ed1fa4617f52
Extracted generic lattice stuff to new Lattice_Locales.thy
 nipkow parents: 
15510diff
changeset | 2277 | lemma (in Distrib_Lattice) sup_Inf2_distrib: | 
| 15500 | 2278 | assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
 | 
| 2279 | shows "(\<Sqinter>A \<squnion> \<Sqinter>B) = \<Sqinter>{a \<squnion> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2280 | using A | |
| 2281 | proof (induct rule: finite_ne_induct) | |
| 2282 | case singleton thus ?case | |
| 2283 | by(simp add: sup_Inf1_distrib[OF B] fold1_singleton_def[OF Inf_def]) | |
| 2284 | next | |
| 2285 | case (insert x A) | |
| 2286 |   have finB: "finite {x \<squnion> b |b. b \<in> B}"
 | |
| 15517 | 2287 | by(fast intro: finite_surj[where f = "%b. x \<squnion> b", OF B(1)]) | 
| 15500 | 2288 |   have finAB: "finite {a \<squnion> b |a b. a \<in> A \<and> b \<in> B}"
 | 
| 2289 | proof - | |
| 2290 |     have "{a \<squnion> b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {a \<squnion> b})"
 | |
| 2291 | by blast | |
| 15517 | 2292 | thus ?thesis by(simp add: insert(1) B(1)) | 
| 15500 | 2293 | qed | 
| 2294 |   have ne: "{a \<squnion> b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
 | |
| 2295 | have "\<Sqinter>(insert x A) \<squnion> \<Sqinter>B = (x \<sqinter> \<Sqinter>A) \<squnion> \<Sqinter>B" | |
| 15509 | 2296 | using insert by(simp add:ACIf.fold1_insert_idem_def[OF ACIf_inf Inf_def]) | 
| 15500 | 2297 | also have "\<dots> = (x \<squnion> \<Sqinter>B) \<sqinter> (\<Sqinter>A \<squnion> \<Sqinter>B)" by(rule sup_inf_distrib2) | 
| 2298 |   also have "\<dots> = \<Sqinter>{x \<squnion> b|b. b \<in> B} \<sqinter> \<Sqinter>{a \<squnion> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2299 | using insert by(simp add:sup_Inf1_distrib[OF B]) | |
| 2300 |   also have "\<dots> = \<Sqinter>({x\<squnion>b |b. b \<in> B} \<union> {a\<squnion>b |a b. a \<in> A \<and> b \<in> B})"
 | |
| 2301 | (is "_ = \<Sqinter>?M") | |
| 2302 | using B insert | |
| 2303 | by(simp add:Inf_def ACIf.fold1_Un2[OF ACIf_inf finB _ finAB ne]) | |
| 2304 |   also have "?M = {a \<squnion> b |a b. a \<in> insert x A \<and> b \<in> B}"
 | |
| 2305 | by blast | |
| 2306 | finally show ?case . | |
| 2307 | qed | |
| 2308 | ||
| 15484 | 2309 | |
| 18423 | 2310 | lemma (in Distrib_Lattice) inf_Sup1_distrib: | 
| 2311 |  "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> (x \<sqinter> \<Squnion>A) = \<Squnion>{x \<sqinter> a|a. a \<in> A}"
 | |
| 2312 | apply(simp add:Sup_def image_def | |
| 2313 | ACIf.hom_fold1_commute[OF ACIf_sup, where h="inf x", OF inf_sup_distrib1]) | |
| 2314 | apply(rule arg_cong, blast) | |
| 2315 | done | |
| 2316 | ||
| 2317 | ||
| 2318 | lemma (in Distrib_Lattice) inf_Sup2_distrib: | |
| 2319 | assumes A: "finite A" "A \<noteq> {}" and B: "finite B" "B \<noteq> {}"
 | |
| 2320 | shows "(\<Squnion>A \<sqinter> \<Squnion>B) = \<Squnion>{a \<sqinter> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2321 | using A | |
| 2322 | proof (induct rule: finite_ne_induct) | |
| 2323 | case singleton thus ?case | |
| 2324 | by(simp add: inf_Sup1_distrib[OF B] fold1_singleton_def[OF Sup_def]) | |
| 2325 | next | |
| 2326 | case (insert x A) | |
| 2327 |   have finB: "finite {x \<sqinter> b |b. b \<in> B}"
 | |
| 2328 | by(fast intro: finite_surj[where f = "%b. x \<sqinter> b", OF B(1)]) | |
| 2329 |   have finAB: "finite {a \<sqinter> b |a b. a \<in> A \<and> b \<in> B}"
 | |
| 2330 | proof - | |
| 2331 |     have "{a \<sqinter> b |a b. a \<in> A \<and> b \<in> B} = (UN a:A. UN b:B. {a \<sqinter> b})"
 | |
| 2332 | by blast | |
| 2333 | thus ?thesis by(simp add: insert(1) B(1)) | |
| 2334 | qed | |
| 2335 |   have ne: "{a \<sqinter> b |a b. a \<in> A \<and> b \<in> B} \<noteq> {}" using insert B by blast
 | |
| 2336 | have "\<Squnion>(insert x A) \<sqinter> \<Squnion>B = (x \<squnion> \<Squnion>A) \<sqinter> \<Squnion>B" | |
| 2337 | using insert by(simp add:ACIf.fold1_insert_idem_def[OF ACIf_sup Sup_def]) | |
| 2338 | also have "\<dots> = (x \<sqinter> \<Squnion>B) \<squnion> (\<Squnion>A \<sqinter> \<Squnion>B)" by(rule inf_sup_distrib2) | |
| 2339 |   also have "\<dots> = \<Squnion>{x \<sqinter> b|b. b \<in> B} \<squnion> \<Squnion>{a \<sqinter> b|a b. a \<in> A \<and> b \<in> B}"
 | |
| 2340 | using insert by(simp add:inf_Sup1_distrib[OF B]) | |
| 2341 |   also have "\<dots> = \<Squnion>({x\<sqinter>b |b. b \<in> B} \<union> {a\<sqinter>b |a b. a \<in> A \<and> b \<in> B})"
 | |
| 2342 | (is "_ = \<Squnion>?M") | |
| 2343 | using B insert | |
| 2344 | by(simp add:Sup_def ACIf.fold1_Un2[OF ACIf_sup finB _ finAB ne]) | |
| 2345 |   also have "?M = {a \<sqinter> b |a b. a \<in> insert x A \<and> b \<in> B}"
 | |
| 2346 | by blast | |
| 2347 | finally show ?case . | |
| 2348 | qed | |
| 2349 | ||
| 2350 | ||
| 15392 | 2351 | subsection{*Min and Max*}
 | 
| 2352 | ||
| 2353 | text{* As an application of @{text fold1} we define the minimal and
 | |
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2354 | maximal element of a (non-empty) set over a linear order. *} | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2355 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2356 | constdefs | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2357 |   Min :: "('a::linorder)set => 'a"
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2358 | "Min == fold1 min" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2359 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2360 |   Max :: "('a::linorder)set => 'a"
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2361 | "Max == fold1 max" | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2362 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2363 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2364 | text{* Before we can do anything, we need to show that @{text min} and
 | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2365 | @{text max} are ACI and the ordering is linear: *}
 | 
| 15392 | 2366 | |
| 15837 | 2367 | interpretation min: ACf ["min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a"] | 
| 15392 | 2368 | apply(rule ACf.intro) | 
| 2369 | apply(auto simp:min_def) | |
| 2370 | done | |
| 2371 | ||
| 15837 | 2372 | interpretation min: ACIf ["min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a"] | 
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2373 | apply unfold_locales | 
| 15392 | 2374 | apply(auto simp:min_def) | 
| 15376 | 2375 | done | 
| 2376 | ||
| 15837 | 2377 | interpretation max: ACf ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a"] | 
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2378 | apply unfold_locales | 
| 15392 | 2379 | apply(auto simp:max_def) | 
| 2380 | done | |
| 2381 | ||
| 15837 | 2382 | interpretation max: ACIf ["max:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a"] | 
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2383 | apply unfold_locales | 
| 15392 | 2384 | apply(auto simp:max_def) | 
| 15376 | 2385 | done | 
| 12396 | 2386 | |
| 15837 | 2387 | interpretation min: | 
| 18493 | 2388 | ACIfSL ["min:: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "op \<le>" "op <"] | 
| 2389 | apply(simp add:order_less_le) | |
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2390 | apply unfold_locales | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2391 | apply(auto simp:min_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2392 | done | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2393 | |
| 15837 | 2394 | interpretation min: | 
| 18493 | 2395 | ACIfSLlin ["min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "op \<le>" "op <"] | 
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2396 | apply unfold_locales | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2397 | apply(auto simp:min_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2398 | done | 
| 15392 | 2399 | |
| 15837 | 2400 | interpretation max: | 
| 18493 | 2401 | ACIfSL ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "%x y. y\<le>x" "%x y. y<x"] | 
| 2402 | apply(simp add:order_less_le eq_sym_conv) | |
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2403 | apply unfold_locales | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2404 | apply(auto simp:max_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2405 | done | 
| 15392 | 2406 | |
| 15837 | 2407 | interpretation max: | 
| 18493 | 2408 | ACIfSLlin ["max :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "%x y. y\<le>x" "%x y. y<x"] | 
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2409 | apply unfold_locales | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2410 | apply(auto simp:max_def) | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2411 | done | 
| 15392 | 2412 | |
| 15837 | 2413 | interpretation min_max: | 
| 15780 | 2414 | Lattice ["op \<le>" "min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "max" "Min" "Max"] | 
| 2415 | apply - | |
| 2416 | apply(rule Min_def) | |
| 2417 | apply(rule Max_def) | |
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2418 | apply unfold_locales | 
| 15507 | 2419 | done | 
| 15500 | 2420 | |
| 2421 | ||
| 15837 | 2422 | interpretation min_max: | 
| 15780 | 2423 | Distrib_Lattice ["op \<le>" "min :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> 'a" "max" "Min" "Max"] | 
| 19984 
29bb4659f80a
Method intro_locales replaced by intro_locales and unfold_locales.
 ballarin parents: 
19931diff
changeset | 2424 | by unfold_locales | 
| 19931 
fb32b43e7f80
Restructured locales with predicates: import is now an interpretation.
 ballarin parents: 
19870diff
changeset | 2425 | |
| 15765 | 2426 | |
| 15402 | 2427 | text{* Now we instantiate the recursion equations and declare them
 | 
| 15392 | 2428 | simplification rules: *} | 
| 2429 | ||
| 17085 | 2430 | (* Making Min or Max a defined parameter of a locale, suitably | 
| 2431 | extending ACIf, could make the following interpretations more automatic. *) | |
| 15765 | 2432 | |
| 17085 | 2433 | lemmas Min_singleton = fold1_singleton_def [OF Min_def] | 
| 2434 | lemmas Max_singleton = fold1_singleton_def [OF Max_def] | |
| 2435 | lemmas Min_insert = min.fold1_insert_idem_def [OF Min_def] | |
| 2436 | lemmas Max_insert = max.fold1_insert_idem_def [OF Max_def] | |
| 2437 | ||
| 2438 | declare Min_singleton [simp] Max_singleton [simp] | |
| 2439 | declare Min_insert [simp] Max_insert [simp] | |
| 2440 | ||
| 15392 | 2441 | |
| 15484 | 2442 | text{* Now we instantiate some @{text fold1} properties: *}
 | 
| 15392 | 2443 | |
| 2444 | lemma Min_in [simp]: | |
| 15484 | 2445 |   shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Min A \<in> A"
 | 
| 15791 | 2446 | using min.fold1_in | 
| 15484 | 2447 | by(fastsimp simp: Min_def min_def) | 
| 15392 | 2448 | |
| 2449 | lemma Max_in [simp]: | |
| 15484 | 2450 |   shows "finite A \<Longrightarrow> A \<noteq> {} \<Longrightarrow> Max A \<in> A"
 | 
| 15791 | 2451 | using max.fold1_in | 
| 15484 | 2452 | by(fastsimp simp: Max_def max_def) | 
| 15392 | 2453 | |
| 18423 | 2454 | lemma Min_antimono: "\<lbrakk> M \<subseteq> N; M \<noteq> {}; finite N \<rbrakk> \<Longrightarrow> Min N \<le> Min M"
 | 
| 2455 | by(simp add:Finite_Set.Min_def min.fold1_antimono) | |
| 2456 | ||
| 2457 | lemma Max_mono: "\<lbrakk> M \<subseteq> N; M \<noteq> {}; finite N \<rbrakk> \<Longrightarrow> Max M \<le> Max N"
 | |
| 2458 | by(simp add:Max_def max.fold1_antimono) | |
| 2459 | ||
| 15484 | 2460 | lemma Min_le [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> Min A \<le> x"
 | 
| 15791 | 2461 | by(simp add: Min_def min.fold1_belowI) | 
| 15392 | 2462 | |
| 15484 | 2463 | lemma Max_ge [simp]: "\<lbrakk> finite A; A \<noteq> {}; x \<in> A \<rbrakk> \<Longrightarrow> x \<le> Max A"
 | 
| 15791 | 2464 | by(simp add: Max_def max.fold1_belowI) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2465 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2466 | lemma Min_ge_iff[simp]: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2467 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x \<le> Min A) = (\<forall>a\<in>A. x \<le> a)"
 | 
| 15791 | 2468 | by(simp add: Min_def min.below_fold1_iff) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2469 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2470 | lemma Max_le_iff[simp]: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2471 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Max A \<le> x) = (\<forall>a\<in>A. a \<le> x)"
 | 
| 15791 | 2472 | by(simp add: Max_def max.below_fold1_iff) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2473 | |
| 18493 | 2474 | lemma Min_gr_iff[simp]: | 
| 2475 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x < Min A) = (\<forall>a\<in>A. x < a)"
 | |
| 2476 | by(simp add: Min_def min.strict_below_fold1_iff) | |
| 2477 | ||
| 2478 | lemma Max_less_iff[simp]: | |
| 2479 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Max A < x) = (\<forall>a\<in>A. a < x)"
 | |
| 2480 | by(simp add: Max_def max.strict_below_fold1_iff) | |
| 2481 | ||
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2482 | lemma Min_le_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2483 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Min A \<le> x) = (\<exists>a\<in>A. a \<le> x)"
 | 
| 15791 | 2484 | by(simp add: Min_def min.fold1_below_iff) | 
| 15497 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2485 | |
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2486 | lemma Max_ge_iff: | 
| 
53bca254719a
Added semi-lattice locales and reorganized fold1 lemmas
 nipkow parents: 
15487diff
changeset | 2487 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x \<le> Max A) = (\<exists>a\<in>A. x \<le> a)"
 | 
| 15791 | 2488 | by(simp add: Max_def max.fold1_below_iff) | 
| 12396 | 2489 | |
| 18493 | 2490 | lemma Min_le_iff: | 
| 2491 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (Min A < x) = (\<exists>a\<in>A. a < x)"
 | |
| 2492 | by(simp add: Min_def min.fold1_strict_below_iff) | |
| 2493 | ||
| 2494 | lemma Max_ge_iff: | |
| 2495 |   "\<lbrakk> finite A; A \<noteq> {} \<rbrakk> \<Longrightarrow> (x < Max A) = (\<exists>a\<in>A. x < a)"
 | |
| 2496 | by(simp add: Max_def max.fold1_strict_below_iff) | |
| 2497 | ||
| 18423 | 2498 | lemma Min_Un: "\<lbrakk>finite A; A \<noteq> {}; finite B; B \<noteq> {}\<rbrakk>
 | 
| 2499 | \<Longrightarrow> Min (A \<union> B) = min (Min A) (Min B)" | |
| 2500 | by(simp add:Min_def min.f.fold1_Un2) | |
| 2501 | ||
| 2502 | lemma Max_Un: "\<lbrakk>finite A; A \<noteq> {}; finite B; B \<noteq> {}\<rbrakk>
 | |
| 2503 | \<Longrightarrow> Max (A \<union> B) = max (Max A) (Max B)" | |
| 2504 | by(simp add:Max_def max.f.fold1_Un2) | |
| 2505 | ||
| 2506 | ||
| 2507 | lemma hom_Min_commute: | |
| 2508 | "(!!x y::'a::linorder. h(min x y) = min (h x) (h y::'a)) | |
| 2509 |   \<Longrightarrow> finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> h(Min N) = Min(h ` N)"
 | |
| 2510 | by(simp add:Finite_Set.Min_def min.hom_fold1_commute) | |
| 2511 | ||
| 2512 | lemma hom_Max_commute: | |
| 2513 | "(!!x y::'a::linorder. h(max x y) = max (h x) (h y::'a)) | |
| 2514 |   \<Longrightarrow> finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> h(Max N) = Max(h ` N)"
 | |
| 2515 | by(simp add:Max_def max.hom_fold1_commute) | |
| 2516 | ||
| 2517 | ||
| 2518 | lemma add_Min_commute: fixes k::"'a::{pordered_ab_semigroup_add,linorder}"
 | |
| 2519 |  shows "finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> k + Min N = Min {k+m|m. m \<in> N}"
 | |
| 2520 | apply(subgoal_tac "!!x y. k + min x y = min (k + x) (k + y)") | |
| 2521 | using hom_Min_commute[of "op + k" N] | |
| 2522 | apply simp apply(rule arg_cong[where f = Min]) apply blast | |
| 2523 | apply(simp add:min_def linorder_not_le) | |
| 2524 | apply(blast intro:order.antisym order_less_imp_le add_left_mono) | |
| 2525 | done | |
| 2526 | ||
| 2527 | lemma add_Max_commute: fixes k::"'a::{pordered_ab_semigroup_add,linorder}"
 | |
| 2528 |  shows "finite N \<Longrightarrow> N \<noteq> {} \<Longrightarrow> k + Max N = Max {k+m|m. m \<in> N}"
 | |
| 2529 | apply(subgoal_tac "!!x y. k + max x y = max (k + x) (k + y)") | |
| 2530 | using hom_Max_commute[of "op + k" N] | |
| 2531 | apply simp apply(rule arg_cong[where f = Max]) apply blast | |
| 2532 | apply(simp add:max_def linorder_not_le) | |
| 2533 | apply(blast intro:order.antisym order_less_imp_le add_left_mono) | |
| 2534 | done | |
| 2535 | ||
| 2536 | ||
| 2537 | ||
| 17022 | 2538 | subsection {* Properties of axclass @{text finite} *}
 | 
| 2539 | ||
| 2540 | text{* Many of these are by Brian Huffman. *}
 | |
| 2541 | ||
| 2542 | lemma finite_set: "finite (A::'a::finite set)" | |
| 2543 | by (rule finite_subset [OF subset_UNIV finite]) | |
| 2544 | ||
| 2545 | ||
| 2546 | instance unit :: finite | |
| 2547 | proof | |
| 2548 |   have "finite {()}" by simp
 | |
| 2549 |   also have "{()} = UNIV" by auto
 | |
| 2550 | finally show "finite (UNIV :: unit set)" . | |
| 2551 | qed | |
| 2552 | ||
| 2553 | instance bool :: finite | |
| 2554 | proof | |
| 2555 |   have "finite {True, False}" by simp
 | |
| 2556 |   also have "{True, False} = UNIV" by auto
 | |
| 2557 | finally show "finite (UNIV :: bool set)" . | |
| 2558 | qed | |
| 2559 | ||
| 2560 | ||
| 2561 | instance * :: (finite, finite) finite | |
| 2562 | proof | |
| 2563 |   show "finite (UNIV :: ('a \<times> 'b) set)"
 | |
| 2564 | proof (rule finite_Prod_UNIV) | |
| 2565 | show "finite (UNIV :: 'a set)" by (rule finite) | |
| 2566 | show "finite (UNIV :: 'b set)" by (rule finite) | |
| 2567 | qed | |
| 2568 | qed | |
| 2569 | ||
| 2570 | instance "+" :: (finite, finite) finite | |
| 2571 | proof | |
| 2572 | have a: "finite (UNIV :: 'a set)" by (rule finite) | |
| 2573 | have b: "finite (UNIV :: 'b set)" by (rule finite) | |
| 2574 | from a b have "finite ((UNIV :: 'a set) <+> (UNIV :: 'b set))" | |
| 2575 | by (rule finite_Plus) | |
| 2576 |   thus "finite (UNIV :: ('a + 'b) set)" by simp
 | |
| 2577 | qed | |
| 2578 | ||
| 2579 | ||
| 2580 | instance set :: (finite) finite | |
| 2581 | proof | |
| 2582 | have "finite (UNIV :: 'a set)" by (rule finite) | |
| 2583 | hence "finite (Pow (UNIV :: 'a set))" | |
| 2584 | by (rule finite_Pow_iff [THEN iffD2]) | |
| 2585 | thus "finite (UNIV :: 'a set set)" by simp | |
| 2586 | qed | |
| 2587 | ||
| 2588 | lemma inj_graph: "inj (%f. {(x, y). y = f x})"
 | |
| 2589 | by (rule inj_onI, auto simp add: expand_set_eq expand_fun_eq) | |
| 2590 | ||
| 2591 | instance fun :: (finite, finite) finite | |
| 2592 | proof | |
| 2593 |   show "finite (UNIV :: ('a => 'b) set)"
 | |
| 2594 | proof (rule finite_imageD) | |
| 2595 |     let ?graph = "%f::'a => 'b. {(x, y). y = f x}"
 | |
| 2596 | show "finite (range ?graph)" by (rule finite_set) | |
| 2597 | show "inj ?graph" by (rule inj_graph) | |
| 2598 | qed | |
| 2599 | qed | |
| 2600 | ||
| 15042 | 2601 | end |