| author | paulson | 
| Thu, 14 Jun 2007 13:18:59 +0200 | |
| changeset 23386 | 9255c1a75ba9 | 
| parent 22886 | cdff6ef76009 | 
| child 24162 | 8dfd5dd65d82 | 
| permissions | -rw-r--r-- | 
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 1 | (* Title: HOL/Datatype.thy | 
| 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 2 | ID: $Id$ | 
| 20819 | 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 11954 | 4 | Author: Stefan Berghofer and Markus Wenzel, TU Muenchen | 
| 20819 | 5 | |
| 6 | Could <*> be generalized to a general summation (Sigma)? | |
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 7 | *) | 
| 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 8 | |
| 21669 | 9 | header {* Analogues of the Cartesian Product and Disjoint Sum for Datatypes *}
 | 
| 11954 | 10 | |
| 15131 | 11 | theory Datatype | 
| 21243 | 12 | imports Nat Sum_Type | 
| 15131 | 13 | begin | 
| 11954 | 14 | |
| 20819 | 15 | typedef (Node) | 
| 16 |   ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
 | |
| 17 |     --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*}
 | |
| 18 | by auto | |
| 19 | ||
| 20 | text{*Datatypes will be represented by sets of type @{text node}*}
 | |
| 21 | ||
| 22 | types 'a item        = "('a, unit) node set"
 | |
| 23 |       ('a, 'b) dtree = "('a, 'b) node set"
 | |
| 24 | ||
| 25 | consts | |
| 26 | apfst :: "['a=>'c, 'a*'b] => 'c*'b" | |
| 27 |   Push      :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
 | |
| 28 | ||
| 29 |   Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
 | |
| 30 |   ndepth    :: "('a, 'b) node => nat"
 | |
| 31 | ||
| 32 |   Atom      :: "('a + nat) => ('a, 'b) dtree"
 | |
| 33 |   Leaf      :: "'a => ('a, 'b) dtree"
 | |
| 34 |   Numb      :: "nat => ('a, 'b) dtree"
 | |
| 35 |   Scons     :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
 | |
| 36 |   In0       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 37 |   In1       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 38 |   Lim       :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
 | |
| 39 | ||
| 40 |   ntrunc    :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
 | |
| 41 | ||
| 42 |   uprod     :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | |
| 43 |   usum      :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | |
| 44 | ||
| 45 |   Split     :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | |
| 46 |   Case      :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | |
| 47 | ||
| 48 |   dprod     :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | |
| 49 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | |
| 50 |   dsum      :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | |
| 51 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | |
| 52 | ||
| 53 | ||
| 54 | defs | |
| 55 | ||
| 56 | Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" | |
| 57 | ||
| 58 | (*crude "lists" of nats -- needed for the constructions*) | |
| 59 | apfst_def: "apfst == (%f (x,y). (f(x),y))" | |
| 60 | Push_def: "Push == (%b h. nat_case b h)" | |
| 61 | ||
| 62 | (** operations on S-expressions -- sets of nodes **) | |
| 63 | ||
| 64 | (*S-expression constructors*) | |
| 65 |   Atom_def:   "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
 | |
| 66 | Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)" | |
| 67 | ||
| 68 | (*Leaf nodes, with arbitrary or nat labels*) | |
| 69 | Leaf_def: "Leaf == Atom o Inl" | |
| 70 | Numb_def: "Numb == Atom o Inr" | |
| 71 | ||
| 72 | (*Injections of the "disjoint sum"*) | |
| 73 | In0_def: "In0(M) == Scons (Numb 0) M" | |
| 74 | In1_def: "In1(M) == Scons (Numb 1) M" | |
| 75 | ||
| 76 | (*Function spaces*) | |
| 77 |   Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
 | |
| 78 | ||
| 79 | (*the set of nodes with depth less than k*) | |
| 80 | ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)" | |
| 81 |   ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
 | |
| 82 | ||
| 83 | (*products and sums for the "universe"*) | |
| 84 |   uprod_def:  "uprod A B == UN x:A. UN y:B. { Scons x y }"
 | |
| 85 | usum_def: "usum A B == In0`A Un In1`B" | |
| 86 | ||
| 87 | (*the corresponding eliminators*) | |
| 88 | Split_def: "Split c M == THE u. EX x y. M = Scons x y & u = c x y" | |
| 89 | ||
| 90 | Case_def: "Case c d M == THE u. (EX x . M = In0(x) & u = c(x)) | |
| 91 | | (EX y . M = In1(y) & u = d(y))" | |
| 92 | ||
| 93 | ||
| 94 | (** equality for the "universe" **) | |
| 95 | ||
| 96 |   dprod_def:  "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
 | |
| 97 | ||
| 98 |   dsum_def:   "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
 | |
| 99 |                           (UN (y,y'):s. {(In1(y),In1(y'))})"
 | |
| 100 | ||
| 101 | ||
| 102 | ||
| 103 | (** apfst -- can be used in similar type definitions **) | |
| 104 | ||
| 22886 | 105 | lemma apfst_conv [simp, code]: "apfst f (a, b) = (f a, b)" | 
| 20819 | 106 | by (simp add: apfst_def) | 
| 107 | ||
| 108 | ||
| 109 | lemma apfst_convE: | |
| 110 | "[| q = apfst f p; !!x y. [| p = (x,y); q = (f(x),y) |] ==> R | |
| 111 | |] ==> R" | |
| 112 | by (force simp add: apfst_def) | |
| 113 | ||
| 114 | (** Push -- an injection, analogous to Cons on lists **) | |
| 115 | ||
| 116 | lemma Push_inject1: "Push i f = Push j g ==> i=j" | |
| 117 | apply (simp add: Push_def expand_fun_eq) | |
| 118 | apply (drule_tac x=0 in spec, simp) | |
| 119 | done | |
| 120 | ||
| 121 | lemma Push_inject2: "Push i f = Push j g ==> f=g" | |
| 122 | apply (auto simp add: Push_def expand_fun_eq) | |
| 123 | apply (drule_tac x="Suc x" in spec, simp) | |
| 124 | done | |
| 125 | ||
| 126 | lemma Push_inject: | |
| 127 | "[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P" | |
| 128 | by (blast dest: Push_inject1 Push_inject2) | |
| 129 | ||
| 130 | lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P" | |
| 131 | by (auto simp add: Push_def expand_fun_eq split: nat.split_asm) | |
| 132 | ||
| 133 | lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard] | |
| 134 | ||
| 135 | ||
| 136 | (*** Introduction rules for Node ***) | |
| 137 | ||
| 138 | lemma Node_K0_I: "(%k. Inr 0, a) : Node" | |
| 139 | by (simp add: Node_def) | |
| 140 | ||
| 141 | lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node" | |
| 142 | apply (simp add: Node_def Push_def) | |
| 143 | apply (fast intro!: apfst_conv nat_case_Suc [THEN trans]) | |
| 144 | done | |
| 145 | ||
| 146 | ||
| 147 | subsection{*Freeness: Distinctness of Constructors*}
 | |
| 148 | ||
| 149 | (** Scons vs Atom **) | |
| 150 | ||
| 151 | lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)" | |
| 152 | apply (simp add: Atom_def Scons_def Push_Node_def One_nat_def) | |
| 153 | apply (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] | |
| 154 | dest!: Abs_Node_inj | |
| 155 | elim!: apfst_convE sym [THEN Push_neq_K0]) | |
| 156 | done | |
| 157 | ||
| 21407 | 158 | lemmas Atom_not_Scons [iff] = Scons_not_Atom [THEN not_sym, standard] | 
| 159 | ||
| 20819 | 160 | |
| 161 | (*** Injectiveness ***) | |
| 162 | ||
| 163 | (** Atomic nodes **) | |
| 164 | ||
| 165 | lemma inj_Atom: "inj(Atom)" | |
| 166 | apply (simp add: Atom_def) | |
| 167 | apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj) | |
| 168 | done | |
| 169 | lemmas Atom_inject = inj_Atom [THEN injD, standard] | |
| 170 | ||
| 171 | lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)" | |
| 172 | by (blast dest!: Atom_inject) | |
| 173 | ||
| 174 | lemma inj_Leaf: "inj(Leaf)" | |
| 175 | apply (simp add: Leaf_def o_def) | |
| 176 | apply (rule inj_onI) | |
| 177 | apply (erule Atom_inject [THEN Inl_inject]) | |
| 178 | done | |
| 179 | ||
| 21407 | 180 | lemmas Leaf_inject [dest!] = inj_Leaf [THEN injD, standard] | 
| 20819 | 181 | |
| 182 | lemma inj_Numb: "inj(Numb)" | |
| 183 | apply (simp add: Numb_def o_def) | |
| 184 | apply (rule inj_onI) | |
| 185 | apply (erule Atom_inject [THEN Inr_inject]) | |
| 186 | done | |
| 187 | ||
| 21407 | 188 | lemmas Numb_inject [dest!] = inj_Numb [THEN injD, standard] | 
| 20819 | 189 | |
| 190 | ||
| 191 | (** Injectiveness of Push_Node **) | |
| 192 | ||
| 193 | lemma Push_Node_inject: | |
| 194 | "[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P | |
| 195 | |] ==> P" | |
| 196 | apply (simp add: Push_Node_def) | |
| 197 | apply (erule Abs_Node_inj [THEN apfst_convE]) | |
| 198 | apply (rule Rep_Node [THEN Node_Push_I])+ | |
| 199 | apply (erule sym [THEN apfst_convE]) | |
| 200 | apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject) | |
| 201 | done | |
| 202 | ||
| 203 | ||
| 204 | (** Injectiveness of Scons **) | |
| 205 | ||
| 206 | lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'" | |
| 207 | apply (simp add: Scons_def One_nat_def) | |
| 208 | apply (blast dest!: Push_Node_inject) | |
| 209 | done | |
| 210 | ||
| 211 | lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'" | |
| 212 | apply (simp add: Scons_def One_nat_def) | |
| 213 | apply (blast dest!: Push_Node_inject) | |
| 214 | done | |
| 215 | ||
| 216 | lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'" | |
| 217 | apply (erule equalityE) | |
| 218 | apply (iprover intro: equalityI Scons_inject_lemma1) | |
| 219 | done | |
| 220 | ||
| 221 | lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'" | |
| 222 | apply (erule equalityE) | |
| 223 | apply (iprover intro: equalityI Scons_inject_lemma2) | |
| 224 | done | |
| 225 | ||
| 226 | lemma Scons_inject: | |
| 227 | "[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P" | |
| 228 | by (iprover dest: Scons_inject1 Scons_inject2) | |
| 229 | ||
| 230 | lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')" | |
| 231 | by (blast elim!: Scons_inject) | |
| 232 | ||
| 233 | (*** Distinctness involving Leaf and Numb ***) | |
| 234 | ||
| 235 | (** Scons vs Leaf **) | |
| 236 | ||
| 237 | lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)" | |
| 238 | by (simp add: Leaf_def o_def Scons_not_Atom) | |
| 239 | ||
| 21407 | 240 | lemmas Leaf_not_Scons [iff] = Scons_not_Leaf [THEN not_sym, standard] | 
| 20819 | 241 | |
| 242 | (** Scons vs Numb **) | |
| 243 | ||
| 244 | lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)" | |
| 245 | by (simp add: Numb_def o_def Scons_not_Atom) | |
| 246 | ||
| 21407 | 247 | lemmas Numb_not_Scons [iff] = Scons_not_Numb [THEN not_sym, standard] | 
| 20819 | 248 | |
| 249 | ||
| 250 | (** Leaf vs Numb **) | |
| 251 | ||
| 252 | lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)" | |
| 253 | by (simp add: Leaf_def Numb_def) | |
| 254 | ||
| 21407 | 255 | lemmas Numb_not_Leaf [iff] = Leaf_not_Numb [THEN not_sym, standard] | 
| 20819 | 256 | |
| 257 | ||
| 258 | (*** ndepth -- the depth of a node ***) | |
| 259 | ||
| 260 | lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0" | |
| 261 | by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality) | |
| 262 | ||
| 263 | lemma ndepth_Push_Node_aux: | |
| 264 | "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k" | |
| 265 | apply (induct_tac "k", auto) | |
| 266 | apply (erule Least_le) | |
| 267 | done | |
| 268 | ||
| 269 | lemma ndepth_Push_Node: | |
| 270 | "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))" | |
| 271 | apply (insert Rep_Node [of n, unfolded Node_def]) | |
| 272 | apply (auto simp add: ndepth_def Push_Node_def | |
| 273 | Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse]) | |
| 274 | apply (rule Least_equality) | |
| 275 | apply (auto simp add: Push_def ndepth_Push_Node_aux) | |
| 276 | apply (erule LeastI) | |
| 277 | done | |
| 278 | ||
| 279 | ||
| 280 | (*** ntrunc applied to the various node sets ***) | |
| 281 | ||
| 282 | lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
 | |
| 283 | by (simp add: ntrunc_def) | |
| 284 | ||
| 285 | lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)" | |
| 286 | by (auto simp add: Atom_def ntrunc_def ndepth_K0) | |
| 287 | ||
| 288 | lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)" | |
| 289 | by (simp add: Leaf_def o_def ntrunc_Atom) | |
| 290 | ||
| 291 | lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)" | |
| 292 | by (simp add: Numb_def o_def ntrunc_Atom) | |
| 293 | ||
| 294 | lemma ntrunc_Scons [simp]: | |
| 295 | "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)" | |
| 296 | by (auto simp add: Scons_def ntrunc_def One_nat_def ndepth_Push_Node) | |
| 297 | ||
| 298 | ||
| 299 | ||
| 300 | (** Injection nodes **) | |
| 301 | ||
| 302 | lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
 | |
| 303 | apply (simp add: In0_def) | |
| 304 | apply (simp add: Scons_def) | |
| 305 | done | |
| 306 | ||
| 307 | lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)" | |
| 308 | by (simp add: In0_def) | |
| 309 | ||
| 310 | lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
 | |
| 311 | apply (simp add: In1_def) | |
| 312 | apply (simp add: Scons_def) | |
| 313 | done | |
| 314 | ||
| 315 | lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)" | |
| 316 | by (simp add: In1_def) | |
| 317 | ||
| 318 | ||
| 319 | subsection{*Set Constructions*}
 | |
| 320 | ||
| 321 | ||
| 322 | (*** Cartesian Product ***) | |
| 323 | ||
| 324 | lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B" | |
| 325 | by (simp add: uprod_def) | |
| 326 | ||
| 327 | (*The general elimination rule*) | |
| 328 | lemma uprodE [elim!]: | |
| 329 | "[| c : uprod A B; | |
| 330 | !!x y. [| x:A; y:B; c = Scons x y |] ==> P | |
| 331 | |] ==> P" | |
| 332 | by (auto simp add: uprod_def) | |
| 333 | ||
| 334 | ||
| 335 | (*Elimination of a pair -- introduces no eigenvariables*) | |
| 336 | lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P" | |
| 337 | by (auto simp add: uprod_def) | |
| 338 | ||
| 339 | ||
| 340 | (*** Disjoint Sum ***) | |
| 341 | ||
| 342 | lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B" | |
| 343 | by (simp add: usum_def) | |
| 344 | ||
| 345 | lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B" | |
| 346 | by (simp add: usum_def) | |
| 347 | ||
| 348 | lemma usumE [elim!]: | |
| 349 | "[| u : usum A B; | |
| 350 | !!x. [| x:A; u=In0(x) |] ==> P; | |
| 351 | !!y. [| y:B; u=In1(y) |] ==> P | |
| 352 | |] ==> P" | |
| 353 | by (auto simp add: usum_def) | |
| 354 | ||
| 355 | ||
| 356 | (** Injection **) | |
| 357 | ||
| 358 | lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)" | |
| 359 | by (auto simp add: In0_def In1_def One_nat_def) | |
| 360 | ||
| 21407 | 361 | lemmas In1_not_In0 [iff] = In0_not_In1 [THEN not_sym, standard] | 
| 20819 | 362 | |
| 363 | lemma In0_inject: "In0(M) = In0(N) ==> M=N" | |
| 364 | by (simp add: In0_def) | |
| 365 | ||
| 366 | lemma In1_inject: "In1(M) = In1(N) ==> M=N" | |
| 367 | by (simp add: In1_def) | |
| 368 | ||
| 369 | lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)" | |
| 370 | by (blast dest!: In0_inject) | |
| 371 | ||
| 372 | lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)" | |
| 373 | by (blast dest!: In1_inject) | |
| 374 | ||
| 375 | lemma inj_In0: "inj In0" | |
| 376 | by (blast intro!: inj_onI) | |
| 377 | ||
| 378 | lemma inj_In1: "inj In1" | |
| 379 | by (blast intro!: inj_onI) | |
| 380 | ||
| 381 | ||
| 382 | (*** Function spaces ***) | |
| 383 | ||
| 384 | lemma Lim_inject: "Lim f = Lim g ==> f = g" | |
| 385 | apply (simp add: Lim_def) | |
| 386 | apply (rule ext) | |
| 387 | apply (blast elim!: Push_Node_inject) | |
| 388 | done | |
| 389 | ||
| 390 | ||
| 391 | (*** proving equality of sets and functions using ntrunc ***) | |
| 392 | ||
| 393 | lemma ntrunc_subsetI: "ntrunc k M <= M" | |
| 394 | by (auto simp add: ntrunc_def) | |
| 395 | ||
| 396 | lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N" | |
| 397 | by (auto simp add: ntrunc_def) | |
| 398 | ||
| 399 | (*A generalized form of the take-lemma*) | |
| 400 | lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N" | |
| 401 | apply (rule equalityI) | |
| 402 | apply (rule_tac [!] ntrunc_subsetD) | |
| 403 | apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) | |
| 404 | done | |
| 405 | ||
| 406 | lemma ntrunc_o_equality: | |
| 407 | "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2" | |
| 408 | apply (rule ntrunc_equality [THEN ext]) | |
| 409 | apply (simp add: expand_fun_eq) | |
| 410 | done | |
| 411 | ||
| 412 | ||
| 413 | (*** Monotonicity ***) | |
| 414 | ||
| 415 | lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'" | |
| 416 | by (simp add: uprod_def, blast) | |
| 417 | ||
| 418 | lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'" | |
| 419 | by (simp add: usum_def, blast) | |
| 420 | ||
| 421 | lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'" | |
| 422 | by (simp add: Scons_def, blast) | |
| 423 | ||
| 424 | lemma In0_mono: "M<=N ==> In0(M) <= In0(N)" | |
| 425 | by (simp add: In0_def subset_refl Scons_mono) | |
| 426 | ||
| 427 | lemma In1_mono: "M<=N ==> In1(M) <= In1(N)" | |
| 428 | by (simp add: In1_def subset_refl Scons_mono) | |
| 429 | ||
| 430 | ||
| 431 | (*** Split and Case ***) | |
| 432 | ||
| 433 | lemma Split [simp]: "Split c (Scons M N) = c M N" | |
| 434 | by (simp add: Split_def) | |
| 435 | ||
| 436 | lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)" | |
| 437 | by (simp add: Case_def) | |
| 438 | ||
| 439 | lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)" | |
| 440 | by (simp add: Case_def) | |
| 441 | ||
| 442 | ||
| 443 | ||
| 444 | (**** UN x. B(x) rules ****) | |
| 445 | ||
| 446 | lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))" | |
| 447 | by (simp add: ntrunc_def, blast) | |
| 448 | ||
| 449 | lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)" | |
| 450 | by (simp add: Scons_def, blast) | |
| 451 | ||
| 452 | lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))" | |
| 453 | by (simp add: Scons_def, blast) | |
| 454 | ||
| 455 | lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))" | |
| 456 | by (simp add: In0_def Scons_UN1_y) | |
| 457 | ||
| 458 | lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))" | |
| 459 | by (simp add: In1_def Scons_UN1_y) | |
| 460 | ||
| 461 | ||
| 462 | (*** Equality for Cartesian Product ***) | |
| 463 | ||
| 464 | lemma dprodI [intro!]: | |
| 465 | "[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s" | |
| 466 | by (auto simp add: dprod_def) | |
| 467 | ||
| 468 | (*The general elimination rule*) | |
| 469 | lemma dprodE [elim!]: | |
| 470 | "[| c : dprod r s; | |
| 471 | !!x y x' y'. [| (x,x') : r; (y,y') : s; | |
| 472 | c = (Scons x y, Scons x' y') |] ==> P | |
| 473 | |] ==> P" | |
| 474 | by (auto simp add: dprod_def) | |
| 475 | ||
| 476 | ||
| 477 | (*** Equality for Disjoint Sum ***) | |
| 478 | ||
| 479 | lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s" | |
| 480 | by (auto simp add: dsum_def) | |
| 481 | ||
| 482 | lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s" | |
| 483 | by (auto simp add: dsum_def) | |
| 484 | ||
| 485 | lemma dsumE [elim!]: | |
| 486 | "[| w : dsum r s; | |
| 487 | !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; | |
| 488 | !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P | |
| 489 | |] ==> P" | |
| 490 | by (auto simp add: dsum_def) | |
| 491 | ||
| 492 | ||
| 493 | (*** Monotonicity ***) | |
| 494 | ||
| 495 | lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'" | |
| 496 | by blast | |
| 497 | ||
| 498 | lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'" | |
| 499 | by blast | |
| 500 | ||
| 501 | ||
| 502 | (*** Bounding theorems ***) | |
| 503 | ||
| 504 | lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)" | |
| 505 | by blast | |
| 506 | ||
| 507 | lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard] | |
| 508 | ||
| 509 | (*Dependent version*) | |
| 510 | lemma dprod_subset_Sigma2: | |
| 511 | "(dprod (Sigma A B) (Sigma C D)) <= | |
| 512 | Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" | |
| 513 | by auto | |
| 514 | ||
| 515 | lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)" | |
| 516 | by blast | |
| 517 | ||
| 518 | lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard] | |
| 519 | ||
| 520 | ||
| 521 | (*** Domain ***) | |
| 522 | ||
| 523 | lemma Domain_dprod [simp]: "Domain (dprod r s) = uprod (Domain r) (Domain s)" | |
| 524 | by auto | |
| 525 | ||
| 526 | lemma Domain_dsum [simp]: "Domain (dsum r s) = usum (Domain r) (Domain s)" | |
| 527 | by auto | |
| 528 | ||
| 529 | ||
| 530 | subsection {* Finishing the datatype package setup *}
 | |
| 531 | ||
| 532 | text {* Belongs to theory @{text Datatype_Universe}; hides popular names. *}
 | |
| 20847 | 533 | setup "DatatypeCodegen.setup_hooks" | 
| 20819 | 534 | hide (open) const Push Node Atom Leaf Numb Lim Split Case | 
| 535 | hide (open) type node item | |
| 536 | ||
| 537 | ||
| 538 | section {* Datatypes *}
 | |
| 539 | ||
| 11954 | 540 | subsection {* Representing primitive types *}
 | 
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 541 | |
| 5759 | 542 | rep_datatype bool | 
| 11954 | 543 | distinct True_not_False False_not_True | 
| 544 | induction bool_induct | |
| 545 | ||
| 546 | declare case_split [cases type: bool] | |
| 547 | -- "prefer plain propositional version" | |
| 548 | ||
| 549 | rep_datatype unit | |
| 550 | induction unit_induct | |
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 551 | |
| 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 552 | rep_datatype prod | 
| 11954 | 553 | inject Pair_eq | 
| 554 | induction prod_induct | |
| 555 | ||
| 22782 | 556 | lemmas prod_caseI = prod.cases [THEN iffD2, standard] | 
| 557 | ||
| 558 | lemma prod_caseI2: "!!p. [| !!a b. p = (a, b) ==> c a b |] ==> prod_case c p" | |
| 559 | by auto | |
| 560 | ||
| 561 | lemma prod_caseI2': "!!p. [| !!a b. (a, b) = p ==> c a b x |] ==> prod_case c p x" | |
| 562 | by (auto simp: split_tupled_all) | |
| 563 | ||
| 564 | lemma prod_caseE: "prod_case c p ==> (!!x y. p = (x, y) ==> c x y ==> Q) ==> Q" | |
| 565 | by (induct p) auto | |
| 566 | ||
| 567 | lemma prod_caseE': "prod_case c p z ==> (!!x y. p = (x, y) ==> c x y z ==> Q) ==> Q" | |
| 568 | by (induct p) auto | |
| 569 | ||
| 570 | lemma prod_case_unfold: "prod_case = (%c p. c (fst p) (snd p))" | |
| 571 | by (simp add: expand_fun_eq) | |
| 572 | ||
| 573 | declare prod_caseI2' [intro!] prod_caseI2 [intro!] prod_caseI [intro!] | |
| 574 | declare prod_caseE' [elim!] prod_caseE [elim!] | |
| 575 | ||
| 12918 | 576 | rep_datatype sum | 
| 577 | distinct Inl_not_Inr Inr_not_Inl | |
| 578 | inject Inl_eq Inr_eq | |
| 579 | induction sum_induct | |
| 580 | ||
| 22230 | 581 | lemma sum_case_KK[simp]: "sum_case (%x. a) (%x. a) = (%x. a)" | 
| 582 | by (rule ext) (simp split: sum.split) | |
| 583 | ||
| 12918 | 584 | lemma surjective_sum: "sum_case (%x::'a. f (Inl x)) (%y::'b. f (Inr y)) s = f(s)" | 
| 585 | apply (rule_tac s = s in sumE) | |
| 586 | apply (erule ssubst) | |
| 20798 | 587 | apply (rule sum.cases(1)) | 
| 12918 | 588 | apply (erule ssubst) | 
| 20798 | 589 | apply (rule sum.cases(2)) | 
| 12918 | 590 | done | 
| 591 | ||
| 592 | lemma sum_case_weak_cong: "s = t ==> sum_case f g s = sum_case f g t" | |
| 593 |   -- {* Prevents simplification of @{text f} and @{text g}: much faster. *}
 | |
| 20798 | 594 | by simp | 
| 12918 | 595 | |
| 596 | lemma sum_case_inject: | |
| 597 | "sum_case f1 f2 = sum_case g1 g2 ==> (f1 = g1 ==> f2 = g2 ==> P) ==> P" | |
| 598 | proof - | |
| 599 | assume a: "sum_case f1 f2 = sum_case g1 g2" | |
| 600 | assume r: "f1 = g1 ==> f2 = g2 ==> P" | |
| 601 | show P | |
| 602 | apply (rule r) | |
| 603 | apply (rule ext) | |
| 14208 | 604 | apply (cut_tac x = "Inl x" in a [THEN fun_cong], simp) | 
| 12918 | 605 | apply (rule ext) | 
| 14208 | 606 | apply (cut_tac x = "Inr x" in a [THEN fun_cong], simp) | 
| 12918 | 607 | done | 
| 608 | qed | |
| 609 | ||
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 610 | constdefs | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 611 |   Suml :: "('a => 'c) => 'a + 'b => 'c"
 | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 612 | "Suml == (%f. sum_case f arbitrary)" | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 613 | |
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 614 |   Sumr :: "('b => 'c) => 'a + 'b => 'c"
 | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 615 | "Sumr == sum_case arbitrary" | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 616 | |
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 617 | lemma Suml_inject: "Suml f = Suml g ==> f = g" | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 618 | by (unfold Suml_def) (erule sum_case_inject) | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 619 | |
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 620 | lemma Sumr_inject: "Sumr f = Sumr g ==> f = g" | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 621 | by (unfold Sumr_def) (erule sum_case_inject) | 
| 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 622 | |
| 20798 | 623 | hide (open) const Suml Sumr | 
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 624 | |
| 12918 | 625 | |
| 626 | subsection {* Further cases/induct rules for tuples *}
 | |
| 11954 | 627 | |
| 20798 | 628 | lemma prod_cases3 [cases type]: | 
| 629 | obtains (fields) a b c where "y = (a, b, c)" | |
| 630 | by (cases y, case_tac b) blast | |
| 11954 | 631 | |
| 632 | lemma prod_induct3 [case_names fields, induct type]: | |
| 633 | "(!!a b c. P (a, b, c)) ==> P x" | |
| 634 | by (cases x) blast | |
| 635 | ||
| 20798 | 636 | lemma prod_cases4 [cases type]: | 
| 637 | obtains (fields) a b c d where "y = (a, b, c, d)" | |
| 638 | by (cases y, case_tac c) blast | |
| 11954 | 639 | |
| 640 | lemma prod_induct4 [case_names fields, induct type]: | |
| 641 | "(!!a b c d. P (a, b, c, d)) ==> P x" | |
| 642 | by (cases x) blast | |
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 643 | |
| 20798 | 644 | lemma prod_cases5 [cases type]: | 
| 645 | obtains (fields) a b c d e where "y = (a, b, c, d, e)" | |
| 646 | by (cases y, case_tac d) blast | |
| 11954 | 647 | |
| 648 | lemma prod_induct5 [case_names fields, induct type]: | |
| 649 | "(!!a b c d e. P (a, b, c, d, e)) ==> P x" | |
| 650 | by (cases x) blast | |
| 651 | ||
| 20798 | 652 | lemma prod_cases6 [cases type]: | 
| 653 | obtains (fields) a b c d e f where "y = (a, b, c, d, e, f)" | |
| 654 | by (cases y, case_tac e) blast | |
| 11954 | 655 | |
| 656 | lemma prod_induct6 [case_names fields, induct type]: | |
| 657 | "(!!a b c d e f. P (a, b, c, d, e, f)) ==> P x" | |
| 658 | by (cases x) blast | |
| 659 | ||
| 20798 | 660 | lemma prod_cases7 [cases type]: | 
| 661 | obtains (fields) a b c d e f g where "y = (a, b, c, d, e, f, g)" | |
| 662 | by (cases y, case_tac f) blast | |
| 11954 | 663 | |
| 664 | lemma prod_induct7 [case_names fields, induct type]: | |
| 665 | "(!!a b c d e f g. P (a, b, c, d, e, f, g)) ==> P x" | |
| 666 | by (cases x) blast | |
| 5759 | 667 | |
| 12918 | 668 | |
| 669 | subsection {* The option type *}
 | |
| 670 | ||
| 671 | datatype 'a option = None | Some 'a | |
| 672 | ||
| 20798 | 673 | lemma not_None_eq [iff]: "(x ~= None) = (EX y. x = Some y)" | 
| 18576 | 674 | by (induct x) auto | 
| 675 | ||
| 20798 | 676 | lemma not_Some_eq [iff]: "(ALL y. x ~= Some y) = (x = None)" | 
| 18447 | 677 | by (induct x) auto | 
| 678 | ||
| 18576 | 679 | text{*Although it may appear that both of these equalities are helpful
 | 
| 680 | only when applied to assumptions, in practice it seems better to give | |
| 681 | them the uniform iff attribute. *} | |
| 12918 | 682 | |
| 683 | lemma option_caseE: | |
| 20798 | 684 | assumes c: "(case x of None => P | Some y => Q y)" | 
| 685 | obtains | |
| 686 | (None) "x = None" and P | |
| 687 | | (Some) y where "x = Some y" and "Q y" | |
| 688 | using c by (cases x) simp_all | |
| 12918 | 689 | |
| 690 | ||
| 691 | subsubsection {* Operations *}
 | |
| 692 | ||
| 693 | consts | |
| 694 | the :: "'a option => 'a" | |
| 695 | primrec | |
| 696 | "the (Some x) = x" | |
| 697 | ||
| 698 | consts | |
| 699 | o2s :: "'a option => 'a set" | |
| 700 | primrec | |
| 701 |   "o2s None = {}"
 | |
| 702 |   "o2s (Some x) = {x}"
 | |
| 703 | ||
| 704 | lemma ospec [dest]: "(ALL x:o2s A. P x) ==> A = Some x ==> P x" | |
| 705 | by simp | |
| 706 | ||
| 17876 | 707 | ML_setup {* change_claset (fn cs => cs addSD2 ("ospec", thm "ospec")) *}
 | 
| 12918 | 708 | |
| 709 | lemma elem_o2s [iff]: "(x : o2s xo) = (xo = Some x)" | |
| 710 | by (cases xo) auto | |
| 711 | ||
| 712 | lemma o2s_empty_eq [simp]: "(o2s xo = {}) = (xo = None)"
 | |
| 713 | by (cases xo) auto | |
| 714 | ||
| 715 | ||
| 716 | constdefs | |
| 717 |   option_map :: "('a => 'b) => ('a option => 'b option)"
 | |
| 22886 | 718 | [code func del]: "option_map == %f y. case y of None => None | Some x => Some (f x)" | 
| 12918 | 719 | |
| 22886 | 720 | lemma option_map_None [simp, code]: "option_map f None = None" | 
| 12918 | 721 | by (simp add: option_map_def) | 
| 722 | ||
| 22886 | 723 | lemma option_map_Some [simp, code]: "option_map f (Some x) = Some (f x)" | 
| 12918 | 724 | by (simp add: option_map_def) | 
| 725 | ||
| 20798 | 726 | lemma option_map_is_None [iff]: | 
| 727 | "(option_map f opt = None) = (opt = None)" | |
| 728 | by (simp add: option_map_def split add: option.split) | |
| 14187 | 729 | |
| 12918 | 730 | lemma option_map_eq_Some [iff]: | 
| 731 | "(option_map f xo = Some y) = (EX z. xo = Some z & f z = y)" | |
| 20798 | 732 | by (simp add: option_map_def split add: option.split) | 
| 14187 | 733 | |
| 734 | lemma option_map_comp: | |
| 20798 | 735 | "option_map f (option_map g opt) = option_map (f o g) opt" | 
| 736 | by (simp add: option_map_def split add: option.split) | |
| 12918 | 737 | |
| 738 | lemma option_map_o_sum_case [simp]: | |
| 739 | "option_map f o sum_case g h = sum_case (option_map f o g) (option_map f o h)" | |
| 20798 | 740 | by (rule ext) (simp split: sum.split) | 
| 12918 | 741 | |
| 19787 | 742 | |
| 21111 | 743 | subsubsection {* Code generator setup *}
 | 
| 19817 | 744 | |
| 21111 | 745 | definition | 
| 21404 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 wenzelm parents: 
21243diff
changeset | 746 | is_none :: "'a option \<Rightarrow> bool" where | 
| 22886 | 747 | is_none_none [normal post, symmetric, code inline]: "is_none x \<longleftrightarrow> x = None" | 
| 19787 | 748 | |
| 21111 | 749 | lemma is_none_code [code]: | 
| 750 | shows "is_none None \<longleftrightarrow> True" | |
| 751 | and "is_none (Some x) \<longleftrightarrow> False" | |
| 752 | unfolding is_none_none [symmetric] by simp_all | |
| 753 | ||
| 20105 | 754 | lemma split_is_prod_case [code inline]: | 
| 21905 
500f91bf992c
removed code generation stuff belonging to other theories
 haftmann parents: 
21669diff
changeset | 755 | "split = prod_case" | 
| 20798 | 756 | by (simp add: expand_fun_eq split_def prod.cases) | 
| 20105 | 757 | |
| 21905 
500f91bf992c
removed code generation stuff belonging to other theories
 haftmann parents: 
21669diff
changeset | 758 | hide (open) const is_none | 
| 19150 | 759 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20105diff
changeset | 760 | code_type option | 
| 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20105diff
changeset | 761 | (SML "_ option") | 
| 21905 
500f91bf992c
removed code generation stuff belonging to other theories
 haftmann parents: 
21669diff
changeset | 762 | (OCaml "_ option") | 
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20105diff
changeset | 763 | (Haskell "Maybe _") | 
| 19150 | 764 | |
| 20453 
855f07fabd76
final syntax for some Isar code generator keywords
 haftmann parents: 
20105diff
changeset | 765 | code_const None and Some | 
| 21111 | 766 | (SML "NONE" and "SOME") | 
| 21905 
500f91bf992c
removed code generation stuff belonging to other theories
 haftmann parents: 
21669diff
changeset | 767 | (OCaml "None" and "Some _") | 
| 21111 | 768 | (Haskell "Nothing" and "Just") | 
| 19150 | 769 | |
| 20588 | 770 | code_instance option :: eq | 
| 771 | (Haskell -) | |
| 772 | ||
| 21454 | 773 | code_const "op = \<Colon> 'a\<Colon>eq option \<Rightarrow> 'a option \<Rightarrow> bool" | 
| 20588 | 774 | (Haskell infixl 4 "==") | 
| 775 | ||
| 21079 | 776 | code_reserved SML | 
| 21905 
500f91bf992c
removed code generation stuff belonging to other theories
 haftmann parents: 
21669diff
changeset | 777 | option NONE SOME | 
| 21079 | 778 | |
| 21905 
500f91bf992c
removed code generation stuff belonging to other theories
 haftmann parents: 
21669diff
changeset | 779 | code_reserved OCaml | 
| 
500f91bf992c
removed code generation stuff belonging to other theories
 haftmann parents: 
21669diff
changeset | 780 | option None Some | 
| 21079 | 781 | |
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 782 | end |