author | haftmann |
Fri, 20 Oct 2017 20:57:55 +0200 | |
changeset 66888 | 930abfdf8727 |
parent 63901 | 4ce989e962e0 |
child 67091 | 1393c2340eec |
permissions | -rw-r--r-- |
62479 | 1 |
(* Title: HOL/Nonstandard_Analysis/NSCA.thy |
2 |
Author: Jacques D. Fleuriot |
|
3 |
Copyright: 2001, 2002 University of Edinburgh |
|
27468 | 4 |
*) |
5 |
||
61975 | 6 |
section\<open>Non-Standard Complex Analysis\<close> |
27468 | 7 |
|
8 |
theory NSCA |
|
28952
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
haftmann
parents:
28562
diff
changeset
|
9 |
imports NSComplex HTranscendental |
27468 | 10 |
begin |
11 |
||
12 |
abbreviation |
|
13 |
(* standard complex numbers reagarded as an embedded subset of NS complex *) |
|
14 |
SComplex :: "hcomplex set" where |
|
15 |
"SComplex \<equiv> Standard" |
|
16 |
||
61975 | 17 |
definition \<comment>\<open>standard part map\<close> |
27468 | 18 |
stc :: "hcomplex => hcomplex" where |
61982 | 19 |
"stc x = (SOME r. x \<in> HFinite & r:SComplex & r \<approx> x)" |
27468 | 20 |
|
21 |
||
61975 | 22 |
subsection\<open>Closure Laws for SComplex, the Standard Complex Numbers\<close> |
27468 | 23 |
|
24 |
lemma SComplex_minus_iff [simp]: "(-x \<in> SComplex) = (x \<in> SComplex)" |
|
25 |
by (auto, drule Standard_minus, auto) |
|
26 |
||
27 |
lemma SComplex_add_cancel: |
|
28 |
"[| x + y \<in> SComplex; y \<in> SComplex |] ==> x \<in> SComplex" |
|
29 |
by (drule (1) Standard_diff, simp) |
|
30 |
||
31 |
lemma SReal_hcmod_hcomplex_of_complex [simp]: |
|
61070 | 32 |
"hcmod (hcomplex_of_complex r) \<in> \<real>" |
27468 | 33 |
by (simp add: Reals_eq_Standard) |
34 |
||
61070 | 35 |
lemma SReal_hcmod_numeral [simp]: "hcmod (numeral w ::hcomplex) \<in> \<real>" |
27468 | 36 |
by (simp add: Reals_eq_Standard) |
37 |
||
61070 | 38 |
lemma SReal_hcmod_SComplex: "x \<in> SComplex ==> hcmod x \<in> \<real>" |
27468 | 39 |
by (simp add: Reals_eq_Standard) |
40 |
||
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
41 |
lemma SComplex_divide_numeral: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
42 |
"r \<in> SComplex ==> r/(numeral w::hcomplex) \<in> SComplex" |
27468 | 43 |
by simp |
44 |
||
45 |
lemma SComplex_UNIV_complex: |
|
46 |
"{x. hcomplex_of_complex x \<in> SComplex} = (UNIV::complex set)" |
|
47 |
by simp |
|
48 |
||
49 |
lemma SComplex_iff: "(x \<in> SComplex) = (\<exists>y. x = hcomplex_of_complex y)" |
|
50 |
by (simp add: Standard_def image_def) |
|
51 |
||
52 |
lemma hcomplex_of_complex_image: |
|
53 |
"hcomplex_of_complex `(UNIV::complex set) = SComplex" |
|
54 |
by (simp add: Standard_def) |
|
55 |
||
56 |
lemma inv_hcomplex_of_complex_image: "inv hcomplex_of_complex `SComplex = UNIV" |
|
59658
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents:
58878
diff
changeset
|
57 |
by (auto simp add: Standard_def image_def) (metis inj_star_of inv_f_f) |
27468 | 58 |
|
59 |
lemma SComplex_hcomplex_of_complex_image: |
|
60 |
"[| \<exists>x. x: P; P \<le> SComplex |] ==> \<exists>Q. P = hcomplex_of_complex ` Q" |
|
61 |
apply (simp add: Standard_def, blast) |
|
62 |
done |
|
63 |
||
64 |
lemma SComplex_SReal_dense: |
|
65 |
"[| x \<in> SComplex; y \<in> SComplex; hcmod x < hcmod y |
|
66 |
|] ==> \<exists>r \<in> Reals. hcmod x< r & r < hcmod y" |
|
67 |
apply (auto intro: SReal_dense simp add: SReal_hcmod_SComplex) |
|
68 |
done |
|
69 |
||
70 |
||
61975 | 71 |
subsection\<open>The Finite Elements form a Subring\<close> |
27468 | 72 |
|
73 |
lemma HFinite_hcmod_hcomplex_of_complex [simp]: |
|
74 |
"hcmod (hcomplex_of_complex r) \<in> HFinite" |
|
75 |
by (auto intro!: SReal_subset_HFinite [THEN subsetD]) |
|
76 |
||
77 |
lemma HFinite_hcmod_iff: "(x \<in> HFinite) = (hcmod x \<in> HFinite)" |
|
78 |
by (simp add: HFinite_def) |
|
79 |
||
80 |
lemma HFinite_bounded_hcmod: |
|
81 |
"[|x \<in> HFinite; y \<le> hcmod x; 0 \<le> y |] ==> y: HFinite" |
|
82 |
by (auto intro: HFinite_bounded simp add: HFinite_hcmod_iff) |
|
83 |
||
84 |
||
61975 | 85 |
subsection\<open>The Complex Infinitesimals form a Subring\<close> |
27468 | 86 |
|
87 |
lemma hcomplex_sum_of_halves: "x/(2::hcomplex) + x/(2::hcomplex) = x" |
|
88 |
by auto |
|
89 |
||
90 |
lemma Infinitesimal_hcmod_iff: |
|
91 |
"(z \<in> Infinitesimal) = (hcmod z \<in> Infinitesimal)" |
|
92 |
by (simp add: Infinitesimal_def) |
|
93 |
||
94 |
lemma HInfinite_hcmod_iff: "(z \<in> HInfinite) = (hcmod z \<in> HInfinite)" |
|
95 |
by (simp add: HInfinite_def) |
|
96 |
||
97 |
lemma HFinite_diff_Infinitesimal_hcmod: |
|
98 |
"x \<in> HFinite - Infinitesimal ==> hcmod x \<in> HFinite - Infinitesimal" |
|
99 |
by (simp add: HFinite_hcmod_iff Infinitesimal_hcmod_iff) |
|
100 |
||
101 |
lemma hcmod_less_Infinitesimal: |
|
102 |
"[| e \<in> Infinitesimal; hcmod x < hcmod e |] ==> x \<in> Infinitesimal" |
|
103 |
by (auto elim: hrabs_less_Infinitesimal simp add: Infinitesimal_hcmod_iff) |
|
104 |
||
105 |
lemma hcmod_le_Infinitesimal: |
|
106 |
"[| e \<in> Infinitesimal; hcmod x \<le> hcmod e |] ==> x \<in> Infinitesimal" |
|
107 |
by (auto elim: hrabs_le_Infinitesimal simp add: Infinitesimal_hcmod_iff) |
|
108 |
||
109 |
lemma Infinitesimal_interval_hcmod: |
|
110 |
"[| e \<in> Infinitesimal; |
|
111 |
e' \<in> Infinitesimal; |
|
112 |
hcmod e' < hcmod x ; hcmod x < hcmod e |
|
113 |
|] ==> x \<in> Infinitesimal" |
|
114 |
by (auto intro: Infinitesimal_interval simp add: Infinitesimal_hcmod_iff) |
|
115 |
||
116 |
lemma Infinitesimal_interval2_hcmod: |
|
117 |
"[| e \<in> Infinitesimal; |
|
118 |
e' \<in> Infinitesimal; |
|
119 |
hcmod e' \<le> hcmod x ; hcmod x \<le> hcmod e |
|
120 |
|] ==> x \<in> Infinitesimal" |
|
121 |
by (auto intro: Infinitesimal_interval2 simp add: Infinitesimal_hcmod_iff) |
|
122 |
||
123 |
||
61975 | 124 |
subsection\<open>The ``Infinitely Close'' Relation\<close> |
27468 | 125 |
|
126 |
(* |
|
61982 | 127 |
Goalw [capprox_def,approx_def] "(z @c= w) = (hcmod z \<approx> hcmod w)" |
27468 | 128 |
by (auto_tac (claset(),simpset() addsimps [Infinitesimal_hcmod_iff])); |
129 |
*) |
|
130 |
||
131 |
lemma approx_SComplex_mult_cancel_zero: |
|
61982 | 132 |
"[| a \<in> SComplex; a \<noteq> 0; a*x \<approx> 0 |] ==> x \<approx> 0" |
27468 | 133 |
apply (drule Standard_inverse [THEN Standard_subset_HFinite [THEN subsetD]]) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56889
diff
changeset
|
134 |
apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) |
27468 | 135 |
done |
136 |
||
61982 | 137 |
lemma approx_mult_SComplex1: "[| a \<in> SComplex; x \<approx> 0 |] ==> x*a \<approx> 0" |
27468 | 138 |
by (auto dest: Standard_subset_HFinite [THEN subsetD] approx_mult1) |
139 |
||
61982 | 140 |
lemma approx_mult_SComplex2: "[| a \<in> SComplex; x \<approx> 0 |] ==> a*x \<approx> 0" |
27468 | 141 |
by (auto dest: Standard_subset_HFinite [THEN subsetD] approx_mult2) |
142 |
||
143 |
lemma approx_mult_SComplex_zero_cancel_iff [simp]: |
|
61982 | 144 |
"[|a \<in> SComplex; a \<noteq> 0 |] ==> (a*x \<approx> 0) = (x \<approx> 0)" |
27468 | 145 |
by (blast intro: approx_SComplex_mult_cancel_zero approx_mult_SComplex2) |
146 |
||
147 |
lemma approx_SComplex_mult_cancel: |
|
61982 | 148 |
"[| a \<in> SComplex; a \<noteq> 0; a* w \<approx> a*z |] ==> w \<approx> z" |
27468 | 149 |
apply (drule Standard_inverse [THEN Standard_subset_HFinite [THEN subsetD]]) |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
56889
diff
changeset
|
150 |
apply (auto dest: approx_mult2 simp add: mult.assoc [symmetric]) |
27468 | 151 |
done |
152 |
||
153 |
lemma approx_SComplex_mult_cancel_iff1 [simp]: |
|
61982 | 154 |
"[| a \<in> SComplex; a \<noteq> 0|] ==> (a* w \<approx> a*z) = (w \<approx> z)" |
27468 | 155 |
by (auto intro!: approx_mult2 Standard_subset_HFinite [THEN subsetD] |
156 |
intro: approx_SComplex_mult_cancel) |
|
157 |
||
158 |
(* TODO: generalize following theorems: hcmod -> hnorm *) |
|
159 |
||
61982 | 160 |
lemma approx_hcmod_approx_zero: "(x \<approx> y) = (hcmod (y - x) \<approx> 0)" |
27468 | 161 |
apply (subst hnorm_minus_commute) |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53015
diff
changeset
|
162 |
apply (simp add: approx_def Infinitesimal_hcmod_iff) |
27468 | 163 |
done |
164 |
||
61982 | 165 |
lemma approx_approx_zero_iff: "(x \<approx> 0) = (hcmod x \<approx> 0)" |
27468 | 166 |
by (simp add: approx_hcmod_approx_zero) |
167 |
||
61982 | 168 |
lemma approx_minus_zero_cancel_iff [simp]: "(-x \<approx> 0) = (x \<approx> 0)" |
27468 | 169 |
by (simp add: approx_def) |
170 |
||
171 |
lemma Infinitesimal_hcmod_add_diff: |
|
61982 | 172 |
"u \<approx> 0 ==> hcmod(x + u) - hcmod x \<in> Infinitesimal" |
27468 | 173 |
apply (drule approx_approx_zero_iff [THEN iffD1]) |
174 |
apply (rule_tac e = "hcmod u" and e' = "- hcmod u" in Infinitesimal_interval2) |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53015
diff
changeset
|
175 |
apply (auto simp add: mem_infmal_iff [symmetric]) |
27468 | 176 |
apply (rule_tac c1 = "hcmod x" in add_le_cancel_left [THEN iffD1]) |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53015
diff
changeset
|
177 |
apply auto |
27468 | 178 |
done |
179 |
||
61982 | 180 |
lemma approx_hcmod_add_hcmod: "u \<approx> 0 ==> hcmod(x + u) \<approx> hcmod x" |
27468 | 181 |
apply (rule approx_minus_iff [THEN iffD2]) |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53015
diff
changeset
|
182 |
apply (auto intro: Infinitesimal_hcmod_add_diff simp add: mem_infmal_iff [symmetric]) |
27468 | 183 |
done |
184 |
||
185 |
||
61975 | 186 |
subsection\<open>Zero is the Only Infinitesimal Complex Number\<close> |
27468 | 187 |
|
188 |
lemma Infinitesimal_less_SComplex: |
|
189 |
"[| x \<in> SComplex; y \<in> Infinitesimal; 0 < hcmod x |] ==> hcmod y < hcmod x" |
|
59658
0cc388370041
sin, cos generalised from type real to any "'a::{real_normed_field,banach}", including complex
paulson <lp15@cam.ac.uk>
parents:
58878
diff
changeset
|
190 |
by (auto intro: Infinitesimal_less_SReal SReal_hcmod_SComplex simp add: Infinitesimal_hcmod_iff) |
27468 | 191 |
|
192 |
lemma SComplex_Int_Infinitesimal_zero: "SComplex Int Infinitesimal = {0}" |
|
193 |
by (auto simp add: Standard_def Infinitesimal_hcmod_iff) |
|
194 |
||
195 |
lemma SComplex_Infinitesimal_zero: |
|
196 |
"[| x \<in> SComplex; x \<in> Infinitesimal|] ==> x = 0" |
|
197 |
by (cut_tac SComplex_Int_Infinitesimal_zero, blast) |
|
198 |
||
199 |
lemma SComplex_HFinite_diff_Infinitesimal: |
|
200 |
"[| x \<in> SComplex; x \<noteq> 0 |] ==> x \<in> HFinite - Infinitesimal" |
|
201 |
by (auto dest: SComplex_Infinitesimal_zero Standard_subset_HFinite [THEN subsetD]) |
|
202 |
||
203 |
lemma hcomplex_of_complex_HFinite_diff_Infinitesimal: |
|
204 |
"hcomplex_of_complex x \<noteq> 0 |
|
205 |
==> hcomplex_of_complex x \<in> HFinite - Infinitesimal" |
|
206 |
by (rule SComplex_HFinite_diff_Infinitesimal, auto) |
|
207 |
||
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
208 |
lemma numeral_not_Infinitesimal [simp]: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
209 |
"numeral w \<noteq> (0::hcomplex) ==> (numeral w::hcomplex) \<notin> Infinitesimal" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
210 |
by (fast dest: Standard_numeral [THEN SComplex_Infinitesimal_zero]) |
27468 | 211 |
|
212 |
lemma approx_SComplex_not_zero: |
|
61982 | 213 |
"[| y \<in> SComplex; x \<approx> y; y\<noteq> 0 |] ==> x \<noteq> 0" |
27468 | 214 |
by (auto dest: SComplex_Infinitesimal_zero approx_sym [THEN mem_infmal_iff [THEN iffD2]]) |
215 |
||
216 |
lemma SComplex_approx_iff: |
|
61982 | 217 |
"[|x \<in> SComplex; y \<in> SComplex|] ==> (x \<approx> y) = (x = y)" |
27468 | 218 |
by (auto simp add: Standard_def) |
219 |
||
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
220 |
lemma numeral_Infinitesimal_iff [simp]: |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
221 |
"((numeral w :: hcomplex) \<in> Infinitesimal) = |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
222 |
(numeral w = (0::hcomplex))" |
27468 | 223 |
apply (rule iffI) |
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
224 |
apply (fast dest: Standard_numeral [THEN SComplex_Infinitesimal_zero]) |
27468 | 225 |
apply (simp (no_asm_simp)) |
226 |
done |
|
227 |
||
228 |
lemma approx_unique_complex: |
|
61982 | 229 |
"[| r \<in> SComplex; s \<in> SComplex; r \<approx> x; s \<approx> x|] ==> r = s" |
27468 | 230 |
by (blast intro: SComplex_approx_iff [THEN iffD1] approx_trans2) |
231 |
||
61975 | 232 |
subsection \<open>Properties of @{term hRe}, @{term hIm} and @{term HComplex}\<close> |
27468 | 233 |
|
234 |
||
235 |
lemma abs_hRe_le_hcmod: "\<And>x. \<bar>hRe x\<bar> \<le> hcmod x" |
|
236 |
by transfer (rule abs_Re_le_cmod) |
|
237 |
||
238 |
lemma abs_hIm_le_hcmod: "\<And>x. \<bar>hIm x\<bar> \<le> hcmod x" |
|
239 |
by transfer (rule abs_Im_le_cmod) |
|
240 |
||
241 |
lemma Infinitesimal_hRe: "x \<in> Infinitesimal \<Longrightarrow> hRe x \<in> Infinitesimal" |
|
242 |
apply (rule InfinitesimalI2, simp) |
|
243 |
apply (rule order_le_less_trans [OF abs_hRe_le_hcmod]) |
|
244 |
apply (erule (1) InfinitesimalD2) |
|
245 |
done |
|
246 |
||
247 |
lemma Infinitesimal_hIm: "x \<in> Infinitesimal \<Longrightarrow> hIm x \<in> Infinitesimal" |
|
248 |
apply (rule InfinitesimalI2, simp) |
|
249 |
apply (rule order_le_less_trans [OF abs_hIm_le_hcmod]) |
|
250 |
apply (erule (1) InfinitesimalD2) |
|
251 |
done |
|
252 |
||
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
47108
diff
changeset
|
253 |
lemma real_sqrt_lessI: "\<lbrakk>0 < u; x < u\<^sup>2\<rbrakk> \<Longrightarrow> sqrt x < u" |
27468 | 254 |
(* TODO: this belongs somewhere else *) |
255 |
by (frule real_sqrt_less_mono) simp |
|
256 |
||
257 |
lemma hypreal_sqrt_lessI: |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
47108
diff
changeset
|
258 |
"\<And>x u. \<lbrakk>0 < u; x < u\<^sup>2\<rbrakk> \<Longrightarrow> ( *f* sqrt) x < u" |
27468 | 259 |
by transfer (rule real_sqrt_lessI) |
260 |
||
261 |
lemma hypreal_sqrt_ge_zero: "\<And>x. 0 \<le> x \<Longrightarrow> 0 \<le> ( *f* sqrt) x" |
|
262 |
by transfer (rule real_sqrt_ge_zero) |
|
263 |
||
264 |
lemma Infinitesimal_sqrt: |
|
265 |
"\<lbrakk>x \<in> Infinitesimal; 0 \<le> x\<rbrakk> \<Longrightarrow> ( *f* sqrt) x \<in> Infinitesimal" |
|
266 |
apply (rule InfinitesimalI2) |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
47108
diff
changeset
|
267 |
apply (drule_tac r="r\<^sup>2" in InfinitesimalD2, simp) |
27468 | 268 |
apply (simp add: hypreal_sqrt_ge_zero) |
269 |
apply (rule hypreal_sqrt_lessI, simp_all) |
|
270 |
done |
|
271 |
||
272 |
lemma Infinitesimal_HComplex: |
|
273 |
"\<lbrakk>x \<in> Infinitesimal; y \<in> Infinitesimal\<rbrakk> \<Longrightarrow> HComplex x y \<in> Infinitesimal" |
|
274 |
apply (rule Infinitesimal_hcmod_iff [THEN iffD2]) |
|
275 |
apply (simp add: hcmod_i) |
|
276 |
apply (rule Infinitesimal_add) |
|
277 |
apply (erule Infinitesimal_hrealpow, simp) |
|
278 |
apply (erule Infinitesimal_hrealpow, simp) |
|
279 |
done |
|
280 |
||
281 |
lemma hcomplex_Infinitesimal_iff: |
|
282 |
"(x \<in> Infinitesimal) = (hRe x \<in> Infinitesimal \<and> hIm x \<in> Infinitesimal)" |
|
283 |
apply (safe intro!: Infinitesimal_hRe Infinitesimal_hIm) |
|
284 |
apply (drule (1) Infinitesimal_HComplex, simp) |
|
285 |
done |
|
286 |
||
287 |
lemma hRe_diff [simp]: "\<And>x y. hRe (x - y) = hRe x - hRe y" |
|
56889
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents:
54230
diff
changeset
|
288 |
by transfer simp |
27468 | 289 |
|
290 |
lemma hIm_diff [simp]: "\<And>x y. hIm (x - y) = hIm x - hIm y" |
|
56889
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
hoelzl
parents:
54230
diff
changeset
|
291 |
by transfer simp |
27468 | 292 |
|
293 |
lemma approx_hRe: "x \<approx> y \<Longrightarrow> hRe x \<approx> hRe y" |
|
294 |
unfolding approx_def by (drule Infinitesimal_hRe) simp |
|
295 |
||
296 |
lemma approx_hIm: "x \<approx> y \<Longrightarrow> hIm x \<approx> hIm y" |
|
297 |
unfolding approx_def by (drule Infinitesimal_hIm) simp |
|
298 |
||
299 |
lemma approx_HComplex: |
|
300 |
"\<lbrakk>a \<approx> b; c \<approx> d\<rbrakk> \<Longrightarrow> HComplex a c \<approx> HComplex b d" |
|
301 |
unfolding approx_def by (simp add: Infinitesimal_HComplex) |
|
302 |
||
303 |
lemma hcomplex_approx_iff: |
|
304 |
"(x \<approx> y) = (hRe x \<approx> hRe y \<and> hIm x \<approx> hIm y)" |
|
305 |
unfolding approx_def by (simp add: hcomplex_Infinitesimal_iff) |
|
306 |
||
307 |
lemma HFinite_hRe: "x \<in> HFinite \<Longrightarrow> hRe x \<in> HFinite" |
|
308 |
apply (auto simp add: HFinite_def SReal_def) |
|
309 |
apply (rule_tac x="star_of r" in exI, simp) |
|
310 |
apply (erule order_le_less_trans [OF abs_hRe_le_hcmod]) |
|
311 |
done |
|
312 |
||
313 |
lemma HFinite_hIm: "x \<in> HFinite \<Longrightarrow> hIm x \<in> HFinite" |
|
314 |
apply (auto simp add: HFinite_def SReal_def) |
|
315 |
apply (rule_tac x="star_of r" in exI, simp) |
|
316 |
apply (erule order_le_less_trans [OF abs_hIm_le_hcmod]) |
|
317 |
done |
|
318 |
||
319 |
lemma HFinite_HComplex: |
|
320 |
"\<lbrakk>x \<in> HFinite; y \<in> HFinite\<rbrakk> \<Longrightarrow> HComplex x y \<in> HFinite" |
|
321 |
apply (subgoal_tac "HComplex x 0 + HComplex 0 y \<in> HFinite", simp) |
|
322 |
apply (rule HFinite_add) |
|
323 |
apply (simp add: HFinite_hcmod_iff hcmod_i) |
|
324 |
apply (simp add: HFinite_hcmod_iff hcmod_i) |
|
325 |
done |
|
326 |
||
327 |
lemma hcomplex_HFinite_iff: |
|
328 |
"(x \<in> HFinite) = (hRe x \<in> HFinite \<and> hIm x \<in> HFinite)" |
|
329 |
apply (safe intro!: HFinite_hRe HFinite_hIm) |
|
330 |
apply (drule (1) HFinite_HComplex, simp) |
|
331 |
done |
|
332 |
||
333 |
lemma hcomplex_HInfinite_iff: |
|
334 |
"(x \<in> HInfinite) = (hRe x \<in> HInfinite \<or> hIm x \<in> HInfinite)" |
|
335 |
by (simp add: HInfinite_HFinite_iff hcomplex_HFinite_iff) |
|
336 |
||
337 |
lemma hcomplex_of_hypreal_approx_iff [simp]: |
|
61982 | 338 |
"(hcomplex_of_hypreal x \<approx> hcomplex_of_hypreal z) = (x \<approx> z)" |
27468 | 339 |
by (simp add: hcomplex_approx_iff) |
340 |
||
341 |
lemma Standard_HComplex: |
|
342 |
"\<lbrakk>x \<in> Standard; y \<in> Standard\<rbrakk> \<Longrightarrow> HComplex x y \<in> Standard" |
|
343 |
by (simp add: HComplex_def) |
|
344 |
||
345 |
(* Here we go - easy proof now!! *) |
|
61982 | 346 |
lemma stc_part_Ex: "x:HFinite ==> \<exists>t \<in> SComplex. x \<approx> t" |
27468 | 347 |
apply (simp add: hcomplex_HFinite_iff hcomplex_approx_iff) |
348 |
apply (rule_tac x="HComplex (st (hRe x)) (st (hIm x))" in bexI) |
|
349 |
apply (simp add: st_approx_self [THEN approx_sym]) |
|
350 |
apply (simp add: Standard_HComplex st_SReal [unfolded Reals_eq_Standard]) |
|
351 |
done |
|
352 |
||
63901 | 353 |
lemma stc_part_Ex1: "x:HFinite ==> \<exists>!t. t \<in> SComplex & x \<approx> t" |
27468 | 354 |
apply (drule stc_part_Ex, safe) |
355 |
apply (drule_tac [2] approx_sym, drule_tac [2] approx_sym, drule_tac [2] approx_sym) |
|
356 |
apply (auto intro!: approx_unique_complex) |
|
357 |
done |
|
358 |
||
359 |
lemmas hcomplex_of_complex_approx_inverse = |
|
360 |
hcomplex_of_complex_HFinite_diff_Infinitesimal [THEN [2] approx_inverse] |
|
361 |
||
362 |
||
61975 | 363 |
subsection\<open>Theorems About Monads\<close> |
27468 | 364 |
|
365 |
lemma monad_zero_hcmod_iff: "(x \<in> monad 0) = (hcmod x:monad 0)" |
|
366 |
by (simp add: Infinitesimal_monad_zero_iff [symmetric] Infinitesimal_hcmod_iff) |
|
367 |
||
368 |
||
61975 | 369 |
subsection\<open>Theorems About Standard Part\<close> |
27468 | 370 |
|
61982 | 371 |
lemma stc_approx_self: "x \<in> HFinite ==> stc x \<approx> x" |
27468 | 372 |
apply (simp add: stc_def) |
373 |
apply (frule stc_part_Ex, safe) |
|
374 |
apply (rule someI2) |
|
375 |
apply (auto intro: approx_sym) |
|
376 |
done |
|
377 |
||
378 |
lemma stc_SComplex: "x \<in> HFinite ==> stc x \<in> SComplex" |
|
379 |
apply (simp add: stc_def) |
|
380 |
apply (frule stc_part_Ex, safe) |
|
381 |
apply (rule someI2) |
|
382 |
apply (auto intro: approx_sym) |
|
383 |
done |
|
384 |
||
385 |
lemma stc_HFinite: "x \<in> HFinite ==> stc x \<in> HFinite" |
|
386 |
by (erule stc_SComplex [THEN Standard_subset_HFinite [THEN subsetD]]) |
|
387 |
||
388 |
lemma stc_unique: "\<lbrakk>y \<in> SComplex; y \<approx> x\<rbrakk> \<Longrightarrow> stc x = y" |
|
389 |
apply (frule Standard_subset_HFinite [THEN subsetD]) |
|
390 |
apply (drule (1) approx_HFinite) |
|
391 |
apply (unfold stc_def) |
|
392 |
apply (rule some_equality) |
|
393 |
apply (auto intro: approx_unique_complex) |
|
394 |
done |
|
395 |
||
396 |
lemma stc_SComplex_eq [simp]: "x \<in> SComplex ==> stc x = x" |
|
397 |
apply (erule stc_unique) |
|
398 |
apply (rule approx_refl) |
|
399 |
done |
|
400 |
||
401 |
lemma stc_hcomplex_of_complex: |
|
402 |
"stc (hcomplex_of_complex x) = hcomplex_of_complex x" |
|
403 |
by auto |
|
404 |
||
405 |
lemma stc_eq_approx: |
|
61982 | 406 |
"[| x \<in> HFinite; y \<in> HFinite; stc x = stc y |] ==> x \<approx> y" |
27468 | 407 |
by (auto dest!: stc_approx_self elim!: approx_trans3) |
408 |
||
409 |
lemma approx_stc_eq: |
|
61982 | 410 |
"[| x \<in> HFinite; y \<in> HFinite; x \<approx> y |] ==> stc x = stc y" |
27468 | 411 |
by (blast intro: approx_trans approx_trans2 SComplex_approx_iff [THEN iffD1] |
412 |
dest: stc_approx_self stc_SComplex) |
|
413 |
||
414 |
lemma stc_eq_approx_iff: |
|
61982 | 415 |
"[| x \<in> HFinite; y \<in> HFinite|] ==> (x \<approx> y) = (stc x = stc y)" |
27468 | 416 |
by (blast intro: approx_stc_eq stc_eq_approx) |
417 |
||
418 |
lemma stc_Infinitesimal_add_SComplex: |
|
419 |
"[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(x + e) = x" |
|
420 |
apply (erule stc_unique) |
|
421 |
apply (erule Infinitesimal_add_approx_self) |
|
422 |
done |
|
423 |
||
424 |
lemma stc_Infinitesimal_add_SComplex2: |
|
425 |
"[| x \<in> SComplex; e \<in> Infinitesimal |] ==> stc(e + x) = x" |
|
426 |
apply (erule stc_unique) |
|
427 |
apply (erule Infinitesimal_add_approx_self2) |
|
428 |
done |
|
429 |
||
430 |
lemma HFinite_stc_Infinitesimal_add: |
|
431 |
"x \<in> HFinite ==> \<exists>e \<in> Infinitesimal. x = stc(x) + e" |
|
432 |
by (blast dest!: stc_approx_self [THEN approx_sym] bex_Infinitesimal_iff2 [THEN iffD2]) |
|
433 |
||
434 |
lemma stc_add: |
|
435 |
"[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x + y) = stc(x) + stc(y)" |
|
436 |
by (simp add: stc_unique stc_SComplex stc_approx_self approx_add) |
|
437 |
||
47108
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
438 |
lemma stc_numeral [simp]: "stc (numeral w) = numeral w" |
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
huffman
parents:
37887
diff
changeset
|
439 |
by (rule Standard_numeral [THEN stc_SComplex_eq]) |
27468 | 440 |
|
441 |
lemma stc_zero [simp]: "stc 0 = 0" |
|
442 |
by simp |
|
443 |
||
444 |
lemma stc_one [simp]: "stc 1 = 1" |
|
445 |
by simp |
|
446 |
||
447 |
lemma stc_minus: "y \<in> HFinite ==> stc(-y) = -stc(y)" |
|
448 |
by (simp add: stc_unique stc_SComplex stc_approx_self approx_minus) |
|
449 |
||
450 |
lemma stc_diff: |
|
451 |
"[| x \<in> HFinite; y \<in> HFinite |] ==> stc (x-y) = stc(x) - stc(y)" |
|
452 |
by (simp add: stc_unique stc_SComplex stc_approx_self approx_diff) |
|
453 |
||
454 |
lemma stc_mult: |
|
455 |
"[| x \<in> HFinite; y \<in> HFinite |] |
|
456 |
==> stc (x * y) = stc(x) * stc(y)" |
|
457 |
by (simp add: stc_unique stc_SComplex stc_approx_self approx_mult_HFinite) |
|
458 |
||
459 |
lemma stc_Infinitesimal: "x \<in> Infinitesimal ==> stc x = 0" |
|
460 |
by (simp add: stc_unique mem_infmal_iff) |
|
461 |
||
462 |
lemma stc_not_Infinitesimal: "stc(x) \<noteq> 0 ==> x \<notin> Infinitesimal" |
|
463 |
by (fast intro: stc_Infinitesimal) |
|
464 |
||
465 |
lemma stc_inverse: |
|
466 |
"[| x \<in> HFinite; stc x \<noteq> 0 |] |
|
467 |
==> stc(inverse x) = inverse (stc x)" |
|
468 |
apply (drule stc_not_Infinitesimal) |
|
469 |
apply (simp add: stc_unique stc_SComplex stc_approx_self approx_inverse) |
|
470 |
done |
|
471 |
||
472 |
lemma stc_divide [simp]: |
|
473 |
"[| x \<in> HFinite; y \<in> HFinite; stc y \<noteq> 0 |] |
|
474 |
==> stc(x/y) = (stc x) / (stc y)" |
|
475 |
by (simp add: divide_inverse stc_mult stc_not_Infinitesimal HFinite_inverse stc_inverse) |
|
476 |
||
477 |
lemma stc_idempotent [simp]: "x \<in> HFinite ==> stc(stc(x)) = stc(x)" |
|
478 |
by (blast intro: stc_HFinite stc_approx_self approx_stc_eq) |
|
479 |
||
480 |
lemma HFinite_HFinite_hcomplex_of_hypreal: |
|
481 |
"z \<in> HFinite ==> hcomplex_of_hypreal z \<in> HFinite" |
|
482 |
by (simp add: hcomplex_HFinite_iff) |
|
483 |
||
484 |
lemma SComplex_SReal_hcomplex_of_hypreal: |
|
61070 | 485 |
"x \<in> \<real> ==> hcomplex_of_hypreal x \<in> SComplex" |
27468 | 486 |
apply (rule Standard_of_hypreal) |
487 |
apply (simp add: Reals_eq_Standard) |
|
488 |
done |
|
489 |
||
490 |
lemma stc_hcomplex_of_hypreal: |
|
491 |
"z \<in> HFinite ==> stc(hcomplex_of_hypreal z) = hcomplex_of_hypreal (st z)" |
|
492 |
apply (rule stc_unique) |
|
493 |
apply (rule SComplex_SReal_hcomplex_of_hypreal) |
|
494 |
apply (erule st_SReal) |
|
495 |
apply (simp add: hcomplex_of_hypreal_approx_iff st_approx_self) |
|
496 |
done |
|
497 |
||
498 |
(* |
|
499 |
Goal "x \<in> HFinite ==> hcmod(stc x) = st(hcmod x)" |
|
500 |
by (dtac stc_approx_self 1) |
|
501 |
by (auto_tac (claset(),simpset() addsimps [bex_Infinitesimal_iff2 RS sym])); |
|
502 |
||
503 |
||
504 |
approx_hcmod_add_hcmod |
|
505 |
*) |
|
506 |
||
507 |
lemma Infinitesimal_hcnj_iff [simp]: |
|
508 |
"(hcnj z \<in> Infinitesimal) = (z \<in> Infinitesimal)" |
|
509 |
by (simp add: Infinitesimal_hcmod_iff) |
|
510 |
||
511 |
lemma Infinitesimal_hcomplex_of_hypreal_epsilon [simp]: |
|
61981 | 512 |
"hcomplex_of_hypreal \<epsilon> \<in> Infinitesimal" |
27468 | 513 |
by (simp add: Infinitesimal_hcmod_iff) |
514 |
||
515 |
end |