19757
|
1 |
(* Title: LCF/LCF.thy
|
0
|
2 |
ID: $Id$
|
1474
|
3 |
Author: Tobias Nipkow
|
0
|
4 |
Copyright 1992 University of Cambridge
|
|
5 |
*)
|
|
6 |
|
17248
|
7 |
header {* LCF on top of First-Order Logic *}
|
0
|
8 |
|
17248
|
9 |
theory LCF
|
|
10 |
imports FOL
|
|
11 |
begin
|
0
|
12 |
|
17248
|
13 |
text {* This theory is based on Lawrence Paulson's book Logic and Computation. *}
|
0
|
14 |
|
17248
|
15 |
subsection {* Natural Deduction Rules for LCF *}
|
|
16 |
|
|
17 |
classes cpo < "term"
|
|
18 |
defaultsort cpo
|
|
19 |
|
|
20 |
typedecl tr
|
|
21 |
typedecl void
|
|
22 |
typedecl ('a,'b) "*" (infixl 6)
|
|
23 |
typedecl ('a,'b) "+" (infixl 5)
|
0
|
24 |
|
283
|
25 |
arities
|
17248
|
26 |
fun :: (cpo, cpo) cpo
|
|
27 |
"*" :: (cpo, cpo) cpo
|
|
28 |
"+" :: (cpo, cpo) cpo
|
|
29 |
tr :: cpo
|
|
30 |
void :: cpo
|
0
|
31 |
|
|
32 |
consts
|
1474
|
33 |
UU :: "'a"
|
17248
|
34 |
TT :: "tr"
|
|
35 |
FF :: "tr"
|
1474
|
36 |
FIX :: "('a => 'a) => 'a"
|
|
37 |
FST :: "'a*'b => 'a"
|
|
38 |
SND :: "'a*'b => 'b"
|
0
|
39 |
INL :: "'a => 'a+'b"
|
|
40 |
INR :: "'b => 'a+'b"
|
|
41 |
WHEN :: "['a=>'c, 'b=>'c, 'a+'b] => 'c"
|
1474
|
42 |
adm :: "('a => o) => o"
|
|
43 |
VOID :: "void" ("'(')")
|
|
44 |
PAIR :: "['a,'b] => 'a*'b" ("(1<_,/_>)" [0,0] 100)
|
|
45 |
COND :: "[tr,'a,'a] => 'a" ("(_ =>/ (_ |/ _))" [60,60,60] 60)
|
22810
|
46 |
less :: "['a,'a] => o" (infixl "<<" 50)
|
17248
|
47 |
|
|
48 |
axioms
|
0
|
49 |
(** DOMAIN THEORY **)
|
|
50 |
|
17248
|
51 |
eq_def: "x=y == x << y & y << x"
|
0
|
52 |
|
17248
|
53 |
less_trans: "[| x << y; y << z |] ==> x << z"
|
0
|
54 |
|
17248
|
55 |
less_ext: "(ALL x. f(x) << g(x)) ==> f << g"
|
0
|
56 |
|
17248
|
57 |
mono: "[| f << g; x << y |] ==> f(x) << g(y)"
|
0
|
58 |
|
17248
|
59 |
minimal: "UU << x"
|
0
|
60 |
|
17248
|
61 |
FIX_eq: "f(FIX(f)) = FIX(f)"
|
0
|
62 |
|
|
63 |
(** TR **)
|
|
64 |
|
17248
|
65 |
tr_cases: "p=UU | p=TT | p=FF"
|
0
|
66 |
|
17248
|
67 |
not_TT_less_FF: "~ TT << FF"
|
|
68 |
not_FF_less_TT: "~ FF << TT"
|
|
69 |
not_TT_less_UU: "~ TT << UU"
|
|
70 |
not_FF_less_UU: "~ FF << UU"
|
0
|
71 |
|
17248
|
72 |
COND_UU: "UU => x | y = UU"
|
|
73 |
COND_TT: "TT => x | y = x"
|
|
74 |
COND_FF: "FF => x | y = y"
|
0
|
75 |
|
|
76 |
(** PAIRS **)
|
|
77 |
|
17248
|
78 |
surj_pairing: "<FST(z),SND(z)> = z"
|
0
|
79 |
|
17248
|
80 |
FST: "FST(<x,y>) = x"
|
|
81 |
SND: "SND(<x,y>) = y"
|
0
|
82 |
|
|
83 |
(*** STRICT SUM ***)
|
|
84 |
|
17248
|
85 |
INL_DEF: "~x=UU ==> ~INL(x)=UU"
|
|
86 |
INR_DEF: "~x=UU ==> ~INR(x)=UU"
|
0
|
87 |
|
17248
|
88 |
INL_STRICT: "INL(UU) = UU"
|
|
89 |
INR_STRICT: "INR(UU) = UU"
|
0
|
90 |
|
17248
|
91 |
WHEN_UU: "WHEN(f,g,UU) = UU"
|
|
92 |
WHEN_INL: "~x=UU ==> WHEN(f,g,INL(x)) = f(x)"
|
|
93 |
WHEN_INR: "~x=UU ==> WHEN(f,g,INR(x)) = g(x)"
|
0
|
94 |
|
17248
|
95 |
SUM_EXHAUSTION:
|
0
|
96 |
"z = UU | (EX x. ~x=UU & z = INL(x)) | (EX y. ~y=UU & z = INR(y))"
|
|
97 |
|
|
98 |
(** VOID **)
|
|
99 |
|
17248
|
100 |
void_cases: "(x::void) = UU"
|
0
|
101 |
|
|
102 |
(** INDUCTION **)
|
|
103 |
|
17248
|
104 |
induct: "[| adm(P); P(UU); ALL x. P(x) --> P(f(x)) |] ==> P(FIX(f))"
|
0
|
105 |
|
|
106 |
(** Admissibility / Chain Completeness **)
|
|
107 |
(* All rules can be found on pages 199--200 of Larry's LCF book.
|
|
108 |
Note that "easiness" of types is not taken into account
|
|
109 |
because it cannot be expressed schematically; flatness could be. *)
|
|
110 |
|
17248
|
111 |
adm_less: "adm(%x. t(x) << u(x))"
|
|
112 |
adm_not_less: "adm(%x.~ t(x) << u)"
|
|
113 |
adm_not_free: "adm(%x. A)"
|
|
114 |
adm_subst: "adm(P) ==> adm(%x. P(t(x)))"
|
|
115 |
adm_conj: "[| adm(P); adm(Q) |] ==> adm(%x. P(x)&Q(x))"
|
|
116 |
adm_disj: "[| adm(P); adm(Q) |] ==> adm(%x. P(x)|Q(x))"
|
|
117 |
adm_imp: "[| adm(%x.~P(x)); adm(Q) |] ==> adm(%x. P(x)-->Q(x))"
|
|
118 |
adm_all: "(!!y. adm(P(y))) ==> adm(%x. ALL y. P(y,x))"
|
|
119 |
|
19757
|
120 |
|
|
121 |
lemma eq_imp_less1: "x = y ==> x << y"
|
|
122 |
by (simp add: eq_def)
|
|
123 |
|
|
124 |
lemma eq_imp_less2: "x = y ==> y << x"
|
|
125 |
by (simp add: eq_def)
|
|
126 |
|
|
127 |
lemma less_refl [simp]: "x << x"
|
|
128 |
apply (rule eq_imp_less1)
|
|
129 |
apply (rule refl)
|
|
130 |
done
|
|
131 |
|
|
132 |
lemma less_anti_sym: "[| x << y; y << x |] ==> x=y"
|
|
133 |
by (simp add: eq_def)
|
|
134 |
|
|
135 |
lemma ext: "(!!x::'a::cpo. f(x)=(g(x)::'b::cpo)) ==> (%x. f(x))=(%x. g(x))"
|
|
136 |
apply (rule less_anti_sym)
|
|
137 |
apply (rule less_ext)
|
|
138 |
apply simp
|
|
139 |
apply simp
|
|
140 |
done
|
|
141 |
|
|
142 |
lemma cong: "[| f=g; x=y |] ==> f(x)=g(y)"
|
|
143 |
by simp
|
|
144 |
|
|
145 |
lemma less_ap_term: "x << y ==> f(x) << f(y)"
|
|
146 |
by (rule less_refl [THEN mono])
|
|
147 |
|
|
148 |
lemma less_ap_thm: "f << g ==> f(x) << g(x)"
|
|
149 |
by (rule less_refl [THEN [2] mono])
|
|
150 |
|
|
151 |
lemma ap_term: "(x::'a::cpo) = y ==> (f(x)::'b::cpo) = f(y)"
|
|
152 |
apply (rule cong [OF refl])
|
|
153 |
apply simp
|
|
154 |
done
|
|
155 |
|
|
156 |
lemma ap_thm: "f = g ==> f(x) = g(x)"
|
|
157 |
apply (erule cong)
|
|
158 |
apply (rule refl)
|
|
159 |
done
|
|
160 |
|
|
161 |
|
|
162 |
lemma UU_abs: "(%x::'a::cpo. UU) = UU"
|
|
163 |
apply (rule less_anti_sym)
|
|
164 |
prefer 2
|
|
165 |
apply (rule minimal)
|
|
166 |
apply (rule less_ext)
|
|
167 |
apply (rule allI)
|
|
168 |
apply (rule minimal)
|
|
169 |
done
|
|
170 |
|
|
171 |
lemma UU_app: "UU(x) = UU"
|
|
172 |
by (rule UU_abs [symmetric, THEN ap_thm])
|
|
173 |
|
|
174 |
lemma less_UU: "x << UU ==> x=UU"
|
|
175 |
apply (rule less_anti_sym)
|
|
176 |
apply assumption
|
|
177 |
apply (rule minimal)
|
|
178 |
done
|
17248
|
179 |
|
19757
|
180 |
lemma tr_induct: "[| P(UU); P(TT); P(FF) |] ==> ALL b. P(b)"
|
|
181 |
apply (rule allI)
|
|
182 |
apply (rule mp)
|
|
183 |
apply (rule_tac [2] p = b in tr_cases)
|
|
184 |
apply blast
|
|
185 |
done
|
|
186 |
|
|
187 |
lemma Contrapos: "~ B ==> (A ==> B) ==> ~A"
|
|
188 |
by blast
|
|
189 |
|
|
190 |
lemma not_less_imp_not_eq1: "~ x << y \<Longrightarrow> x \<noteq> y"
|
|
191 |
apply (erule Contrapos)
|
|
192 |
apply simp
|
|
193 |
done
|
|
194 |
|
|
195 |
lemma not_less_imp_not_eq2: "~ y << x \<Longrightarrow> x \<noteq> y"
|
|
196 |
apply (erule Contrapos)
|
|
197 |
apply simp
|
|
198 |
done
|
|
199 |
|
|
200 |
lemma not_UU_eq_TT: "UU \<noteq> TT"
|
|
201 |
by (rule not_less_imp_not_eq2) (rule not_TT_less_UU)
|
|
202 |
lemma not_UU_eq_FF: "UU \<noteq> FF"
|
|
203 |
by (rule not_less_imp_not_eq2) (rule not_FF_less_UU)
|
|
204 |
lemma not_TT_eq_UU: "TT \<noteq> UU"
|
|
205 |
by (rule not_less_imp_not_eq1) (rule not_TT_less_UU)
|
|
206 |
lemma not_TT_eq_FF: "TT \<noteq> FF"
|
|
207 |
by (rule not_less_imp_not_eq1) (rule not_TT_less_FF)
|
|
208 |
lemma not_FF_eq_UU: "FF \<noteq> UU"
|
|
209 |
by (rule not_less_imp_not_eq1) (rule not_FF_less_UU)
|
|
210 |
lemma not_FF_eq_TT: "FF \<noteq> TT"
|
|
211 |
by (rule not_less_imp_not_eq1) (rule not_FF_less_TT)
|
|
212 |
|
|
213 |
|
|
214 |
lemma COND_cases_iff [rule_format]:
|
|
215 |
"ALL b. P(b=>x|y) <-> (b=UU-->P(UU)) & (b=TT-->P(x)) & (b=FF-->P(y))"
|
|
216 |
apply (insert not_UU_eq_TT not_UU_eq_FF not_TT_eq_UU
|
|
217 |
not_TT_eq_FF not_FF_eq_UU not_FF_eq_TT)
|
|
218 |
apply (rule tr_induct)
|
|
219 |
apply (simplesubst COND_UU)
|
|
220 |
apply blast
|
|
221 |
apply (simplesubst COND_TT)
|
|
222 |
apply blast
|
|
223 |
apply (simplesubst COND_FF)
|
|
224 |
apply blast
|
|
225 |
done
|
|
226 |
|
|
227 |
lemma COND_cases:
|
|
228 |
"[| x = UU --> P(UU); x = TT --> P(xa); x = FF --> P(y) |] ==> P(x => xa | y)"
|
|
229 |
apply (rule COND_cases_iff [THEN iffD2])
|
|
230 |
apply blast
|
|
231 |
done
|
|
232 |
|
|
233 |
lemmas [simp] =
|
|
234 |
minimal
|
|
235 |
UU_app
|
|
236 |
UU_app [THEN ap_thm]
|
|
237 |
UU_app [THEN ap_thm, THEN ap_thm]
|
|
238 |
not_TT_less_FF not_FF_less_TT not_TT_less_UU not_FF_less_UU not_UU_eq_TT
|
|
239 |
not_UU_eq_FF not_TT_eq_UU not_TT_eq_FF not_FF_eq_UU not_FF_eq_TT
|
|
240 |
COND_UU COND_TT COND_FF
|
|
241 |
surj_pairing FST SND
|
17248
|
242 |
|
|
243 |
|
|
244 |
subsection {* Ordered pairs and products *}
|
|
245 |
|
19757
|
246 |
lemma expand_all_PROD: "(ALL p. P(p)) <-> (ALL x y. P(<x,y>))"
|
|
247 |
apply (rule iffI)
|
|
248 |
apply blast
|
|
249 |
apply (rule allI)
|
|
250 |
apply (rule surj_pairing [THEN subst])
|
|
251 |
apply blast
|
|
252 |
done
|
|
253 |
|
|
254 |
lemma PROD_less: "(p::'a*'b) << q <-> FST(p) << FST(q) & SND(p) << SND(q)"
|
|
255 |
apply (rule iffI)
|
|
256 |
apply (rule conjI)
|
|
257 |
apply (erule less_ap_term)
|
|
258 |
apply (erule less_ap_term)
|
|
259 |
apply (erule conjE)
|
|
260 |
apply (rule surj_pairing [of p, THEN subst])
|
|
261 |
apply (rule surj_pairing [of q, THEN subst])
|
|
262 |
apply (rule mono, erule less_ap_term, assumption)
|
|
263 |
done
|
|
264 |
|
|
265 |
lemma PROD_eq: "p=q <-> FST(p)=FST(q) & SND(p)=SND(q)"
|
|
266 |
apply (rule iffI)
|
|
267 |
apply simp
|
|
268 |
apply (unfold eq_def)
|
|
269 |
apply (simp add: PROD_less)
|
|
270 |
done
|
|
271 |
|
|
272 |
lemma PAIR_less [simp]: "<a,b> << <c,d> <-> a<<c & b<<d"
|
|
273 |
by (simp add: PROD_less)
|
|
274 |
|
|
275 |
lemma PAIR_eq [simp]: "<a,b> = <c,d> <-> a=c & b=d"
|
|
276 |
by (simp add: PROD_eq)
|
|
277 |
|
|
278 |
lemma UU_is_UU_UU [simp]: "<UU,UU> = UU"
|
|
279 |
by (rule less_UU) (simp add: PROD_less)
|
|
280 |
|
|
281 |
lemma FST_STRICT [simp]: "FST(UU) = UU"
|
|
282 |
apply (rule subst [OF UU_is_UU_UU])
|
|
283 |
apply (simp del: UU_is_UU_UU)
|
|
284 |
done
|
|
285 |
|
|
286 |
lemma SND_STRICT [simp]: "SND(UU) = UU"
|
|
287 |
apply (rule subst [OF UU_is_UU_UU])
|
|
288 |
apply (simp del: UU_is_UU_UU)
|
|
289 |
done
|
17248
|
290 |
|
|
291 |
|
|
292 |
subsection {* Fixedpoint theory *}
|
|
293 |
|
19757
|
294 |
lemma adm_eq: "adm(%x. t(x)=(u(x)::'a::cpo))"
|
|
295 |
apply (unfold eq_def)
|
|
296 |
apply (rule adm_conj adm_less)+
|
|
297 |
done
|
|
298 |
|
|
299 |
lemma adm_not_not: "adm(P) ==> adm(%x.~~P(x))"
|
|
300 |
by simp
|
|
301 |
|
|
302 |
lemma not_eq_TT: "ALL p. ~p=TT <-> (p=FF | p=UU)"
|
|
303 |
and not_eq_FF: "ALL p. ~p=FF <-> (p=TT | p=UU)"
|
|
304 |
and not_eq_UU: "ALL p. ~p=UU <-> (p=TT | p=FF)"
|
|
305 |
by (rule tr_induct, simp_all)+
|
|
306 |
|
|
307 |
lemma adm_not_eq_tr: "ALL p::tr. adm(%x. ~t(x)=p)"
|
|
308 |
apply (rule tr_induct)
|
|
309 |
apply (simp_all add: not_eq_TT not_eq_FF not_eq_UU)
|
|
310 |
apply (rule adm_disj adm_eq)+
|
|
311 |
done
|
|
312 |
|
|
313 |
lemmas adm_lemmas =
|
|
314 |
adm_not_free adm_eq adm_less adm_not_less
|
|
315 |
adm_not_eq_tr adm_conj adm_disj adm_imp adm_all
|
|
316 |
|
|
317 |
|
|
318 |
ML {*
|
|
319 |
fun induct_tac v i =
|
22810
|
320 |
res_inst_tac[("f",v)] @{thm induct} i THEN
|
|
321 |
REPEAT (resolve_tac @{thms adm_lemmas} i)
|
19757
|
322 |
*}
|
|
323 |
|
|
324 |
lemma least_FIX: "f(p) = p ==> FIX(f) << p"
|
|
325 |
apply (tactic {* induct_tac "f" 1 *})
|
|
326 |
apply (rule minimal)
|
|
327 |
apply (intro strip)
|
|
328 |
apply (erule subst)
|
|
329 |
apply (erule less_ap_term)
|
|
330 |
done
|
|
331 |
|
|
332 |
lemma lfp_is_FIX:
|
|
333 |
assumes 1: "f(p) = p"
|
|
334 |
and 2: "ALL q. f(q)=q --> p << q"
|
|
335 |
shows "p = FIX(f)"
|
|
336 |
apply (rule less_anti_sym)
|
|
337 |
apply (rule 2 [THEN spec, THEN mp])
|
|
338 |
apply (rule FIX_eq)
|
|
339 |
apply (rule least_FIX)
|
|
340 |
apply (rule 1)
|
|
341 |
done
|
|
342 |
|
|
343 |
|
|
344 |
lemma FIX_pair: "<FIX(f),FIX(g)> = FIX(%p.<f(FST(p)),g(SND(p))>)"
|
|
345 |
apply (rule lfp_is_FIX)
|
|
346 |
apply (simp add: FIX_eq [of f] FIX_eq [of g])
|
|
347 |
apply (intro strip)
|
|
348 |
apply (simp add: PROD_less)
|
|
349 |
apply (rule conjI)
|
|
350 |
apply (rule least_FIX)
|
|
351 |
apply (erule subst, rule FST [symmetric])
|
|
352 |
apply (rule least_FIX)
|
|
353 |
apply (erule subst, rule SND [symmetric])
|
|
354 |
done
|
|
355 |
|
|
356 |
lemma FIX1: "FIX(f) = FST(FIX(%p. <f(FST(p)),g(SND(p))>))"
|
|
357 |
by (rule FIX_pair [unfolded PROD_eq FST SND, THEN conjunct1])
|
|
358 |
|
|
359 |
lemma FIX2: "FIX(g) = SND(FIX(%p. <f(FST(p)),g(SND(p))>))"
|
|
360 |
by (rule FIX_pair [unfolded PROD_eq FST SND, THEN conjunct2])
|
|
361 |
|
|
362 |
lemma induct2:
|
|
363 |
assumes 1: "adm(%p. P(FST(p),SND(p)))"
|
|
364 |
and 2: "P(UU::'a,UU::'b)"
|
|
365 |
and 3: "ALL x y. P(x,y) --> P(f(x),g(y))"
|
|
366 |
shows "P(FIX(f),FIX(g))"
|
|
367 |
apply (rule FIX1 [THEN ssubst, of _ f g])
|
|
368 |
apply (rule FIX2 [THEN ssubst, of _ f g])
|
19758
|
369 |
apply (rule induct [where ?f = "%x. <f(FST(x)),g(SND(x))>"])
|
|
370 |
apply (rule 1)
|
19757
|
371 |
apply simp
|
|
372 |
apply (rule 2)
|
|
373 |
apply (simp add: expand_all_PROD)
|
|
374 |
apply (rule 3)
|
|
375 |
done
|
|
376 |
|
|
377 |
ML {*
|
|
378 |
fun induct2_tac (f,g) i =
|
22810
|
379 |
res_inst_tac[("f",f),("g",g)] @{thm induct2} i THEN
|
|
380 |
REPEAT(resolve_tac @{thms adm_lemmas} i)
|
19757
|
381 |
*}
|
|
382 |
|
|
383 |
end
|