author | huffman |
Sun, 20 May 2007 08:16:29 +0200 | |
changeset 23045 | 95e04f335940 |
parent 23043 | 5dbfd67516a4 |
child 23048 | 5e40f1e9958a |
permissions | -rw-r--r-- |
12196 | 1 |
(* Title : Transcendental.thy |
2 |
Author : Jacques D. Fleuriot |
|
3 |
Copyright : 1998,1999 University of Cambridge |
|
13958
c1c67582c9b5
New material on integration, etc. Moving Hyperreal/ex
paulson
parents:
12196
diff
changeset
|
4 |
1999,2001 University of Edinburgh |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
5 |
Conversion to Isar and new proofs by Lawrence C Paulson, 2004 |
12196 | 6 |
*) |
7 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
8 |
header{*Power Series, Transcendental Functions etc.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
9 |
|
15131 | 10 |
theory Transcendental |
22654
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
11 |
imports NthRoot Fact Series EvenOdd Deriv |
15131 | 12 |
begin |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
13 |
|
23043 | 14 |
subsection{*Properties of Power Series*} |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
15 |
|
15229 | 16 |
lemma lemma_realpow_diff [rule_format (no_asm)]: |
17 |
"p \<le> n --> y ^ (Suc n - p) = ((y::real) ^ (n - p)) * y" |
|
15251 | 18 |
apply (induct "n", auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
19 |
apply (subgoal_tac "p = Suc n") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
20 |
apply (simp (no_asm_simp), auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
21 |
apply (drule sym) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
22 |
apply (simp add: Suc_diff_le mult_commute realpow_Suc [symmetric] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
23 |
del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
24 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
25 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
26 |
lemma lemma_realpow_diff_sumr: |
15539 | 27 |
"(\<Sum>p=0..<Suc n. (x ^ p) * y ^ ((Suc n) - p)) = |
28 |
y * (\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))::real)" |
|
19279 | 29 |
by (auto simp add: setsum_right_distrib lemma_realpow_diff mult_ac |
16641
fce796ad9c2b
Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents:
15561
diff
changeset
|
30 |
simp del: setsum_op_ivl_Suc cong: strong_setsum_cong) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
31 |
|
15229 | 32 |
lemma lemma_realpow_diff_sumr2: |
33 |
"x ^ (Suc n) - y ^ (Suc n) = |
|
15539 | 34 |
(x - y) * (\<Sum>p=0..<Suc n. (x ^ p) * (y ^(n - p))::real)" |
15251 | 35 |
apply (induct "n", simp) |
15561 | 36 |
apply (auto simp del: setsum_op_ivl_Suc) |
37 |
apply (subst setsum_op_ivl_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
38 |
apply (drule sym) |
15561 | 39 |
apply (auto simp add: lemma_realpow_diff_sumr right_distrib diff_minus mult_ac simp del: setsum_op_ivl_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
40 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
41 |
|
15229 | 42 |
lemma lemma_realpow_rev_sumr: |
15539 | 43 |
"(\<Sum>p=0..<Suc n. (x ^ p) * (y ^ (n - p))) = |
44 |
(\<Sum>p=0..<Suc n. (x ^ (n - p)) * (y ^ p)::real)" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
45 |
apply (case_tac "x = y") |
15561 | 46 |
apply (auto simp add: mult_commute power_add [symmetric] simp del: setsum_op_ivl_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
47 |
apply (rule_tac c1 = "x - y" in real_mult_left_cancel [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
48 |
apply (rule_tac [2] minus_minus [THEN subst], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
49 |
apply (subst minus_mult_left) |
15561 | 50 |
apply (simp add: lemma_realpow_diff_sumr2 [symmetric] del: setsum_op_ivl_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
51 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
52 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
53 |
text{*Power series has a `circle` of convergence, i.e. if it sums for @{term |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
54 |
x}, then it sums absolutely for @{term z} with @{term "\<bar>z\<bar> < \<bar>x\<bar>"}.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
55 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
56 |
lemma powser_insidea: |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
57 |
fixes x z :: real |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
58 |
assumes 1: "summable (\<lambda>n. f n * x ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
59 |
assumes 2: "\<bar>z\<bar> < \<bar>x\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
60 |
shows "summable (\<lambda>n. \<bar>f n\<bar> * z ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
61 |
proof - |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
62 |
from 2 have x_neq_0: "x \<noteq> 0" by clarsimp |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
63 |
from 1 have "(\<lambda>n. f n * x ^ n) ----> 0" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
64 |
by (rule summable_LIMSEQ_zero) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
65 |
hence "convergent (\<lambda>n. f n * x ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
66 |
by (rule convergentI) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
67 |
hence "Cauchy (\<lambda>n. f n * x ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
68 |
by (simp add: Cauchy_convergent_iff) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
69 |
hence "Bseq (\<lambda>n. f n * x ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
70 |
by (rule Cauchy_Bseq) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
71 |
then obtain K where 3: "0 < K" and 4: "\<forall>n. \<bar>f n * x ^ n\<bar> \<le> K" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
72 |
by (simp add: Bseq_def, safe) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
73 |
have "\<exists>N. \<forall>n\<ge>N. norm (\<bar>f n\<bar> * z ^ n) \<le> K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
74 |
proof (intro exI allI impI) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
75 |
fix n::nat assume "0 \<le> n" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
76 |
have "norm (\<bar>f n\<bar> * z ^ n) * \<bar>x ^ n\<bar> = \<bar>f n * x ^ n\<bar> * \<bar>z ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
77 |
by (simp add: abs_mult) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
78 |
also have "\<dots> \<le> K * \<bar>z ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
79 |
by (simp only: mult_right_mono 4 abs_ge_zero) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
80 |
also have "\<dots> = K * \<bar>z ^ n\<bar> * (inverse \<bar>x ^ n\<bar> * \<bar>x ^ n\<bar>)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
81 |
by (simp add: x_neq_0) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
82 |
also have "\<dots> = K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar> * \<bar>x ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
83 |
by (simp only: mult_assoc) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
84 |
finally show "norm (\<bar>f n\<bar> * z ^ n) \<le> K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
85 |
by (simp add: mult_le_cancel_right x_neq_0) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
86 |
qed |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
87 |
moreover have "summable (\<lambda>n. K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
88 |
proof - |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
89 |
from 2 have "norm \<bar>z * inverse x\<bar> < 1" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
90 |
by (simp add: abs_mult divide_inverse [symmetric]) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
91 |
hence "summable (\<lambda>n. \<bar>z * inverse x\<bar> ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
92 |
by (rule summable_geometric) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
93 |
hence "summable (\<lambda>n. K * \<bar>z * inverse x\<bar> ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
94 |
by (rule summable_mult) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
95 |
thus "summable (\<lambda>n. K * \<bar>z ^ n\<bar> * inverse \<bar>x ^ n\<bar>)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
96 |
by (simp add: abs_mult power_mult_distrib power_abs |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
97 |
power_inverse mult_assoc) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
98 |
qed |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
99 |
ultimately show "summable (\<lambda>n. \<bar>f n\<bar> * z ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
100 |
by (rule summable_comparison_test) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
101 |
qed |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
102 |
|
15229 | 103 |
lemma powser_inside: |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
104 |
fixes f :: "nat \<Rightarrow> real" shows |
15229 | 105 |
"[| summable (%n. f(n) * (x ^ n)); \<bar>z\<bar> < \<bar>x\<bar> |] |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
106 |
==> summable (%n. f(n) * (z ^ n))" |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
107 |
apply (drule_tac z = "\<bar>z\<bar>" in powser_insidea, simp) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
108 |
apply (rule summable_rabs_cancel) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
109 |
apply (simp add: abs_mult power_abs [symmetric]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
110 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
111 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
112 |
|
23043 | 113 |
subsection{*Term-by-Term Differentiability of Power Series*} |
114 |
||
115 |
definition |
|
116 |
diffs :: "(nat => real) => nat => real" where |
|
117 |
"diffs c = (%n. real (Suc n) * c(Suc n))" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
118 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
119 |
text{*Lemma about distributing negation over it*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
120 |
lemma diffs_minus: "diffs (%n. - c n) = (%n. - diffs c n)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
121 |
by (simp add: diffs_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
122 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
123 |
text{*Show that we can shift the terms down one*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
124 |
lemma lemma_diffs: |
15539 | 125 |
"(\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) = |
126 |
(\<Sum>n=0..<n. real n * c(n) * (x ^ (n - Suc 0))) + |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
127 |
(real n * c(n) * x ^ (n - Suc 0))" |
15251 | 128 |
apply (induct "n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
129 |
apply (auto simp add: mult_assoc add_assoc [symmetric] diffs_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
130 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
131 |
|
15229 | 132 |
lemma lemma_diffs2: |
15539 | 133 |
"(\<Sum>n=0..<n. real n * c(n) * (x ^ (n - Suc 0))) = |
134 |
(\<Sum>n=0..<n. (diffs c)(n) * (x ^ n)) - |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
135 |
(real n * c(n) * x ^ (n - Suc 0))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
136 |
by (auto simp add: lemma_diffs) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
137 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
138 |
|
15229 | 139 |
lemma diffs_equiv: |
140 |
"summable (%n. (diffs c)(n) * (x ^ n)) ==> |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
141 |
(%n. real n * c(n) * (x ^ (n - Suc 0))) sums |
15546 | 142 |
(\<Sum>n. (diffs c)(n) * (x ^ n))" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
143 |
apply (subgoal_tac " (%n. real n * c (n) * (x ^ (n - Suc 0))) ----> 0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
144 |
apply (rule_tac [2] LIMSEQ_imp_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
145 |
apply (drule summable_sums) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
146 |
apply (auto simp add: sums_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
147 |
apply (drule_tac X="(\<lambda>n. \<Sum>n = 0..<n. diffs c n * x ^ n)" in LIMSEQ_diff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
148 |
apply (auto simp add: lemma_diffs2 [symmetric] diffs_def [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
149 |
apply (simp add: diffs_def summable_LIMSEQ_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
150 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
151 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
152 |
lemma lemma_termdiff1: |
15539 | 153 |
"(\<Sum>p=0..<m. (((z + h) ^ (m - p)) * (z ^ p)) - (z ^ m)) = |
154 |
(\<Sum>p=0..<m. (z ^ p) * (((z + h) ^ (m - p)) - (z ^ (m - p)))::real)" |
|
16641
fce796ad9c2b
Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents:
15561
diff
changeset
|
155 |
by (auto simp add: right_distrib diff_minus power_add [symmetric] mult_ac |
fce796ad9c2b
Simplified some proofs (thanks to strong_setsum_cong).
berghofe
parents:
15561
diff
changeset
|
156 |
cong: strong_setsum_cong) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
157 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
158 |
lemma less_add_one: "m < n ==> (\<exists>d. n = m + d + Suc 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
159 |
by (simp add: less_iff_Suc_add) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
160 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
161 |
lemma sumdiff: "a + b - (c + d) = a - c + b - (d::real)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
162 |
by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
163 |
|
15229 | 164 |
lemma lemma_termdiff2: |
20860 | 165 |
assumes h: "h \<noteq> 0" shows |
166 |
"((z + h) ^ n - z ^ n) / h - real n * z ^ (n - Suc 0) = |
|
167 |
h * (\<Sum>p=0..< n - Suc 0. \<Sum>q=0..< n - Suc 0 - p. |
|
168 |
(z + h) ^ q * z ^ (n - 2 - q))" |
|
169 |
apply (rule real_mult_left_cancel [OF h, THEN iffD1]) |
|
170 |
apply (simp add: right_diff_distrib diff_divide_distrib h) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
171 |
apply (simp add: mult_assoc [symmetric]) |
20860 | 172 |
apply (cases "n", simp) |
173 |
apply (simp add: lemma_realpow_diff_sumr2 h |
|
174 |
right_diff_distrib [symmetric] mult_assoc |
|
175 |
del: realpow_Suc setsum_op_ivl_Suc) |
|
176 |
apply (subst lemma_realpow_rev_sumr) |
|
177 |
apply (subst sumr_diff_mult_const) |
|
178 |
apply simp |
|
179 |
apply (simp only: lemma_termdiff1 setsum_right_distrib) |
|
180 |
apply (rule setsum_cong [OF refl]) |
|
15539 | 181 |
apply (simp add: diff_minus [symmetric] less_iff_Suc_add) |
20860 | 182 |
apply (clarify) |
183 |
apply (simp add: setsum_right_distrib lemma_realpow_diff_sumr2 mult_ac |
|
184 |
del: setsum_op_ivl_Suc realpow_Suc) |
|
185 |
apply (subst mult_assoc [symmetric], subst power_add [symmetric]) |
|
186 |
apply (simp add: mult_ac) |
|
187 |
done |
|
188 |
||
189 |
lemma real_setsum_nat_ivl_bounded2: |
|
190 |
"\<lbrakk>\<And>p::nat. p < n \<Longrightarrow> f p \<le> K; 0 \<le> K\<rbrakk> |
|
191 |
\<Longrightarrow> setsum f {0..<n-k} \<le> real n * K" |
|
192 |
apply (rule order_trans [OF real_setsum_nat_ivl_bounded mult_right_mono]) |
|
193 |
apply simp_all |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
194 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
195 |
|
15229 | 196 |
lemma lemma_termdiff3: |
20860 | 197 |
assumes 1: "h \<noteq> 0" |
198 |
assumes 2: "\<bar>z\<bar> \<le> K" |
|
199 |
assumes 3: "\<bar>z + h\<bar> \<le> K" |
|
200 |
shows "\<bar>((z + h) ^ n - z ^ n) / h - real n * z ^ (n - Suc 0)\<bar> |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
201 |
\<le> real n * real (n - Suc 0) * K ^ (n - 2) * \<bar>h\<bar>" |
20860 | 202 |
proof - |
203 |
have "\<bar>((z + h) ^ n - z ^ n) / h - real n * z ^ (n - Suc 0)\<bar> = |
|
204 |
\<bar>\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p. |
|
205 |
(z + h) ^ q * z ^ (n - 2 - q)\<bar> * \<bar>h\<bar>" |
|
206 |
apply (subst lemma_termdiff2 [OF 1]) |
|
207 |
apply (subst abs_mult) |
|
208 |
apply (rule mult_commute) |
|
209 |
done |
|
210 |
also have "\<dots> \<le> real n * (real (n - Suc 0) * K ^ (n - 2)) * \<bar>h\<bar>" |
|
211 |
proof (rule mult_right_mono [OF _ abs_ge_zero]) |
|
212 |
from abs_ge_zero 2 have K: "0 \<le> K" by (rule order_trans) |
|
213 |
have le_Kn: "\<And>i j n. i + j = n \<Longrightarrow> \<bar>(z + h) ^ i * z ^ j\<bar> \<le> K ^ n" |
|
214 |
apply (erule subst) |
|
215 |
apply (simp only: abs_mult power_abs power_add) |
|
216 |
apply (intro mult_mono power_mono 2 3 abs_ge_zero zero_le_power K) |
|
217 |
done |
|
218 |
show "\<bar>\<Sum>p = 0..<n - Suc 0. \<Sum>q = 0..<n - Suc 0 - p. |
|
219 |
(z + h) ^ q * z ^ (n - 2 - q)\<bar> |
|
220 |
\<le> real n * (real (n - Suc 0) * K ^ (n - 2))" |
|
221 |
apply (intro |
|
222 |
order_trans [OF setsum_abs] |
|
223 |
real_setsum_nat_ivl_bounded2 |
|
224 |
mult_nonneg_nonneg |
|
225 |
real_of_nat_ge_zero |
|
226 |
zero_le_power K) |
|
227 |
apply (rule le_Kn, simp) |
|
228 |
done |
|
229 |
qed |
|
230 |
also have "\<dots> = real n * real (n - Suc 0) * K ^ (n - 2) * \<bar>h\<bar>" |
|
231 |
by (simp only: mult_assoc) |
|
232 |
finally show ?thesis . |
|
233 |
qed |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
234 |
|
20860 | 235 |
lemma lemma_termdiff4: |
236 |
assumes k: "0 < (k::real)" |
|
237 |
assumes le: "\<And>h. \<lbrakk>h \<noteq> 0; \<bar>h\<bar> < k\<rbrakk> \<Longrightarrow> \<bar>f h\<bar> \<le> K * \<bar>h\<bar>" |
|
238 |
shows "f -- 0 --> 0" |
|
239 |
proof (simp add: LIM_def, safe) |
|
240 |
fix r::real assume r: "0 < r" |
|
241 |
have zero_le_K: "0 \<le> K" |
|
242 |
apply (cut_tac k) |
|
243 |
apply (cut_tac h="k/2" in le, simp, simp) |
|
244 |
apply (subgoal_tac "0 \<le> K*k", simp add: zero_le_mult_iff) |
|
245 |
apply (force intro: order_trans [of _ "\<bar>f (k / 2)\<bar> * 2"]) |
|
246 |
done |
|
247 |
show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>f x\<bar> < r)" |
|
248 |
proof (cases) |
|
249 |
assume "K = 0" |
|
250 |
with k r le have "0 < k \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < k \<longrightarrow> \<bar>f x\<bar> < r)" |
|
251 |
by simp |
|
252 |
thus "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>f x\<bar> < r)" .. |
|
253 |
next |
|
254 |
assume K_neq_zero: "K \<noteq> 0" |
|
255 |
with zero_le_K have K: "0 < K" by simp |
|
256 |
show "\<exists>s. 0 < s \<and> (\<forall>x. x \<noteq> 0 \<and> \<bar>x\<bar> < s \<longrightarrow> \<bar>f x\<bar> < r)" |
|
257 |
proof (rule exI, safe) |
|
258 |
from k r K show "0 < min k (r * inverse K / 2)" |
|
259 |
by (simp add: mult_pos_pos positive_imp_inverse_positive) |
|
260 |
next |
|
261 |
fix x::real |
|
262 |
assume x1: "x \<noteq> 0" and x2: "\<bar>x\<bar> < min k (r * inverse K / 2)" |
|
263 |
from x2 have x3: "\<bar>x\<bar> < k" and x4: "\<bar>x\<bar> < r * inverse K / 2" |
|
264 |
by simp_all |
|
265 |
from x1 x3 le have "\<bar>f x\<bar> \<le> K * \<bar>x\<bar>" by simp |
|
266 |
also from x4 K have "K * \<bar>x\<bar> < K * (r * inverse K / 2)" |
|
267 |
by (rule mult_strict_left_mono) |
|
268 |
also have "\<dots> = r / 2" |
|
269 |
using K_neq_zero by simp |
|
270 |
also have "r / 2 < r" |
|
271 |
using r by simp |
|
272 |
finally show "\<bar>f x\<bar> < r" . |
|
273 |
qed |
|
274 |
qed |
|
275 |
qed |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
276 |
|
15229 | 277 |
lemma lemma_termdiff5: |
20860 | 278 |
assumes k: "0 < (k::real)" |
279 |
assumes f: "summable f" |
|
280 |
assumes le: "\<And>h n. \<lbrakk>h \<noteq> 0; \<bar>h\<bar> < k\<rbrakk> \<Longrightarrow> \<bar>g h n\<bar> \<le> f n * \<bar>h\<bar>" |
|
281 |
shows "(\<lambda>h. suminf (g h)) -- 0 --> 0" |
|
282 |
proof (rule lemma_termdiff4 [OF k]) |
|
283 |
fix h assume "h \<noteq> 0" and "\<bar>h\<bar> < k" |
|
284 |
hence A: "\<forall>n. \<bar>g h n\<bar> \<le> f n * \<bar>h\<bar>" |
|
285 |
by (simp add: le) |
|
286 |
hence "\<exists>N. \<forall>n\<ge>N. norm \<bar>g h n\<bar> \<le> f n * \<bar>h\<bar>" |
|
287 |
by simp |
|
288 |
moreover from f have B: "summable (\<lambda>n. f n * \<bar>h\<bar>)" |
|
289 |
by (rule summable_mult2) |
|
290 |
ultimately have C: "summable (\<lambda>n. \<bar>g h n\<bar>)" |
|
291 |
by (rule summable_comparison_test) |
|
292 |
hence "\<bar>suminf (g h)\<bar> \<le> (\<Sum>n. \<bar>g h n\<bar>)" |
|
293 |
by (rule summable_rabs) |
|
294 |
also from A C B have "(\<Sum>n. \<bar>g h n\<bar>) \<le> (\<Sum>n. f n * \<bar>h\<bar>)" |
|
295 |
by (rule summable_le) |
|
296 |
also from f have "(\<Sum>n. f n * \<bar>h\<bar>) = suminf f * \<bar>h\<bar>" |
|
297 |
by (rule suminf_mult2 [symmetric]) |
|
298 |
finally show "\<bar>suminf (g h)\<bar> \<le> suminf f * \<bar>h\<bar>" . |
|
299 |
qed |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
300 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
301 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
302 |
text{* FIXME: Long proofs*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
303 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
304 |
lemma termdiffs_aux: |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
305 |
assumes 1: "summable (\<lambda>n. diffs (diffs c) n * K ^ n)" |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
306 |
assumes 2: "\<bar>x\<bar> < \<bar>K\<bar>" |
20860 | 307 |
shows "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h |
308 |
- real n * x ^ (n - Suc 0))) -- 0 --> 0" |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
309 |
proof - |
20860 | 310 |
from dense [OF 2] |
311 |
obtain r where r1: "\<bar>x\<bar> < r" and r2: "r < \<bar>K\<bar>" by fast |
|
312 |
from abs_ge_zero r1 have r: "0 < r" |
|
313 |
by (rule order_le_less_trans) |
|
314 |
hence r_neq_0: "r \<noteq> 0" by simp |
|
315 |
show ?thesis |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
316 |
proof (rule lemma_termdiff5) |
20860 | 317 |
show "0 < r - \<bar>x\<bar>" using r1 by simp |
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
318 |
next |
20860 | 319 |
from r r2 have "\<bar>r\<bar> < \<bar>K\<bar>" |
320 |
by (simp only: abs_of_nonneg order_less_imp_le) |
|
321 |
with 1 have "summable (\<lambda>n. \<bar>diffs (diffs c) n\<bar> * (r ^ n))" |
|
322 |
by (rule powser_insidea) |
|
323 |
hence "summable (\<lambda>n. diffs (diffs (\<lambda>n. \<bar>c n\<bar>)) n * r ^ n)" |
|
324 |
by (simp only: diffs_def abs_mult abs_real_of_nat_cancel) |
|
325 |
hence "summable (\<lambda>n. real n * diffs (\<lambda>n. \<bar>c n\<bar>) n * r ^ (n - Suc 0))" |
|
326 |
by (rule diffs_equiv [THEN sums_summable]) |
|
327 |
also have "(\<lambda>n. real n * diffs (\<lambda>n. \<bar>c n\<bar>) n * r ^ (n - Suc 0)) |
|
328 |
= (\<lambda>n. diffs (%m. real (m - Suc 0) * \<bar>c m\<bar> * inverse r) n * (r ^ n))" |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
329 |
apply (rule ext) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
330 |
apply (simp add: diffs_def) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
331 |
apply (case_tac n, simp_all add: r_neq_0) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
332 |
done |
20860 | 333 |
finally have "summable |
334 |
(\<lambda>n. real n * (real (n - Suc 0) * \<bar>c n\<bar> * inverse r) * r ^ (n - Suc 0))" |
|
335 |
by (rule diffs_equiv [THEN sums_summable]) |
|
336 |
also have |
|
337 |
"(\<lambda>n. real n * (real (n - Suc 0) * \<bar>c n\<bar> * inverse r) * |
|
338 |
r ^ (n - Suc 0)) = |
|
339 |
(\<lambda>n. \<bar>c n\<bar> * real n * real (n - Suc 0) * r ^ (n - 2))" |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
340 |
apply (rule ext) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
341 |
apply (case_tac "n", simp) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
342 |
apply (case_tac "nat", simp) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
343 |
apply (simp add: r_neq_0) |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
344 |
done |
20860 | 345 |
finally show |
346 |
"summable (\<lambda>n. \<bar>c n\<bar> * real n * real (n - Suc 0) * r ^ (n - 2))" . |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
347 |
next |
20860 | 348 |
fix h::real and n::nat |
349 |
assume h: "h \<noteq> 0" |
|
350 |
assume "\<bar>h\<bar> < r - \<bar>x\<bar>" |
|
351 |
hence "\<bar>x\<bar> + \<bar>h\<bar> < r" by simp |
|
352 |
with abs_triangle_ineq have xh: "\<bar>x + h\<bar> < r" |
|
353 |
by (rule order_le_less_trans) |
|
354 |
show "\<bar>c n * (((x + h) ^ n - x ^ n) / h - real n * x ^ (n - Suc 0))\<bar> |
|
355 |
\<le> \<bar>c n\<bar> * real n * real (n - Suc 0) * r ^ (n - 2) * \<bar>h\<bar>" |
|
356 |
apply (simp only: abs_mult mult_assoc) |
|
357 |
apply (rule mult_left_mono [OF _ abs_ge_zero]) |
|
358 |
apply (simp (no_asm) add: mult_assoc [symmetric]) |
|
359 |
apply (rule lemma_termdiff3) |
|
360 |
apply (rule h) |
|
361 |
apply (rule r1 [THEN order_less_imp_le]) |
|
362 |
apply (rule xh [THEN order_less_imp_le]) |
|
363 |
done |
|
20849
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
364 |
qed |
389cd9c8cfe1
rewrite proofs of powser_insidea and termdiffs_aux
huffman
parents:
20692
diff
changeset
|
365 |
qed |
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19765
diff
changeset
|
366 |
|
20860 | 367 |
lemma termdiffs: |
368 |
assumes 1: "summable (\<lambda>n. c n * K ^ n)" |
|
369 |
assumes 2: "summable (\<lambda>n. (diffs c) n * K ^ n)" |
|
370 |
assumes 3: "summable (\<lambda>n. (diffs (diffs c)) n * K ^ n)" |
|
371 |
assumes 4: "\<bar>x\<bar> < \<bar>K\<bar>" |
|
372 |
shows "DERIV (\<lambda>x. \<Sum>n. c n * x ^ n) x :> (\<Sum>n. (diffs c) n * x ^ n)" |
|
373 |
proof (simp add: deriv_def, rule LIM_zero_cancel) |
|
374 |
show "(\<lambda>h. (suminf (\<lambda>n. c n * (x + h) ^ n) - suminf (\<lambda>n. c n * x ^ n)) / h |
|
375 |
- suminf (\<lambda>n. diffs c n * x ^ n)) -- 0 --> 0" |
|
376 |
proof (rule LIM_equal2) |
|
377 |
show "0 < \<bar>K\<bar> - \<bar>x\<bar>" by (simp add: less_diff_eq 4) |
|
378 |
next |
|
379 |
fix h :: real |
|
380 |
assume "h \<noteq> 0" |
|
381 |
assume "norm (h - 0) < \<bar>K\<bar> - \<bar>x\<bar>" |
|
382 |
hence "\<bar>x\<bar> + \<bar>h\<bar> < \<bar>K\<bar>" by simp |
|
383 |
hence 5: "\<bar>x + h\<bar> < \<bar>K\<bar>" |
|
384 |
by (rule abs_triangle_ineq [THEN order_le_less_trans]) |
|
385 |
have A: "summable (\<lambda>n. c n * x ^ n)" |
|
386 |
by (rule powser_inside [OF 1 4]) |
|
387 |
have B: "summable (\<lambda>n. c n * (x + h) ^ n)" |
|
388 |
by (rule powser_inside [OF 1 5]) |
|
389 |
have C: "summable (\<lambda>n. diffs c n * x ^ n)" |
|
390 |
by (rule powser_inside [OF 2 4]) |
|
391 |
show "((\<Sum>n. c n * (x + h) ^ n) - (\<Sum>n. c n * x ^ n)) / h |
|
392 |
- (\<Sum>n. diffs c n * x ^ n) = |
|
393 |
(\<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - real n * x ^ (n - Suc 0)))" |
|
394 |
apply (subst sums_unique [OF diffs_equiv [OF C]]) |
|
395 |
apply (subst suminf_diff [OF B A]) |
|
396 |
apply (subst suminf_divide [symmetric]) |
|
397 |
apply (rule summable_diff [OF B A]) |
|
398 |
apply (subst suminf_diff) |
|
399 |
apply (rule summable_divide) |
|
400 |
apply (rule summable_diff [OF B A]) |
|
401 |
apply (rule sums_summable [OF diffs_equiv [OF C]]) |
|
402 |
apply (rule_tac f="suminf" in arg_cong) |
|
403 |
apply (rule ext) |
|
404 |
apply (simp add: ring_eq_simps) |
|
405 |
done |
|
406 |
next |
|
407 |
show "(\<lambda>h. \<Sum>n. c n * (((x + h) ^ n - x ^ n) / h - |
|
408 |
real n * x ^ (n - Suc 0))) -- 0 --> 0" |
|
409 |
by (rule termdiffs_aux [OF 3 4]) |
|
410 |
qed |
|
411 |
qed |
|
412 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
413 |
|
23043 | 414 |
subsection{*Exponential Function*} |
415 |
||
416 |
definition |
|
417 |
exp :: "real => real" where |
|
418 |
"exp x = (\<Sum>n. inverse(real (fact n)) * (x ^ n))" |
|
419 |
||
420 |
definition |
|
421 |
sin :: "real => real" where |
|
422 |
"sin x = (\<Sum>n. (if even(n) then 0 else |
|
423 |
((- 1) ^ ((n - Suc 0) div 2))/(real (fact n))) * x ^ n)" |
|
424 |
||
425 |
definition |
|
426 |
cos :: "real => real" where |
|
427 |
"cos x = (\<Sum>n. (if even(n) then ((- 1) ^ (n div 2))/(real (fact n)) |
|
428 |
else 0) * x ^ n)" |
|
429 |
||
430 |
lemma summable_exp: "summable (%n. inverse (real (fact n)) * x ^ n)" |
|
431 |
apply (cut_tac 'a = real in zero_less_one [THEN dense], safe) |
|
432 |
apply (cut_tac x = r in reals_Archimedean3, auto) |
|
433 |
apply (drule_tac x = "\<bar>x\<bar>" in spec, safe) |
|
434 |
apply (rule_tac N = n and c = r in ratio_test) |
|
435 |
apply (safe, simp add: abs_mult mult_assoc [symmetric] del: fact_Suc) |
|
436 |
apply (rule mult_right_mono) |
|
437 |
apply (rule_tac b1 = "\<bar>x\<bar>" in mult_commute [THEN ssubst]) |
|
438 |
apply (subst fact_Suc) |
|
439 |
apply (subst real_of_nat_mult) |
|
440 |
apply (auto) |
|
441 |
apply (simp add: mult_assoc [symmetric] positive_imp_inverse_positive) |
|
442 |
apply (rule order_less_imp_le) |
|
443 |
apply (rule_tac z1 = "real (Suc na)" in real_mult_less_iff1 [THEN iffD1]) |
|
444 |
apply (auto simp add: mult_assoc) |
|
445 |
apply (erule order_less_trans) |
|
446 |
apply (auto simp add: mult_less_cancel_left mult_ac) |
|
447 |
done |
|
448 |
||
449 |
lemma summable_sin: |
|
450 |
"summable (%n. |
|
451 |
(if even n then 0 |
|
452 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * |
|
453 |
x ^ n)" |
|
454 |
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test) |
|
455 |
apply (rule_tac [2] summable_exp) |
|
456 |
apply (rule_tac x = 0 in exI) |
|
457 |
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) |
|
458 |
done |
|
459 |
||
460 |
lemma summable_cos: |
|
461 |
"summable (%n. |
|
462 |
(if even n then |
|
463 |
(- 1) ^ (n div 2)/(real (fact n)) else 0) * x ^ n)" |
|
464 |
apply (rule_tac g = "(%n. inverse (real (fact n)) * \<bar>x\<bar> ^ n)" in summable_comparison_test) |
|
465 |
apply (rule_tac [2] summable_exp) |
|
466 |
apply (rule_tac x = 0 in exI) |
|
467 |
apply (auto simp add: divide_inverse abs_mult power_abs [symmetric] zero_le_mult_iff) |
|
468 |
done |
|
469 |
||
470 |
lemma lemma_STAR_sin [simp]: |
|
471 |
"(if even n then 0 |
|
472 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * 0 ^ n = 0" |
|
473 |
by (induct "n", auto) |
|
474 |
||
475 |
lemma lemma_STAR_cos [simp]: |
|
476 |
"0 < n --> |
|
477 |
(- 1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" |
|
478 |
by (induct "n", auto) |
|
479 |
||
480 |
lemma lemma_STAR_cos1 [simp]: |
|
481 |
"0 < n --> |
|
482 |
(-1) ^ (n div 2)/(real (fact n)) * 0 ^ n = 0" |
|
483 |
by (induct "n", auto) |
|
484 |
||
485 |
lemma lemma_STAR_cos2 [simp]: |
|
486 |
"(\<Sum>n=1..<n. if even n then (- 1) ^ (n div 2)/(real (fact n)) * 0 ^ n |
|
487 |
else 0) = 0" |
|
488 |
apply (induct "n") |
|
489 |
apply (case_tac [2] "n", auto) |
|
490 |
done |
|
491 |
||
492 |
lemma exp_converges: "(%n. inverse (real (fact n)) * x ^ n) sums exp(x)" |
|
493 |
apply (simp add: exp_def) |
|
494 |
apply (rule summable_exp [THEN summable_sums]) |
|
495 |
done |
|
496 |
||
497 |
lemma sin_converges: |
|
498 |
"(%n. (if even n then 0 |
|
499 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * |
|
500 |
x ^ n) sums sin(x)" |
|
501 |
apply (simp add: sin_def) |
|
502 |
apply (rule summable_sin [THEN summable_sums]) |
|
503 |
done |
|
504 |
||
505 |
lemma cos_converges: |
|
506 |
"(%n. (if even n then |
|
507 |
(- 1) ^ (n div 2)/(real (fact n)) |
|
508 |
else 0) * x ^ n) sums cos(x)" |
|
509 |
apply (simp add: cos_def) |
|
510 |
apply (rule summable_cos [THEN summable_sums]) |
|
511 |
done |
|
512 |
||
513 |
lemma lemma_realpow_diff [rule_format (no_asm)]: |
|
514 |
"p \<le> n --> y ^ (Suc n - p) = ((y::real) ^ (n - p)) * y" |
|
515 |
apply (induct "n", auto) |
|
516 |
apply (subgoal_tac "p = Suc n") |
|
517 |
apply (simp (no_asm_simp), auto) |
|
518 |
apply (drule sym) |
|
519 |
apply (simp add: Suc_diff_le mult_commute realpow_Suc [symmetric] |
|
520 |
del: realpow_Suc) |
|
521 |
done |
|
522 |
||
523 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
524 |
subsection{*Formal Derivatives of Exp, Sin, and Cos Series*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
525 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
526 |
lemma exp_fdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
527 |
"diffs (%n. inverse(real (fact n))) = (%n. inverse(real (fact n)))" |
15229 | 528 |
by (simp add: diffs_def mult_assoc [symmetric] del: mult_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
529 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
530 |
lemma sin_fdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
531 |
"diffs(%n. if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
532 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
533 |
= (%n. if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
534 |
(- 1) ^ (n div 2)/(real (fact n)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
535 |
else 0)" |
15229 | 536 |
by (auto intro!: ext |
537 |
simp add: diffs_def divide_inverse simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
538 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
539 |
lemma sin_fdiffs2: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
540 |
"diffs(%n. if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
541 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) n |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
542 |
= (if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
543 |
(- 1) ^ (n div 2)/(real (fact n)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
544 |
else 0)" |
15229 | 545 |
by (auto intro!: ext |
546 |
simp add: diffs_def divide_inverse simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
547 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
548 |
lemma cos_fdiffs: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
549 |
"diffs(%n. if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
550 |
(- 1) ^ (n div 2)/(real (fact n)) else 0) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
551 |
= (%n. - (if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
552 |
else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n))))" |
15229 | 553 |
by (auto intro!: ext |
554 |
simp add: diffs_def divide_inverse odd_Suc_mult_two_ex |
|
555 |
simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
556 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
557 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
558 |
lemma cos_fdiffs2: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
559 |
"diffs(%n. if even n then |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
560 |
(- 1) ^ (n div 2)/(real (fact n)) else 0) n |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
561 |
= - (if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
562 |
else (- 1) ^ ((n - Suc 0)div 2)/(real (fact n)))" |
15229 | 563 |
by (auto intro!: ext |
564 |
simp add: diffs_def divide_inverse odd_Suc_mult_two_ex |
|
565 |
simp del: mult_Suc) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
566 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
567 |
text{*Now at last we can get the derivatives of exp, sin and cos*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
568 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
569 |
lemma lemma_sin_minus: |
15546 | 570 |
"- sin x = (\<Sum>n. - ((if even n then 0 |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
571 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * x ^ n))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
572 |
by (auto intro!: sums_unique sums_minus sin_converges) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
573 |
|
15546 | 574 |
lemma lemma_exp_ext: "exp = (%x. \<Sum>n. inverse (real (fact n)) * x ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
575 |
by (auto intro!: ext simp add: exp_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
576 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
577 |
lemma DERIV_exp [simp]: "DERIV exp x :> exp(x)" |
15229 | 578 |
apply (simp add: exp_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
579 |
apply (subst lemma_exp_ext) |
15546 | 580 |
apply (subgoal_tac "DERIV (%u. \<Sum>n. inverse (real (fact n)) * u ^ n) x :> (\<Sum>n. diffs (%n. inverse (real (fact n))) n * x ^ n)") |
15229 | 581 |
apply (rule_tac [2] K = "1 + \<bar>x\<bar>" in termdiffs) |
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19765
diff
changeset
|
582 |
apply (auto intro: exp_converges [THEN sums_summable] simp add: exp_fdiffs) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
583 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
584 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
585 |
lemma lemma_sin_ext: |
15546 | 586 |
"sin = (%x. \<Sum>n. |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
587 |
(if even n then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
588 |
else (- 1) ^ ((n - Suc 0) div 2)/(real (fact n))) * |
15546 | 589 |
x ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
590 |
by (auto intro!: ext simp add: sin_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
591 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
592 |
lemma lemma_cos_ext: |
15546 | 593 |
"cos = (%x. \<Sum>n. |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
594 |
(if even n then (- 1) ^ (n div 2)/(real (fact n)) else 0) * |
15546 | 595 |
x ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
596 |
by (auto intro!: ext simp add: cos_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
597 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
598 |
lemma DERIV_sin [simp]: "DERIV sin x :> cos(x)" |
15229 | 599 |
apply (simp add: cos_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
600 |
apply (subst lemma_sin_ext) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
601 |
apply (auto simp add: sin_fdiffs2 [symmetric]) |
15229 | 602 |
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs) |
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19765
diff
changeset
|
603 |
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
604 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
605 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
606 |
lemma DERIV_cos [simp]: "DERIV cos x :> -sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
607 |
apply (subst lemma_cos_ext) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
608 |
apply (auto simp add: lemma_sin_minus cos_fdiffs2 [symmetric] minus_mult_left) |
15229 | 609 |
apply (rule_tac K = "1 + \<bar>x\<bar>" in termdiffs) |
20217
25b068a99d2b
linear arithmetic splits certain operators (e.g. min, max, abs)
webertj
parents:
19765
diff
changeset
|
610 |
apply (auto intro: sin_converges cos_converges sums_summable intro!: sums_minus [THEN sums_summable] simp add: cos_fdiffs sin_fdiffs diffs_minus) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
611 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
612 |
|
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
613 |
lemma isCont_exp [simp]: "isCont exp x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
614 |
by (rule DERIV_exp [THEN DERIV_isCont]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
615 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
616 |
lemma isCont_sin [simp]: "isCont sin x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
617 |
by (rule DERIV_sin [THEN DERIV_isCont]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
618 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
619 |
lemma isCont_cos [simp]: "isCont cos x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
620 |
by (rule DERIV_cos [THEN DERIV_isCont]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
621 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
622 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
623 |
subsection{*Properties of the Exponential Function*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
624 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
625 |
lemma exp_zero [simp]: "exp 0 = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
626 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
627 |
have "(\<Sum>n = 0..<1. inverse (real (fact n)) * 0 ^ n) = |
15546 | 628 |
(\<Sum>n. inverse (real (fact n)) * 0 ^ n)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
629 |
by (rule series_zero [rule_format, THEN sums_unique], |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
630 |
case_tac "m", auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
631 |
thus ?thesis by (simp add: exp_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
632 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
633 |
|
17014
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
634 |
lemma exp_ge_add_one_self_aux: "0 \<le> x ==> (1 + x) \<le> exp(x)" |
22998 | 635 |
apply (drule order_le_imp_less_or_eq, auto) |
15229 | 636 |
apply (simp add: exp_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
637 |
apply (rule real_le_trans) |
15229 | 638 |
apply (rule_tac [2] n = 2 and f = "(%n. inverse (real (fact n)) * x ^ n)" in series_pos_le) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
639 |
apply (auto intro: summable_exp simp add: numeral_2_eq_2 zero_le_power zero_le_mult_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
640 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
641 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
642 |
lemma exp_gt_one [simp]: "0 < x ==> 1 < exp x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
643 |
apply (rule order_less_le_trans) |
17014
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
644 |
apply (rule_tac [2] exp_ge_add_one_self_aux, auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
645 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
646 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
647 |
lemma DERIV_exp_add_const: "DERIV (%x. exp (x + y)) x :> exp(x + y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
648 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
649 |
have "DERIV (exp \<circ> (\<lambda>x. x + y)) x :> exp (x + y) * (1+0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
650 |
by (fast intro: DERIV_chain DERIV_add DERIV_exp DERIV_Id DERIV_const) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
651 |
thus ?thesis by (simp add: o_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
652 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
653 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
654 |
lemma DERIV_exp_minus [simp]: "DERIV (%x. exp (-x)) x :> - exp(-x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
655 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
656 |
have "DERIV (exp \<circ> uminus) x :> exp (- x) * - 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
657 |
by (fast intro: DERIV_chain DERIV_minus DERIV_exp DERIV_Id) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
658 |
thus ?thesis by (simp add: o_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
659 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
660 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
661 |
lemma DERIV_exp_exp_zero [simp]: "DERIV (%x. exp (x + y) * exp (- x)) x :> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
662 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
663 |
have "DERIV (\<lambda>x. exp (x + y) * exp (- x)) x |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
664 |
:> exp (x + y) * exp (- x) + - exp (- x) * exp (x + y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
665 |
by (fast intro: DERIV_exp_add_const DERIV_exp_minus DERIV_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
666 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
667 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
668 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
669 |
lemma exp_add_mult_minus [simp]: "exp(x + y)*exp(-x) = exp(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
670 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
671 |
have "\<forall>x. DERIV (%x. exp (x + y) * exp (- x)) x :> 0" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
672 |
hence "exp (x + y) * exp (- x) = exp (0 + y) * exp (- 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
673 |
by (rule DERIV_isconst_all) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
674 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
675 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
676 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
677 |
lemma exp_mult_minus [simp]: "exp x * exp(-x) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
678 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
679 |
have "exp (x + 0) * exp (- x) = exp 0" by (rule exp_add_mult_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
680 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
681 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
682 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
683 |
lemma exp_mult_minus2 [simp]: "exp(-x)*exp(x) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
684 |
by (simp add: mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
685 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
686 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
687 |
lemma exp_minus: "exp(-x) = inverse(exp(x))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
688 |
by (auto intro: inverse_unique [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
689 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
690 |
lemma exp_add: "exp(x + y) = exp(x) * exp(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
691 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
692 |
have "exp x * exp y = exp x * (exp (x + y) * exp (- x))" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
693 |
thus ?thesis by (simp (no_asm_simp) add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
694 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
695 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
696 |
text{*Proof: because every exponential can be seen as a square.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
697 |
lemma exp_ge_zero [simp]: "0 \<le> exp x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
698 |
apply (rule_tac t = x in real_sum_of_halves [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
699 |
apply (subst exp_add, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
700 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
701 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
702 |
lemma exp_not_eq_zero [simp]: "exp x \<noteq> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
703 |
apply (cut_tac x = x in exp_mult_minus2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
704 |
apply (auto simp del: exp_mult_minus2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
705 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
706 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
707 |
lemma exp_gt_zero [simp]: "0 < exp x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
708 |
by (simp add: order_less_le) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
709 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
710 |
lemma inv_exp_gt_zero [simp]: "0 < inverse(exp x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
711 |
by (auto intro: positive_imp_inverse_positive) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
712 |
|
15081 | 713 |
lemma abs_exp_cancel [simp]: "\<bar>exp x\<bar> = exp x" |
15229 | 714 |
by auto |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
715 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
716 |
lemma exp_real_of_nat_mult: "exp(real n * x) = exp(x) ^ n" |
15251 | 717 |
apply (induct "n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
718 |
apply (auto simp add: real_of_nat_Suc right_distrib exp_add mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
719 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
720 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
721 |
lemma exp_diff: "exp(x - y) = exp(x)/(exp y)" |
15229 | 722 |
apply (simp add: diff_minus divide_inverse) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
723 |
apply (simp (no_asm) add: exp_add exp_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
724 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
725 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
726 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
727 |
lemma exp_less_mono: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
728 |
assumes xy: "x < y" shows "exp x < exp y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
729 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
730 |
have "1 < exp (y + - x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
731 |
by (rule real_less_sum_gt_zero [THEN exp_gt_one]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
732 |
hence "exp x * inverse (exp x) < exp y * inverse (exp x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
733 |
by (auto simp add: exp_add exp_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
734 |
thus ?thesis |
15539 | 735 |
by (simp add: divide_inverse [symmetric] pos_less_divide_eq |
15228 | 736 |
del: divide_self_if) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
737 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
738 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
739 |
lemma exp_less_cancel: "exp x < exp y ==> x < y" |
15228 | 740 |
apply (simp add: linorder_not_le [symmetric]) |
741 |
apply (auto simp add: order_le_less exp_less_mono) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
742 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
743 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
744 |
lemma exp_less_cancel_iff [iff]: "(exp(x) < exp(y)) = (x < y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
745 |
by (auto intro: exp_less_mono exp_less_cancel) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
746 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
747 |
lemma exp_le_cancel_iff [iff]: "(exp(x) \<le> exp(y)) = (x \<le> y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
748 |
by (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
749 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
750 |
lemma exp_inj_iff [iff]: "(exp x = exp y) = (x = y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
751 |
by (simp add: order_eq_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
752 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
753 |
lemma lemma_exp_total: "1 \<le> y ==> \<exists>x. 0 \<le> x & x \<le> y - 1 & exp(x) = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
754 |
apply (rule IVT) |
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
755 |
apply (auto intro: isCont_exp simp add: le_diff_eq) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
756 |
apply (subgoal_tac "1 + (y - 1) \<le> exp (y - 1)") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
757 |
apply simp |
17014
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
758 |
apply (rule exp_ge_add_one_self_aux, simp) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
759 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
760 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
761 |
lemma exp_total: "0 < y ==> \<exists>x. exp x = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
762 |
apply (rule_tac x = 1 and y = y in linorder_cases) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
763 |
apply (drule order_less_imp_le [THEN lemma_exp_total]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
764 |
apply (rule_tac [2] x = 0 in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
765 |
apply (frule_tac [3] real_inverse_gt_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
766 |
apply (drule_tac [4] order_less_imp_le [THEN lemma_exp_total], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
767 |
apply (rule_tac x = "-x" in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
768 |
apply (simp add: exp_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
769 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
770 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
771 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
772 |
subsection{*Properties of the Logarithmic Function*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
773 |
|
23043 | 774 |
definition |
775 |
ln :: "real => real" where |
|
776 |
"ln x = (THE u. exp u = x)" |
|
777 |
||
778 |
lemma ln_exp [simp]: "ln (exp x) = x" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
779 |
by (simp add: ln_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
780 |
|
22654
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
781 |
lemma exp_ln [simp]: "0 < x \<Longrightarrow> exp (ln x) = x" |
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
782 |
by (auto dest: exp_total) |
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
783 |
|
23043 | 784 |
lemma exp_ln_iff [simp]: "(exp (ln x) = x) = (0 < x)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
785 |
apply (auto dest: exp_total) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
786 |
apply (erule subst, simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
787 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
788 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
789 |
lemma ln_mult: "[| 0 < x; 0 < y |] ==> ln(x * y) = ln(x) + ln(y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
790 |
apply (rule exp_inj_iff [THEN iffD1]) |
22654
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
791 |
apply (simp add: exp_add exp_ln mult_pos_pos) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
792 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
793 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
794 |
lemma ln_inj_iff[simp]: "[| 0 < x; 0 < y |] ==> (ln x = ln y) = (x = y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
795 |
apply (simp only: exp_ln_iff [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
796 |
apply (erule subst)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
797 |
apply simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
798 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
799 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
800 |
lemma ln_one[simp]: "ln 1 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
801 |
by (rule exp_inj_iff [THEN iffD1], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
802 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
803 |
lemma ln_inverse: "0 < x ==> ln(inverse x) = - ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
804 |
apply (rule_tac a1 = "ln x" in add_left_cancel [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
805 |
apply (auto simp add: positive_imp_inverse_positive ln_mult [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
806 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
807 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
808 |
lemma ln_div: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
809 |
"[|0 < x; 0 < y|] ==> ln(x/y) = ln x - ln y" |
15229 | 810 |
apply (simp add: divide_inverse) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
811 |
apply (auto simp add: positive_imp_inverse_positive ln_mult ln_inverse) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
812 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
813 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
814 |
lemma ln_less_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x < ln y) = (x < y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
815 |
apply (simp only: exp_ln_iff [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
816 |
apply (erule subst)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
817 |
apply simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
818 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
819 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
820 |
lemma ln_le_cancel_iff[simp]: "[| 0 < x; 0 < y|] ==> (ln x \<le> ln y) = (x \<le> y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
821 |
by (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
822 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
823 |
lemma ln_realpow: "0 < x ==> ln(x ^ n) = real n * ln(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
824 |
by (auto dest!: exp_total simp add: exp_real_of_nat_mult [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
825 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
826 |
lemma ln_add_one_self_le_self [simp]: "0 \<le> x ==> ln(1 + x) \<le> x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
827 |
apply (rule ln_exp [THEN subst]) |
17014
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
828 |
apply (rule ln_le_cancel_iff [THEN iffD2]) |
ad5ceb90877d
renamed exp_ge_add_one_self to exp_ge_add_one_self_aux
avigad
parents:
16924
diff
changeset
|
829 |
apply (auto simp add: exp_ge_add_one_self_aux) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
830 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
831 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
832 |
lemma ln_less_self [simp]: "0 < x ==> ln x < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
833 |
apply (rule order_less_le_trans) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
834 |
apply (rule_tac [2] ln_add_one_self_le_self) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
835 |
apply (rule ln_less_cancel_iff [THEN iffD2], auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
836 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
837 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
838 |
lemma ln_ge_zero [simp]: |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
839 |
assumes x: "1 \<le> x" shows "0 \<le> ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
840 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
841 |
have "0 < x" using x by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
842 |
hence "exp 0 \<le> exp (ln x)" |
22915 | 843 |
by (simp add: x) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
844 |
thus ?thesis by (simp only: exp_le_cancel_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
845 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
846 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
847 |
lemma ln_ge_zero_imp_ge_one: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
848 |
assumes ln: "0 \<le> ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
849 |
and x: "0 < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
850 |
shows "1 \<le> x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
851 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
852 |
from ln have "ln 1 \<le> ln x" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
853 |
thus ?thesis by (simp add: x del: ln_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
854 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
855 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
856 |
lemma ln_ge_zero_iff [simp]: "0 < x ==> (0 \<le> ln x) = (1 \<le> x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
857 |
by (blast intro: ln_ge_zero ln_ge_zero_imp_ge_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
858 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
859 |
lemma ln_less_zero_iff [simp]: "0 < x ==> (ln x < 0) = (x < 1)" |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
860 |
by (insert ln_ge_zero_iff [of x], arith) |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
861 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
862 |
lemma ln_gt_zero: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
863 |
assumes x: "1 < x" shows "0 < ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
864 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
865 |
have "0 < x" using x by arith |
22915 | 866 |
hence "exp 0 < exp (ln x)" by (simp add: x) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
867 |
thus ?thesis by (simp only: exp_less_cancel_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
868 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
869 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
870 |
lemma ln_gt_zero_imp_gt_one: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
871 |
assumes ln: "0 < ln x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
872 |
and x: "0 < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
873 |
shows "1 < x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
874 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
875 |
from ln have "ln 1 < ln x" by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
876 |
thus ?thesis by (simp add: x del: ln_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
877 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
878 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
879 |
lemma ln_gt_zero_iff [simp]: "0 < x ==> (0 < ln x) = (1 < x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
880 |
by (blast intro: ln_gt_zero ln_gt_zero_imp_gt_one) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
881 |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
882 |
lemma ln_eq_zero_iff [simp]: "0 < x ==> (ln x = 0) = (x = 1)" |
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
883 |
by (insert ln_less_zero_iff [of x] ln_gt_zero_iff [of x], arith) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
884 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
885 |
lemma ln_less_zero: "[| 0 < x; x < 1 |] ==> ln x < 0" |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
886 |
by simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
887 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
888 |
lemma exp_ln_eq: "exp u = x ==> ln x = u" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
889 |
by auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
890 |
|
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
891 |
lemma isCont_ln: "0 < x \<Longrightarrow> isCont ln x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
892 |
apply (subgoal_tac "isCont ln (exp (ln x))", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
893 |
apply (rule isCont_inverse_function [where f=exp], simp_all) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
894 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
895 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
896 |
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
897 |
by simp (* TODO: put in Deriv.thy *) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
898 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
899 |
lemma DERIV_ln: "0 < x \<Longrightarrow> DERIV ln x :> inverse x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
900 |
apply (rule DERIV_inverse_function [where f=exp and a=0 and b="x+1"]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
901 |
apply (erule lemma_DERIV_subst [OF DERIV_exp exp_ln]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
902 |
apply (simp_all add: abs_if isCont_ln) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
903 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
904 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
905 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
906 |
subsection{*Basic Properties of the Trigonometric Functions*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
907 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
908 |
lemma sin_zero [simp]: "sin 0 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
909 |
by (auto intro!: sums_unique [symmetric] LIMSEQ_const |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
910 |
simp add: sin_def sums_def simp del: power_0_left) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
911 |
|
15539 | 912 |
lemma lemma_series_zero2: |
913 |
"(\<forall>m. n \<le> m --> f m = 0) --> f sums setsum f {0..<n}" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
914 |
by (auto intro: series_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
915 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
916 |
lemma cos_zero [simp]: "cos 0 = 1" |
15229 | 917 |
apply (simp add: cos_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
918 |
apply (rule sums_unique [symmetric]) |
15229 | 919 |
apply (cut_tac n = 1 and f = "(%n. (if even n then (- 1) ^ (n div 2) / (real (fact n)) else 0) * 0 ^ n)" in lemma_series_zero2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
920 |
apply auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
921 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
922 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
923 |
lemma DERIV_sin_sin_mult [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
924 |
"DERIV (%x. sin(x)*sin(x)) x :> cos(x) * sin(x) + cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
925 |
by (rule DERIV_mult, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
926 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
927 |
lemma DERIV_sin_sin_mult2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
928 |
"DERIV (%x. sin(x)*sin(x)) x :> 2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
929 |
apply (cut_tac x = x in DERIV_sin_sin_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
930 |
apply (auto simp add: mult_assoc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
931 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
932 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
933 |
lemma DERIV_sin_realpow2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
934 |
"DERIV (%x. (sin x)\<twosuperior>) x :> cos(x) * sin(x) + cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
935 |
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
936 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
937 |
lemma DERIV_sin_realpow2a [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
938 |
"DERIV (%x. (sin x)\<twosuperior>) x :> 2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
939 |
by (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
940 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
941 |
lemma DERIV_cos_cos_mult [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
942 |
"DERIV (%x. cos(x)*cos(x)) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
943 |
by (rule DERIV_mult, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
944 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
945 |
lemma DERIV_cos_cos_mult2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
946 |
"DERIV (%x. cos(x)*cos(x)) x :> -2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
947 |
apply (cut_tac x = x in DERIV_cos_cos_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
948 |
apply (auto simp add: mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
949 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
950 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
951 |
lemma DERIV_cos_realpow2 [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
952 |
"DERIV (%x. (cos x)\<twosuperior>) x :> -sin(x) * cos(x) + -sin(x) * cos(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
953 |
by (auto simp add: numeral_2_eq_2 real_mult_assoc [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
954 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
955 |
lemma DERIV_cos_realpow2a [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
956 |
"DERIV (%x. (cos x)\<twosuperior>) x :> -2 * cos(x) * sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
957 |
by (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
958 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
959 |
lemma lemma_DERIV_subst: "[| DERIV f x :> D; D = E |] ==> DERIV f x :> E" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
960 |
by auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
961 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
962 |
lemma DERIV_cos_realpow2b: "DERIV (%x. (cos x)\<twosuperior>) x :> -(2 * cos(x) * sin(x))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
963 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
964 |
apply (rule DERIV_cos_realpow2a, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
965 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
966 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
967 |
(* most useful *) |
15229 | 968 |
lemma DERIV_cos_cos_mult3 [simp]: |
969 |
"DERIV (%x. cos(x)*cos(x)) x :> -(2 * cos(x) * sin(x))" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
970 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
971 |
apply (rule DERIV_cos_cos_mult2, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
972 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
973 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
974 |
lemma DERIV_sin_circle_all: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
975 |
"\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
976 |
(2*cos(x)*sin(x) - 2*cos(x)*sin(x))" |
15229 | 977 |
apply (simp only: diff_minus, safe) |
978 |
apply (rule DERIV_add) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
979 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
980 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
981 |
|
15229 | 982 |
lemma DERIV_sin_circle_all_zero [simp]: |
983 |
"\<forall>x. DERIV (%x. (sin x)\<twosuperior> + (cos x)\<twosuperior>) x :> 0" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
984 |
by (cut_tac DERIV_sin_circle_all, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
985 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
986 |
lemma sin_cos_squared_add [simp]: "((sin x)\<twosuperior>) + ((cos x)\<twosuperior>) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
987 |
apply (cut_tac x = x and y = 0 in DERIV_sin_circle_all_zero [THEN DERIV_isconst_all]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
988 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
989 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
990 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
991 |
lemma sin_cos_squared_add2 [simp]: "((cos x)\<twosuperior>) + ((sin x)\<twosuperior>) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
992 |
apply (subst real_add_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
993 |
apply (simp (no_asm) del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
994 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
995 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
996 |
lemma sin_cos_squared_add3 [simp]: "cos x * cos x + sin x * sin x = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
997 |
apply (cut_tac x = x in sin_cos_squared_add2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
998 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
999 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1000 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1001 |
lemma sin_squared_eq: "(sin x)\<twosuperior> = 1 - (cos x)\<twosuperior>" |
15229 | 1002 |
apply (rule_tac a1 = "(cos x)\<twosuperior>" in add_right_cancel [THEN iffD1]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1003 |
apply (simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1004 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1005 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1006 |
lemma cos_squared_eq: "(cos x)\<twosuperior> = 1 - (sin x)\<twosuperior>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1007 |
apply (rule_tac a1 = "(sin x)\<twosuperior>" in add_right_cancel [THEN iffD1]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1008 |
apply (simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1009 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1010 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1011 |
lemma real_gt_one_ge_zero_add_less: "[| 1 < x; 0 \<le> y |] ==> 1 < x + (y::real)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1012 |
by arith |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1013 |
|
15081 | 1014 |
lemma abs_sin_le_one [simp]: "\<bar>sin x\<bar> \<le> 1" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1015 |
apply (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1016 |
apply (drule_tac n = "Suc 0" in power_gt1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1017 |
apply (auto simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1018 |
apply (drule_tac r1 = "cos x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1019 |
apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1020 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1021 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1022 |
lemma sin_ge_minus_one [simp]: "-1 \<le> sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1023 |
apply (insert abs_sin_le_one [of x]) |
22998 | 1024 |
apply (simp add: abs_le_iff del: abs_sin_le_one) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1025 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1026 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1027 |
lemma sin_le_one [simp]: "sin x \<le> 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1028 |
apply (insert abs_sin_le_one [of x]) |
22998 | 1029 |
apply (simp add: abs_le_iff del: abs_sin_le_one) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1030 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1031 |
|
15081 | 1032 |
lemma abs_cos_le_one [simp]: "\<bar>cos x\<bar> \<le> 1" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1033 |
apply (auto simp add: linorder_not_less [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1034 |
apply (drule_tac n = "Suc 0" in power_gt1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1035 |
apply (auto simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1036 |
apply (drule_tac r1 = "sin x" in realpow_two_le [THEN [2] real_gt_one_ge_zero_add_less]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1037 |
apply (simp add: numeral_2_eq_2 [symmetric] del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1038 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1039 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1040 |
lemma cos_ge_minus_one [simp]: "-1 \<le> cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1041 |
apply (insert abs_cos_le_one [of x]) |
22998 | 1042 |
apply (simp add: abs_le_iff del: abs_cos_le_one) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1043 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1044 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1045 |
lemma cos_le_one [simp]: "cos x \<le> 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1046 |
apply (insert abs_cos_le_one [of x]) |
22998 | 1047 |
apply (simp add: abs_le_iff del: abs_cos_le_one) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1048 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1049 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1050 |
lemma DERIV_fun_pow: "DERIV g x :> m ==> |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1051 |
DERIV (%x. (g x) ^ n) x :> real n * (g x) ^ (n - 1) * m" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1052 |
apply (rule lemma_DERIV_subst) |
15229 | 1053 |
apply (rule_tac f = "(%x. x ^ n)" in DERIV_chain2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1054 |
apply (rule DERIV_pow, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1055 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1056 |
|
15229 | 1057 |
lemma DERIV_fun_exp: |
1058 |
"DERIV g x :> m ==> DERIV (%x. exp(g x)) x :> exp(g x) * m" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1059 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1060 |
apply (rule_tac f = exp in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1061 |
apply (rule DERIV_exp, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1062 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1063 |
|
15229 | 1064 |
lemma DERIV_fun_sin: |
1065 |
"DERIV g x :> m ==> DERIV (%x. sin(g x)) x :> cos(g x) * m" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1066 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1067 |
apply (rule_tac f = sin in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1068 |
apply (rule DERIV_sin, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1069 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1070 |
|
15229 | 1071 |
lemma DERIV_fun_cos: |
1072 |
"DERIV g x :> m ==> DERIV (%x. cos(g x)) x :> -sin(g x) * m" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1073 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1074 |
apply (rule_tac f = cos in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1075 |
apply (rule DERIV_cos, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1076 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1077 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1078 |
lemmas DERIV_intros = DERIV_Id DERIV_const DERIV_cos DERIV_cmult |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1079 |
DERIV_sin DERIV_exp DERIV_inverse DERIV_pow |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1080 |
DERIV_add DERIV_diff DERIV_mult DERIV_minus |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1081 |
DERIV_inverse_fun DERIV_quotient DERIV_fun_pow |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1082 |
DERIV_fun_exp DERIV_fun_sin DERIV_fun_cos |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1083 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1084 |
(* lemma *) |
15229 | 1085 |
lemma lemma_DERIV_sin_cos_add: |
1086 |
"\<forall>x. |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1087 |
DERIV (%x. (sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1088 |
(cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2) x :> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1089 |
apply (safe, rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1090 |
apply (best intro!: DERIV_intros intro: DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1091 |
--{*replaces the old @{text DERIV_tac}*} |
15229 | 1092 |
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1093 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1094 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1095 |
lemma sin_cos_add [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1096 |
"(sin (x + y) - (sin x * cos y + cos x * sin y)) ^ 2 + |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1097 |
(cos (x + y) - (cos x * cos y - sin x * sin y)) ^ 2 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1098 |
apply (cut_tac y = 0 and x = x and y7 = y |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1099 |
in lemma_DERIV_sin_cos_add [THEN DERIV_isconst_all]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1100 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1101 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1102 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1103 |
lemma sin_add: "sin (x + y) = sin x * cos y + cos x * sin y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1104 |
apply (cut_tac x = x and y = y in sin_cos_add) |
22969 | 1105 |
apply (simp del: sin_cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1106 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1107 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1108 |
lemma cos_add: "cos (x + y) = cos x * cos y - sin x * sin y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1109 |
apply (cut_tac x = x and y = y in sin_cos_add) |
22969 | 1110 |
apply (simp del: sin_cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1111 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1112 |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1113 |
lemma lemma_DERIV_sin_cos_minus: |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1114 |
"\<forall>x. DERIV (%x. (sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2) x :> 0" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1115 |
apply (safe, rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1116 |
apply (best intro!: DERIV_intros intro: DERIV_chain2) |
15229 | 1117 |
apply (auto simp add: diff_minus left_distrib right_distrib mult_ac add_ac) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1118 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1119 |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1120 |
lemma sin_cos_minus [simp]: |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1121 |
"(sin(-x) + (sin x)) ^ 2 + (cos(-x) - (cos x)) ^ 2 = 0" |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1122 |
apply (cut_tac y = 0 and x = x |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1123 |
in lemma_DERIV_sin_cos_minus [THEN DERIV_isconst_all]) |
22969 | 1124 |
apply simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1125 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1126 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1127 |
lemma sin_minus [simp]: "sin (-x) = -sin(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1128 |
apply (cut_tac x = x in sin_cos_minus) |
22969 | 1129 |
apply (simp del: sin_cos_minus) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1130 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1131 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1132 |
lemma cos_minus [simp]: "cos (-x) = cos(x)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1133 |
apply (cut_tac x = x in sin_cos_minus) |
22969 | 1134 |
apply (simp del: sin_cos_minus) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1135 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1136 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1137 |
lemma sin_diff: "sin (x - y) = sin x * cos y - cos x * sin y" |
22969 | 1138 |
by (simp add: diff_minus sin_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1139 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1140 |
lemma sin_diff2: "sin (x - y) = cos y * sin x - sin y * cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1141 |
by (simp add: sin_diff mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1142 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1143 |
lemma cos_diff: "cos (x - y) = cos x * cos y + sin x * sin y" |
22969 | 1144 |
by (simp add: diff_minus cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1145 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1146 |
lemma cos_diff2: "cos (x - y) = cos y * cos x + sin y * sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1147 |
by (simp add: cos_diff mult_commute) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1148 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1149 |
lemma sin_double [simp]: "sin(2 * x) = 2* sin x * cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1150 |
by (cut_tac x = x and y = x in sin_add, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1151 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1152 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1153 |
lemma cos_double: "cos(2* x) = ((cos x)\<twosuperior>) - ((sin x)\<twosuperior>)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1154 |
apply (cut_tac x = x and y = x in cos_add) |
22969 | 1155 |
apply (simp add: power2_eq_square) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1156 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1157 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1158 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1159 |
subsection{*The Constant Pi*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1160 |
|
23043 | 1161 |
definition |
1162 |
pi :: "real" where |
|
1163 |
"pi = 2 * (@x. 0 \<le> (x::real) & x \<le> 2 & cos x = 0)" |
|
1164 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1165 |
text{*Show that there's a least positive @{term x} with @{term "cos(x) = 0"}; |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1166 |
hence define pi.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1167 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1168 |
lemma sin_paired: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1169 |
"(%n. (- 1) ^ n /(real (fact (2 * n + 1))) * x ^ (2 * n + 1)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1170 |
sums sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1171 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1172 |
have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1173 |
(if even k then 0 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1174 |
else (- 1) ^ ((k - Suc 0) div 2) / real (fact k)) * |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1175 |
x ^ k) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1176 |
sums |
15546 | 1177 |
(\<Sum>n. (if even n then 0 |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1178 |
else (- 1) ^ ((n - Suc 0) div 2) / real (fact n)) * |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1179 |
x ^ n)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1180 |
by (rule sin_converges [THEN sums_summable, THEN sums_group], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1181 |
thus ?thesis by (simp add: mult_ac sin_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1182 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1183 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1184 |
lemma sin_gt_zero: "[|0 < x; x < 2 |] ==> 0 < sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1185 |
apply (subgoal_tac |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1186 |
"(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1187 |
(- 1) ^ k / real (fact (2 * k + 1)) * x ^ (2 * k + 1)) |
15546 | 1188 |
sums (\<Sum>n. (- 1) ^ n / real (fact (2 * n + 1)) * x ^ (2 * n + 1))") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1189 |
prefer 2 |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1190 |
apply (rule sin_paired [THEN sums_summable, THEN sums_group], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1191 |
apply (rotate_tac 2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1192 |
apply (drule sin_paired [THEN sums_unique, THEN ssubst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1193 |
apply (auto simp del: fact_Suc realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1194 |
apply (frule sums_unique) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1195 |
apply (auto simp del: fact_Suc realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1196 |
apply (rule_tac n1 = 0 in series_pos_less [THEN [2] order_le_less_trans]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1197 |
apply (auto simp del: fact_Suc realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1198 |
apply (erule sums_summable) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1199 |
apply (case_tac "m=0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1200 |
apply (simp (no_asm_simp)) |
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1201 |
apply (subgoal_tac "6 * (x * (x * x) / real (Suc (Suc (Suc (Suc (Suc (Suc 0))))))) < 6 * x") |
15539 | 1202 |
apply (simp only: mult_less_cancel_left, simp) |
1203 |
apply (simp (no_asm_simp) add: numeral_2_eq_2 [symmetric] mult_assoc [symmetric]) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1204 |
apply (subgoal_tac "x*x < 2*3", simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1205 |
apply (rule mult_strict_mono) |
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1206 |
apply (auto simp add: real_0_less_add_iff real_of_nat_Suc simp del: fact_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1207 |
apply (subst fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1208 |
apply (subst fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1209 |
apply (subst fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1210 |
apply (subst fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1211 |
apply (subst real_of_nat_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1212 |
apply (subst real_of_nat_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1213 |
apply (subst real_of_nat_mult) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1214 |
apply (subst real_of_nat_mult) |
15539 | 1215 |
apply (simp (no_asm) add: divide_inverse del: fact_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1216 |
apply (auto simp add: mult_assoc [symmetric] simp del: fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1217 |
apply (rule_tac c="real (Suc (Suc (4*m)))" in mult_less_imp_less_right) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1218 |
apply (auto simp add: mult_assoc simp del: fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1219 |
apply (rule_tac c="real (Suc (Suc (Suc (4*m))))" in mult_less_imp_less_right) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1220 |
apply (auto simp add: mult_assoc mult_less_cancel_left simp del: fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1221 |
apply (subgoal_tac "x * (x * x ^ (4*m)) = (x ^ (4*m)) * (x * x)") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1222 |
apply (erule ssubst)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1223 |
apply (auto simp del: fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1224 |
apply (subgoal_tac "0 < x ^ (4 * m) ") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1225 |
prefer 2 apply (simp only: zero_less_power) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1226 |
apply (simp (no_asm_simp) add: mult_less_cancel_left) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1227 |
apply (rule mult_strict_mono) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1228 |
apply (simp_all (no_asm_simp)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1229 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1230 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1231 |
lemma sin_gt_zero1: "[|0 < x; x < 2 |] ==> 0 < sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1232 |
by (auto intro: sin_gt_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1233 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1234 |
lemma cos_double_less_one: "[| 0 < x; x < 2 |] ==> cos (2 * x) < 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1235 |
apply (cut_tac x = x in sin_gt_zero1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1236 |
apply (auto simp add: cos_squared_eq cos_double) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1237 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1238 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1239 |
lemma cos_paired: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1240 |
"(%n. (- 1) ^ n /(real (fact (2 * n))) * x ^ (2 * n)) sums cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1241 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1242 |
have "(\<lambda>n. \<Sum>k = n * 2..<n * 2 + 2. |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1243 |
(if even k then (- 1) ^ (k div 2) / real (fact k) else 0) * |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1244 |
x ^ k) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1245 |
sums |
15546 | 1246 |
(\<Sum>n. (if even n then (- 1) ^ (n div 2) / real (fact n) else 0) * |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1247 |
x ^ n)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1248 |
by (rule cos_converges [THEN sums_summable, THEN sums_group], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1249 |
thus ?thesis by (simp add: mult_ac cos_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1250 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1251 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1252 |
declare zero_less_power [simp] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1253 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1254 |
lemma fact_lemma: "real (n::nat) * 4 = real (4 * n)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1255 |
by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1256 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1257 |
lemma cos_two_less_zero: "cos (2) < 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1258 |
apply (cut_tac x = 2 in cos_paired) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1259 |
apply (drule sums_minus) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1260 |
apply (rule neg_less_iff_less [THEN iffD1]) |
15539 | 1261 |
apply (frule sums_unique, auto) |
1262 |
apply (rule_tac y = |
|
1263 |
"\<Sum>n=0..< Suc(Suc(Suc 0)). - ((- 1) ^ n / (real(fact (2*n))) * 2 ^ (2*n))" |
|
15481 | 1264 |
in order_less_trans) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1265 |
apply (simp (no_asm) add: fact_num_eq_if realpow_num_eq_if del: fact_Suc realpow_Suc) |
15561 | 1266 |
apply (simp (no_asm) add: mult_assoc del: setsum_op_ivl_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1267 |
apply (rule sumr_pos_lt_pair) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1268 |
apply (erule sums_summable, safe) |
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1269 |
apply (simp (no_asm) add: divide_inverse real_0_less_add_iff mult_assoc [symmetric] |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1270 |
del: fact_Suc) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1271 |
apply (rule real_mult_inverse_cancel2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1272 |
apply (rule real_of_nat_fact_gt_zero)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1273 |
apply (simp (no_asm) add: mult_assoc [symmetric] del: fact_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1274 |
apply (subst fact_lemma) |
15481 | 1275 |
apply (subst fact_Suc [of "Suc (Suc (Suc (Suc (Suc (Suc (Suc (4 * d)))))))"]) |
1276 |
apply (simp only: real_of_nat_mult) |
|
23007
e025695d9b0e
use mult_strict_mono instead of real_mult_less_mono
huffman
parents:
22998
diff
changeset
|
1277 |
apply (rule mult_strict_mono, force) |
e025695d9b0e
use mult_strict_mono instead of real_mult_less_mono
huffman
parents:
22998
diff
changeset
|
1278 |
apply (rule_tac [3] real_of_nat_fact_ge_zero) |
15481 | 1279 |
prefer 2 apply force |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1280 |
apply (rule real_of_nat_less_iff [THEN iffD2]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1281 |
apply (rule fact_less_mono, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1282 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1283 |
declare cos_two_less_zero [simp] |
22998 | 1284 |
declare cos_two_less_zero [THEN less_imp_neq, simp] |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1285 |
declare cos_two_less_zero [THEN order_less_imp_le, simp] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1286 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1287 |
lemma cos_is_zero: "EX! x. 0 \<le> x & x \<le> 2 & cos x = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1288 |
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> 2 & cos x = 0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1289 |
apply (rule_tac [2] IVT2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1290 |
apply (auto intro: DERIV_isCont DERIV_cos) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1291 |
apply (cut_tac x = xa and y = y in linorder_less_linear) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1292 |
apply (rule ccontr) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1293 |
apply (subgoal_tac " (\<forall>x. cos differentiable x) & (\<forall>x. isCont cos x) ") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1294 |
apply (auto intro: DERIV_cos DERIV_isCont simp add: differentiable_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1295 |
apply (drule_tac f = cos in Rolle) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1296 |
apply (drule_tac [5] f = cos in Rolle) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1297 |
apply (auto dest!: DERIV_cos [THEN DERIV_unique] simp add: differentiable_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1298 |
apply (drule_tac y1 = xa in order_le_less_trans [THEN sin_gt_zero]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1299 |
apply (assumption, rule_tac y=y in order_less_le_trans, simp_all) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1300 |
apply (drule_tac y1 = y in order_le_less_trans [THEN sin_gt_zero], assumption, simp_all) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1301 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1302 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1303 |
lemma pi_half: "pi/2 = (@x. 0 \<le> x & x \<le> 2 & cos x = 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1304 |
by (simp add: pi_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1305 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1306 |
lemma cos_pi_half [simp]: "cos (pi / 2) = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1307 |
apply (rule cos_is_zero [THEN ex1E]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1308 |
apply (auto intro!: someI2 simp add: pi_half) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1309 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1310 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1311 |
lemma pi_half_gt_zero: "0 < pi / 2" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1312 |
apply (rule cos_is_zero [THEN ex1E]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1313 |
apply (auto simp add: pi_half) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1314 |
apply (rule someI2, blast, safe) |
22998 | 1315 |
apply (drule_tac y = xa in order_le_imp_less_or_eq) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1316 |
apply (safe, simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1317 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1318 |
declare pi_half_gt_zero [simp] |
22998 | 1319 |
declare pi_half_gt_zero [THEN less_imp_neq, THEN not_sym, simp] |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1320 |
declare pi_half_gt_zero [THEN order_less_imp_le, simp] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1321 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1322 |
lemma pi_half_less_two: "pi / 2 < 2" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1323 |
apply (rule cos_is_zero [THEN ex1E]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1324 |
apply (auto simp add: pi_half) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1325 |
apply (rule someI2, blast, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1326 |
apply (drule_tac x = xa in order_le_imp_less_or_eq) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1327 |
apply (safe, simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1328 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1329 |
declare pi_half_less_two [simp] |
22998 | 1330 |
declare pi_half_less_two [THEN less_imp_neq, simp] |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1331 |
declare pi_half_less_two [THEN order_less_imp_le, simp] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1332 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1333 |
lemma pi_gt_zero [simp]: "0 < pi" |
15229 | 1334 |
apply (insert pi_half_gt_zero) |
1335 |
apply (simp add: ); |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1336 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1337 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1338 |
lemma pi_neq_zero [simp]: "pi \<noteq> 0" |
22998 | 1339 |
by (rule pi_gt_zero [THEN less_imp_neq, THEN not_sym]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1340 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1341 |
lemma pi_not_less_zero [simp]: "~ (pi < 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1342 |
apply (insert pi_gt_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1343 |
apply (blast elim: order_less_asym) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1344 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1345 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1346 |
lemma pi_ge_zero [simp]: "0 \<le> pi" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1347 |
by (auto intro: order_less_imp_le) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1348 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1349 |
lemma minus_pi_half_less_zero [simp]: "-(pi/2) < 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1350 |
by auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1351 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1352 |
lemma sin_pi_half [simp]: "sin(pi/2) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1353 |
apply (cut_tac x = "pi/2" in sin_cos_squared_add2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1354 |
apply (cut_tac sin_gt_zero [OF pi_half_gt_zero pi_half_less_two]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1355 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1356 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1357 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1358 |
lemma cos_pi [simp]: "cos pi = -1" |
15539 | 1359 |
by (cut_tac x = "pi/2" and y = "pi/2" in cos_add, simp) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1360 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1361 |
lemma sin_pi [simp]: "sin pi = 0" |
15539 | 1362 |
by (cut_tac x = "pi/2" and y = "pi/2" in sin_add, simp) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1363 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1364 |
lemma sin_cos_eq: "sin x = cos (pi/2 - x)" |
15229 | 1365 |
by (simp add: diff_minus cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1366 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1367 |
lemma minus_sin_cos_eq: "-sin x = cos (x + pi/2)" |
15229 | 1368 |
by (simp add: cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1369 |
declare minus_sin_cos_eq [symmetric, simp] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1370 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1371 |
lemma cos_sin_eq: "cos x = sin (pi/2 - x)" |
15229 | 1372 |
by (simp add: diff_minus sin_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1373 |
declare sin_cos_eq [symmetric, simp] cos_sin_eq [symmetric, simp] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1374 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1375 |
lemma sin_periodic_pi [simp]: "sin (x + pi) = - sin x" |
15229 | 1376 |
by (simp add: sin_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1377 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1378 |
lemma sin_periodic_pi2 [simp]: "sin (pi + x) = - sin x" |
15229 | 1379 |
by (simp add: sin_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1380 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1381 |
lemma cos_periodic_pi [simp]: "cos (x + pi) = - cos x" |
15229 | 1382 |
by (simp add: cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1383 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1384 |
lemma sin_periodic [simp]: "sin (x + 2*pi) = sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1385 |
by (simp add: sin_add cos_double) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1386 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1387 |
lemma cos_periodic [simp]: "cos (x + 2*pi) = cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1388 |
by (simp add: cos_add cos_double) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1389 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1390 |
lemma cos_npi [simp]: "cos (real n * pi) = -1 ^ n" |
15251 | 1391 |
apply (induct "n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1392 |
apply (auto simp add: real_of_nat_Suc left_distrib) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1393 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1394 |
|
15383 | 1395 |
lemma cos_npi2 [simp]: "cos (pi * real n) = -1 ^ n" |
1396 |
proof - |
|
1397 |
have "cos (pi * real n) = cos (real n * pi)" by (simp only: mult_commute) |
|
1398 |
also have "... = -1 ^ n" by (rule cos_npi) |
|
1399 |
finally show ?thesis . |
|
1400 |
qed |
|
1401 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1402 |
lemma sin_npi [simp]: "sin (real (n::nat) * pi) = 0" |
15251 | 1403 |
apply (induct "n") |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1404 |
apply (auto simp add: real_of_nat_Suc left_distrib) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1405 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1406 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1407 |
lemma sin_npi2 [simp]: "sin (pi * real (n::nat)) = 0" |
15383 | 1408 |
by (simp add: mult_commute [of pi]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1409 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1410 |
lemma cos_two_pi [simp]: "cos (2 * pi) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1411 |
by (simp add: cos_double) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1412 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1413 |
lemma sin_two_pi [simp]: "sin (2 * pi) = 0" |
15229 | 1414 |
by simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1415 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1416 |
lemma sin_gt_zero2: "[| 0 < x; x < pi/2 |] ==> 0 < sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1417 |
apply (rule sin_gt_zero, assumption) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1418 |
apply (rule order_less_trans, assumption) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1419 |
apply (rule pi_half_less_two) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1420 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1421 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1422 |
lemma sin_less_zero: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1423 |
assumes lb: "- pi/2 < x" and "x < 0" shows "sin x < 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1424 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1425 |
have "0 < sin (- x)" using prems by (simp only: sin_gt_zero2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1426 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1427 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1428 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1429 |
lemma pi_less_4: "pi < 4" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1430 |
by (cut_tac pi_half_less_two, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1431 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1432 |
lemma cos_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1433 |
apply (cut_tac pi_less_4) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1434 |
apply (cut_tac f = cos and a = 0 and b = x and y = 0 in IVT2_objl, safe, simp_all) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1435 |
apply (cut_tac cos_is_zero, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1436 |
apply (rename_tac y z) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1437 |
apply (drule_tac x = y in spec) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1438 |
apply (drule_tac x = "pi/2" in spec, simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1439 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1440 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1441 |
lemma cos_gt_zero_pi: "[| -(pi/2) < x; x < pi/2 |] ==> 0 < cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1442 |
apply (rule_tac x = x and y = 0 in linorder_cases) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1443 |
apply (rule cos_minus [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1444 |
apply (rule cos_gt_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1445 |
apply (auto intro: cos_gt_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1446 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1447 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1448 |
lemma cos_ge_zero: "[| -(pi/2) \<le> x; x \<le> pi/2 |] ==> 0 \<le> cos x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1449 |
apply (auto simp add: order_le_less cos_gt_zero_pi) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1450 |
apply (subgoal_tac "x = pi/2", auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1451 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1452 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1453 |
lemma sin_gt_zero_pi: "[| 0 < x; x < pi |] ==> 0 < sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1454 |
apply (subst sin_cos_eq) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1455 |
apply (rotate_tac 1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1456 |
apply (drule real_sum_of_halves [THEN ssubst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1457 |
apply (auto intro!: cos_gt_zero_pi simp del: sin_cos_eq [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1458 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1459 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1460 |
lemma sin_ge_zero: "[| 0 \<le> x; x \<le> pi |] ==> 0 \<le> sin x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1461 |
by (auto simp add: order_le_less sin_gt_zero_pi) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1462 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1463 |
lemma cos_total: "[| -1 \<le> y; y \<le> 1 |] ==> EX! x. 0 \<le> x & x \<le> pi & (cos x = y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1464 |
apply (subgoal_tac "\<exists>x. 0 \<le> x & x \<le> pi & cos x = y") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1465 |
apply (rule_tac [2] IVT2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1466 |
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1467 |
apply (cut_tac x = xa and y = y in linorder_less_linear) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1468 |
apply (rule ccontr, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1469 |
apply (drule_tac f = cos in Rolle) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1470 |
apply (drule_tac [5] f = cos in Rolle) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1471 |
apply (auto intro: order_less_imp_le DERIV_isCont DERIV_cos |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1472 |
dest!: DERIV_cos [THEN DERIV_unique] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1473 |
simp add: differentiable_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1474 |
apply (auto dest: sin_gt_zero_pi [OF order_le_less_trans order_less_le_trans]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1475 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1476 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1477 |
lemma sin_total: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1478 |
"[| -1 \<le> y; y \<le> 1 |] ==> EX! x. -(pi/2) \<le> x & x \<le> pi/2 & (sin x = y)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1479 |
apply (rule ccontr) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1480 |
apply (subgoal_tac "\<forall>x. (- (pi/2) \<le> x & x \<le> pi/2 & (sin x = y)) = (0 \<le> (x + pi/2) & (x + pi/2) \<le> pi & (cos (x + pi/2) = -y))") |
18585 | 1481 |
apply (erule contrapos_np) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1482 |
apply (simp del: minus_sin_cos_eq [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1483 |
apply (cut_tac y="-y" in cos_total, simp) apply simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1484 |
apply (erule ex1E) |
15229 | 1485 |
apply (rule_tac a = "x - (pi/2)" in ex1I) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1486 |
apply (simp (no_asm) add: real_add_assoc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1487 |
apply (rotate_tac 3) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1488 |
apply (drule_tac x = "xa + pi/2" in spec, safe, simp_all) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1489 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1490 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1491 |
lemma reals_Archimedean4: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1492 |
"[| 0 < y; 0 \<le> x |] ==> \<exists>n. real n * y \<le> x & x < real (Suc n) * y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1493 |
apply (auto dest!: reals_Archimedean3) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1494 |
apply (drule_tac x = x in spec, clarify) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1495 |
apply (subgoal_tac "x < real(LEAST m::nat. x < real m * y) * y") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1496 |
prefer 2 apply (erule LeastI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1497 |
apply (case_tac "LEAST m::nat. x < real m * y", simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1498 |
apply (subgoal_tac "~ x < real nat * y") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1499 |
prefer 2 apply (rule not_less_Least, simp, force) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1500 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1501 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1502 |
(* Pre Isabelle99-2 proof was simpler- numerals arithmetic |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1503 |
now causes some unwanted re-arrangements of literals! *) |
15229 | 1504 |
lemma cos_zero_lemma: |
1505 |
"[| 0 \<le> x; cos x = 0 |] ==> |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1506 |
\<exists>n::nat. ~even n & x = real n * (pi/2)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1507 |
apply (drule pi_gt_zero [THEN reals_Archimedean4], safe) |
15086 | 1508 |
apply (subgoal_tac "0 \<le> x - real n * pi & |
1509 |
(x - real n * pi) \<le> pi & (cos (x - real n * pi) = 0) ") |
|
1510 |
apply (auto simp add: compare_rls) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1511 |
prefer 3 apply (simp add: cos_diff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1512 |
prefer 2 apply (simp add: real_of_nat_Suc left_distrib) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1513 |
apply (simp add: cos_diff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1514 |
apply (subgoal_tac "EX! x. 0 \<le> x & x \<le> pi & cos x = 0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1515 |
apply (rule_tac [2] cos_total, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1516 |
apply (drule_tac x = "x - real n * pi" in spec) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1517 |
apply (drule_tac x = "pi/2" in spec) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1518 |
apply (simp add: cos_diff) |
15229 | 1519 |
apply (rule_tac x = "Suc (2 * n)" in exI) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1520 |
apply (simp add: real_of_nat_Suc left_distrib, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1521 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1522 |
|
15229 | 1523 |
lemma sin_zero_lemma: |
1524 |
"[| 0 \<le> x; sin x = 0 |] ==> |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1525 |
\<exists>n::nat. even n & x = real n * (pi/2)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1526 |
apply (subgoal_tac "\<exists>n::nat. ~ even n & x + pi/2 = real n * (pi/2) ") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1527 |
apply (clarify, rule_tac x = "n - 1" in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1528 |
apply (force simp add: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib) |
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1529 |
apply (rule cos_zero_lemma) |
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1530 |
apply (simp_all add: add_increasing) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1531 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1532 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1533 |
|
15229 | 1534 |
lemma cos_zero_iff: |
1535 |
"(cos x = 0) = |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1536 |
((\<exists>n::nat. ~even n & (x = real n * (pi/2))) | |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1537 |
(\<exists>n::nat. ~even n & (x = -(real n * (pi/2)))))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1538 |
apply (rule iffI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1539 |
apply (cut_tac linorder_linear [of 0 x], safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1540 |
apply (drule cos_zero_lemma, assumption+) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1541 |
apply (cut_tac x="-x" in cos_zero_lemma, simp, simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1542 |
apply (force simp add: minus_equation_iff [of x]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1543 |
apply (auto simp only: odd_Suc_mult_two_ex real_of_nat_Suc left_distrib) |
15539 | 1544 |
apply (auto simp add: cos_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1545 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1546 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1547 |
(* ditto: but to a lesser extent *) |
15229 | 1548 |
lemma sin_zero_iff: |
1549 |
"(sin x = 0) = |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1550 |
((\<exists>n::nat. even n & (x = real n * (pi/2))) | |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1551 |
(\<exists>n::nat. even n & (x = -(real n * (pi/2)))))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1552 |
apply (rule iffI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1553 |
apply (cut_tac linorder_linear [of 0 x], safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1554 |
apply (drule sin_zero_lemma, assumption+) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1555 |
apply (cut_tac x="-x" in sin_zero_lemma, simp, simp, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1556 |
apply (force simp add: minus_equation_iff [of x]) |
15539 | 1557 |
apply (auto simp add: even_mult_two_ex) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1558 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1559 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1560 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1561 |
subsection{*Tangent*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1562 |
|
23043 | 1563 |
definition |
1564 |
tan :: "real => real" where |
|
1565 |
"tan x = (sin x)/(cos x)" |
|
1566 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1567 |
lemma tan_zero [simp]: "tan 0 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1568 |
by (simp add: tan_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1569 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1570 |
lemma tan_pi [simp]: "tan pi = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1571 |
by (simp add: tan_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1572 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1573 |
lemma tan_npi [simp]: "tan (real (n::nat) * pi) = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1574 |
by (simp add: tan_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1575 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1576 |
lemma tan_minus [simp]: "tan (-x) = - tan x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1577 |
by (simp add: tan_def minus_mult_left) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1578 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1579 |
lemma tan_periodic [simp]: "tan (x + 2*pi) = tan x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1580 |
by (simp add: tan_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1581 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1582 |
lemma lemma_tan_add1: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1583 |
"[| cos x \<noteq> 0; cos y \<noteq> 0 |] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1584 |
==> 1 - tan(x)*tan(y) = cos (x + y)/(cos x * cos y)" |
15229 | 1585 |
apply (simp add: tan_def divide_inverse) |
1586 |
apply (auto simp del: inverse_mult_distrib |
|
1587 |
simp add: inverse_mult_distrib [symmetric] mult_ac) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1588 |
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst]) |
15229 | 1589 |
apply (auto simp del: inverse_mult_distrib |
1590 |
simp add: mult_assoc left_diff_distrib cos_add) |
|
15234
ec91a90c604e
simplification tweaks for better arithmetic reasoning
paulson
parents:
15229
diff
changeset
|
1591 |
done |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1592 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1593 |
lemma add_tan_eq: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1594 |
"[| cos x \<noteq> 0; cos y \<noteq> 0 |] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1595 |
==> tan x + tan y = sin(x + y)/(cos x * cos y)" |
15229 | 1596 |
apply (simp add: tan_def) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1597 |
apply (rule_tac c1 = "cos x * cos y" in real_mult_right_cancel [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1598 |
apply (auto simp add: mult_assoc left_distrib) |
15539 | 1599 |
apply (simp add: sin_add) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1600 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1601 |
|
15229 | 1602 |
lemma tan_add: |
1603 |
"[| cos x \<noteq> 0; cos y \<noteq> 0; cos (x + y) \<noteq> 0 |] |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1604 |
==> tan(x + y) = (tan(x) + tan(y))/(1 - tan(x) * tan(y))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1605 |
apply (simp (no_asm_simp) add: add_tan_eq lemma_tan_add1) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1606 |
apply (simp add: tan_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1607 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1608 |
|
15229 | 1609 |
lemma tan_double: |
1610 |
"[| cos x \<noteq> 0; cos (2 * x) \<noteq> 0 |] |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1611 |
==> tan (2 * x) = (2 * tan x)/(1 - (tan(x) ^ 2))" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1612 |
apply (insert tan_add [of x x]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1613 |
apply (simp add: mult_2 [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1614 |
apply (auto simp add: numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1615 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1616 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1617 |
lemma tan_gt_zero: "[| 0 < x; x < pi/2 |] ==> 0 < tan x" |
15229 | 1618 |
by (simp add: tan_def zero_less_divide_iff sin_gt_zero2 cos_gt_zero_pi) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1619 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1620 |
lemma tan_less_zero: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1621 |
assumes lb: "- pi/2 < x" and "x < 0" shows "tan x < 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1622 |
proof - |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1623 |
have "0 < tan (- x)" using prems by (simp only: tan_gt_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1624 |
thus ?thesis by simp |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1625 |
qed |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1626 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1627 |
lemma lemma_DERIV_tan: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1628 |
"cos x \<noteq> 0 ==> DERIV (%x. sin(x)/cos(x)) x :> inverse((cos x)\<twosuperior>)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1629 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1630 |
apply (best intro!: DERIV_intros intro: DERIV_chain2) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
15077
diff
changeset
|
1631 |
apply (auto simp add: divide_inverse numeral_2_eq_2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1632 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1633 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1634 |
lemma DERIV_tan [simp]: "cos x \<noteq> 0 ==> DERIV tan x :> inverse((cos x)\<twosuperior>)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1635 |
by (auto dest: lemma_DERIV_tan simp add: tan_def [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1636 |
|
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1637 |
lemma isCont_tan [simp]: "cos x \<noteq> 0 ==> isCont tan x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1638 |
by (rule DERIV_tan [THEN DERIV_isCont]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1639 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1640 |
lemma LIM_cos_div_sin [simp]: "(%x. cos(x)/sin(x)) -- pi/2 --> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1641 |
apply (subgoal_tac "(\<lambda>x. cos x * inverse (sin x)) -- pi * inverse 2 --> 0*1") |
15229 | 1642 |
apply (simp add: divide_inverse [symmetric]) |
22613 | 1643 |
apply (rule LIM_mult) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1644 |
apply (rule_tac [2] inverse_1 [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1645 |
apply (rule_tac [2] LIM_inverse) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1646 |
apply (simp_all add: divide_inverse [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1647 |
apply (simp_all only: isCont_def [symmetric] cos_pi_half [symmetric] sin_pi_half [symmetric]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1648 |
apply (blast intro!: DERIV_isCont DERIV_sin DERIV_cos)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1649 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1650 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1651 |
lemma lemma_tan_total: "0 < y ==> \<exists>x. 0 < x & x < pi/2 & y < tan x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1652 |
apply (cut_tac LIM_cos_div_sin) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1653 |
apply (simp only: LIM_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1654 |
apply (drule_tac x = "inverse y" in spec, safe, force) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1655 |
apply (drule_tac ?d1.0 = s in pi_half_gt_zero [THEN [2] real_lbound_gt_zero], safe) |
15229 | 1656 |
apply (rule_tac x = "(pi/2) - e" in exI) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1657 |
apply (simp (no_asm_simp)) |
15229 | 1658 |
apply (drule_tac x = "(pi/2) - e" in spec) |
1659 |
apply (auto simp add: tan_def) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1660 |
apply (rule inverse_less_iff_less [THEN iffD1]) |
15079
2ef899e4526d
conversion of Hyperreal/MacLaurin_lemmas to Isar script
paulson
parents:
15077
diff
changeset
|
1661 |
apply (auto simp add: divide_inverse) |
15229 | 1662 |
apply (rule real_mult_order) |
1663 |
apply (subgoal_tac [3] "0 < sin e & 0 < cos e") |
|
1664 |
apply (auto intro: cos_gt_zero sin_gt_zero2 simp add: mult_commute) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1665 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1666 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1667 |
lemma tan_total_pos: "0 \<le> y ==> \<exists>x. 0 \<le> x & x < pi/2 & tan x = y" |
22998 | 1668 |
apply (frule order_le_imp_less_or_eq, safe) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1669 |
prefer 2 apply force |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1670 |
apply (drule lemma_tan_total, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1671 |
apply (cut_tac f = tan and a = 0 and b = x and y = y in IVT_objl) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1672 |
apply (auto intro!: DERIV_tan [THEN DERIV_isCont]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1673 |
apply (drule_tac y = xa in order_le_imp_less_or_eq) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1674 |
apply (auto dest: cos_gt_zero) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1675 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1676 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1677 |
lemma lemma_tan_total1: "\<exists>x. -(pi/2) < x & x < (pi/2) & tan x = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1678 |
apply (cut_tac linorder_linear [of 0 y], safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1679 |
apply (drule tan_total_pos) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1680 |
apply (cut_tac [2] y="-y" in tan_total_pos, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1681 |
apply (rule_tac [3] x = "-x" in exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1682 |
apply (auto intro!: exI) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1683 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1684 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1685 |
lemma tan_total: "EX! x. -(pi/2) < x & x < (pi/2) & tan x = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1686 |
apply (cut_tac y = y in lemma_tan_total1, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1687 |
apply (cut_tac x = xa and y = y in linorder_less_linear, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1688 |
apply (subgoal_tac [2] "\<exists>z. y < z & z < xa & DERIV tan z :> 0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1689 |
apply (subgoal_tac "\<exists>z. xa < z & z < y & DERIV tan z :> 0") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1690 |
apply (rule_tac [4] Rolle) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1691 |
apply (rule_tac [2] Rolle) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1692 |
apply (auto intro!: DERIV_tan DERIV_isCont exI |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1693 |
simp add: differentiable_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1694 |
txt{*Now, simulate TRYALL*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1695 |
apply (rule_tac [!] DERIV_tan asm_rl) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1696 |
apply (auto dest!: DERIV_unique [OF _ DERIV_tan] |
22998 | 1697 |
simp add: cos_gt_zero_pi [THEN less_imp_neq, THEN not_sym]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1698 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1699 |
|
23043 | 1700 |
|
1701 |
subsection {* Inverse Trigonometric Functions *} |
|
1702 |
||
1703 |
definition |
|
1704 |
arcsin :: "real => real" where |
|
1705 |
"arcsin y = (THE x. -(pi/2) \<le> x & x \<le> pi/2 & sin x = y)" |
|
1706 |
||
1707 |
definition |
|
1708 |
arccos :: "real => real" where |
|
1709 |
"arccos y = (THE x. 0 \<le> x & x \<le> pi & cos x = y)" |
|
1710 |
||
1711 |
definition |
|
1712 |
arctan :: "real => real" where |
|
1713 |
"arctan y = (THE x. -(pi/2) < x & x < pi/2 & tan x = y)" |
|
1714 |
||
15229 | 1715 |
lemma arcsin: |
1716 |
"[| -1 \<le> y; y \<le> 1 |] |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1717 |
==> -(pi/2) \<le> arcsin y & |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1718 |
arcsin y \<le> pi/2 & sin(arcsin y) = y" |
23011 | 1719 |
unfolding arcsin_def by (rule theI' [OF sin_total]) |
1720 |
||
1721 |
lemma arcsin_pi: |
|
1722 |
"[| -1 \<le> y; y \<le> 1 |] |
|
1723 |
==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi & sin(arcsin y) = y" |
|
1724 |
apply (drule (1) arcsin) |
|
1725 |
apply (force intro: order_trans) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1726 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1727 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1728 |
lemma sin_arcsin [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> sin(arcsin y) = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1729 |
by (blast dest: arcsin) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1730 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1731 |
lemma arcsin_bounded: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1732 |
"[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y & arcsin y \<le> pi/2" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1733 |
by (blast dest: arcsin) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1734 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1735 |
lemma arcsin_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> -(pi/2) \<le> arcsin y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1736 |
by (blast dest: arcsin) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1737 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1738 |
lemma arcsin_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arcsin y \<le> pi/2" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1739 |
by (blast dest: arcsin) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1740 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1741 |
lemma arcsin_lt_bounded: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1742 |
"[| -1 < y; y < 1 |] ==> -(pi/2) < arcsin y & arcsin y < pi/2" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1743 |
apply (frule order_less_imp_le) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1744 |
apply (frule_tac y = y in order_less_imp_le) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1745 |
apply (frule arcsin_bounded) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1746 |
apply (safe, simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1747 |
apply (drule_tac y = "arcsin y" in order_le_imp_less_or_eq) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1748 |
apply (drule_tac [2] y = "pi/2" in order_le_imp_less_or_eq, safe) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1749 |
apply (drule_tac [!] f = sin in arg_cong, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1750 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1751 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1752 |
lemma arcsin_sin: "[|-(pi/2) \<le> x; x \<le> pi/2 |] ==> arcsin(sin x) = x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1753 |
apply (unfold arcsin_def) |
23011 | 1754 |
apply (rule the1_equality) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1755 |
apply (rule sin_total, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1756 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1757 |
|
22975 | 1758 |
lemma arccos: |
15229 | 1759 |
"[| -1 \<le> y; y \<le> 1 |] |
22975 | 1760 |
==> 0 \<le> arccos y & arccos y \<le> pi & cos(arccos y) = y" |
23011 | 1761 |
unfolding arccos_def by (rule theI' [OF cos_total]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1762 |
|
22975 | 1763 |
lemma cos_arccos [simp]: "[| -1 \<le> y; y \<le> 1 |] ==> cos(arccos y) = y" |
1764 |
by (blast dest: arccos) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1765 |
|
22975 | 1766 |
lemma arccos_bounded: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y & arccos y \<le> pi" |
1767 |
by (blast dest: arccos) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1768 |
|
22975 | 1769 |
lemma arccos_lbound: "[| -1 \<le> y; y \<le> 1 |] ==> 0 \<le> arccos y" |
1770 |
by (blast dest: arccos) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1771 |
|
22975 | 1772 |
lemma arccos_ubound: "[| -1 \<le> y; y \<le> 1 |] ==> arccos y \<le> pi" |
1773 |
by (blast dest: arccos) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1774 |
|
22975 | 1775 |
lemma arccos_lt_bounded: |
15229 | 1776 |
"[| -1 < y; y < 1 |] |
22975 | 1777 |
==> 0 < arccos y & arccos y < pi" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1778 |
apply (frule order_less_imp_le) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1779 |
apply (frule_tac y = y in order_less_imp_le) |
22975 | 1780 |
apply (frule arccos_bounded, auto) |
1781 |
apply (drule_tac y = "arccos y" in order_le_imp_less_or_eq) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1782 |
apply (drule_tac [2] y = pi in order_le_imp_less_or_eq, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1783 |
apply (drule_tac [!] f = cos in arg_cong, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1784 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1785 |
|
22975 | 1786 |
lemma arccos_cos: "[|0 \<le> x; x \<le> pi |] ==> arccos(cos x) = x" |
1787 |
apply (simp add: arccos_def) |
|
23011 | 1788 |
apply (auto intro!: the1_equality cos_total) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1789 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1790 |
|
22975 | 1791 |
lemma arccos_cos2: "[|x \<le> 0; -pi \<le> x |] ==> arccos(cos x) = -x" |
1792 |
apply (simp add: arccos_def) |
|
23011 | 1793 |
apply (auto intro!: the1_equality cos_total) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1794 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1795 |
|
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1796 |
lemma cos_arcsin: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> cos (arcsin x) = sqrt (1 - x\<twosuperior>)" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1797 |
apply (subgoal_tac "x\<twosuperior> \<le> 1") |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1798 |
apply (rule power_eq_imp_eq_base [where n=2]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1799 |
apply (simp add: cos_squared_eq) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1800 |
apply (rule cos_ge_zero) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1801 |
apply (erule (1) arcsin_lbound) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1802 |
apply (erule (1) arcsin_ubound) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1803 |
apply simp |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1804 |
apply simp |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1805 |
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1806 |
apply (rule power_mono, simp, simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1807 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1808 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1809 |
lemma sin_arccos: "\<lbrakk>-1 \<le> x; x \<le> 1\<rbrakk> \<Longrightarrow> sin (arccos x) = sqrt (1 - x\<twosuperior>)" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1810 |
apply (subgoal_tac "x\<twosuperior> \<le> 1") |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1811 |
apply (rule power_eq_imp_eq_base [where n=2]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1812 |
apply (simp add: sin_squared_eq) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1813 |
apply (rule sin_ge_zero) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1814 |
apply (erule (1) arccos_lbound) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1815 |
apply (erule (1) arccos_ubound) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1816 |
apply simp |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1817 |
apply simp |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1818 |
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> \<le> 1\<twosuperior>", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1819 |
apply (rule power_mono, simp, simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1820 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1821 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1822 |
lemma arctan [simp]: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1823 |
"- (pi/2) < arctan y & arctan y < pi/2 & tan (arctan y) = y" |
23011 | 1824 |
unfolding arctan_def by (rule theI' [OF tan_total]) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1825 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1826 |
lemma tan_arctan: "tan(arctan y) = y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1827 |
by auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1828 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1829 |
lemma arctan_bounded: "- (pi/2) < arctan y & arctan y < pi/2" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1830 |
by (auto simp only: arctan) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1831 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1832 |
lemma arctan_lbound: "- (pi/2) < arctan y" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1833 |
by auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1834 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1835 |
lemma arctan_ubound: "arctan y < pi/2" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1836 |
by (auto simp only: arctan) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1837 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1838 |
lemma arctan_tan: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1839 |
"[|-(pi/2) < x; x < pi/2 |] ==> arctan(tan x) = x" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1840 |
apply (unfold arctan_def) |
23011 | 1841 |
apply (rule the1_equality) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1842 |
apply (rule tan_total, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1843 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1844 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1845 |
lemma arctan_zero_zero [simp]: "arctan 0 = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1846 |
by (insert arctan_tan [of 0], simp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1847 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1848 |
lemma cos_arctan_not_zero [simp]: "cos(arctan x) \<noteq> 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1849 |
apply (auto simp add: cos_zero_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1850 |
apply (case_tac "n") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1851 |
apply (case_tac [3] "n") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1852 |
apply (cut_tac [2] y = x in arctan_ubound) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1853 |
apply (cut_tac [4] y = x in arctan_lbound) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1854 |
apply (auto simp add: real_of_nat_Suc left_distrib mult_less_0_iff) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1855 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1856 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1857 |
lemma tan_sec: "cos x \<noteq> 0 ==> 1 + tan(x) ^ 2 = inverse(cos x) ^ 2" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1858 |
apply (rule power_inverse [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1859 |
apply (rule_tac c1 = "(cos x)\<twosuperior>" in real_mult_right_cancel [THEN iffD1]) |
22960 | 1860 |
apply (auto dest: field_power_not_zero |
20516 | 1861 |
simp add: power_mult_distrib left_distrib power_divide tan_def |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1862 |
mult_assoc power_inverse [symmetric] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1863 |
simp del: realpow_Suc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1864 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1865 |
|
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1866 |
lemma isCont_inverse_function2: |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1867 |
fixes f g :: "real \<Rightarrow> real" shows |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1868 |
"\<lbrakk>a < x; x < b; |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1869 |
\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> g (f z) = z; |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1870 |
\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> isCont f z\<rbrakk> |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1871 |
\<Longrightarrow> isCont g (f x)" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1872 |
apply (rule isCont_inverse_function |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1873 |
[where f=f and d="min (x - a) (b - x)"]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1874 |
apply (simp_all add: abs_le_iff) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1875 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1876 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1877 |
lemma isCont_arcsin: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arcsin x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1878 |
apply (subgoal_tac "isCont arcsin (sin (arcsin x))", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1879 |
apply (rule isCont_inverse_function2 [where f=sin]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1880 |
apply (erule (1) arcsin_lt_bounded [THEN conjunct1]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1881 |
apply (erule (1) arcsin_lt_bounded [THEN conjunct2]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1882 |
apply (fast intro: arcsin_sin, simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1883 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1884 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1885 |
lemma isCont_arccos: "\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> isCont arccos x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1886 |
apply (subgoal_tac "isCont arccos (cos (arccos x))", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1887 |
apply (rule isCont_inverse_function2 [where f=cos]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1888 |
apply (erule (1) arccos_lt_bounded [THEN conjunct1]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1889 |
apply (erule (1) arccos_lt_bounded [THEN conjunct2]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1890 |
apply (fast intro: arccos_cos, simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1891 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1892 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1893 |
lemma isCont_arctan: "isCont arctan x" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1894 |
apply (rule arctan_lbound [of x, THEN dense, THEN exE], clarify) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1895 |
apply (rule arctan_ubound [of x, THEN dense, THEN exE], clarify) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1896 |
apply (subgoal_tac "isCont arctan (tan (arctan x))", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1897 |
apply (erule (1) isCont_inverse_function2 [where f=tan]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1898 |
apply (clarify, rule arctan_tan) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1899 |
apply (erule (1) order_less_le_trans) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1900 |
apply (erule (1) order_le_less_trans) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1901 |
apply (clarify, rule isCont_tan) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1902 |
apply (rule less_imp_neq [symmetric]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1903 |
apply (rule cos_gt_zero_pi) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1904 |
apply (erule (1) order_less_le_trans) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1905 |
apply (erule (1) order_le_less_trans) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1906 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1907 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1908 |
lemma DERIV_arcsin: |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1909 |
"\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arcsin x :> inverse (sqrt (1 - x\<twosuperior>))" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1910 |
apply (rule DERIV_inverse_function [where f=sin and a="-1" and b="1"]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1911 |
apply (rule lemma_DERIV_subst [OF DERIV_sin]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1912 |
apply (simp add: cos_arcsin) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1913 |
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1914 |
apply (rule power_strict_mono, simp, simp, simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1915 |
apply assumption |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1916 |
apply assumption |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1917 |
apply simp |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1918 |
apply (erule (1) isCont_arcsin) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1919 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1920 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1921 |
lemma DERIV_arccos: |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1922 |
"\<lbrakk>-1 < x; x < 1\<rbrakk> \<Longrightarrow> DERIV arccos x :> inverse (- sqrt (1 - x\<twosuperior>))" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1923 |
apply (rule DERIV_inverse_function [where f=cos and a="-1" and b="1"]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1924 |
apply (rule lemma_DERIV_subst [OF DERIV_cos]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1925 |
apply (simp add: sin_arccos) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1926 |
apply (subgoal_tac "\<bar>x\<bar>\<twosuperior> < 1\<twosuperior>", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1927 |
apply (rule power_strict_mono, simp, simp, simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1928 |
apply assumption |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1929 |
apply assumption |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1930 |
apply simp |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1931 |
apply (erule (1) isCont_arccos) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1932 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1933 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1934 |
lemma DERIV_arctan: "DERIV arctan x :> inverse (1 + x\<twosuperior>)" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1935 |
apply (rule DERIV_inverse_function [where f=tan and a="x - 1" and b="x + 1"]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1936 |
apply (rule lemma_DERIV_subst [OF DERIV_tan]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1937 |
apply (rule cos_arctan_not_zero) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1938 |
apply (simp add: power_inverse tan_sec [symmetric]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1939 |
apply (subgoal_tac "0 < 1 + x\<twosuperior>", simp) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1940 |
apply (simp add: add_pos_nonneg) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1941 |
apply (simp, simp, simp, rule isCont_arctan) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1942 |
done |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1943 |
|
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
1944 |
|
23043 | 1945 |
subsection {* More Theorems about Sin and Cos *} |
1946 |
||
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1947 |
text{*NEEDED??*} |
15229 | 1948 |
lemma [simp]: |
1949 |
"sin (x + 1 / 2 * real (Suc m) * pi) = |
|
1950 |
cos (x + 1 / 2 * real (m) * pi)" |
|
1951 |
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib, auto) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1952 |
|
15085
5693a977a767
removed some [iff] declarations from RealDef.thy, concerning inequalities
paulson
parents:
15081
diff
changeset
|
1953 |
text{*NEEDED??*} |
15229 | 1954 |
lemma [simp]: |
1955 |
"sin (x + real (Suc m) * pi / 2) = |
|
1956 |
cos (x + real (m) * pi / 2)" |
|
1957 |
by (simp only: cos_add sin_add real_of_nat_Suc add_divide_distrib left_distrib, auto) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1958 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1959 |
lemma DERIV_sin_add [simp]: "DERIV (%x. sin (x + k)) xa :> cos (xa + k)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1960 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1961 |
apply (rule_tac f = sin and g = "%x. x + k" in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1962 |
apply (best intro!: DERIV_intros intro: DERIV_chain2)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1963 |
apply (simp (no_asm)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1964 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1965 |
|
15383 | 1966 |
lemma sin_cos_npi [simp]: "sin (real (Suc (2 * n)) * pi / 2) = (-1) ^ n" |
1967 |
proof - |
|
1968 |
have "sin ((real n + 1/2) * pi) = cos (real n * pi)" |
|
1969 |
by (auto simp add: right_distrib sin_add left_distrib mult_ac) |
|
1970 |
thus ?thesis |
|
1971 |
by (simp add: real_of_nat_Suc left_distrib add_divide_distrib |
|
1972 |
mult_commute [of pi]) |
|
1973 |
qed |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1974 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1975 |
lemma cos_2npi [simp]: "cos (2 * real (n::nat) * pi) = 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1976 |
by (simp add: cos_double mult_assoc power_add [symmetric] numeral_2_eq_2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1977 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1978 |
lemma cos_3over2_pi [simp]: "cos (3 / 2 * pi) = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1979 |
apply (subgoal_tac "3/2 = (1+1 / 2::real)") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1980 |
apply (simp only: left_distrib) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1981 |
apply (auto simp add: cos_add mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1982 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1983 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1984 |
lemma sin_2npi [simp]: "sin (2 * real (n::nat) * pi) = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1985 |
by (auto simp add: mult_assoc) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1986 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1987 |
lemma sin_3over2_pi [simp]: "sin (3 / 2 * pi) = - 1" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1988 |
apply (subgoal_tac "3/2 = (1+1 / 2::real)") |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1989 |
apply (simp only: left_distrib) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1990 |
apply (auto simp add: sin_add mult_ac) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1991 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1992 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1993 |
(*NEEDED??*) |
15229 | 1994 |
lemma [simp]: |
1995 |
"cos(x + 1 / 2 * real(Suc m) * pi) = -sin (x + 1 / 2 * real m * pi)" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1996 |
apply (simp only: cos_add sin_add real_of_nat_Suc right_distrib left_distrib minus_mult_right, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1997 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1998 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
1999 |
(*NEEDED??*) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2000 |
lemma [simp]: "cos (x + real(Suc m) * pi / 2) = -sin (x + real m * pi / 2)" |
15229 | 2001 |
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib add_divide_distrib, auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2002 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2003 |
lemma cos_pi_eq_zero [simp]: "cos (pi * real (Suc (2 * m)) / 2) = 0" |
15229 | 2004 |
by (simp only: cos_add sin_add real_of_nat_Suc left_distrib right_distrib add_divide_distrib, auto) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2005 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2006 |
lemma DERIV_cos_add [simp]: "DERIV (%x. cos (x + k)) xa :> - sin (xa + k)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2007 |
apply (rule lemma_DERIV_subst) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2008 |
apply (rule_tac f = cos and g = "%x. x + k" in DERIV_chain2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2009 |
apply (best intro!: DERIV_intros intro: DERIV_chain2)+ |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2010 |
apply (simp (no_asm)) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2011 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2012 |
|
15081 | 2013 |
lemma sin_zero_abs_cos_one: "sin x = 0 ==> \<bar>cos x\<bar> = 1" |
15539 | 2014 |
by (auto simp add: sin_zero_iff even_mult_two_ex) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2015 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2016 |
lemma exp_eq_one_iff [simp]: "(exp x = 1) = (x = 0)" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2017 |
apply auto |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2018 |
apply (drule_tac f = ln in arg_cong, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2019 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2020 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2021 |
lemma cos_one_sin_zero: "cos x = 1 ==> sin x = 0" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2022 |
by (cut_tac x = x in sin_cos_squared_add3, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2023 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2024 |
|
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2025 |
subsection {* Existence of Polar Coordinates *} |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2026 |
|
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2027 |
lemma cos_x_y_le_one: "\<bar>x / sqrt (x\<twosuperior> + y\<twosuperior>)\<bar> \<le> 1" |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2028 |
apply (rule power2_le_imp_le [OF _ zero_le_one]) |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2029 |
apply (simp add: abs_divide power_divide divide_le_eq not_sum_power2_lt_zero) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2030 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2031 |
|
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2032 |
lemma cos_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> cos (arccos y) = y" |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2033 |
by (simp add: abs_le_iff) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2034 |
|
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
2035 |
lemma sin_arccos_abs: "\<bar>y\<bar> \<le> 1 \<Longrightarrow> sin (arccos y) = sqrt (1 - y\<twosuperior>)" |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
2036 |
by (simp add: sin_arccos abs_le_iff) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2037 |
|
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2038 |
lemmas cos_arccos_lemma1 = cos_arccos_abs [OF cos_x_y_le_one] |
15228 | 2039 |
|
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
2040 |
lemmas sin_arccos_lemma1 = sin_arccos_abs [OF cos_x_y_le_one] |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2041 |
|
15229 | 2042 |
lemma polar_ex1: |
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2043 |
"0 < y ==> \<exists>r a. x = r * cos a & y = r * sin a" |
15229 | 2044 |
apply (rule_tac x = "sqrt (x\<twosuperior> + y\<twosuperior>)" in exI) |
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2045 |
apply (rule_tac x = "arccos (x / sqrt (x\<twosuperior> + y\<twosuperior>))" in exI) |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2046 |
apply (simp add: cos_arccos_lemma1) |
23045
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
2047 |
apply (simp add: sin_arccos_lemma1) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
2048 |
apply (simp add: power_divide) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
2049 |
apply (simp add: real_sqrt_mult [symmetric]) |
95e04f335940
add lemmas about inverse functions; cleaned up proof of polar_ex
huffman
parents:
23043
diff
changeset
|
2050 |
apply (simp add: right_diff_distrib) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2051 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2052 |
|
15229 | 2053 |
lemma polar_ex2: |
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2054 |
"y < 0 ==> \<exists>r a. x = r * cos a & y = r * sin a" |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2055 |
apply (insert polar_ex1 [where x=x and y="-y"], simp, clarify) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2056 |
apply (rule_tac x = r in exI) |
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2057 |
apply (rule_tac x = "-a" in exI, simp) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2058 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2059 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2060 |
lemma polar_Ex: "\<exists>r a. x = r * cos a & y = r * sin a" |
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2061 |
apply (rule_tac x=0 and y=y in linorder_cases) |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2062 |
apply (erule polar_ex1) |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2063 |
apply (rule_tac x=x in exI, rule_tac x=0 in exI, simp) |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2064 |
apply (erule polar_ex2) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2065 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2066 |
|
22978
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2067 |
subsection {* Theorems About Sqrt *} |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2068 |
|
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2069 |
lemma le_real_sqrt_sumsq [simp]: "x \<le> sqrt (x * x + y * y)" |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2070 |
by (simp add: power2_eq_square [symmetric]) |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2071 |
|
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2072 |
lemma real_sqrt_sum_squares_eq_cancel: "sqrt(x\<twosuperior> + y\<twosuperior>) = x ==> y = 0" |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2073 |
by (drule_tac f = "%x. x\<twosuperior>" in arg_cong, simp) |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2074 |
|
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2075 |
lemma real_sqrt_sum_squares_eq_cancel2: "sqrt(x\<twosuperior> + y\<twosuperior>) = y ==> x = 0" |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2076 |
by (drule_tac f = "%x. x\<twosuperior>" in arg_cong, simp) |
1cd8cc21a7c3
clean up polar_Ex proofs; remove unnecessary lemmas
huffman
parents:
22977
diff
changeset
|
2077 |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2078 |
lemma real_sqrt_ge_abs1 [simp]: "\<bar>x\<bar> \<le> sqrt (x\<twosuperior> + y\<twosuperior>)" |
22960 | 2079 |
by (rule power2_le_imp_le, simp_all) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2080 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2081 |
lemma real_sqrt_ge_abs2 [simp]: "\<bar>y\<bar> \<le> sqrt (x\<twosuperior> + y\<twosuperior>)" |
22960 | 2082 |
by (rule power2_le_imp_le, simp_all) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2083 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2084 |
lemma real_sqrt_two_gt_zero [simp]: "0 < sqrt 2" |
22956
617140080e6a
define roots of negative reals so that many lemmas no longer require side conditions; simplification solves more goals than previously
huffman
parents:
22915
diff
changeset
|
2085 |
by simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2086 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2087 |
lemma real_sqrt_two_ge_zero [simp]: "0 \<le> sqrt 2" |
22956
617140080e6a
define roots of negative reals so that many lemmas no longer require side conditions; simplification solves more goals than previously
huffman
parents:
22915
diff
changeset
|
2088 |
by simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2089 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2090 |
lemma real_sqrt_two_gt_one [simp]: "1 < sqrt 2" |
22956
617140080e6a
define roots of negative reals so that many lemmas no longer require side conditions; simplification solves more goals than previously
huffman
parents:
22915
diff
changeset
|
2091 |
by simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2092 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2093 |
lemma lemma_real_divide_sqrt_less: "0 < u ==> u / sqrt 2 < u" |
22969 | 2094 |
by (simp add: divide_less_eq mult_compare_simps) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2095 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2096 |
lemma four_x_squared: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2097 |
fixes x::real |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2098 |
shows "4 * x\<twosuperior> = (2 * x)\<twosuperior>" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2099 |
by (simp add: power2_eq_square) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2100 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2101 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2102 |
text{*Needed for the infinitely close relation over the nonstandard |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2103 |
complex numbers*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2104 |
lemma lemma_sqrt_hcomplex_capprox: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2105 |
"[| 0 < u; x < u/2; y < u/2; 0 \<le> x; 0 \<le> y |] ==> sqrt (x\<twosuperior> + y\<twosuperior>) < u" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2106 |
apply (rule_tac y = "u/sqrt 2" in order_le_less_trans) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2107 |
apply (erule_tac [2] lemma_real_divide_sqrt_less) |
22960 | 2108 |
apply (rule power2_le_imp_le) |
2109 |
apply (auto simp add: real_0_le_divide_iff power_divide) |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2110 |
apply (rule_tac t = "u\<twosuperior>" in real_sum_of_halves [THEN subst]) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2111 |
apply (rule add_mono) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2112 |
apply (auto simp add: four_x_squared simp del: realpow_Suc intro: power_mono) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2113 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2114 |
|
16775
c1b87ef4a1c3
added lemmas to OrderedGroup.thy (reasoning about signs, absolute value, triangle inequalities)
avigad
parents:
16641
diff
changeset
|
2115 |
declare real_sqrt_sum_squares_ge_zero [THEN abs_of_nonneg, simp] |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2116 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2117 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2118 |
subsection{*A Few Theorems Involving Ln, Derivatives, etc.*} |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2119 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2120 |
lemma lemma_DERIV_ln: |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2121 |
"DERIV ln z :> l ==> DERIV (%x. exp (ln x)) z :> exp (ln z) * l" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2122 |
by (erule DERIV_fun_exp) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2123 |
|
22654
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
2124 |
lemma DERIV_exp_ln_one: "0 < z ==> DERIV (%x. exp (ln x)) z :> 1" |
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
2125 |
apply (simp add: deriv_def) |
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
2126 |
apply (rule LIM_equal2 [OF _ _ LIM_const], assumption) |
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
2127 |
apply simp |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2128 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2129 |
|
15229 | 2130 |
lemma lemma_DERIV_ln2: |
2131 |
"[| 0 < z; DERIV ln z :> l |] ==> exp (ln z) * l = 1" |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2132 |
apply (rule DERIV_unique) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2133 |
apply (rule lemma_DERIV_ln) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2134 |
apply (rule_tac [2] DERIV_exp_ln_one, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2135 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2136 |
|
15229 | 2137 |
lemma lemma_DERIV_ln3: |
2138 |
"[| 0 < z; DERIV ln z :> l |] ==> l = 1/(exp (ln z))" |
|
2139 |
apply (rule_tac c1 = "exp (ln z)" in real_mult_left_cancel [THEN iffD1]) |
|
22654
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
2140 |
apply (auto intro: lemma_DERIV_ln2 simp del: exp_ln) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2141 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2142 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2143 |
lemma lemma_DERIV_ln4: "[| 0 < z; DERIV ln z :> l |] ==> l = 1/z" |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2144 |
apply (rule_tac t = z in exp_ln_iff [THEN iffD2, THEN subst]) |
22654
c2b6b5a9e136
new simp rule exp_ln; new standard proof of DERIV_exp_ln_one; changed imports
huffman
parents:
22653
diff
changeset
|
2145 |
apply (auto intro: lemma_DERIV_ln3 simp del: exp_ln) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2146 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2147 |
|
23043 | 2148 |
subsection {* Theorems about Limits *} |
2149 |
||
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2150 |
(* need to rename second isCont_inverse *) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2151 |
|
15229 | 2152 |
lemma isCont_inv_fun: |
20561
6a6d8004322f
generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents:
20552
diff
changeset
|
2153 |
fixes f g :: "real \<Rightarrow> real" |
6a6d8004322f
generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents:
20552
diff
changeset
|
2154 |
shows "[| 0 < d; \<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z; |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2155 |
\<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2156 |
==> isCont g (f x)" |
22722
704de05715b4
lemma isCont_inv_fun is same as isCont_inverse_function
huffman
parents:
22721
diff
changeset
|
2157 |
by (rule isCont_inverse_function) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2158 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2159 |
lemma isCont_inv_fun_inv: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20516
diff
changeset
|
2160 |
fixes f g :: "real \<Rightarrow> real" |
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20516
diff
changeset
|
2161 |
shows "[| 0 < d; |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2162 |
\<forall>z. \<bar>z - x\<bar> \<le> d --> g(f(z)) = z; |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2163 |
\<forall>z. \<bar>z - x\<bar> \<le> d --> isCont f z |] |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2164 |
==> \<exists>e. 0 < e & |
15081 | 2165 |
(\<forall>y. 0 < \<bar>y - f(x)\<bar> & \<bar>y - f(x)\<bar> < e --> f(g(y)) = y)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2166 |
apply (drule isCont_inj_range) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2167 |
prefer 2 apply (assumption, assumption, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2168 |
apply (rule_tac x = e in exI, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2169 |
apply (rotate_tac 2) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2170 |
apply (drule_tac x = y in spec, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2171 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2172 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2173 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2174 |
text{*Bartle/Sherbert: Introduction to Real Analysis, Theorem 4.2.9, p. 110*} |
15229 | 2175 |
lemma LIM_fun_gt_zero: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20516
diff
changeset
|
2176 |
"[| f -- c --> (l::real); 0 < l |] |
20561
6a6d8004322f
generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents:
20552
diff
changeset
|
2177 |
==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> 0 < f x)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2178 |
apply (auto simp add: LIM_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2179 |
apply (drule_tac x = "l/2" in spec, safe, force) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2180 |
apply (rule_tac x = s in exI) |
22998 | 2181 |
apply (auto simp only: abs_less_iff) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2182 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2183 |
|
15229 | 2184 |
lemma LIM_fun_less_zero: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20516
diff
changeset
|
2185 |
"[| f -- c --> (l::real); l < 0 |] |
20561
6a6d8004322f
generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents:
20552
diff
changeset
|
2186 |
==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x < 0)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2187 |
apply (auto simp add: LIM_def) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2188 |
apply (drule_tac x = "-l/2" in spec, safe, force) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2189 |
apply (rule_tac x = s in exI) |
22998 | 2190 |
apply (auto simp only: abs_less_iff) |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2191 |
done |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2192 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2193 |
|
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2194 |
lemma LIM_fun_not_zero: |
20552
2c31dd358c21
generalized types of many constants to work over arbitrary vector spaces;
huffman
parents:
20516
diff
changeset
|
2195 |
"[| f -- c --> (l::real); l \<noteq> 0 |] |
20561
6a6d8004322f
generalize type of (NS)LIM to work on functions with vector space domain types
huffman
parents:
20552
diff
changeset
|
2196 |
==> \<exists>r. 0 < r & (\<forall>x::real. x \<noteq> c & \<bar>c - x\<bar> < r --> f x \<noteq> 0)" |
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2197 |
apply (cut_tac x = l and y = 0 in linorder_less_linear, auto) |
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2198 |
apply (drule LIM_fun_less_zero) |
15241 | 2199 |
apply (drule_tac [3] LIM_fun_gt_zero) |
2200 |
apply force+ |
|
15077
89840837108e
converting Hyperreal/Transcendental to Isar script
paulson
parents:
15013
diff
changeset
|
2201 |
done |
20432
07ec57376051
lin_arith_prover: splitting reverted because of performance loss
webertj
parents:
20256
diff
changeset
|
2202 |
|
12196 | 2203 |
end |