src/HOL/Nominal/Nominal.thy
author wenzelm
Sat, 07 Jan 2006 12:26:33 +0100
changeset 18608 9cdcc2a5c8b3
parent 18600 20ad06db427b
child 18627 f0acb66858b4
permissions -rw-r--r--
support nested cases; added apply_case; replaced make/simple by make_common/nested/simple;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
     1
(* $Id$ *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
     2
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
     3
theory nominal 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
     4
imports Main
18068
e8c3d371594e Moved atom stuff to new file nominal_atoms.ML
berghofe
parents: 18053
diff changeset
     5
uses
e8c3d371594e Moved atom stuff to new file nominal_atoms.ML
berghofe
parents: 18053
diff changeset
     6
  ("nominal_atoms.ML")
e8c3d371594e Moved atom stuff to new file nominal_atoms.ML
berghofe
parents: 18053
diff changeset
     7
  ("nominal_package.ML")
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
     8
  ("nominal_induct.ML") 
18068
e8c3d371594e Moved atom stuff to new file nominal_atoms.ML
berghofe
parents: 18053
diff changeset
     9
  ("nominal_permeq.ML")
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    10
begin 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    11
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    12
ML {* reset NameSpace.unique_names; *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    13
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    14
section {* Permutations *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    15
(*======================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    16
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    17
types 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    18
  'x prm = "('x \<times> 'x) list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    19
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    20
(* polymorphic operations for permutation and swapping*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    21
consts 
18491
1ce410ff9941 Tuned syntax for perm.
berghofe
parents: 18431
diff changeset
    22
  perm :: "'x prm \<Rightarrow> 'a \<Rightarrow> 'a"     (infixr "\<bullet>" 80)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    23
  swap :: "('x \<times> 'x) \<Rightarrow> 'x \<Rightarrow> 'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    24
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    25
(* permutation on sets *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    26
defs (overloaded)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    27
  perm_set_def:  "pi\<bullet>(X::'a set) \<equiv> {pi\<bullet>a | a. a\<in>X}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    28
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
    29
lemma perm_union:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
    30
  shows "pi \<bullet> (X \<union> Y) = (pi \<bullet> X) \<union> (pi \<bullet> Y)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
    31
  by (auto simp add: perm_set_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
    32
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    33
(* permutation on units and products *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    34
primrec (perm_unit)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    35
  "pi\<bullet>()    = ()"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    36
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    37
primrec (perm_prod)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    38
  "pi\<bullet>(a,b) = (pi\<bullet>a,pi\<bullet>b)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    39
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    40
lemma perm_fst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    41
  "pi\<bullet>(fst x) = fst (pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    42
 by (cases x, simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    43
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    44
lemma perm_snd:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    45
  "pi\<bullet>(snd x) = snd (pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    46
 by (cases x, simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    47
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    48
(* permutation on lists *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    49
primrec (perm_list)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    50
  perm_nil_def:  "pi\<bullet>[]     = []"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    51
  perm_cons_def: "pi\<bullet>(x#xs) = (pi\<bullet>x)#(pi\<bullet>xs)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    52
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    53
lemma perm_append:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    54
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    55
  and   l1 :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    56
  and   l2 :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    57
  shows "pi\<bullet>(l1@l2) = (pi\<bullet>l1)@(pi\<bullet>l2)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    58
  by (induct l1, auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    59
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    60
lemma perm_rev:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    61
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    62
  and   l  :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    63
  shows "pi\<bullet>(rev l) = rev (pi\<bullet>l)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    64
  by (induct l, simp_all add: perm_append)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    65
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    66
(* permutation on functions *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    67
defs (overloaded)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    68
  perm_fun_def: "pi\<bullet>(f::'a\<Rightarrow>'b) \<equiv> (\<lambda>x. pi\<bullet>f((rev pi)\<bullet>x))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    69
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    70
(* permutation on bools *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    71
primrec (perm_bool)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    72
  perm_true_def:  "pi\<bullet>True  = True"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    73
  perm_false_def: "pi\<bullet>False = False"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    74
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
    75
lemma perm_bool:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
    76
  shows "pi\<bullet>(b::bool) = b"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
    77
  by (cases "b", auto)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
    78
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    79
(* permutation on options *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    80
primrec (perm_option)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    81
  perm_some_def:  "pi\<bullet>Some(x) = Some(pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    82
  perm_none_def:  "pi\<bullet>None    = None"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    83
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    84
(* a "private" copy of the option type used in the abstraction function *)
18579
002d371401f5 changed the name of the type "nOption" to "noption".
urbanc
parents: 18578
diff changeset
    85
datatype 'a noption = nSome 'a | nNone
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    86
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    87
primrec (perm_noption)
18600
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
    88
  perm_nSome_def: "pi\<bullet>nSome(x) = nSome(pi\<bullet>x)"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
    89
  perm_nNone_def: "pi\<bullet>nNone    = nNone"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
    90
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
    91
(* a "private" copy of the product type used in the nominal induct method *)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
    92
datatype ('a,'b) nprod = nPair 'a 'b
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
    93
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
    94
primrec (perm_nprod)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
    95
  perm_nProd_def: "pi\<bullet>(nPair x1 x2)  = nPair (pi\<bullet>x1) (pi\<bullet>x2)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    96
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    97
(* permutation on characters (used in strings) *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    98
defs (overloaded)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
    99
  perm_char_def: "pi\<bullet>(s::char) \<equiv> s"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   100
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   101
(* permutation on ints *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   102
defs (overloaded)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   103
  perm_int_def:    "pi\<bullet>(i::int) \<equiv> i"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   104
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   105
(* permutation on nats *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   106
defs (overloaded)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   107
  perm_nat_def:    "pi\<bullet>(i::nat) \<equiv> i"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   108
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   109
section {* permutation equality *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   110
(*==============================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   111
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   112
constdefs
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   113
  prm_eq :: "'x prm \<Rightarrow> 'x prm \<Rightarrow> bool"  (" _ \<triangleq> _ " [80,80] 80)
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   114
  "pi1 \<triangleq> pi2 \<equiv> \<forall>a::'x. pi1\<bullet>a = pi2\<bullet>a"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   115
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   116
section {* Support, Freshness and Supports*}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   117
(*========================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   118
constdefs
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   119
   supp :: "'a \<Rightarrow> ('x set)"  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   120
   "supp x \<equiv> {a . (infinite {b . [(a,b)]\<bullet>x \<noteq> x})}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   121
17871
67ffbfcd6fef deleted leading space in the definition of fresh
urbanc
parents: 17870
diff changeset
   122
   fresh :: "'x \<Rightarrow> 'a \<Rightarrow> bool" ("_ \<sharp> _" [80,80] 80)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   123
   "a \<sharp> x \<equiv> a \<notin> supp x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   124
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   125
   supports :: "'x set \<Rightarrow> 'a \<Rightarrow> bool" (infixl 80)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   126
   "S supports x \<equiv> \<forall>a b. (a\<notin>S \<and> b\<notin>S \<longrightarrow> [(a,b)]\<bullet>x=x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   127
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   128
lemma supp_fresh_iff: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   129
  fixes x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   130
  shows "(supp x) = {a::'x. \<not>a\<sharp>x}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   131
apply(simp add: fresh_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   132
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   133
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   134
lemma supp_unit:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   135
  shows "supp () = {}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   136
  by (simp add: supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   137
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   138
lemma supp_set_empty:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   139
  shows "supp {} = {}"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   140
  by (force simp add: supp_def perm_set_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   141
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   142
lemma supp_singleton:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   143
  shows "supp {x} = supp x"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   144
  by (force simp add: supp_def perm_set_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   145
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   146
lemma supp_prod: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   147
  fixes x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   148
  and   y :: "'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   149
  shows "(supp (x,y)) = (supp x)\<union>(supp y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   150
  by  (force simp add: supp_def Collect_imp_eq Collect_neg_eq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   151
18600
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   152
lemma supp_nprod: 
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   153
  fixes x :: "'a"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   154
  and   y :: "'b"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   155
  shows "(supp (nPair x y)) = (supp x)\<union>(supp y)"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   156
  by  (force simp add: supp_def Collect_imp_eq Collect_neg_eq)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   157
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   158
lemma supp_list_nil:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   159
  shows "supp [] = {}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   160
apply(simp add: supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   161
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   162
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   163
lemma supp_list_cons:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   164
  fixes x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   165
  and   xs :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   166
  shows "supp (x#xs) = (supp x)\<union>(supp xs)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   167
apply(auto simp add: supp_def Collect_imp_eq Collect_neg_eq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   168
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   169
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   170
lemma supp_list_append:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   171
  fixes xs :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   172
  and   ys :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   173
  shows "supp (xs@ys) = (supp xs)\<union>(supp ys)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   174
  by (induct xs, auto simp add: supp_list_nil supp_list_cons)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   175
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   176
lemma supp_list_rev:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   177
  fixes xs :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   178
  shows "supp (rev xs) = (supp xs)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   179
  by (induct xs, auto simp add: supp_list_append supp_list_cons supp_list_nil)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   180
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   181
lemma supp_bool:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   182
  fixes x  :: "bool"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   183
  shows "supp (x) = {}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   184
  apply(case_tac "x")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   185
  apply(simp_all add: supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   186
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   187
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   188
lemma supp_some:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   189
  fixes x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   190
  shows "supp (Some x) = (supp x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   191
  apply(simp add: supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   192
  done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   193
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   194
lemma supp_none:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   195
  fixes x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   196
  shows "supp (None) = {}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   197
  apply(simp add: supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   198
  done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   199
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   200
lemma supp_int:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   201
  fixes i::"int"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   202
  shows "supp (i) = {}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   203
  apply(simp add: supp_def perm_int_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   204
  done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   205
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   206
lemma fresh_set_empty:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   207
  shows "a\<sharp>{}"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   208
  by (simp add: fresh_def supp_set_empty)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   209
18578
68420ce82a0b added "fresh_singleton" lemma
urbanc
parents: 18491
diff changeset
   210
lemma fresh_singleton:
68420ce82a0b added "fresh_singleton" lemma
urbanc
parents: 18491
diff changeset
   211
  shows "a\<sharp>{x} = a\<sharp>x"
68420ce82a0b added "fresh_singleton" lemma
urbanc
parents: 18491
diff changeset
   212
  by (simp add: fresh_def supp_singleton)
68420ce82a0b added "fresh_singleton" lemma
urbanc
parents: 18491
diff changeset
   213
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   214
lemma fresh_prod:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   215
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   216
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   217
  and   y :: "'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   218
  shows "a\<sharp>(x,y) = (a\<sharp>x \<and> a\<sharp>y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   219
  by (simp add: fresh_def supp_prod)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   220
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   221
lemma fresh_list_nil:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   222
  fixes a :: "'x"
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   223
  shows "a\<sharp>[]"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   224
  by (simp add: fresh_def supp_list_nil) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   225
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   226
lemma fresh_list_cons:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   227
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   228
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   229
  and   xs :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   230
  shows "a\<sharp>(x#xs) = (a\<sharp>x \<and> a\<sharp>xs)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   231
  by (simp add: fresh_def supp_list_cons)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   232
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   233
lemma fresh_list_append:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   234
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   235
  and   xs :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   236
  and   ys :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   237
  shows "a\<sharp>(xs@ys) = (a\<sharp>xs \<and> a\<sharp>ys)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   238
  by (simp add: fresh_def supp_list_append)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   239
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   240
lemma fresh_list_rev:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   241
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   242
  and   xs :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   243
  shows "a\<sharp>(rev xs) = a\<sharp>xs"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   244
  by (simp add: fresh_def supp_list_rev)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   245
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   246
lemma fresh_none:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   247
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   248
  shows "a\<sharp>None"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   249
  apply(simp add: fresh_def supp_none)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   250
  done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   251
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   252
lemma fresh_some:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   253
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   254
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   255
  shows "a\<sharp>(Some x) = a\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   256
  apply(simp add: fresh_def supp_some)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   257
  done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   258
18294
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
   259
text {* Normalization of freshness results; cf.\ @{text nominal_induct} *}
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
   260
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
   261
lemma fresh_unit_elim: "(a\<sharp>() \<Longrightarrow> PROP C) == PROP C"
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
   262
  by (simp add: fresh_def supp_unit)
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
   263
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
   264
lemma fresh_prod_elim: "(a\<sharp>(x,y) \<Longrightarrow> PROP C) == (a\<sharp>x \<Longrightarrow> a\<sharp>y \<Longrightarrow> PROP C)"
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
   265
  by rule (simp_all add: fresh_prod)
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
   266
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
   267
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   268
section {* Abstract Properties for Permutations and  Atoms *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   269
(*=========================================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   270
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   271
(* properties for being a permutation type *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   272
constdefs 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   273
  "pt TYPE('a) TYPE('x) \<equiv> 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   274
     (\<forall>(x::'a). ([]::'x prm)\<bullet>x = x) \<and> 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   275
     (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). (pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)) \<and> 
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   276
     (\<forall>(pi1::'x prm) (pi2::'x prm) (x::'a). pi1 \<triangleq> pi2 \<longrightarrow> pi1\<bullet>x = pi2\<bullet>x)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   277
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   278
(* properties for being an atom type *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   279
constdefs 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   280
  "at TYPE('x) \<equiv> 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   281
     (\<forall>(x::'x). ([]::'x prm)\<bullet>x = x) \<and>
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   282
     (\<forall>(a::'x) (b::'x) (pi::'x prm) (x::'x). ((a,b)#(pi::'x prm))\<bullet>x = swap (a,b) (pi\<bullet>x)) \<and> 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   283
     (\<forall>(a::'x) (b::'x) (c::'x). swap (a,b) c = (if a=c then b else (if b=c then a else c))) \<and> 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   284
     (infinite (UNIV::'x set))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   285
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   286
(* property of two atom-types being disjoint *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   287
constdefs
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   288
  "disjoint TYPE('x) TYPE('y) \<equiv> 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   289
       (\<forall>(pi::'x prm)(x::'y). pi\<bullet>x = x) \<and> 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   290
       (\<forall>(pi::'y prm)(x::'x). pi\<bullet>x = x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   291
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   292
(* composition property of two permutation on a type 'a *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   293
constdefs
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   294
  "cp TYPE ('a) TYPE('x) TYPE('y) \<equiv> 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   295
      (\<forall>(pi2::'y prm) (pi1::'x prm) (x::'a) . pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x))" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   296
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   297
(* property of having finite support *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   298
constdefs 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   299
  "fs TYPE('a) TYPE('x) \<equiv> \<forall>(x::'a). finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   300
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   301
section {* Lemmas about the atom-type properties*}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   302
(*==============================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   303
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   304
lemma at1: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   305
  fixes x::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   306
  assumes a: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   307
  shows "([]::'x prm)\<bullet>x = x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   308
  using a by (simp add: at_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   309
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   310
lemma at2: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   311
  fixes a ::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   312
  and   b ::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   313
  and   x ::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   314
  and   pi::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   315
  assumes a: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   316
  shows "((a,b)#pi)\<bullet>x = swap (a,b) (pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   317
  using a by (simp only: at_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   318
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   319
lemma at3: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   320
  fixes a ::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   321
  and   b ::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   322
  and   c ::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   323
  assumes a: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   324
  shows "swap (a,b) c = (if a=c then b else (if b=c then a else c))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   325
  using a by (simp only: at_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   326
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   327
(* rules to calculate simple premutations *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   328
lemmas at_calc = at2 at1 at3
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   329
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   330
lemma at4: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   331
  assumes a: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   332
  shows "infinite (UNIV::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   333
  using a by (simp add: at_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   334
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   335
lemma at_append:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   336
  fixes pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   337
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   338
  and   c   :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   339
  assumes at: "at TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   340
  shows "(pi1@pi2)\<bullet>c = pi1\<bullet>(pi2\<bullet>c)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   341
proof (induct pi1)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   342
  case Nil show ?case by (simp add: at1[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   343
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   344
  case (Cons x xs)
18053
2719a6b7d95e some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents: 18048
diff changeset
   345
  have "(xs@pi2)\<bullet>c  =  xs\<bullet>(pi2\<bullet>c)" by fact
2719a6b7d95e some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents: 18048
diff changeset
   346
  also have "(x#xs)@pi2 = x#(xs@pi2)" by simp
2719a6b7d95e some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents: 18048
diff changeset
   347
  ultimately show ?case by (cases "x", simp add:  at2[OF at])
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   348
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   349
 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   350
lemma at_swap:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   351
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   352
  and   b :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   353
  and   c :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   354
  assumes at: "at TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   355
  shows "swap (a,b) (swap (a,b) c) = c"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   356
  by (auto simp add: at3[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   357
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   358
lemma at_rev_pi:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   359
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   360
  and   c  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   361
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   362
  shows "(rev pi)\<bullet>(pi\<bullet>c) = c"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   363
proof(induct pi)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   364
  case Nil show ?case by (simp add: at1[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   365
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   366
  case (Cons x xs) thus ?case 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   367
    by (cases "x", simp add: at2[OF at] at_append[OF at] at1[OF at] at_swap[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   368
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   369
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   370
lemma at_pi_rev:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   371
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   372
  and   x  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   373
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   374
  shows "pi\<bullet>((rev pi)\<bullet>x) = x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   375
  by (rule at_rev_pi[OF at, of "rev pi" _,simplified])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   376
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   377
lemma at_bij1: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   378
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   379
  and   x  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   380
  and   y  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   381
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   382
  and     a:  "(pi\<bullet>x) = y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   383
  shows   "x=(rev pi)\<bullet>y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   384
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   385
  from a have "y=(pi\<bullet>x)" by (rule sym)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   386
  thus ?thesis by (simp only: at_rev_pi[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   387
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   388
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   389
lemma at_bij2: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   390
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   391
  and   x  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   392
  and   y  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   393
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   394
  and     a:  "((rev pi)\<bullet>x) = y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   395
  shows   "x=pi\<bullet>y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   396
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   397
  from a have "y=((rev pi)\<bullet>x)" by (rule sym)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   398
  thus ?thesis by (simp only: at_pi_rev[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   399
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   400
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   401
lemma at_bij:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   402
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   403
  and   x  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   404
  and   y  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   405
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   406
  shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   407
proof 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   408
  assume "pi\<bullet>x = pi\<bullet>y" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   409
  hence  "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule at_bij1[OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   410
  thus "x=y" by (simp only: at_rev_pi[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   411
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   412
  assume "x=y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   413
  thus "pi\<bullet>x = pi\<bullet>y" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   414
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   415
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   416
lemma at_supp:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   417
  fixes x :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   418
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   419
  shows "supp x = {x}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   420
proof (simp add: supp_def Collect_conj_eq Collect_imp_eq at_calc[OF at], auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   421
  assume f: "finite {b::'x. b \<noteq> x}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   422
  have a1: "{b::'x. b \<noteq> x} = UNIV-{x}" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   423
  have a2: "infinite (UNIV::'x set)" by (rule at4[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   424
  from f a1 a2 show False by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   425
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   426
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   427
lemma at_fresh:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   428
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   429
  and   b :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   430
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   431
  shows "(a\<sharp>b) = (a\<noteq>b)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   432
  by (simp add: at_supp[OF at] fresh_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   433
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   434
lemma at_prm_fresh[rule_format]:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   435
  fixes c :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   436
  and   pi:: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   437
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   438
  shows "c\<sharp>pi \<longrightarrow> pi\<bullet>c = c"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   439
apply(induct pi)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   440
apply(simp add: at1[OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   441
apply(force simp add: fresh_list_cons at2[OF at] fresh_prod at_fresh[OF at] at3[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   442
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   443
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   444
lemma at_prm_rev_eq:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   445
  fixes pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   446
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   447
  assumes at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   448
  shows a: "((rev pi1) \<triangleq> (rev pi2)) = (pi1 \<triangleq> pi2)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   449
proof (simp add: prm_eq_def, auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   450
  fix x
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   451
  assume "\<forall>x::'x. (rev pi1)\<bullet>x = (rev pi2)\<bullet>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   452
  hence "(rev (pi1::'x prm))\<bullet>(pi2\<bullet>(x::'x)) = (rev (pi2::'x prm))\<bullet>(pi2\<bullet>x)" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   453
  hence "(rev (pi1::'x prm))\<bullet>((pi2::'x prm)\<bullet>x) = (x::'x)" by (simp add: at_rev_pi[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   454
  hence "(pi2::'x prm)\<bullet>x = (pi1::'x prm)\<bullet>x" by (simp add: at_bij2[OF at])
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   455
  thus "pi1\<bullet>x  =  pi2\<bullet>x" by simp
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   456
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   457
  fix x
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   458
  assume "\<forall>x::'x. pi1\<bullet>x = pi2\<bullet>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   459
  hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>x) = (pi2::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x))" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   460
  hence "(pi1::'x prm)\<bullet>((rev pi2)\<bullet>(x::'x)) = x" by (simp add: at_pi_rev[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   461
  hence "(rev pi2)\<bullet>x = (rev pi1)\<bullet>(x::'x)" by (simp add: at_bij1[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   462
  thus "(rev pi1)\<bullet>x = (rev pi2)\<bullet>(x::'x)" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   463
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   464
  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   465
lemma at_prm_rev_eq1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   466
  fixes pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   467
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   468
  assumes at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   469
  shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1) \<triangleq> (rev pi2)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   470
  by (simp add: at_prm_rev_eq[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   471
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   472
lemma at_ds1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   473
  fixes a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   474
  assumes at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   475
  shows "[(a,a)] \<triangleq> []"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   476
  by (force simp add: prm_eq_def at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   477
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   478
lemma at_ds2: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   479
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   480
  and   a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   481
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   482
  assumes at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   483
  shows "(pi@[((rev pi)\<bullet>a,(rev pi)\<bullet>b)]) \<triangleq> ([(a,b)]@pi)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   484
  by (force simp add: prm_eq_def at_append[OF at] at_bij[OF at] at_pi_rev[OF at] 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   485
      at_rev_pi[OF at] at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   486
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   487
lemma at_ds3: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   488
  fixes a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   489
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   490
  and   c  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   491
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   492
  and     a:  "distinct [a,b,c]"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   493
  shows "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   494
  using a by (force simp add: prm_eq_def at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   495
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   496
lemma at_ds4: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   497
  fixes a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   498
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   499
  and   pi  :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   500
  assumes at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   501
  shows "(pi@[(a,(rev pi)\<bullet>b)]) \<triangleq> ([(pi\<bullet>a,b)]@pi)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   502
  by (force simp add: prm_eq_def at_append[OF at] at_calc[OF at] at_bij[OF at] 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   503
      at_pi_rev[OF at] at_rev_pi[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   504
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   505
lemma at_ds5: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   506
  fixes a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   507
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   508
  assumes at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   509
  shows "[(a,b)] \<triangleq> [(b,a)]"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   510
  by (force simp add: prm_eq_def at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   511
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   512
lemma at_ds6: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   513
  fixes a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   514
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   515
  and   c  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   516
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   517
  and     a: "distinct [a,b,c]"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   518
  shows "[(a,c),(a,b)] \<triangleq> [(b,c),(a,c)]"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   519
  using a by (force simp add: prm_eq_def at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   520
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   521
lemma at_ds7:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   522
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   523
  assumes at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   524
  shows "((rev pi)@pi) \<triangleq> []"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   525
  by (simp add: prm_eq_def at1[OF at] at_append[OF at] at_rev_pi[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   526
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   527
lemma at_ds8_aux:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   528
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   529
  and   a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   530
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   531
  and   c  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   532
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   533
  shows "pi\<bullet>(swap (a,b) c) = swap (pi\<bullet>a,pi\<bullet>b) (pi\<bullet>c)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   534
  by (force simp add: at_calc[OF at] at_bij[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   535
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   536
lemma at_ds8: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   537
  fixes pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   538
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   539
  and   a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   540
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   541
  assumes at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   542
  shows "(pi1@pi2) \<triangleq> ((pi1\<bullet>pi2)@pi1)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   543
apply(induct_tac pi2)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   544
apply(simp add: prm_eq_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   545
apply(auto simp add: prm_eq_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   546
apply(simp add: at2[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   547
apply(drule_tac x="aa" in spec)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   548
apply(drule sym)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   549
apply(simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   550
apply(simp add: at_append[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   551
apply(simp add: at2[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   552
apply(simp add: at_ds8_aux[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   553
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   554
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   555
lemma at_ds9: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   556
  fixes pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   557
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   558
  and   a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   559
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   560
  assumes at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   561
  shows " ((rev pi2)@(rev pi1)) \<triangleq> ((rev pi1)@(rev (pi1\<bullet>pi2)))"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   562
apply(induct_tac pi2)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   563
apply(simp add: prm_eq_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   564
apply(auto simp add: prm_eq_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   565
apply(simp add: at_append[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   566
apply(simp add: at2[OF at] at1[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   567
apply(drule_tac x="swap(pi1\<bullet>a,pi1\<bullet>b) aa" in spec)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   568
apply(drule sym)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   569
apply(simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   570
apply(simp add: at_ds8_aux[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   571
apply(simp add: at_rev_pi[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   572
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   573
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   574
--"there always exists an atom not being in a finite set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   575
lemma ex_in_inf:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   576
  fixes   A::"'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   577
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   578
  and     fs: "finite A"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   579
  shows "\<exists>c::'x. c\<notin>A"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   580
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   581
  from  fs at4[OF at] have "infinite ((UNIV::'x set) - A)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   582
    by (simp add: Diff_infinite_finite)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   583
  hence "((UNIV::'x set) - A) \<noteq> ({}::'x set)" by (force simp only:)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   584
  hence "\<exists>c::'x. c\<in>((UNIV::'x set) - A)" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   585
  thus "\<exists>c::'x. c\<notin>A" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   586
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   587
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   588
--"there always exists a fresh name for an object with finite support"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   589
lemma at_exists_fresh: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   590
  fixes  x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   591
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   592
  and     fs: "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   593
  shows "\<exists>c::'x. c\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   594
  by (simp add: fresh_def, rule ex_in_inf[OF at, OF fs])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   595
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   596
--"the at-props imply the pt-props"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   597
lemma at_pt_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   598
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   599
  shows "pt TYPE('x) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   600
apply(auto simp only: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   601
apply(simp only: at1[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   602
apply(simp only: at_append[OF at]) 
18053
2719a6b7d95e some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents: 18048
diff changeset
   603
apply(simp only: prm_eq_def)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   604
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   605
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   606
section {* finite support properties *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   607
(*===================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   608
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   609
lemma fs1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   610
  fixes x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   611
  assumes a: "fs TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   612
  shows "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   613
  using a by (simp add: fs_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   614
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   615
lemma fs_at_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   616
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   617
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   618
  shows "fs TYPE('x) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   619
apply(simp add: fs_def) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   620
apply(simp add: at_supp[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   621
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   622
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   623
lemma fs_unit_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   624
  shows "fs TYPE(unit) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   625
apply(simp add: fs_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   626
apply(simp add: supp_unit)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   627
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   628
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   629
lemma fs_prod_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   630
  assumes fsa: "fs TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   631
  and     fsb: "fs TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   632
  shows "fs TYPE('a\<times>'b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   633
apply(unfold fs_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   634
apply(auto simp add: supp_prod)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   635
apply(rule fs1[OF fsa])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   636
apply(rule fs1[OF fsb])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   637
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   638
18600
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   639
lemma fs_nprod_inst:
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   640
  assumes fsa: "fs TYPE('a) TYPE('x)"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   641
  and     fsb: "fs TYPE('b) TYPE('x)"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   642
  shows "fs TYPE(('a,'b) nprod) TYPE('x)"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   643
apply(unfold fs_def, rule allI)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   644
apply(case_tac x)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   645
apply(auto simp add: supp_nprod)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   646
apply(rule fs1[OF fsa])
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   647
apply(rule fs1[OF fsb])
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   648
done
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   649
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   650
lemma fs_list_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   651
  assumes fs: "fs TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   652
  shows "fs TYPE('a list) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   653
apply(simp add: fs_def, rule allI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   654
apply(induct_tac x)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   655
apply(simp add: supp_list_nil)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   656
apply(simp add: supp_list_cons)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   657
apply(rule fs1[OF fs])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   658
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   659
18431
a59c79a3544c improved the finite-support proof
urbanc
parents: 18351
diff changeset
   660
lemma fs_option_inst:
a59c79a3544c improved the finite-support proof
urbanc
parents: 18351
diff changeset
   661
  assumes fs: "fs TYPE('a) TYPE('x)"
a59c79a3544c improved the finite-support proof
urbanc
parents: 18351
diff changeset
   662
  shows "fs TYPE('a option) TYPE('x)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   663
apply(simp add: fs_def, rule allI)
18431
a59c79a3544c improved the finite-support proof
urbanc
parents: 18351
diff changeset
   664
apply(case_tac x)
a59c79a3544c improved the finite-support proof
urbanc
parents: 18351
diff changeset
   665
apply(simp add: supp_none)
a59c79a3544c improved the finite-support proof
urbanc
parents: 18351
diff changeset
   666
apply(simp add: supp_some)
a59c79a3544c improved the finite-support proof
urbanc
parents: 18351
diff changeset
   667
apply(rule fs1[OF fs])
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   668
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   669
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   670
section {* Lemmas about the permutation properties *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   671
(*=================================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   672
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   673
lemma pt1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   674
  fixes x::"'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   675
  assumes a: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   676
  shows "([]::'x prm)\<bullet>x = x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   677
  using a by (simp add: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   678
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   679
lemma pt2: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   680
  fixes pi1::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   681
  and   pi2::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   682
  and   x  ::"'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   683
  assumes a: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   684
  shows "(pi1@pi2)\<bullet>x = pi1\<bullet>(pi2\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   685
  using a by (simp add: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   686
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   687
lemma pt3:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   688
  fixes pi1::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   689
  and   pi2::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   690
  and   x  ::"'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   691
  assumes a: "pt TYPE('a) TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   692
  shows "pi1 \<triangleq> pi2 \<Longrightarrow> pi1\<bullet>x = pi2\<bullet>x"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   693
  using a by (simp add: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   694
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   695
lemma pt3_rev:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   696
  fixes pi1::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   697
  and   pi2::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   698
  and   x  ::"'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   699
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   700
  and     at: "at TYPE('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   701
  shows "pi1 \<triangleq> pi2 \<Longrightarrow> (rev pi1)\<bullet>x = (rev pi2)\<bullet>x"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   702
  by (rule pt3[OF pt], simp add: at_prm_rev_eq[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   703
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   704
section {* composition properties *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   705
(* ============================== *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   706
lemma cp1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   707
  fixes pi1::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   708
  and   pi2::"'y prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   709
  and   x  ::"'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   710
  assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   711
  shows "pi1\<bullet>(pi2\<bullet>x) = (pi1\<bullet>pi2)\<bullet>(pi1\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   712
  using cp by (simp add: cp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   713
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   714
lemma cp_pt_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   715
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   716
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   717
  shows "cp TYPE('a) TYPE('x) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   718
apply(auto simp add: cp_def pt2[OF pt,symmetric])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   719
apply(rule pt3[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   720
apply(rule at_ds8[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   721
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   722
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   723
section {* permutation type instances *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   724
(* ===================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   725
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   726
lemma pt_set_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   727
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   728
  shows  "pt TYPE('a set) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   729
apply(simp add: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   730
apply(simp_all add: perm_set_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   731
apply(simp add: pt1[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   732
apply(force simp add: pt2[OF pt] pt3[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   733
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   734
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   735
lemma pt_list_nil: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   736
  fixes xs :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   737
  assumes pt: "pt TYPE('a) TYPE ('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   738
  shows "([]::'x prm)\<bullet>xs = xs" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   739
apply(induct_tac xs)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   740
apply(simp_all add: pt1[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   741
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   742
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   743
lemma pt_list_append: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   744
  fixes pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   745
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   746
  and   xs  :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   747
  assumes pt: "pt TYPE('a) TYPE ('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   748
  shows "(pi1@pi2)\<bullet>xs = pi1\<bullet>(pi2\<bullet>xs)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   749
apply(induct_tac xs)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   750
apply(simp_all add: pt2[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   751
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   752
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   753
lemma pt_list_prm_eq: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   754
  fixes pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   755
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   756
  and   xs  :: "'a list"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   757
  assumes pt: "pt TYPE('a) TYPE ('x)"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   758
  shows "pi1 \<triangleq> pi2  \<Longrightarrow> pi1\<bullet>xs = pi2\<bullet>xs"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   759
apply(induct_tac xs)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   760
apply(simp_all add: prm_eq_def pt3[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   761
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   762
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   763
lemma pt_list_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   764
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   765
  shows  "pt TYPE('a list) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   766
apply(auto simp only: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   767
apply(rule pt_list_nil[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   768
apply(rule pt_list_append[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   769
apply(rule pt_list_prm_eq[OF pt],assumption)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   770
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   771
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   772
lemma pt_unit_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   773
  shows  "pt TYPE(unit) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   774
  by (simp add: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   775
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   776
lemma pt_prod_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   777
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   778
  and     ptb: "pt TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   779
  shows  "pt TYPE('a \<times> 'b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   780
  apply(auto simp add: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   781
  apply(rule pt1[OF pta])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   782
  apply(rule pt1[OF ptb])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   783
  apply(rule pt2[OF pta])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   784
  apply(rule pt2[OF ptb])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   785
  apply(rule pt3[OF pta],assumption)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   786
  apply(rule pt3[OF ptb],assumption)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   787
  done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   788
18600
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   789
lemma pt_nprod_inst:
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   790
  assumes pta: "pt TYPE('a) TYPE('x)"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   791
  and     ptb: "pt TYPE('b) TYPE('x)"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   792
  shows  "pt TYPE(('a,'b) nprod) TYPE('x)"
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   793
  apply(auto simp add: pt_def)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   794
  apply(case_tac x)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   795
  apply(simp add: pt1[OF pta] pt1[OF ptb])
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   796
  apply(case_tac x)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   797
  apply(simp add: pt2[OF pta] pt2[OF ptb])
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   798
  apply(case_tac x)
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   799
  apply(simp add: pt3[OF pta] pt3[OF ptb])
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   800
  done
20ad06db427b added private datatype nprod (copy of prod) to be
urbanc
parents: 18579
diff changeset
   801
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   802
lemma pt_fun_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   803
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   804
  and     ptb: "pt TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   805
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   806
  shows  "pt TYPE('a\<Rightarrow>'b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   807
apply(auto simp only: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   808
apply(simp_all add: perm_fun_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   809
apply(simp add: pt1[OF pta] pt1[OF ptb])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   810
apply(simp add: pt2[OF pta] pt2[OF ptb])
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   811
apply(subgoal_tac "(rev pi1) \<triangleq> (rev pi2)")(*A*)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   812
apply(simp add: pt3[OF pta] pt3[OF ptb])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   813
(*A*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   814
apply(simp add: at_prm_rev_eq[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   815
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   816
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   817
lemma pt_option_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   818
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   819
  shows  "pt TYPE('a option) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   820
apply(auto simp only: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   821
apply(case_tac "x")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   822
apply(simp_all add: pt1[OF pta])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   823
apply(case_tac "x")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   824
apply(simp_all add: pt2[OF pta])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   825
apply(case_tac "x")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   826
apply(simp_all add: pt3[OF pta])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   827
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   828
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   829
lemma pt_noption_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   830
  assumes pta: "pt TYPE('a) TYPE('x)"
18579
002d371401f5 changed the name of the type "nOption" to "noption".
urbanc
parents: 18578
diff changeset
   831
  shows  "pt TYPE('a noption) TYPE('x)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   832
apply(auto simp only: pt_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   833
apply(case_tac "x")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   834
apply(simp_all add: pt1[OF pta])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   835
apply(case_tac "x")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   836
apply(simp_all add: pt2[OF pta])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   837
apply(case_tac "x")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   838
apply(simp_all add: pt3[OF pta])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   839
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   840
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   841
section {* further lemmas for permutation types *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   842
(*==============================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   843
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   844
lemma pt_rev_pi:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   845
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   846
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   847
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   848
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   849
  shows "(rev pi)\<bullet>(pi\<bullet>x) = x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   850
proof -
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
   851
  have "((rev pi)@pi) \<triangleq> ([]::'x prm)" by (simp add: at_ds7[OF at])
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   852
  hence "((rev pi)@pi)\<bullet>(x::'a) = ([]::'x prm)\<bullet>x" by (simp add: pt3[OF pt]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   853
  thus ?thesis by (simp add: pt1[OF pt] pt2[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   854
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   855
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   856
lemma pt_pi_rev:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   857
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   858
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   859
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   860
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   861
  shows "pi\<bullet>((rev pi)\<bullet>x) = x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   862
  by (simp add: pt_rev_pi[OF pt, OF at,of "rev pi" "x",simplified])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   863
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   864
lemma pt_bij1: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   865
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   866
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   867
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   868
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   869
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   870
  and     a:  "(pi\<bullet>x) = y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   871
  shows   "x=(rev pi)\<bullet>y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   872
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   873
  from a have "y=(pi\<bullet>x)" by (rule sym)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   874
  thus ?thesis by (simp only: pt_rev_pi[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   875
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   876
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   877
lemma pt_bij2: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   878
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   879
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   880
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   881
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   882
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   883
  and     a:  "x = (rev pi)\<bullet>y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   884
  shows   "(pi\<bullet>x)=y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   885
  using a by (simp add: pt_pi_rev[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   886
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   887
lemma pt_bij:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   888
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   889
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   890
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   891
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   892
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   893
  shows "(pi\<bullet>x = pi\<bullet>y) = (x=y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   894
proof 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   895
  assume "pi\<bullet>x = pi\<bullet>y" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   896
  hence  "x=(rev pi)\<bullet>(pi\<bullet>y)" by (rule pt_bij1[OF pt, OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   897
  thus "x=y" by (simp only: pt_rev_pi[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   898
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   899
  assume "x=y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   900
  thus "pi\<bullet>x = pi\<bullet>y" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   901
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   902
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   903
lemma pt_bij3:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   904
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   905
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   906
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   907
  assumes a:  "x=y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   908
  shows "(pi\<bullet>x = pi\<bullet>y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   909
using a by simp 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   910
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   911
lemma pt_bij4:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   912
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   913
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   914
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   915
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   916
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   917
  and     a:  "pi\<bullet>x = pi\<bullet>y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   918
  shows "x = y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   919
using a by (simp add: pt_bij[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   920
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   921
lemma pt_swap_bij:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   922
  fixes a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   923
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   924
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   925
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   926
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   927
  shows "[(a,b)]\<bullet>([(a,b)]\<bullet>x) = x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   928
  by (rule pt_bij2[OF pt, OF at], simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   929
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   930
lemma pt_set_bij1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   931
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   932
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   933
  and   X  :: "'a set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   934
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   935
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   936
  shows "((pi\<bullet>x)\<in>X) = (x\<in>((rev pi)\<bullet>X))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   937
  by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   938
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   939
lemma pt_set_bij1a:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   940
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   941
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   942
  and   X  :: "'a set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   943
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   944
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   945
  shows "(x\<in>(pi\<bullet>X)) = (((rev pi)\<bullet>x)\<in>X)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   946
  by (force simp add: perm_set_def pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   947
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   948
lemma pt_set_bij:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   949
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   950
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   951
  and   X  :: "'a set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   952
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   953
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   954
  shows "((pi\<bullet>x)\<in>(pi\<bullet>X)) = (x\<in>X)"
18053
2719a6b7d95e some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents: 18048
diff changeset
   955
  by (simp add: perm_set_def pt_bij[OF pt, OF at])
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   956
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   957
lemma pt_set_bij2:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   958
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   959
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   960
  and   X  :: "'a set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   961
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   962
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   963
  and     a:  "x\<in>X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   964
  shows "(pi\<bullet>x)\<in>(pi\<bullet>X)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   965
  using a by (simp add: pt_set_bij[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   966
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   967
lemma pt_set_bij2a:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   968
  fixes pi :: "'x prm"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   969
  and   x  :: "'a"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   970
  and   X  :: "'a set"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   971
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   972
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   973
  and     a:  "x\<in>((rev pi)\<bullet>X)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   974
  shows "(pi\<bullet>x)\<in>X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   975
  using a by (simp add: pt_set_bij1[OF pt, OF at])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
   976
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   977
lemma pt_set_bij3:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   978
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   979
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   980
  and   X  :: "'a set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   981
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   982
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   983
  shows "pi\<bullet>(x\<in>X) = (x\<in>X)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   984
apply(case_tac "x\<in>X = True")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   985
apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   986
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
   987
18159
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   988
lemma pt_subseteq_eqvt:
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   989
  fixes pi :: "'x prm"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   990
  and   Y  :: "'a set"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   991
  and   X  :: "'a set"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   992
  assumes pt: "pt TYPE('a) TYPE('x)"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   993
  and     at: "at TYPE('x)"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   994
  shows "((pi\<bullet>X)\<subseteq>(pi\<bullet>Y)) = (X\<subseteq>Y)"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   995
proof (auto)
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   996
  fix x::"'a"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   997
  assume a: "(pi\<bullet>X)\<subseteq>(pi\<bullet>Y)"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   998
  and    "x\<in>X"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
   999
  hence  "(pi\<bullet>x)\<in>(pi\<bullet>X)" by (simp add: pt_set_bij[OF pt, OF at])
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
  1000
  with a have "(pi\<bullet>x)\<in>(pi\<bullet>Y)" by force
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
  1001
  thus "x\<in>Y" by (simp add: pt_set_bij[OF pt, OF at])
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
  1002
next
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
  1003
  fix x::"'a"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
  1004
  assume a: "X\<subseteq>Y"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
  1005
  and    "x\<in>(pi\<bullet>X)"
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
  1006
  thus "x\<in>(pi\<bullet>Y)" by (force simp add: pt_set_bij1a[OF pt, OF at])
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
  1007
qed
08282ca0402e added a few equivariance lemmas (they need to be automated
urbanc
parents: 18068
diff changeset
  1008
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1009
-- "some helper lemmas for the pt_perm_supp_ineq lemma"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1010
lemma Collect_permI: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1011
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1012
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1013
  assumes a: "\<forall>x. (P1 x = P2 x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1014
  shows "{pi\<bullet>x| x. P1 x} = {pi\<bullet>x| x. P2 x}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1015
  using a by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1016
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1017
lemma Infinite_cong:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1018
  assumes a: "X = Y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1019
  shows "infinite X = infinite Y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1020
  using a by (simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1021
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1022
lemma pt_set_eq_ineq:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1023
  fixes pi :: "'y prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1024
  assumes pt: "pt TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1025
  and     at: "at TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1026
  shows "{pi\<bullet>x| x::'x. P x} = {x::'x. P ((rev pi)\<bullet>x)}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1027
  by (force simp only: pt_rev_pi[OF pt, OF at] pt_pi_rev[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1028
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1029
lemma pt_inject_on_ineq:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1030
  fixes X  :: "'y set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1031
  and   pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1032
  assumes pt: "pt TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1033
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1034
  shows "inj_on (perm pi) X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1035
proof (unfold inj_on_def, intro strip)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1036
  fix x::"'y" and y::"'y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1037
  assume "pi\<bullet>x = pi\<bullet>y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1038
  thus "x=y" by (simp add: pt_bij[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1039
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1040
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1041
lemma pt_set_finite_ineq: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1042
  fixes X  :: "'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1043
  and   pi :: "'y prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1044
  assumes pt: "pt TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1045
  and     at: "at TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1046
  shows "finite (pi\<bullet>X) = finite X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1047
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1048
  have image: "(pi\<bullet>X) = (perm pi ` X)" by (force simp only: perm_set_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1049
  show ?thesis
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1050
  proof (rule iffI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1051
    assume "finite (pi\<bullet>X)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1052
    hence "finite (perm pi ` X)" using image by (simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1053
    thus "finite X" using pt_inject_on_ineq[OF pt, OF at] by (rule finite_imageD)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1054
  next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1055
    assume "finite X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1056
    hence "finite (perm pi ` X)" by (rule finite_imageI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1057
    thus "finite (pi\<bullet>X)" using image by (simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1058
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1059
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1060
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1061
lemma pt_set_infinite_ineq: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1062
  fixes X  :: "'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1063
  and   pi :: "'y prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1064
  assumes pt: "pt TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1065
  and     at: "at TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1066
  shows "infinite (pi\<bullet>X) = infinite X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1067
using pt at by (simp add: pt_set_finite_ineq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1068
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1069
lemma pt_perm_supp_ineq:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1070
  fixes  pi  :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1071
  and    x   :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1072
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1073
  and     ptb: "pt TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1074
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1075
  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1076
  shows "(pi\<bullet>((supp x)::'y set)) = supp (pi\<bullet>x)" (is "?LHS = ?RHS")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1077
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1078
  have "?LHS = {pi\<bullet>a | a. infinite {b. [(a,b)]\<bullet>x \<noteq> x}}" by (simp add: supp_def perm_set_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1079
  also have "\<dots> = {pi\<bullet>a | a. infinite {pi\<bullet>b | b. [(a,b)]\<bullet>x \<noteq> x}}" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1080
  proof (rule Collect_permI, rule allI, rule iffI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1081
    fix a
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1082
    assume "infinite {b::'y. [(a,b)]\<bullet>x  \<noteq> x}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1083
    hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: pt_set_infinite_ineq[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1084
    thus "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x  \<noteq> x}" by (simp add: perm_set_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1085
  next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1086
    fix a
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1087
    assume "infinite {pi\<bullet>b |b::'y. [(a,b)]\<bullet>x \<noteq> x}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1088
    hence "infinite (pi\<bullet>{b::'y. [(a,b)]\<bullet>x \<noteq> x})" by (simp add: perm_set_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1089
    thus "infinite {b::'y. [(a,b)]\<bullet>x  \<noteq> x}" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1090
      by (simp add: pt_set_infinite_ineq[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1091
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1092
  also have "\<dots> = {a. infinite {b::'y. [((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x \<noteq> x}}" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1093
    by (simp add: pt_set_eq_ineq[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1094
  also have "\<dots> = {a. infinite {b. pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq> (pi\<bullet>x)}}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1095
    by (simp add: pt_bij[OF pta, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1096
  also have "\<dots> = {a. infinite {b. [(a,b)]\<bullet>(pi\<bullet>x) \<noteq> (pi\<bullet>x)}}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1097
  proof (rule Collect_cong, rule Infinite_cong, rule Collect_cong)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1098
    fix a::"'y" and b::"'y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1099
    have "pi\<bullet>(([((rev pi)\<bullet>a,(rev pi)\<bullet>b)])\<bullet>x) = [(a,b)]\<bullet>(pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1100
      by (simp add: cp1[OF cp] pt_pi_rev[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1101
    thus "(pi\<bullet>([((rev pi)\<bullet>a,(rev pi)\<bullet>b)]\<bullet>x) \<noteq>  pi\<bullet>x) = ([(a,b)]\<bullet>(pi\<bullet>x) \<noteq> pi\<bullet>x)" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1102
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1103
  finally show "?LHS = ?RHS" by (simp add: supp_def) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1104
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1105
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1106
lemma pt_perm_supp:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1107
  fixes  pi  :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1108
  and    x   :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1109
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1110
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1111
  shows "(pi\<bullet>((supp x)::'x set)) = supp (pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1112
apply(rule pt_perm_supp_ineq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1113
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1114
apply(rule at_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1115
apply(rule at)+
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1116
apply(rule cp_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1117
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1118
apply(rule at)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1119
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1120
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1121
lemma pt_supp_finite_pi:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1122
  fixes  pi  :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1123
  and    x   :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1124
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1125
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1126
  and     f: "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1127
  shows "finite ((supp (pi\<bullet>x))::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1128
apply(simp add: pt_perm_supp[OF pt, OF at, symmetric])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1129
apply(simp add: pt_set_finite_ineq[OF at_pt_inst[OF at], OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1130
apply(rule f)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1131
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1132
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1133
lemma pt_fresh_left_ineq:  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1134
  fixes  pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1135
  and     x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1136
  and     a :: "'y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1137
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1138
  and     ptb: "pt TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1139
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1140
  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1141
  shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1142
apply(simp add: fresh_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1143
apply(simp add: pt_set_bij1[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1144
apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1145
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1146
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1147
lemma pt_fresh_right_ineq:  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1148
  fixes  pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1149
  and     x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1150
  and     a :: "'y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1151
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1152
  and     ptb: "pt TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1153
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1154
  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1155
  shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1156
apply(simp add: fresh_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1157
apply(simp add: pt_set_bij1[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1158
apply(simp add: pt_perm_supp_ineq[OF pta, OF ptb, OF at, OF cp])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1159
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1160
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1161
lemma pt_fresh_bij_ineq:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1162
  fixes  pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1163
  and     x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1164
  and     a :: "'y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1165
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1166
  and     ptb: "pt TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1167
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1168
  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1169
  shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1170
apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1171
apply(simp add: pt_rev_pi[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1172
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1173
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1174
lemma pt_fresh_left:  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1175
  fixes  pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1176
  and     x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1177
  and     a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1178
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1179
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1180
  shows "a\<sharp>(pi\<bullet>x) = ((rev pi)\<bullet>a)\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1181
apply(rule pt_fresh_left_ineq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1182
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1183
apply(rule at_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1184
apply(rule at)+
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1185
apply(rule cp_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1186
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1187
apply(rule at)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1188
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1189
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1190
lemma pt_fresh_right:  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1191
  fixes  pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1192
  and     x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1193
  and     a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1194
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1195
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1196
  shows "(pi\<bullet>a)\<sharp>x = a\<sharp>((rev pi)\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1197
apply(rule pt_fresh_right_ineq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1198
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1199
apply(rule at_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1200
apply(rule at)+
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1201
apply(rule cp_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1202
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1203
apply(rule at)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1204
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1205
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1206
lemma pt_fresh_bij:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1207
  fixes  pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1208
  and     x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1209
  and     a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1210
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1211
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1212
  shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x) = a\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1213
apply(rule pt_fresh_bij_ineq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1214
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1215
apply(rule at_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1216
apply(rule at)+
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1217
apply(rule cp_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1218
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1219
apply(rule at)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1220
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1221
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1222
lemma pt_fresh_bij1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1223
  fixes  pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1224
  and     x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1225
  and     a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1226
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1227
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1228
  and     a:  "a\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1229
  shows "(pi\<bullet>a)\<sharp>(pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1230
using a by (simp add: pt_fresh_bij[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1231
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1232
lemma pt_perm_fresh1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1233
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1234
  and   b :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1235
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1236
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1237
  and     at: "at TYPE ('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1238
  and     a1: "\<not>(a\<sharp>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1239
  and     a2: "b\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1240
  shows "[(a,b)]\<bullet>x \<noteq> x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1241
proof
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1242
  assume neg: "[(a,b)]\<bullet>x = x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1243
  from a1 have a1':"a\<in>(supp x)" by (simp add: fresh_def) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1244
  from a2 have a2':"b\<notin>(supp x)" by (simp add: fresh_def) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1245
  from a1' a2' have a3: "a\<noteq>b" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1246
  from a1' have "([(a,b)]\<bullet>a)\<in>([(a,b)]\<bullet>(supp x))" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1247
    by (simp only: pt_set_bij[OF at_pt_inst[OF at], OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1248
  hence "b\<in>([(a,b)]\<bullet>(supp x))" by (simp add: at_append[OF at] at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1249
  hence "b\<in>(supp ([(a,b)]\<bullet>x))" by (simp add: pt_perm_supp[OF pt,OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1250
  with a2' neg show False by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1251
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1252
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1253
-- "three helper lemmas for the perm_fresh_fresh-lemma"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1254
lemma comprehension_neg_UNIV: "{b. \<not> P b} = UNIV - {b. P b}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1255
  by (auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1256
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1257
lemma infinite_or_neg_infinite:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1258
  assumes h:"infinite (UNIV::'a set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1259
  shows "infinite {b::'a. P b} \<or> infinite {b::'a. \<not> P b}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1260
proof (subst comprehension_neg_UNIV, case_tac "finite {b. P b}")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1261
  assume j:"finite {b::'a. P b}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1262
  have "infinite ((UNIV::'a set) - {b::'a. P b})"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1263
    using Diff_infinite_finite[OF j h] by auto
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1264
  thus "infinite {b::'a. P b} \<or> infinite (UNIV - {b::'a. P b})" ..
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1265
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1266
  assume j:"infinite {b::'a. P b}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1267
  thus "infinite {b::'a. P b} \<or> infinite (UNIV - {b::'a. P b})" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1268
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1269
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1270
--"the co-set of a finite set is infinte"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1271
lemma finite_infinite:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1272
  assumes a: "finite {b::'x. P b}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1273
  and     b: "infinite (UNIV::'x set)"        
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1274
  shows "infinite {b. \<not>P b}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1275
  using a and infinite_or_neg_infinite[OF b] by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1276
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1277
lemma pt_fresh_fresh:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1278
  fixes   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1279
  and     a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1280
  and     b :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1281
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1282
  and     at: "at TYPE ('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1283
  and     a1: "a\<sharp>x" and a2: "b\<sharp>x" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1284
  shows "[(a,b)]\<bullet>x=x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1285
proof (cases "a=b")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1286
  assume c1: "a=b"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
  1287
  have "[(a,a)] \<triangleq> []" by (rule at_ds1[OF at])
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
  1288
  hence "[(a,b)] \<triangleq> []" using c1 by simp
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1289
  hence "[(a,b)]\<bullet>x=([]::'x prm)\<bullet>x" by (rule pt3[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1290
  thus ?thesis by (simp only: pt1[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1291
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1292
  assume c2: "a\<noteq>b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1293
  from a1 have f1: "finite {c. [(a,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1294
  from a2 have f2: "finite {c. [(b,c)]\<bullet>x \<noteq> x}" by (simp add: fresh_def supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1295
  from f1 and f2 have f3: "finite {c. perm [(a,c)] x \<noteq> x \<or> perm [(b,c)] x \<noteq> x}" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1296
    by (force simp only: Collect_disj_eq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1297
  have "infinite {c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1298
    by (simp add: finite_infinite[OF f3,OF at4[OF at], simplified])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1299
  hence "infinite ({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1300
    by (force dest: Diff_infinite_finite)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1301
  hence "({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b}) \<noteq> {}" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1302
    by (auto iff del: finite_Diff_insert Diff_eq_empty_iff)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1303
  hence "\<exists>c. c\<in>({c. [(a,c)]\<bullet>x = x \<and> [(b,c)]\<bullet>x = x}-{a,b})" by (force)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1304
  then obtain c 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1305
    where eq1: "[(a,c)]\<bullet>x = x" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1306
      and eq2: "[(b,c)]\<bullet>x = x" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1307
      and ineq: "a\<noteq>c \<and> b\<noteq>c"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1308
    by (force)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1309
  hence "[(a,c)]\<bullet>([(b,c)]\<bullet>([(a,c)]\<bullet>x)) = x" by simp 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1310
  hence eq3: "[(a,c),(b,c),(a,c)]\<bullet>x = x" by (simp add: pt2[OF pt,symmetric])
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
  1311
  from c2 ineq have "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" by (simp add: at_ds3[OF at])
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1312
  hence "[(a,c),(b,c),(a,c)]\<bullet>x = [(a,b)]\<bullet>x" by (rule pt3[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1313
  thus ?thesis using eq3 by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1314
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1315
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1316
lemma pt_perm_compose:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1317
  fixes pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1318
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1319
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1320
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1321
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1322
  shows "pi2\<bullet>(pi1\<bullet>x) = (pi2\<bullet>pi1)\<bullet>(pi2\<bullet>x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1323
proof -
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
  1324
  have "(pi2@pi1) \<triangleq> ((pi2\<bullet>pi1)@pi2)" by (rule at_ds8)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1325
  hence "(pi2@pi1)\<bullet>x = ((pi2\<bullet>pi1)@pi2)\<bullet>x" by (rule pt3[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1326
  thus ?thesis by (simp add: pt2[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1327
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1328
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1329
lemma pt_perm_compose_rev:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1330
  fixes pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1331
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1332
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1333
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1334
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1335
  shows "(rev pi2)\<bullet>((rev pi1)\<bullet>x) = (rev pi1)\<bullet>(rev (pi1\<bullet>pi2)\<bullet>x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1336
proof -
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
  1337
  have "((rev pi2)@(rev pi1)) \<triangleq> ((rev pi1)@(rev (pi1\<bullet>pi2)))" by (rule at_ds9[OF at])
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1338
  hence "((rev pi2)@(rev pi1))\<bullet>x = ((rev pi1)@(rev (pi1\<bullet>pi2)))\<bullet>x" by (rule pt3[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1339
  thus ?thesis by (simp add: pt2[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1340
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1341
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1342
section {* facts about supports *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1343
(*==============================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1344
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1345
lemma supports_subset:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1346
  fixes x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1347
  and   S1 :: "'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1348
  and   S2 :: "'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1349
  assumes  a: "S1 supports x"
18053
2719a6b7d95e some minor tweaks in some proofs (nothing extraordinary)
urbanc
parents: 18048
diff changeset
  1350
  and      b: "S1 \<subseteq> S2"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1351
  shows "S2 supports x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1352
  using a b
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1353
  by (force simp add: "op supports_def")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1354
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1355
lemma supp_is_subset:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1356
  fixes S :: "'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1357
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1358
  assumes a1: "S supports x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1359
  and     a2: "finite S"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1360
  shows "(supp x)\<subseteq>S"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1361
proof (rule ccontr)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1362
  assume "\<not>(supp x \<subseteq> S)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1363
  hence "\<exists>a. a\<in>(supp x) \<and> a\<notin>S" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1364
  then obtain a where b1: "a\<in>supp x" and b2: "a\<notin>S" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1365
  from a1 b2 have "\<forall>b. (b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x = x))" by (unfold "op supports_def", force)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1366
  with a1 have "{b. [(a,b)]\<bullet>x \<noteq> x}\<subseteq>S" by (unfold "op supports_def", force)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1367
  with a2 have "finite {b. [(a,b)]\<bullet>x \<noteq> x}" by (simp add: finite_subset)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1368
  hence "a\<notin>(supp x)" by (unfold supp_def, auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1369
  with b1 show False by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1370
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1371
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1372
lemma supp_supports:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1373
  fixes x :: "'a"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1374
  assumes  pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1375
  and      at: "at TYPE ('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1376
  shows "((supp x)::'x set) supports x"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1377
proof (unfold "op supports_def", intro strip)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1378
  fix a b
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1379
  assume "(a::'x)\<notin>(supp x) \<and> (b::'x)\<notin>(supp x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1380
  hence "a\<sharp>x" and "b\<sharp>x" by (auto simp add: fresh_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1381
  thus "[(a,b)]\<bullet>x = x" by (rule pt_fresh_fresh[OF pt, OF at])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1382
qed
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1383
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1384
lemma supports_finite:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1385
  fixes S :: "'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1386
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1387
  assumes a1: "S supports x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1388
  and     a2: "finite S"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1389
  shows "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1390
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1391
  have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1392
  thus ?thesis using a2 by (simp add: finite_subset)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1393
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1394
  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1395
lemma supp_is_inter:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1396
  fixes  x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1397
  assumes  pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1398
  and      at: "at TYPE ('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1399
  and      fs: "fs TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1400
  shows "((supp x)::'x set) = (\<Inter> {S. finite S \<and> S supports x})"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1401
proof (rule equalityI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1402
  show "((supp x)::'x set) \<subseteq> (\<Inter> {S. finite S \<and> S supports x})"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1403
  proof (clarify)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1404
    fix S c
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1405
    assume b: "c\<in>((supp x)::'x set)" and "finite (S::'x set)" and "S supports x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1406
    hence  "((supp x)::'x set)\<subseteq>S" by (simp add: supp_is_subset) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1407
    with b show "c\<in>S" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1408
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1409
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1410
  show "(\<Inter> {S. finite S \<and> S supports x}) \<subseteq> ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1411
  proof (clarify, simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1412
    fix c
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1413
    assume d: "\<forall>(S::'x set). finite S \<and> S supports x \<longrightarrow> c\<in>S"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1414
    have "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1415
    with d fs1[OF fs] show "c\<in>supp x" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1416
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1417
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1418
    
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1419
lemma supp_is_least_supports:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1420
  fixes S :: "'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1421
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1422
  assumes  pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1423
  and      at: "at TYPE ('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1424
  and      a1: "S supports x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1425
  and      a2: "finite S"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1426
  and      a3: "\<forall>S'. (finite S' \<and> S' supports x) \<longrightarrow> S\<subseteq>S'"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1427
  shows "S = (supp x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1428
proof (rule equalityI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1429
  show "((supp x)::'x set)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1430
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1431
  have s1: "((supp x)::'x set) supports x" by (rule supp_supports[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1432
  have "((supp x)::'x set)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1433
  hence "finite ((supp x)::'x set)" using a2 by (simp add: finite_subset)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1434
  with s1 a3 show "S\<subseteq>supp x" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1435
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1436
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1437
lemma supports_set:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1438
  fixes S :: "'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1439
  and   X :: "'a set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1440
  assumes  pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1441
  and      at: "at TYPE ('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1442
  and      a: "\<forall>x\<in>X. (\<forall>(a::'x) (b::'x). a\<notin>S\<and>b\<notin>S \<longrightarrow> ([(a,b)]\<bullet>x)\<in>X)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1443
  shows  "S supports X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1444
using a
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1445
apply(auto simp add: "op supports_def")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1446
apply(simp add: pt_set_bij1a[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1447
apply(force simp add: pt_swap_bij[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1448
apply(simp add: pt_set_bij1a[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1449
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1450
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1451
lemma supports_fresh:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1452
  fixes S :: "'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1453
  and   a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1454
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1455
  assumes a1: "S supports x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1456
  and     a2: "finite S"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1457
  and     a3: "a\<notin>S"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1458
  shows "a\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1459
proof (simp add: fresh_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1460
  have "(supp x)\<subseteq>S" using a1 a2 by (rule supp_is_subset)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1461
  thus "a\<notin>(supp x)" using a3 by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1462
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1463
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1464
lemma at_fin_set_supports:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1465
  fixes X::"'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1466
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1467
  shows "X supports X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1468
proof (simp add: "op supports_def", intro strip)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1469
  fix a b
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1470
  assume "a\<notin>X \<and> b\<notin>X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1471
  thus "[(a,b)]\<bullet>X = X" by (force simp add: perm_set_def at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1472
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1473
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1474
lemma at_fin_set_supp:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1475
  fixes X::"'x set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1476
  assumes at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1477
  and     fs: "finite X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1478
  shows "(supp X) = X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1479
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1480
  have pt_set: "pt TYPE('x set) TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1481
    by (rule pt_set_inst[OF at_pt_inst[OF at]])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1482
  have X_supports_X: "X supports X" by (rule at_fin_set_supports[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1483
  show ?thesis using  pt_set at X_supports_X fs
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1484
  proof (rule supp_is_least_supports[symmetric])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1485
    show "\<forall>S'. finite S' \<and> S' supports X \<longrightarrow> X \<subseteq> S'"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1486
    proof (auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1487
      fix S'::"'x set" and x::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1488
      assume f: "finite S'"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1489
      and    s: "S' supports X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1490
      and    e1: "x\<in>X"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1491
      show "x\<in>S'"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1492
      proof (rule ccontr)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1493
	assume e2: "x\<notin>S'"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1494
	have "\<exists>b. b\<notin>(X\<union>S')" by (force intro: ex_in_inf[OF at] simp only: fs f)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1495
	then obtain b where b1: "b\<notin>X" and b2: "b\<notin>S'" by (auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1496
	from s e2 b2 have c1: "[(x,b)]\<bullet>X=X" by (simp add: "op supports_def")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1497
	from e1 b1 have c2: "[(x,b)]\<bullet>X\<noteq>X" by (force simp add: perm_set_def at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1498
	show "False" using c1 c2 by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1499
      qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1500
    qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1501
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1502
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1503
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1504
section {* Permutations acting on Functions *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1505
(*==========================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1506
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1507
lemma pt_fun_app_eq:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1508
  fixes f  :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1509
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1510
  and   pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1511
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1512
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1513
  shows "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1514
  by (simp add: perm_fun_def pt_rev_pi[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1515
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1516
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1517
--"sometimes pt_fun_app_eq does to much; this lemma 'corrects it'"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1518
lemma pt_perm:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1519
  fixes x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1520
  and   pi1 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1521
  and   pi2 :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1522
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1523
  and     at: "at TYPE ('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1524
  shows "(pi1\<bullet>perm pi2)(pi1\<bullet>x) = pi1\<bullet>(pi2\<bullet>x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1525
  by (simp add: pt_fun_app_eq[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1526
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1527
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1528
lemma pt_fun_eq:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1529
  fixes f  :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1530
  and   pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1531
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1532
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1533
  shows "(pi\<bullet>f = f) = (\<forall> x. pi\<bullet>(f x) = f (pi\<bullet>x))" (is "?LHS = ?RHS")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1534
proof
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1535
  assume a: "?LHS"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1536
  show "?RHS"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1537
  proof
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1538
    fix x
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1539
    have "pi\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" by (simp add: pt_fun_app_eq[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1540
    also have "\<dots> = f (pi\<bullet>x)" using a by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1541
    finally show "pi\<bullet>(f x) = f (pi\<bullet>x)" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1542
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1543
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1544
  assume b: "?RHS"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1545
  show "?LHS"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1546
  proof (rule ccontr)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1547
    assume "(pi\<bullet>f) \<noteq> f"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1548
    hence "\<exists>c. (pi\<bullet>f) c \<noteq> f c" by (simp add: expand_fun_eq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1549
    then obtain c where b1: "(pi\<bullet>f) c \<noteq> f c" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1550
    from b have "pi\<bullet>(f ((rev pi)\<bullet>c)) = f (pi\<bullet>((rev pi)\<bullet>c))" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1551
    hence "(pi\<bullet>f)(pi\<bullet>((rev pi)\<bullet>c)) = f (pi\<bullet>((rev pi)\<bullet>c))" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1552
      by (simp add: pt_fun_app_eq[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1553
    hence "(pi\<bullet>f) c = f c" by (simp add: pt_pi_rev[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1554
    with b1 show "False" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1555
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1556
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1557
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1558
-- "two helper lemmas for the equivariance of functions"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1559
lemma pt_swap_eq_aux:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1560
  fixes   y :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1561
  and    pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1562
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1563
  and     a: "\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1564
  shows "pi\<bullet>y = y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1565
proof(induct pi)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1566
    case Nil show ?case by (simp add: pt1[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1567
  next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1568
    case (Cons x xs)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1569
    have "\<exists>a b. x=(a,b)" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1570
    then obtain a b where p: "x=(a,b)" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1571
    assume i: "xs\<bullet>y = y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1572
    have "x#xs = [x]@xs" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1573
    hence "(x#xs)\<bullet>y = ([x]@xs)\<bullet>y" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1574
    hence "(x#xs)\<bullet>y = [x]\<bullet>(xs\<bullet>y)" by (simp only: pt2[OF pt])
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1575
    thus ?case using a i p by force
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1576
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1577
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1578
lemma pt_swap_eq:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1579
  fixes   y :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1580
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1581
  shows "(\<forall>(a::'x) (b::'x). [(a,b)]\<bullet>y = y) = (\<forall>pi::'x prm. pi\<bullet>y = y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1582
  by (force intro: pt_swap_eq_aux[OF pt])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1583
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1584
lemma pt_eqvt_fun1a:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1585
  fixes f     :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1586
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1587
  and     ptb: "pt TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1588
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1589
  and     a:   "((supp f)::'x set)={}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1590
  shows "\<forall>(pi::'x prm). pi\<bullet>f = f" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1591
proof (intro strip)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1592
  fix pi
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1593
  have "\<forall>a b. a\<notin>((supp f)::'x set) \<and> b\<notin>((supp f)::'x set) \<longrightarrow> (([(a,b)]\<bullet>f) = f)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1594
    by (intro strip, fold fresh_def, 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1595
      simp add: pt_fresh_fresh[OF pt_fun_inst[OF pta, OF ptb, OF at],OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1596
  with a have "\<forall>(a::'x) (b::'x). ([(a,b)]\<bullet>f) = f" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1597
  hence "\<forall>(pi::'x prm). pi\<bullet>f = f" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1598
    by (simp add: pt_swap_eq[OF pt_fun_inst[OF pta, OF ptb, OF at]])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1599
  thus "(pi::'x prm)\<bullet>f = f" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1600
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1601
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1602
lemma pt_eqvt_fun1b:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1603
  fixes f     :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1604
  assumes a: "\<forall>(pi::'x prm). pi\<bullet>f = f"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1605
  shows "((supp f)::'x set)={}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1606
using a by (simp add: supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1607
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1608
lemma pt_eqvt_fun1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1609
  fixes f     :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1610
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1611
  and     ptb: "pt TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1612
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1613
  shows "(((supp f)::'x set)={}) = (\<forall>(pi::'x prm). pi\<bullet>f = f)" (is "?LHS = ?RHS")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1614
by (rule iffI, simp add: pt_eqvt_fun1a[OF pta, OF ptb, OF at], simp add: pt_eqvt_fun1b)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1615
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1616
lemma pt_eqvt_fun2a:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1617
  fixes f     :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1618
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1619
  and     ptb: "pt TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1620
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1621
  assumes a: "((supp f)::'x set)={}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1622
  shows "\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1623
proof (intro strip)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1624
  fix pi x
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1625
  from a have b: "\<forall>(pi::'x prm). pi\<bullet>f = f" by (simp add: pt_eqvt_fun1[OF pta, OF ptb, OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1626
  have "(pi::'x prm)\<bullet>(f x) = (pi\<bullet>f)(pi\<bullet>x)" by (simp add: pt_fun_app_eq[OF pta, OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1627
  with b show "(pi::'x prm)\<bullet>(f x) = f (pi\<bullet>x)" by force 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1628
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1629
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1630
lemma pt_eqvt_fun2b:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1631
  fixes f     :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1632
  assumes pt1: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1633
  and     pt2: "pt TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1634
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1635
  assumes a: "\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1636
  shows "((supp f)::'x set)={}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1637
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1638
  from a have "\<forall>(pi::'x prm). pi\<bullet>f = f" by (simp add: pt_fun_eq[OF pt1, OF at, symmetric])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1639
  thus ?thesis by (simp add: supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1640
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1641
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1642
lemma pt_eqvt_fun2:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1643
  fixes f     :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1644
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1645
  and     ptb: "pt TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1646
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1647
  shows "(((supp f)::'x set)={}) = (\<forall>(pi::'x prm) (x::'a). pi\<bullet>(f x) = f(pi\<bullet>x))" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1648
by (rule iffI, 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1649
    simp add: pt_eqvt_fun2a[OF pta, OF ptb, OF at], 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1650
    simp add: pt_eqvt_fun2b[OF pta, OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1651
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1652
lemma pt_supp_fun_subset:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1653
  fixes f :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1654
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1655
  and     ptb: "pt TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1656
  and     at: "at TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1657
  and     f1: "finite ((supp f)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1658
  and     f2: "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1659
  shows "supp (f x) \<subseteq> (((supp f)\<union>(supp x))::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1660
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1661
  have s1: "((supp f)\<union>((supp x)::'x set)) supports (f x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1662
  proof (simp add: "op supports_def", fold fresh_def, auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1663
    fix a::"'x" and b::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1664
    assume "a\<sharp>f" and "b\<sharp>f"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1665
    hence a1: "[(a,b)]\<bullet>f = f" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1666
      by (rule pt_fresh_fresh[OF pt_fun_inst[OF pta, OF ptb, OF at], OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1667
    assume "a\<sharp>x" and "b\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1668
    hence a2: "[(a,b)]\<bullet>x = x" by (rule pt_fresh_fresh[OF pta, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1669
    from a1 a2 show "[(a,b)]\<bullet>(f x) = (f x)" by (simp add: pt_fun_app_eq[OF pta, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1670
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1671
  from f1 f2 have "finite ((supp f)\<union>((supp x)::'x set))" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1672
  with s1 show ?thesis by (rule supp_is_subset)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1673
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1674
      
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1675
lemma pt_empty_supp_fun_subset:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1676
  fixes f :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1677
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1678
  and     ptb: "pt TYPE('b) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1679
  and     at:  "at TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1680
  and     e:   "(supp f)=({}::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1681
  shows "supp (f x) \<subseteq> ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1682
proof (unfold supp_def, auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1683
  fix a::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1684
  assume a1: "finite {b. [(a, b)]\<bullet>x \<noteq> x}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1685
  assume "infinite {b. [(a, b)]\<bullet>(f x) \<noteq> f x}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1686
  hence a2: "infinite {b. f ([(a, b)]\<bullet>x) \<noteq> f x}" using e
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1687
    by (simp add: pt_eqvt_fun2[OF pta, OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1688
  have a3: "{b. f ([(a,b)]\<bullet>x) \<noteq> f x}\<subseteq>{b. [(a,b)]\<bullet>x \<noteq> x}" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1689
  from a1 a2 a3 show False by (force dest: finite_subset)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1690
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1691
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1692
section {* Facts about the support of finite sets of finitely supported things *}
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1693
(*=============================================================================*)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1694
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1695
constdefs
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1696
  X_to_Un_supp :: "('a set) \<Rightarrow> 'x set"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1697
  "X_to_Un_supp X \<equiv> \<Union>x\<in>X. ((supp x)::'x set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1698
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1699
lemma UNION_f_eqvt:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1700
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1701
  and   f::"'a \<Rightarrow> 'x set"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1702
  and   pi::"'x prm"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1703
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1704
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1705
  shows "pi\<bullet>(\<Union>x\<in>X. f x) = (\<Union>x\<in>(pi\<bullet>X). (pi\<bullet>f) x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1706
proof -
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1707
  have pt_x: "pt TYPE('x) TYPE('x)" by (force intro: at_pt_inst at)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1708
  show ?thesis
18351
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1709
  proof (rule equalityI)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1710
    case goal1
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1711
    show "pi\<bullet>(\<Union>x\<in>X. f x) \<subseteq> (\<Union>x\<in>(pi\<bullet>X). (pi\<bullet>f) x)"
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1712
      apply(auto simp add: perm_set_def)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1713
      apply(rule_tac x="pi\<bullet>xa" in exI)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1714
      apply(rule conjI)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1715
      apply(rule_tac x="xa" in exI)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1716
      apply(simp)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1717
      apply(subgoal_tac "(pi\<bullet>f) (pi\<bullet>xa) = pi\<bullet>(f xa)")(*A*)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1718
      apply(simp)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1719
      apply(rule pt_set_bij2[OF pt_x, OF at])
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1720
      apply(assumption)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1721
      (*A*)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1722
      apply(rule sym)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1723
      apply(rule pt_fun_app_eq[OF pt, OF at])
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1724
      done
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1725
  next
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1726
    case goal2
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1727
    show "(\<Union>x\<in>(pi\<bullet>X). (pi\<bullet>f) x) \<subseteq> pi\<bullet>(\<Union>x\<in>X. f x)"
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1728
      apply(auto simp add: perm_set_def)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1729
      apply(rule_tac x="(rev pi)\<bullet>x" in exI)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1730
      apply(rule conjI)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1731
      apply(simp add: pt_pi_rev[OF pt_x, OF at])
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1732
      apply(rule_tac x="a" in bexI)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1733
      apply(simp add: pt_set_bij1[OF pt_x, OF at])
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1734
      apply(simp add: pt_fun_app_eq[OF pt, OF at])
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1735
      apply(assumption)
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1736
      done
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1737
  qed
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1738
qed
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1739
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1740
lemma X_to_Un_supp_eqvt:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1741
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1742
  and   pi::"'x prm"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1743
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1744
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1745
  shows "pi\<bullet>(X_to_Un_supp X) = ((X_to_Un_supp (pi\<bullet>X))::'x set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1746
  apply(simp add: X_to_Un_supp_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1747
  apply(simp add: UNION_f_eqvt[OF pt, OF at] perm_fun_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1748
  apply(simp add: pt_perm_supp[OF pt, OF at])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1749
  apply(simp add: pt_pi_rev[OF pt, OF at])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1750
  done
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1751
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1752
lemma Union_supports_set:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1753
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1754
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1755
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1756
  shows "(\<Union>x\<in>X. ((supp x)::'x set)) supports X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1757
  apply(simp add: "op supports_def" fresh_def[symmetric])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1758
  apply(rule allI)+
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1759
  apply(rule impI)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1760
  apply(erule conjE)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1761
  apply(simp add: perm_set_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1762
  apply(auto)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1763
  apply(subgoal_tac "[(a,b)]\<bullet>aa = aa")(*A*)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1764
  apply(simp)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1765
  apply(rule pt_fresh_fresh[OF pt, OF at])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1766
  apply(force)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1767
  apply(force)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1768
  apply(rule_tac x="x" in exI)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1769
  apply(simp)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1770
  apply(rule sym)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1771
  apply(rule pt_fresh_fresh[OF pt, OF at])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1772
  apply(force)+
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1773
  done
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1774
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1775
lemma Union_of_fin_supp_sets:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1776
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1777
  assumes fs: "fs TYPE('a) TYPE('x)" 
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1778
  and     fi: "finite X"   
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1779
  shows "finite (\<Union>x\<in>X. ((supp x)::'x set))"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1780
using fi by (induct, auto simp add: fs1[OF fs])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1781
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1782
lemma Union_included_in_supp:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1783
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1784
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1785
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1786
  and     fs: "fs TYPE('a) TYPE('x)" 
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1787
  and     fi: "finite X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1788
  shows "(\<Union>x\<in>X. ((supp x)::'x set)) \<subseteq> supp X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1789
proof -
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1790
  have "supp ((X_to_Un_supp X)::'x set) \<subseteq> ((supp X)::'x set)"  
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1791
    apply(rule pt_empty_supp_fun_subset)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1792
    apply(force intro: pt_set_inst at_pt_inst pt at)+
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1793
    apply(rule pt_eqvt_fun2b)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1794
    apply(force intro: pt_set_inst at_pt_inst pt at)+
18351
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1795
    apply(rule allI)+
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1796
    apply(rule X_to_Un_supp_eqvt[OF pt, OF at])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1797
    done
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1798
  hence "supp (\<Union>x\<in>X. ((supp x)::'x set)) \<subseteq> ((supp X)::'x set)" by (simp add: X_to_Un_supp_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1799
  moreover
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1800
  have "supp (\<Union>x\<in>X. ((supp x)::'x set)) = (\<Union>x\<in>X. ((supp x)::'x set))"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1801
    apply(rule at_fin_set_supp[OF at])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1802
    apply(rule Union_of_fin_supp_sets[OF fs, OF fi])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1803
    done
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1804
  ultimately show ?thesis by force
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1805
qed
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1806
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1807
lemma supp_of_fin_sets:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1808
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1809
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1810
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1811
  and     fs: "fs TYPE('a) TYPE('x)" 
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1812
  and     fi: "finite X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1813
  shows "(supp X) = (\<Union>x\<in>X. ((supp x)::'x set))"
18351
6bab9cef50cf ISAR-fied two proofs
urbanc
parents: 18295
diff changeset
  1814
apply(rule equalityI)
18264
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1815
apply(rule supp_is_subset)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1816
apply(rule Union_supports_set[OF pt, OF at])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1817
apply(rule Union_of_fin_supp_sets[OF fs, OF fi])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1818
apply(rule Union_included_in_supp[OF pt, OF at, OF fs, OF fi])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1819
done
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1820
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1821
lemma supp_fin_union:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1822
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1823
  and   Y::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1824
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1825
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1826
  and     fs: "fs TYPE('a) TYPE('x)" 
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1827
  and     f1: "finite X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1828
  and     f2: "finite Y"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1829
  shows "(supp (X\<union>Y)) = (supp X)\<union>((supp Y)::'x set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1830
using f1 f2 by (force simp add: supp_of_fin_sets[OF pt, OF at, OF fs])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1831
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1832
lemma supp_fin_insert:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1833
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1834
  and   x::"'a"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1835
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1836
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1837
  and     fs: "fs TYPE('a) TYPE('x)" 
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1838
  and     f:  "finite X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1839
  shows "(supp (insert x X)) = (supp x)\<union>((supp X)::'x set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1840
proof -
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1841
  have "(supp (insert x X)) = ((supp ({x}\<union>(X::'a set)))::'x set)" by simp
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1842
  also have "\<dots> = (supp {x})\<union>(supp X)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1843
    by (rule supp_fin_union[OF pt, OF at, OF fs], simp_all add: f)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1844
  finally show "(supp (insert x X)) = (supp x)\<union>((supp X)::'x set)" 
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1845
    by (simp add: supp_singleton)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1846
qed
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1847
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1848
lemma fresh_fin_union:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1849
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1850
  and   Y::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1851
  and   a::"'x"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1852
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1853
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1854
  and     fs: "fs TYPE('a) TYPE('x)" 
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1855
  and     f1: "finite X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1856
  and     f2: "finite Y"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1857
  shows "a\<sharp>(X\<union>Y) = (a\<sharp>X \<and> a\<sharp>Y)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1858
apply(simp add: fresh_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1859
apply(simp add: supp_fin_union[OF pt, OF at, OF fs, OF f1, OF f2])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1860
done
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1861
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1862
lemma fresh_fin_insert:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1863
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1864
  and   x::"'a"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1865
  and   a::"'x"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1866
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1867
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1868
  and     fs: "fs TYPE('a) TYPE('x)" 
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1869
  and     f:  "finite X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1870
  shows "a\<sharp>(insert x X) = (a\<sharp>x \<and> a\<sharp>X)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1871
apply(simp add: fresh_def)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1872
apply(simp add: supp_fin_insert[OF pt, OF at, OF fs, OF f])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1873
done
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1874
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1875
lemma fresh_fin_insert1:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1876
  fixes X::"('a set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1877
  and   x::"'a"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1878
  and   a::"'x"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1879
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1880
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1881
  and     fs: "fs TYPE('a) TYPE('x)" 
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1882
  and     f:  "finite X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1883
  and     a1:  "a\<sharp>x"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1884
  and     a2:  "a\<sharp>X"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1885
  shows "a\<sharp>(insert x X)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1886
using a1 a2
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1887
apply(simp add: fresh_fin_insert[OF pt, OF at, OF fs, OF f])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1888
done
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1889
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1890
lemma pt_list_set_pi:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1891
  fixes pi :: "'x prm"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1892
  and   xs :: "'a list"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1893
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1894
  shows "pi\<bullet>(set xs) = set (pi\<bullet>xs)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1895
by (induct xs, auto simp add: perm_set_def pt1[OF pt])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1896
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1897
lemma pt_list_set_supp:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1898
  fixes xs :: "'a list"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1899
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1900
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1901
  and     fs: "fs TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1902
  shows "supp (set xs) = ((supp xs)::'x set)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1903
proof -
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1904
  have "supp (set xs) = (\<Union>x\<in>(set xs). ((supp x)::'x set))"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1905
    by (rule supp_of_fin_sets[OF pt, OF at, OF fs], rule finite_set)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1906
  also have "(\<Union>x\<in>(set xs). ((supp x)::'x set)) = (supp xs)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1907
  proof(induct xs)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1908
    case Nil show ?case by (simp add: supp_list_nil)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1909
  next
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1910
    case (Cons h t) thus ?case by (simp add: supp_list_cons)
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1911
  qed
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1912
  finally show ?thesis by simp
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1913
qed
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1914
    
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1915
lemma pt_list_set_fresh:
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1916
  fixes a :: "'x"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1917
  and   xs :: "'a list"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1918
  assumes pt: "pt TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1919
  and     at: "at TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1920
  and     fs: "fs TYPE('a) TYPE('x)"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1921
  and     a: "a\<sharp>xs"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1922
  shows "a\<sharp>(set xs) = a\<sharp>xs"
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1923
by (simp add: fresh_def pt_list_set_supp[OF pt, OF at, OF fs])
3b808e24667b added the version of nominal.thy that contains
urbanc
parents: 18246
diff changeset
  1924
 
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1925
section {* Andy's freshness lemma *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1926
(*================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1927
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1928
lemma freshness_lemma:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1929
  fixes h :: "'x\<Rightarrow>'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1930
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1931
  and     at:  "at TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1932
  and     f1:  "finite ((supp h)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1933
  and     a: "\<exists>a::'x. (a\<sharp>h \<and> a\<sharp>(h a))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1934
  shows  "\<exists>fr::'a. \<forall>a::'x. a\<sharp>h \<longrightarrow> (h a) = fr"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1935
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1936
  have ptb: "pt TYPE('x) TYPE('x)" by (simp add: at_pt_inst[OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1937
  have ptc: "pt TYPE('x\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1938
  from a obtain a0 where a1: "a0\<sharp>h" and a2: "a0\<sharp>(h a0)" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1939
  show ?thesis
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1940
  proof
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1941
    let ?fr = "h (a0::'x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1942
    show "\<forall>(a::'x). (a\<sharp>h \<longrightarrow> ((h a) = ?fr))" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1943
    proof (intro strip)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1944
      fix a
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1945
      assume a3: "(a::'x)\<sharp>h"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1946
      show "h (a::'x) = h a0"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1947
      proof (cases "a=a0")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1948
	case True thus "h (a::'x) = h a0" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1949
      next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1950
	case False 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1951
	assume "a\<noteq>a0"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1952
	hence c1: "a\<notin>((supp a0)::'x set)" by  (simp add: fresh_def[symmetric] at_fresh[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1953
	have c2: "a\<notin>((supp h)::'x set)" using a3 by (simp add: fresh_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1954
	from c1 c2 have c3: "a\<notin>((supp h)\<union>((supp a0)::'x set))" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1955
	have f2: "finite ((supp a0)::'x set)" by (simp add: at_supp[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1956
	from f1 f2 have "((supp (h a0))::'x set)\<subseteq>((supp h)\<union>(supp a0))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1957
	  by (simp add: pt_supp_fun_subset[OF ptb, OF pta, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1958
	hence "a\<notin>((supp (h a0))::'x set)" using c3 by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1959
	hence "a\<sharp>(h a0)" by (simp add: fresh_def) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1960
	with a2 have d1: "[(a0,a)]\<bullet>(h a0) = (h a0)" by (rule pt_fresh_fresh[OF pta, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1961
	from a1 a3 have d2: "[(a0,a)]\<bullet>h = h" by (rule pt_fresh_fresh[OF ptc, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1962
	from d1 have "h a0 = [(a0,a)]\<bullet>(h a0)" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1963
	also have "\<dots>= ([(a0,a)]\<bullet>h)([(a0,a)]\<bullet>a0)" by (simp add: pt_fun_app_eq[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1964
	also have "\<dots> = h ([(a0,a)]\<bullet>a0)" using d2 by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1965
	also have "\<dots> = h a" by (simp add: at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1966
	finally show "h a = h a0" by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1967
      qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1968
    qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1969
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1970
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1971
	    
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1972
lemma freshness_lemma_unique:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1973
  fixes h :: "'x\<Rightarrow>'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1974
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1975
  and     at: "at TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1976
  and     f1: "finite ((supp h)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1977
  and     a: "\<exists>(a::'x). (a\<sharp>h \<and> a\<sharp>(h a))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1978
  shows  "\<exists>!(fr::'a). \<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1979
proof
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1980
  from pt at f1 a show "\<exists>fr::'a. \<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr" by (simp add: freshness_lemma)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1981
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1982
  fix fr1 fr2
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1983
  assume b1: "\<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr1"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1984
  assume b2: "\<forall>a::'x. a\<sharp>h \<longrightarrow> h a = fr2"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1985
  from a obtain a where "(a::'x)\<sharp>h" by force 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1986
  with b1 b2 have "h a = fr1 \<and> h a = fr2" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1987
  thus "fr1 = fr2" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1988
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1989
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1990
-- "packaging the freshness lemma into a function"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1991
constdefs
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1992
  fresh_fun :: "('x\<Rightarrow>'a)\<Rightarrow>'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1993
  "fresh_fun (h) \<equiv> THE fr. (\<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1994
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1995
lemma fresh_fun_app:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1996
  fixes h :: "'x\<Rightarrow>'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1997
  and   a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1998
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  1999
  and     at: "at TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2000
  and     f1: "finite ((supp h)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2001
  and     a: "\<exists>(a::'x). (a\<sharp>h \<and> a\<sharp>(h a))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2002
  and     b: "a\<sharp>h"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2003
  shows "(fresh_fun h) = (h a)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2004
proof (unfold fresh_fun_def, rule the_equality)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2005
  show "\<forall>(a'::'x). a'\<sharp>h \<longrightarrow> h a' = h a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2006
  proof (intro strip)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2007
    fix a'::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2008
    assume c: "a'\<sharp>h"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2009
    from pt at f1 a have "\<exists>(fr::'a). \<forall>(a::'x). a\<sharp>h \<longrightarrow> (h a) = fr" by (rule freshness_lemma)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2010
    with b c show "h a' = h a" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2011
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2012
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2013
  fix fr::"'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2014
  assume "\<forall>a. a\<sharp>h \<longrightarrow> h a = fr"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2015
  with b show "fr = h a" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2016
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2017
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2018
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2019
lemma fresh_fun_supports:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2020
  fixes h :: "'x\<Rightarrow>'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2021
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2022
  and     at: "at TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2023
  and     f1: "finite ((supp h)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2024
  and     a: "\<exists>(a::'x). (a\<sharp>h \<and> a\<sharp>(h a))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2025
  shows "((supp h)::'x set) supports (fresh_fun h)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2026
  apply(simp add: "op supports_def")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2027
  apply(fold fresh_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2028
  apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2029
  apply(subgoal_tac "\<exists>(a''::'x). a''\<sharp>(h,a,b)")(*A*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2030
  apply(erule exE)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2031
  apply(simp add: fresh_prod)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2032
  apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2033
  apply(rotate_tac 2)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2034
  apply(drule fresh_fun_app[OF pt, OF at, OF f1, OF a])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2035
  apply(simp add: at_fresh[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2036
  apply(simp add: pt_fun_app_eq[OF at_pt_inst[OF at], OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2037
  apply(auto simp add: at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2038
  apply(subgoal_tac "[(a, b)]\<bullet>h = h")(*B*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2039
  apply(simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2040
  (*B*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2041
  apply(rule pt_fresh_fresh[OF pt_fun_inst[OF at_pt_inst[OF at], OF pt], OF at, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2042
  apply(assumption)+
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2043
  (*A*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2044
  apply(rule at_exists_fresh[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2045
  apply(simp add: supp_prod)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2046
  apply(simp add: f1 at_supp[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2047
  done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2048
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2049
lemma fresh_fun_equiv:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2050
  fixes h :: "'x\<Rightarrow>'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2051
  and   pi:: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2052
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2053
  and     at:  "at TYPE('x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2054
  and     f1:  "finite ((supp h)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2055
  and     a1: "\<exists>(a::'x). (a\<sharp>h \<and> a\<sharp>(h a))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2056
  shows "pi\<bullet>(fresh_fun h) = fresh_fun(pi\<bullet>h)" (is "?LHS = ?RHS")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2057
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2058
  have ptb: "pt TYPE('x) TYPE('x)" by (simp add: at_pt_inst[OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2059
  have ptc: "pt TYPE('x\<Rightarrow>'a) TYPE('x)" by (simp add: pt_fun_inst[OF ptb, OF pta, OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2060
  have f2: "finite ((supp (pi\<bullet>h))::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2061
  proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2062
    from f1 have "finite (pi\<bullet>((supp h)::'x set))" by (simp add: pt_set_finite_ineq[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2063
    thus ?thesis by (simp add: pt_perm_supp[OF ptc, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2064
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2065
  from a1 obtain a' where c0: "a'\<sharp>h \<and> a'\<sharp>(h a')" by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2066
  hence c1: "a'\<sharp>h" and c2: "a'\<sharp>(h a')" by simp_all
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2067
  have c3: "(pi\<bullet>a')\<sharp>(pi\<bullet>h)" using c1 by (simp add: pt_fresh_bij[OF ptc, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2068
  have c4: "(pi\<bullet>a')\<sharp>(pi\<bullet>h) (pi\<bullet>a')"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2069
  proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2070
    from c2 have "(pi\<bullet>a')\<sharp>(pi\<bullet>(h a'))" by (simp add: pt_fresh_bij[OF pta, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2071
    thus ?thesis by (simp add: pt_fun_app_eq[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2072
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2073
  have a2: "\<exists>(a::'x). (a\<sharp>(pi\<bullet>h) \<and> a\<sharp>((pi\<bullet>h) a))" using c3 c4 by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2074
  have d1: "?LHS = pi\<bullet>(h a')" using c1 a1 by (simp add: fresh_fun_app[OF pta, OF at, OF f1])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2075
  have d2: "?RHS = (pi\<bullet>h) (pi\<bullet>a')" using c3 a2 by (simp add: fresh_fun_app[OF pta, OF at, OF f2])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2076
  show ?thesis using d1 d2 by (simp add: pt_fun_app_eq[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2077
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2078
  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2079
section {* disjointness properties *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2080
(*=================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2081
lemma dj_perm_forget:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2082
  fixes pi::"'y prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2083
  and   x ::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2084
  assumes dj: "disjoint TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2085
  shows "pi\<bullet>x=x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2086
  using dj by (simp add: disjoint_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2087
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2088
lemma dj_perm_perm_forget:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2089
  fixes pi1::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2090
  and   pi2::"'y prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2091
  assumes dj: "disjoint TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2092
  shows "pi2\<bullet>pi1=pi1"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2093
  using dj by (induct pi1, auto simp add: disjoint_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2094
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2095
lemma dj_cp:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2096
  fixes pi1::"'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2097
  and   pi2::"'y prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2098
  and   x  ::"'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2099
  assumes cp: "cp TYPE ('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2100
  and     dj: "disjoint TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2101
  shows "pi1\<bullet>(pi2\<bullet>x) = (pi2)\<bullet>(pi1\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2102
  by (simp add: cp1[OF cp] dj_perm_perm_forget[OF dj])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2103
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2104
lemma dj_supp:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2105
  fixes a::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2106
  assumes dj: "disjoint TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2107
  shows "(supp a) = ({}::'y set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2108
apply(simp add: supp_def dj_perm_forget[OF dj])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2109
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2110
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2111
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2112
section {* composition instances *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2113
(* ============================= *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2114
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2115
lemma cp_list_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2116
  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2117
  shows "cp TYPE ('a list) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2118
using c1
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2119
apply(simp add: cp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2120
apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2121
apply(induct_tac x)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2122
apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2123
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2124
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2125
lemma cp_set_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2126
  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2127
  shows "cp TYPE ('a set) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2128
using c1
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2129
apply(simp add: cp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2130
apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2131
apply(auto simp add: perm_set_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2132
apply(rule_tac x="pi2\<bullet>aa" in exI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2133
apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2134
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2135
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2136
lemma cp_option_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2137
  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2138
  shows "cp TYPE ('a option) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2139
using c1
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2140
apply(simp add: cp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2141
apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2142
apply(case_tac x)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2143
apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2144
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2145
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2146
lemma cp_noption_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2147
  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
18579
002d371401f5 changed the name of the type "nOption" to "noption".
urbanc
parents: 18578
diff changeset
  2148
  shows "cp TYPE ('a noption) TYPE('x) TYPE('y)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2149
using c1
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2150
apply(simp add: cp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2151
apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2152
apply(case_tac x)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2153
apply(auto)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2154
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2155
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2156
lemma cp_unit_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2157
  shows "cp TYPE (unit) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2158
apply(simp add: cp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2159
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2160
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2161
lemma cp_bool_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2162
  shows "cp TYPE (bool) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2163
apply(simp add: cp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2164
apply(rule allI)+
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2165
apply(induct_tac x)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2166
apply(simp_all)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2167
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2168
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2169
lemma cp_prod_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2170
  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2171
  and     c2: "cp TYPE ('b) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2172
  shows "cp TYPE ('a\<times>'b) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2173
using c1 c2
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2174
apply(simp add: cp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2175
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2176
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2177
lemma cp_fun_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2178
  assumes c1: "cp TYPE ('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2179
  and     c2: "cp TYPE ('b) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2180
  and     pt: "pt TYPE ('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2181
  and     at: "at TYPE ('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2182
  shows "cp TYPE ('a\<Rightarrow>'b) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2183
using c1 c2
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2184
apply(auto simp add: cp_def perm_fun_def expand_fun_eq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2185
apply(simp add: perm_rev[symmetric])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2186
apply(simp add: pt_rev_pi[OF pt_list_inst[OF pt_prod_inst[OF pt, OF pt]], OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2187
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2188
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2189
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2190
section {* Abstraction function *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2191
(*==============================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2192
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2193
lemma pt_abs_fun_inst:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2194
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2195
  and     at: "at TYPE('x)"
18579
002d371401f5 changed the name of the type "nOption" to "noption".
urbanc
parents: 18578
diff changeset
  2196
  shows "pt TYPE('x\<Rightarrow>('a noption)) TYPE('x)"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2197
  by (rule pt_fun_inst[OF at_pt_inst[OF at],OF pt_noption_inst[OF pt],OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2198
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2199
constdefs
18579
002d371401f5 changed the name of the type "nOption" to "noption".
urbanc
parents: 18578
diff changeset
  2200
  abs_fun :: "'x\<Rightarrow>'a\<Rightarrow>('x\<Rightarrow>('a noption))" ("[_]._" [100,100] 100)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2201
  "[a].x \<equiv> (\<lambda>b. (if b=a then nSome(x) else (if b\<sharp>x then nSome([(a,b)]\<bullet>x) else nNone)))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2202
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2203
lemma abs_fun_if: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2204
  fixes pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2205
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2206
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2207
  and   c  :: "bool"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2208
  shows "pi\<bullet>(if c then x else y) = (if c then (pi\<bullet>x) else (pi\<bullet>y))"   
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2209
  by force
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2210
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2211
lemma abs_fun_pi_ineq:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2212
  fixes a  :: "'y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2213
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2214
  and   pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2215
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2216
  and     ptb: "pt TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2217
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2218
  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2219
  shows "pi\<bullet>([a].x) = [(pi\<bullet>a)].(pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2220
  apply(simp add: abs_fun_def perm_fun_def abs_fun_if)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2221
  apply(simp only: expand_fun_eq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2222
  apply(rule allI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2223
  apply(subgoal_tac "(((rev pi)\<bullet>(xa::'y)) = (a::'y)) = (xa = pi\<bullet>a)")(*A*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2224
  apply(subgoal_tac "(((rev pi)\<bullet>xa)\<sharp>x) = (xa\<sharp>(pi\<bullet>x))")(*B*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2225
  apply(subgoal_tac "pi\<bullet>([(a,(rev pi)\<bullet>xa)]\<bullet>x) = [(pi\<bullet>a,xa)]\<bullet>(pi\<bullet>x)")(*C*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2226
  apply(simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2227
(*C*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2228
  apply(simp add: cp1[OF cp])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2229
  apply(simp add: pt_pi_rev[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2230
(*B*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2231
  apply(simp add: pt_fresh_left_ineq[OF pta, OF ptb, OF at, OF cp])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2232
(*A*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2233
  apply(rule iffI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2234
  apply(rule pt_bij2[OF ptb, OF at, THEN sym])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2235
  apply(simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2236
  apply(rule pt_bij2[OF ptb, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2237
  apply(simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2238
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2239
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2240
lemma abs_fun_pi:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2241
  fixes a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2242
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2243
  and   pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2244
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2245
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2246
  shows "pi\<bullet>([a].x) = [(pi\<bullet>a)].(pi\<bullet>x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2247
apply(rule abs_fun_pi_ineq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2248
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2249
apply(rule at_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2250
apply(rule at)+
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2251
apply(rule cp_pt_inst)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2252
apply(rule pt)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2253
apply(rule at)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2254
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2255
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2256
lemma abs_fun_eq1: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2257
  fixes x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2258
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2259
  and   a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2260
  shows "([a].x = [a].y) = (x = y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2261
apply(auto simp add: abs_fun_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2262
apply(auto simp add: expand_fun_eq)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2263
apply(drule_tac x="a" in spec)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2264
apply(simp)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2265
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2266
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2267
lemma abs_fun_eq2:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2268
  fixes x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2269
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2270
  and   a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2271
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2272
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2273
      and at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2274
      and a1: "a\<noteq>b" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2275
      and a2: "[a].x = [b].y" 
18268
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2276
  shows "x=[(a,b)]\<bullet>y \<and> a\<sharp>y"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2277
proof -
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2278
  from a2 have "\<forall>c::'x. ([a].x) c = ([b].y) c" by (force simp add: expand_fun_eq)
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2279
  hence "([a].x) a = ([b].y) a" by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2280
  hence a3: "nSome(x) = ([b].y) a" by (simp add: abs_fun_def)
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2281
  show "x=[(a,b)]\<bullet>y \<and> a\<sharp>y"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2282
  proof (cases "a\<sharp>y")
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2283
    assume a4: "a\<sharp>y"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2284
    hence "x=[(b,a)]\<bullet>y" using a3 a1 by (simp add: abs_fun_def)
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2285
    moreover
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2286
    have "[(a,b)]\<bullet>y = [(b,a)]\<bullet>y" by (rule pt3[OF pt], rule at_ds5[OF at])
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2287
    ultimately show ?thesis using a4 by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2288
  next
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2289
    assume "\<not>a\<sharp>y"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2290
    hence "nSome(x) = nNone" using a1 a3 by (simp add: abs_fun_def)
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2291
    hence False by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2292
    thus ?thesis by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2293
  qed
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2294
qed
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2295
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2296
lemma abs_fun_eq3: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2297
  fixes x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2298
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2299
  and   a   :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2300
  and   b   :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2301
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2302
      and at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2303
      and a1: "a\<noteq>b" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2304
      and a2: "x=[(a,b)]\<bullet>y" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2305
      and a3: "a\<sharp>y" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2306
  shows "[a].x =[b].y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2307
proof -
18268
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2308
  show ?thesis 
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2309
  proof (simp only: abs_fun_def expand_fun_eq, intro strip)
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2310
    fix c::"'x"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2311
    let ?LHS = "if c=a then nSome(x) else if c\<sharp>x then nSome([(a,c)]\<bullet>x) else nNone"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2312
    and ?RHS = "if c=b then nSome(y) else if c\<sharp>y then nSome([(b,c)]\<bullet>y) else nNone"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2313
    show "?LHS=?RHS"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2314
    proof -
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2315
      have "(c=a) \<or> (c=b) \<or> (c\<noteq>a \<and> c\<noteq>b)" by blast
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2316
      moreover  --"case c=a"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2317
      { have "nSome(x) = nSome([(a,b)]\<bullet>y)" using a2 by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2318
	also have "\<dots> = nSome([(b,a)]\<bullet>y)" by (simp, rule pt3[OF pt], rule at_ds5[OF at])
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2319
	finally have "nSome(x) = nSome([(b,a)]\<bullet>y)" by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2320
	moreover
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2321
	assume "c=a"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2322
	ultimately have "?LHS=?RHS" using a1 a3 by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2323
      }
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2324
      moreover  -- "case c=b"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2325
      { have a4: "y=[(a,b)]\<bullet>x" using a2 by (simp only: pt_swap_bij[OF pt, OF at])
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2326
	hence "a\<sharp>([(a,b)]\<bullet>x)" using a3 by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2327
	hence "b\<sharp>x" by (simp add: at_calc[OF at] pt_fresh_left[OF pt, OF at])
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2328
	moreover
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2329
	assume "c=b"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2330
	ultimately have "?LHS=?RHS" using a1 a4 by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2331
      }
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2332
      moreover  -- "case c\<noteq>a \<and> c\<noteq>b"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2333
      { assume a5: "c\<noteq>a \<and> c\<noteq>b"
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2334
	moreover 
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2335
	have "c\<sharp>x = c\<sharp>y" using a2 a5 by (force simp add: at_calc[OF at] pt_fresh_left[OF pt, OF at])
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2336
	moreover 
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2337
	have "c\<sharp>y \<longrightarrow> [(a,c)]\<bullet>x = [(b,c)]\<bullet>y" 
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2338
	proof (intro strip)
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2339
	  assume a6: "c\<sharp>y"
18295
dd50de393330 changed \<sim> of permutation equality to \<triangleq>
urbanc
parents: 18294
diff changeset
  2340
	  have "[(a,c),(b,c),(a,c)] \<triangleq> [(a,b)]" using a1 a5 by (force intro: at_ds3[OF at])
18268
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2341
	  hence "[(a,c)]\<bullet>([(b,c)]\<bullet>([(a,c)]\<bullet>y)) = [(a,b)]\<bullet>y" 
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2342
	    by (simp add: pt2[OF pt, symmetric] pt3[OF pt])
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2343
 	  hence "[(a,c)]\<bullet>([(b,c)]\<bullet>y) = [(a,b)]\<bullet>y" using a3 a6 
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2344
	    by (simp add: pt_fresh_fresh[OF pt, OF at])
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2345
	  hence "[(a,c)]\<bullet>([(b,c)]\<bullet>y) = x" using a2 by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2346
	  hence "[(b,c)]\<bullet>y = [(a,c)]\<bullet>x" by (drule_tac pt_bij1[OF pt, OF at], simp)
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2347
	  thus "[(a,c)]\<bullet>x = [(b,c)]\<bullet>y" by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2348
	qed
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2349
	ultimately have "?LHS=?RHS" by simp
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2350
      }
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2351
      ultimately show "?LHS = ?RHS" by blast
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2352
    qed
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2353
  qed
18268
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2354
qed
734f23ad5d8f ISAR-fied two proofs about equality for abstraction functions.
urbanc
parents: 18264
diff changeset
  2355
	
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2356
lemma abs_fun_eq: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2357
  fixes x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2358
  and   y  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2359
  and   a  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2360
  and   b  :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2361
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2362
      and at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2363
  shows "([a].x = [b].y) = ((a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2364
proof (rule iffI)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2365
  assume b: "[a].x = [b].y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2366
  show "(a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2367
  proof (cases "a=b")
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2368
    case True with b show ?thesis by (simp add: abs_fun_eq1)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2369
  next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2370
    case False with b show ?thesis by (simp add: abs_fun_eq2[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2371
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2372
next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2373
  assume "(a=b \<and> x=y)\<or>(a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2374
  thus "[a].x = [b].y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2375
  proof
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2376
    assume "a=b \<and> x=y" thus ?thesis by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2377
  next
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2378
    assume "a\<noteq>b \<and> x=[(a,b)]\<bullet>y \<and> a\<sharp>y" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2379
    thus ?thesis by (simp add: abs_fun_eq3[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2380
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2381
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2382
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2383
lemma abs_fun_supp_approx:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2384
  fixes x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2385
  and   a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2386
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2387
  and     at: "at TYPE('x)"
18048
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2388
  shows "((supp ([a].x))::'x set) \<subseteq> (supp (x,a))"
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2389
proof 
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2390
  fix c
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2391
  assume "c\<in>((supp ([a].x))::'x set)"
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2392
  hence "infinite {b. [(c,b)]\<bullet>([a].x) \<noteq> [a].x}" by (simp add: supp_def)
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2393
  hence "infinite {b. [([(c,b)]\<bullet>a)].([(c,b)]\<bullet>x) \<noteq> [a].x}" by (simp add: abs_fun_pi[OF pt, OF at])
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2394
  moreover
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2395
  have "{b. [([(c,b)]\<bullet>a)].([(c,b)]\<bullet>x) \<noteq> [a].x} \<subseteq> {b. ([(c,b)]\<bullet>x,[(c,b)]\<bullet>a) \<noteq> (x, a)}" by force
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2396
  ultimately have "infinite {b. ([(c,b)]\<bullet>x,[(c,b)]\<bullet>a) \<noteq> (x, a)}" by (simp add: infinite_super)
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2397
  thus "c\<in>(supp (x,a))" by (simp add: supp_def)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2398
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2399
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2400
lemma abs_fun_finite_supp:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2401
  fixes x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2402
  and   a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2403
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2404
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2405
  and     f:  "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2406
  shows "finite ((supp ([a].x))::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2407
proof -
18048
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2408
  from f have "finite ((supp (x,a))::'x set)" by (simp add: supp_prod at_supp[OF at])
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2409
  moreover
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2410
  have "((supp ([a].x))::'x set) \<subseteq> (supp (x,a))" by (rule abs_fun_supp_approx[OF pt, OF at])
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2411
  ultimately show ?thesis by (simp add: finite_subset)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2412
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2413
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2414
lemma fresh_abs_funI1:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2415
  fixes  x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2416
  and    a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2417
  and    b :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2418
  assumes pt:  "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2419
  and     at:   "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2420
  and f:  "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2421
  and a1: "b\<sharp>x" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2422
  and a2: "a\<noteq>b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2423
  shows "b\<sharp>([a].x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2424
  proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2425
    have "\<exists>c::'x. c\<sharp>(b,a,x,[a].x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2426
    proof (rule at_exists_fresh[OF at], auto simp add: supp_prod at_supp[OF at] f)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2427
      show "finite ((supp ([a].x))::'x set)" using f
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2428
	by (simp add: abs_fun_finite_supp[OF pt, OF at])	
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2429
    qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2430
    then obtain c where fr1: "c\<noteq>b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2431
                  and   fr2: "c\<noteq>a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2432
                  and   fr3: "c\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2433
                  and   fr4: "c\<sharp>([a].x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2434
                  by (force simp add: fresh_prod at_fresh[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2435
    have e: "[(c,b)]\<bullet>([a].x) = [a].([(c,b)]\<bullet>x)" using a2 fr1 fr2 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2436
      by (force simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2437
    from fr4 have "([(c,b)]\<bullet>c)\<sharp> ([(c,b)]\<bullet>([a].x))"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2438
      by (simp add: pt_fresh_bij[OF pt_abs_fun_inst[OF pt, OF at], OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2439
    hence "b\<sharp>([a].([(c,b)]\<bullet>x))" using fr1 fr2 e  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2440
      by (simp add: at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2441
    thus ?thesis using a1 fr3 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2442
      by (simp add: pt_fresh_fresh[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2443
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2444
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2445
lemma fresh_abs_funE:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2446
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2447
  and   b :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2448
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2449
  assumes pt:  "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2450
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2451
  and     f:  "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2452
  and     a1: "b\<sharp>([a].x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2453
  and     a2: "b\<noteq>a" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2454
  shows "b\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2455
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2456
  have "\<exists>c::'x. c\<sharp>(b,a,x,[a].x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2457
  proof (rule at_exists_fresh[OF at], auto simp add: supp_prod at_supp[OF at] f)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2458
    show "finite ((supp ([a].x))::'x set)" using f
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2459
      by (simp add: abs_fun_finite_supp[OF pt, OF at])	
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2460
  qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2461
  then obtain c where fr1: "b\<noteq>c"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2462
                and   fr2: "c\<noteq>a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2463
                and   fr3: "c\<sharp>x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2464
                and   fr4: "c\<sharp>([a].x)" by (force simp add: fresh_prod at_fresh[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2465
  have "[a].x = [(b,c)]\<bullet>([a].x)" using a1 fr4 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2466
    by (simp add: pt_fresh_fresh[OF pt_abs_fun_inst[OF pt, OF at], OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2467
  hence "[a].x = [a].([(b,c)]\<bullet>x)" using fr2 a2 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2468
    by (force simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2469
  hence b: "([(b,c)]\<bullet>x) = x" by (simp add: abs_fun_eq1)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2470
  from fr3 have "([(b,c)]\<bullet>c)\<sharp>([(b,c)]\<bullet>x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2471
    by (simp add: pt_fresh_bij[OF pt, OF at]) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2472
  thus ?thesis using b fr1 by (simp add: at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2473
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2474
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2475
lemma fresh_abs_funI2:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2476
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2477
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2478
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2479
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2480
  and     f: "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2481
  shows "a\<sharp>([a].x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2482
proof -
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2483
  have "\<exists>c::'x. c\<sharp>(a,x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2484
    by  (rule at_exists_fresh[OF at], auto simp add: supp_prod at_supp[OF at] f) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2485
  then obtain c where fr1: "a\<noteq>c" and fr1_sym: "c\<noteq>a" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2486
                and   fr2: "c\<sharp>x" by (force simp add: fresh_prod at_fresh[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2487
  have "c\<sharp>([a].x)" using f fr1 fr2 by (simp add: fresh_abs_funI1[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2488
  hence "([(c,a)]\<bullet>c)\<sharp>([(c,a)]\<bullet>([a].x))" using fr1  
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2489
    by (simp only: pt_fresh_bij[OF pt_abs_fun_inst[OF pt, OF at], OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2490
  hence a: "a\<sharp>([c].([(c,a)]\<bullet>x))" using fr1_sym 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2491
    by (simp add: abs_fun_pi[OF pt, OF at] at_calc[OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2492
  have "[c].([(c,a)]\<bullet>x) = ([a].x)" using fr1_sym fr2 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2493
    by (simp add: abs_fun_eq[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2494
  thus ?thesis using a by simp
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2495
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2496
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2497
lemma fresh_abs_fun_iff: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2498
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2499
  and   b :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2500
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2501
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2502
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2503
  and     f: "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2504
  shows "(b\<sharp>([a].x)) = (b=a \<or> b\<sharp>x)" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2505
  by (auto  dest: fresh_abs_funE[OF pt, OF at,OF f] 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2506
           intro: fresh_abs_funI1[OF pt, OF at,OF f] 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2507
                  fresh_abs_funI2[OF pt, OF at,OF f])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2508
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2509
lemma abs_fun_supp: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2510
  fixes a :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2511
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2512
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2513
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2514
  and     f: "finite ((supp x)::'x set)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2515
  shows "supp ([a].x) = (supp x)-{a}"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2516
 by (force simp add: supp_fresh_iff fresh_abs_fun_iff[OF pt, OF at, OF f])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2517
18048
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2518
(* maybe needs to be better stated as supp intersection supp *)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2519
lemma abs_fun_supp_ineq: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2520
  fixes a :: "'y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2521
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2522
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2523
  and     ptb: "pt TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2524
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2525
  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2526
  and     dj:  "disjoint TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2527
  shows "((supp ([a].x))::'x set) = (supp x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2528
apply(auto simp add: supp_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2529
apply(auto simp add: abs_fun_pi_ineq[OF pta, OF ptb, OF at, OF cp])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2530
apply(auto simp add: dj_perm_forget[OF dj])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2531
apply(auto simp add: abs_fun_eq1) 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2532
done
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2533
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2534
lemma fresh_abs_fun_iff_ineq: 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2535
  fixes a :: "'y"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2536
  and   b :: "'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2537
  and   x :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2538
  assumes pta: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2539
  and     ptb: "pt TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2540
  and     at:  "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2541
  and     cp:  "cp TYPE('a) TYPE('x) TYPE('y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2542
  and     dj:  "disjoint TYPE('y) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2543
  shows "b\<sharp>([a].x) = b\<sharp>x" 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2544
  by (simp add: fresh_def abs_fun_supp_ineq[OF pta, OF ptb, OF at, OF cp, OF dj])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2545
18048
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2546
section {* abstraction type for the parsing in nominal datatype *}
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2547
(*==============================================================*)
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2548
consts
18579
002d371401f5 changed the name of the type "nOption" to "noption".
urbanc
parents: 18578
diff changeset
  2549
  "ABS_set" :: "('x\<Rightarrow>('a noption)) set"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2550
inductive ABS_set
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2551
  intros
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2552
  ABS_in: "(abs_fun a x)\<in>ABS_set"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2553
18579
002d371401f5 changed the name of the type "nOption" to "noption".
urbanc
parents: 18578
diff changeset
  2554
typedef (ABS) ('x,'a) ABS = "ABS_set::('x\<Rightarrow>('a noption)) set"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2555
proof 
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2556
  fix x::"'a" and a::"'x"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2557
  show "(abs_fun a x)\<in> ABS_set" by (rule ABS_in)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2558
qed
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2559
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2560
syntax ABS :: "type \<Rightarrow> type \<Rightarrow> type" ("\<guillemotleft>_\<guillemotright>_" [1000,1000] 1000)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2561
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2562
18048
7003308ff73a tuned my last commit
urbanc
parents: 18047
diff changeset
  2563
section {* lemmas for deciding permutation equations *}
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2564
(*===================================================*)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2565
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2566
lemma perm_eq_app:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2567
  fixes f  :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2568
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2569
  and   pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2570
  assumes pt: "pt TYPE('a) TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2571
  and     at: "at TYPE('x)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2572
  shows "(pi\<bullet>(f x)=y) = ((pi\<bullet>f)(pi\<bullet>x)=y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2573
  by (simp add: pt_fun_app_eq[OF pt, OF at])
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2574
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2575
lemma perm_eq_lam:
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2576
  fixes f  :: "'a\<Rightarrow>'b"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2577
  and   x  :: "'a"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2578
  and   pi :: "'x prm"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2579
  shows "((pi\<bullet>(\<lambda>x. f x))=y) = ((\<lambda>x. (pi\<bullet>(f ((rev pi)\<bullet>x))))=y)"
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2580
  by (simp add: perm_fun_def)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2581
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2582
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2583
(***************************************)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2584
(* setup for the individial atom-kinds *)
18047
3d643b13eb65 simplified the abs_supp_approx proof and tuned some comments in
urbanc
parents: 18012
diff changeset
  2585
(* and nominal datatypes               *)
18068
e8c3d371594e Moved atom stuff to new file nominal_atoms.ML
berghofe
parents: 18053
diff changeset
  2586
use "nominal_atoms.ML"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2587
use "nominal_package.ML"
18068
e8c3d371594e Moved atom stuff to new file nominal_atoms.ML
berghofe
parents: 18053
diff changeset
  2588
setup "NominalAtoms.setup"
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2589
18047
3d643b13eb65 simplified the abs_supp_approx proof and tuned some comments in
urbanc
parents: 18012
diff changeset
  2590
(*****************************************)
3d643b13eb65 simplified the abs_supp_approx proof and tuned some comments in
urbanc
parents: 18012
diff changeset
  2591
(* setup for induction principles method *)
18294
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
  2592
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2593
use "nominal_induct.ML";
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2594
method_setup nominal_induct =
18294
bbfd64cc91ab fresh_unit_elim and fresh_prod_elim -- for nominal_induct;
wenzelm
parents: 18268
diff changeset
  2595
  {* NominalInduct.nominal_induct_method *}
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2596
  {* nominal induction *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2597
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2598
(*******************************)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2599
(* permutation equality tactic *)
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2600
use "nominal_permeq.ML";
18012
23e6cfda8c4b Added (optional) arguments to the tactics
urbanc
parents: 17871
diff changeset
  2601
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2602
method_setup perm_simp =
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2603
  {* perm_eq_meth *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2604
  {* tactic for deciding equalities involving permutations *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2605
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2606
method_setup perm_simp_debug =
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2607
  {* perm_eq_meth_debug *}
18047
3d643b13eb65 simplified the abs_supp_approx proof and tuned some comments in
urbanc
parents: 18012
diff changeset
  2608
  {* tactic for deciding equalities involving permutations including debuging facilities *}
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2609
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2610
method_setup supports_simp =
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2611
  {* supports_meth *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2612
  {* tactic for deciding whether something supports semthing else *}
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2613
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2614
method_setup supports_simp_debug =
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2615
  {* supports_meth_debug *}
18047
3d643b13eb65 simplified the abs_supp_approx proof and tuned some comments in
urbanc
parents: 18012
diff changeset
  2616
  {* tactic for deciding equalities involving permutations including debuging facilities *}
17870
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2617
c35381811d5c Initial revision.
berghofe
parents:
diff changeset
  2618
end