| author | wenzelm | 
| Fri, 29 Oct 2010 11:49:56 +0200 | |
| changeset 40255 | 9ffbc25e1606 | 
| parent 39302 | d7728f65b353 | 
| child 40377 | 0e5d48096f58 | 
| permissions | -rw-r--r-- | 
| 33175 | 1 | (* Title: HOL/Library/Convex_Euclidean_Space.thy | 
| 2 | Author: Robert Himmelmann, TU Muenchen | |
| 3 | *) | |
| 4 | ||
| 5 | header {* Convex sets, functions and related things. *}
 | |
| 6 | ||
| 7 | theory Convex_Euclidean_Space | |
| 36623 | 8 | imports Topology_Euclidean_Space Convex | 
| 33175 | 9 | begin | 
| 10 | ||
| 11 | ||
| 12 | (* ------------------------------------------------------------------------- *) | |
| 13 | (* To be moved elsewhere *) | |
| 14 | (* ------------------------------------------------------------------------- *) | |
| 15 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 16 | lemma basis_0[simp]:"(basis i::'a::euclidean_space) = 0 \<longleftrightarrow> i\<ge>DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 17 | using norm_basis[of i, where 'a='a] unfolding norm_eq_zero[where 'a='a,THEN sym] by auto | 
| 33175 | 18 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 19 | lemma scaleR_2: | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 20 | fixes x :: "'a::real_vector" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 21 | shows "scaleR 2 x = x + x" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 22 | unfolding one_add_one_is_two [symmetric] scaleR_left_distrib by simp | 
| 34964 | 23 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 24 | declare euclidean_simps[simp] | 
| 33175 | 25 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 26 | lemma vector_choose_size: "0 <= c ==> \<exists>(x::'a::euclidean_space). norm x = c" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 27 | apply (rule exI[where x="c *\<^sub>R basis 0 ::'a"]) using DIM_positive[where 'a='a] by auto | 
| 33175 | 28 | |
| 29 | lemma setsum_delta_notmem: assumes "x\<notin>s" | |
| 30 | shows "setsum (\<lambda>y. if (y = x) then P x else Q y) s = setsum Q s" | |
| 31 | "setsum (\<lambda>y. if (x = y) then P x else Q y) s = setsum Q s" | |
| 32 | "setsum (\<lambda>y. if (y = x) then P y else Q y) s = setsum Q s" | |
| 33 | "setsum (\<lambda>y. if (x = y) then P y else Q y) s = setsum Q s" | |
| 34 | apply(rule_tac [!] setsum_cong2) using assms by auto | |
| 35 | ||
| 36 | lemma setsum_delta'': | |
| 37 | fixes s::"'a::real_vector set" assumes "finite s" | |
| 38 | shows "(\<Sum>x\<in>s. (if y = x then f x else 0) *\<^sub>R x) = (if y\<in>s then (f y) *\<^sub>R y else 0)" | |
| 39 | proof- | |
| 40 | have *:"\<And>x y. (if y = x then f x else (0::real)) *\<^sub>R x = (if x=y then (f x) *\<^sub>R x else 0)" by auto | |
| 41 | show ?thesis unfolding * using setsum_delta[OF assms, of y "\<lambda>x. f x *\<^sub>R x"] by auto | |
| 42 | qed | |
| 43 | ||
| 44 | lemma if_smult:"(if P then x else (y::real)) *\<^sub>R v = (if P then x *\<^sub>R v else y *\<^sub>R v)" by auto | |
| 45 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 46 | lemma image_smult_interval:"(\<lambda>x. m *\<^sub>R (x::'a::ordered_euclidean_space)) ` {a..b} =
 | 
| 33175 | 47 |   (if {a..b} = {} then {} else if 0 \<le> m then {m *\<^sub>R a..m *\<^sub>R b} else {m *\<^sub>R b..m *\<^sub>R a})"
 | 
| 48 | using image_affinity_interval[of m 0 a b] by auto | |
| 49 | ||
| 50 | lemma dist_triangle_eq: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 51 | fixes x y z :: "'a::euclidean_space" | 
| 33175 | 52 | shows "dist x z = dist x y + dist y z \<longleftrightarrow> norm (x - y) *\<^sub>R (y - z) = norm (y - z) *\<^sub>R (x - y)" | 
| 53 | proof- have *:"x - y + (y - z) = x - z" by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 54 | show ?thesis unfolding dist_norm norm_triangle_eq[of "x - y" "y - z", unfolded *] | 
| 33175 | 55 | by(auto simp add:norm_minus_commute) qed | 
| 56 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 57 | lemma norm_minus_eqI:"x = - y \<Longrightarrow> norm x = norm y" by auto | 
| 33175 | 58 | |
| 59 | lemma Min_grI: assumes "finite A" "A \<noteq> {}" "\<forall>a\<in>A. x < a" shows "x < Min A"
 | |
| 60 | unfolding Min_gr_iff[OF assms(1,2)] using assms(3) by auto | |
| 61 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 62 | lemma norm_lt: "norm x < norm y \<longleftrightarrow> inner x x < inner y y" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 63 | unfolding norm_eq_sqrt_inner by simp | 
| 33175 | 64 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 65 | lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> inner x x \<le> inner y y" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 66 | unfolding norm_eq_sqrt_inner by simp | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 67 | |
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 68 | |
| 33175 | 69 | |
| 70 | subsection {* Affine set and affine hull.*}
 | |
| 71 | ||
| 72 | definition | |
| 73 | affine :: "'a::real_vector set \<Rightarrow> bool" where | |
| 74 | "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s)" | |
| 75 | ||
| 76 | lemma affine_alt: "affine s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. \<forall>u::real. (1 - u) *\<^sub>R x + u *\<^sub>R y \<in> s)" | |
| 36071 | 77 | unfolding affine_def by(metis eq_diff_eq') | 
| 33175 | 78 | |
| 79 | lemma affine_empty[intro]: "affine {}"
 | |
| 80 | unfolding affine_def by auto | |
| 81 | ||
| 82 | lemma affine_sing[intro]: "affine {x}"
 | |
| 83 | unfolding affine_alt by (auto simp add: scaleR_left_distrib [symmetric]) | |
| 84 | ||
| 85 | lemma affine_UNIV[intro]: "affine UNIV" | |
| 86 | unfolding affine_def by auto | |
| 87 | ||
| 88 | lemma affine_Inter: "(\<forall>s\<in>f. affine s) \<Longrightarrow> affine (\<Inter> f)" | |
| 89 | unfolding affine_def by auto | |
| 90 | ||
| 91 | lemma affine_Int: "affine s \<Longrightarrow> affine t \<Longrightarrow> affine (s \<inter> t)" | |
| 92 | unfolding affine_def by auto | |
| 93 | ||
| 94 | lemma affine_affine_hull: "affine(affine hull s)" | |
| 95 |   unfolding hull_def using affine_Inter[of "{t \<in> affine. s \<subseteq> t}"]
 | |
| 96 | unfolding mem_def by auto | |
| 97 | ||
| 98 | lemma affine_hull_eq[simp]: "(affine hull s = s) \<longleftrightarrow> affine s" | |
| 36071 | 99 | by (metis affine_affine_hull hull_same mem_def) | 
| 33175 | 100 | |
| 101 | lemma setsum_restrict_set'': assumes "finite A" | |
| 102 |   shows "setsum f {x \<in> A. P x} = (\<Sum>x\<in>A. if P x  then f x else 0)"
 | |
| 103 | unfolding mem_def[of _ P, symmetric] unfolding setsum_restrict_set'[OF assms] .. | |
| 104 | ||
| 105 | subsection {* Some explicit formulations (from Lars Schewe). *}
 | |
| 106 | ||
| 107 | lemma affine: fixes V::"'a::real_vector set" | |
| 108 |   shows "affine V \<longleftrightarrow> (\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (setsum (\<lambda>x. (u x) *\<^sub>R x)) s \<in> V)"
 | |
| 109 | unfolding affine_def apply rule apply(rule, rule, rule) apply(erule conjE)+ | |
| 110 | defer apply(rule, rule, rule, rule, rule) proof- | |
| 111 | fix x y u v assume as:"x \<in> V" "y \<in> V" "u + v = (1::real)" | |
| 112 |     "\<forall>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> V \<and> setsum u s = 1 \<longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V"
 | |
| 113 | thus "u *\<^sub>R x + v *\<^sub>R y \<in> V" apply(cases "x=y") | |
| 114 |     using as(4)[THEN spec[where x="{x,y}"], THEN spec[where x="\<lambda>w. if w = x then u else v"]] and as(1-3) 
 | |
| 115 | by(auto simp add: scaleR_left_distrib[THEN sym]) | |
| 116 | next | |
| 117 | fix s u assume as:"\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V" | |
| 118 |     "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = (1::real)"
 | |
| 119 | def n \<equiv> "card s" | |
| 120 | have "card s = 0 \<or> card s = 1 \<or> card s = 2 \<or> card s > 2" by auto | |
| 121 | thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" proof(auto simp only: disjE) | |
| 122 | assume "card s = 2" hence "card s = Suc (Suc 0)" by auto | |
| 123 |     then obtain a b where "s = {a, b}" unfolding card_Suc_eq by auto
 | |
| 124 | thus ?thesis using as(1)[THEN bspec[where x=a], THEN bspec[where x=b]] using as(4,5) | |
| 125 | by(auto simp add: setsum_clauses(2)) | |
| 126 | next assume "card s > 2" thus ?thesis using as and n_def proof(induct n arbitrary: u s) | |
| 127 | case (Suc n) fix s::"'a set" and u::"'a \<Rightarrow> real" | |
| 128 | assume IA:"\<And>u s. \<lbrakk>2 < card s; \<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V; finite s; | |
| 34915 | 129 |                s \<noteq> {}; s \<subseteq> V; setsum u s = 1; n = card s \<rbrakk> \<Longrightarrow> (\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" and
 | 
| 130 | as:"Suc n = card s" "2 < card s" "\<forall>x\<in>V. \<forall>y\<in>V. \<forall>u v. u + v = 1 \<longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> V" | |
| 33175 | 131 |            "finite s" "s \<noteq> {}" "s \<subseteq> V" "setsum u s = 1"
 | 
| 132 | have "\<exists>x\<in>s. u x \<noteq> 1" proof(rule_tac ccontr) | |
| 133 | assume " \<not> (\<exists>x\<in>s. u x \<noteq> 1)" hence "setsum u s = real_of_nat (card s)" unfolding card_eq_setsum by auto | |
| 134 | thus False using as(7) and `card s > 2` by (metis Numeral1_eq1_nat less_0_number_of less_int_code(15) | |
| 135 | less_nat_number_of not_less_iff_gr_or_eq of_nat_1 of_nat_eq_iff pos2 rel_simps(4)) qed | |
| 136 | then obtain x where x:"x\<in>s" "u x \<noteq> 1" by auto | |
| 137 | ||
| 138 |       have c:"card (s - {x}) = card s - 1" apply(rule card_Diff_singleton) using `x\<in>s` as(4) by auto
 | |
| 139 |       have *:"s = insert x (s - {x})" "finite (s - {x})" using `x\<in>s` and as(4) by auto
 | |
| 140 |       have **:"setsum u (s - {x}) = 1 - u x"
 | |
| 141 | using setsum_clauses(2)[OF *(2), of u x, unfolded *(1)[THEN sym] as(7)] by auto | |
| 142 |       have ***:"inverse (1 - u x) * setsum u (s - {x}) = 1" unfolding ** using `u x \<noteq> 1` by auto
 | |
| 143 |       have "(\<Sum>xa\<in>s - {x}. (inverse (1 - u x) * u xa) *\<^sub>R xa) \<in> V" proof(cases "card (s - {x}) > 2")
 | |
| 144 |         case True hence "s - {x} \<noteq> {}" "card (s - {x}) = n" unfolding c and as(1)[symmetric] proof(rule_tac ccontr) 
 | |
| 145 |           assume "\<not> s - {x} \<noteq> {}" hence "card (s - {x}) = 0" unfolding card_0_eq[OF *(2)] by simp 
 | |
| 146 | thus False using True by auto qed auto | |
| 147 |         thus ?thesis apply(rule_tac IA[of "s - {x}" "\<lambda>y. (inverse (1 - u x) * u y)"])
 | |
| 148 | unfolding setsum_right_distrib[THEN sym] using as and *** and True by auto | |
| 149 |       next case False hence "card (s - {x}) = Suc (Suc 0)" using as(2) and c by auto
 | |
| 150 |         then obtain a b where "(s - {x}) = {a, b}" "a\<noteq>b" unfolding card_Suc_eq by auto
 | |
| 151 | thus ?thesis using as(3)[THEN bspec[where x=a], THEN bspec[where x=b]] | |
| 152 | using *** *(2) and `s \<subseteq> V` unfolding setsum_right_distrib by(auto simp add: setsum_clauses(2)) qed | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 153 |       hence "u x + (1 - u x) = 1 \<Longrightarrow> u x *\<^sub>R x + (1 - u x) *\<^sub>R ((\<Sum>xa\<in>s - {x}. u xa *\<^sub>R xa) /\<^sub>R (1 - u x)) \<in> V"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 154 | apply-apply(rule as(3)[rule_format]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 155 | unfolding RealVector.scaleR_right.setsum using x(1) as(6) by auto | 
| 33175 | 156 | thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> V" unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] | 
| 157 | apply(subst *) unfolding setsum_clauses(2)[OF *(2)] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 158 | using `u x \<noteq> 1` by auto | 
| 33175 | 159 | qed auto | 
| 160 |   next assume "card s = 1" then obtain a where "s={a}" by(auto simp add: card_Suc_eq)
 | |
| 161 | thus ?thesis using as(4,5) by simp | |
| 162 |   qed(insert `s\<noteq>{}` `finite s`, auto)
 | |
| 163 | qed | |
| 164 | ||
| 165 | lemma affine_hull_explicit: | |
| 166 |   "affine hull p = {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> setsum (\<lambda>v. (u v) *\<^sub>R v) s = y}"
 | |
| 167 | apply(rule hull_unique) apply(subst subset_eq) prefer 3 apply rule unfolding mem_Collect_eq and mem_def[of _ affine] | |
| 168 | apply (erule exE)+ apply(erule conjE)+ prefer 2 apply rule proof- | |
| 169 |   fix x assume "x\<in>p" thus "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
 | |
| 170 |     apply(rule_tac x="{x}" in exI, rule_tac x="\<lambda>x. 1" in exI) by auto
 | |
| 171 | next | |
| 172 |   fix t x s u assume as:"p \<subseteq> t" "affine t" "finite s" "s \<noteq> {}" "s \<subseteq> p" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
 | |
| 173 | thus "x \<in> t" using as(2)[unfolded affine, THEN spec[where x=s], THEN spec[where x=u]] by auto | |
| 174 | next | |
| 175 |   show "affine {y. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y}" unfolding affine_def
 | |
| 176 | apply(rule,rule,rule,rule,rule) unfolding mem_Collect_eq proof- | |
| 177 | fix u v ::real assume uv:"u + v = 1" | |
| 178 |     fix x assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x"
 | |
| 179 |     then obtain sx ux where x:"finite sx" "sx \<noteq> {}" "sx \<subseteq> p" "setsum ux sx = 1" "(\<Sum>v\<in>sx. ux v *\<^sub>R v) = x" by auto
 | |
| 180 |     fix y assume "\<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y"
 | |
| 181 |     then obtain sy uy where y:"finite sy" "sy \<noteq> {}" "sy \<subseteq> p" "setsum uy sy = 1" "(\<Sum>v\<in>sy. uy v *\<^sub>R v) = y" by auto
 | |
| 182 | have xy:"finite (sx \<union> sy)" using x(1) y(1) by auto | |
| 183 | have **:"(sx \<union> sy) \<inter> sx = sx" "(sx \<union> sy) \<inter> sy = sy" by auto | |
| 184 |     show "\<exists>s ua. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p \<and> setsum ua s = 1 \<and> (\<Sum>v\<in>s. ua v *\<^sub>R v) = u *\<^sub>R x + v *\<^sub>R y"
 | |
| 185 | apply(rule_tac x="sx \<union> sy" in exI) | |
| 186 | apply(rule_tac x="\<lambda>a. (if a\<in>sx then u * ux a else 0) + (if a\<in>sy then v * uy a else 0)" in exI) | |
| 187 | unfolding scaleR_left_distrib setsum_addf if_smult scaleR_zero_left ** setsum_restrict_set[OF xy, THEN sym] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 188 | unfolding scaleR_scaleR[THEN sym] RealVector.scaleR_right.setsum [symmetric] and setsum_right_distrib[THEN sym] | 
| 33175 | 189 | unfolding x y using x(1-3) y(1-3) uv by simp qed qed | 
| 190 | ||
| 191 | lemma affine_hull_finite: | |
| 192 | assumes "finite s" | |
| 193 |   shows "affine hull s = {y. \<exists>u. setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 194 | unfolding affine_hull_explicit and set_eq_iff and mem_Collect_eq apply (rule,rule) | 
| 33175 | 195 | apply(erule exE)+ apply(erule conjE)+ defer apply(erule exE) apply(erule conjE) proof- | 
| 196 | fix x u assume "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x" | |
| 197 |   thus "\<exists>sa u. finite sa \<and> \<not> (\<forall>x. (x \<in> sa) = (x \<in> {})) \<and> sa \<subseteq> s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = x"
 | |
| 198 | apply(rule_tac x=s in exI, rule_tac x=u in exI) using assms by auto | |
| 199 | next | |
| 200 | fix x t u assume "t \<subseteq> s" hence *:"s \<inter> t = t" by auto | |
| 201 |   assume "finite t" "\<not> (\<forall>x. (x \<in> t) = (x \<in> {}))" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
 | |
| 202 | thus "\<exists>u. setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) | |
| 203 | unfolding if_smult scaleR_zero_left and setsum_restrict_set[OF assms, THEN sym] and * by auto qed | |
| 204 | ||
| 205 | subsection {* Stepping theorems and hence small special cases. *}
 | |
| 206 | ||
| 207 | lemma affine_hull_empty[simp]: "affine hull {} = {}"
 | |
| 208 | apply(rule hull_unique) unfolding mem_def by auto | |
| 209 | ||
| 210 | lemma affine_hull_finite_step: | |
| 211 | fixes y :: "'a::real_vector" | |
| 212 |   shows "(\<exists>u. setsum u {} = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) {} = y) \<longleftrightarrow> w = 0 \<and> y = 0" (is ?th1)
 | |
| 213 | "finite s \<Longrightarrow> (\<exists>u. setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) \<longleftrightarrow> | |
| 214 | (\<exists>v u. setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?as \<Longrightarrow> (?lhs = ?rhs)") | |
| 215 | proof- | |
| 216 | show ?th1 by simp | |
| 217 | assume ?as | |
| 218 |   { assume ?lhs
 | |
| 219 | then obtain u where u:"setsum u (insert a s) = w \<and> (\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto | |
| 220 | have ?rhs proof(cases "a\<in>s") | |
| 221 | case True hence *:"insert a s = s" by auto | |
| 222 | show ?thesis using u[unfolded *] apply(rule_tac x=0 in exI) by auto | |
| 223 | next | |
| 224 | case False thus ?thesis apply(rule_tac x="u a" in exI) using u and `?as` by auto | |
| 225 | qed } moreover | |
| 226 |   { assume ?rhs
 | |
| 227 | then obtain v u where vu:"setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto | |
| 228 | have *:"\<And>x M. (if x = a then v else M) *\<^sub>R x = (if x = a then v *\<^sub>R x else M *\<^sub>R x)" by auto | |
| 229 | have ?lhs proof(cases "a\<in>s") | |
| 230 | case True thus ?thesis | |
| 231 | apply(rule_tac x="\<lambda>x. (if x=a then v else 0) + u x" in exI) | |
| 232 | unfolding setsum_clauses(2)[OF `?as`] apply simp | |
| 233 | unfolding scaleR_left_distrib and setsum_addf | |
| 234 | unfolding vu and * and scaleR_zero_left | |
| 235 | by (auto simp add: setsum_delta[OF `?as`]) | |
| 236 | next | |
| 237 | case False | |
| 238 | hence **:"\<And>x. x \<in> s \<Longrightarrow> u x = (if x = a then v else u x)" | |
| 239 | "\<And>x. x \<in> s \<Longrightarrow> u x *\<^sub>R x = (if x = a then v *\<^sub>R x else u x *\<^sub>R x)" by auto | |
| 240 | from False show ?thesis | |
| 241 | apply(rule_tac x="\<lambda>x. if x=a then v else u x" in exI) | |
| 242 | unfolding setsum_clauses(2)[OF `?as`] and * using vu | |
| 243 | using setsum_cong2[of s "\<lambda>x. u x *\<^sub>R x" "\<lambda>x. if x = a then v *\<^sub>R x else u x *\<^sub>R x", OF **(2)] | |
| 244 | using setsum_cong2[of s u "\<lambda>x. if x = a then v else u x", OF **(1)] by auto | |
| 245 | qed } | |
| 246 | ultimately show "?lhs = ?rhs" by blast | |
| 247 | qed | |
| 248 | ||
| 249 | lemma affine_hull_2: | |
| 250 | fixes a b :: "'a::real_vector" | |
| 251 |   shows "affine hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b| u v. (u + v = 1)}" (is "?lhs = ?rhs")
 | |
| 252 | proof- | |
| 253 | have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" | |
| 254 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto | |
| 255 |   have "?lhs = {y. \<exists>u. setsum u {a, b} = 1 \<and> (\<Sum>v\<in>{a, b}. u v *\<^sub>R v) = y}"
 | |
| 256 |     using affine_hull_finite[of "{a,b}"] by auto
 | |
| 257 |   also have "\<dots> = {y. \<exists>v u. u b = 1 - v \<and> u b *\<^sub>R b = y - v *\<^sub>R a}"
 | |
| 258 |     by(simp add: affine_hull_finite_step(2)[of "{b}" a]) 
 | |
| 259 | also have "\<dots> = ?rhs" unfolding * by auto | |
| 260 | finally show ?thesis by auto | |
| 261 | qed | |
| 262 | ||
| 263 | lemma affine_hull_3: | |
| 264 | fixes a b c :: "'a::real_vector" | |
| 265 |   shows "affine hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c| u v w. u + v + w = 1}" (is "?lhs = ?rhs")
 | |
| 266 | proof- | |
| 267 | have *:"\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::real)" | |
| 268 | "\<And>x y z. z = x - y \<longleftrightarrow> y + z = (x::'a)" by auto | |
| 269 | show ?thesis apply(simp add: affine_hull_finite affine_hull_finite_step) | |
| 270 | unfolding * apply auto | |
| 271 | apply(rule_tac x=v in exI) apply(rule_tac x=va in exI) apply auto | |
| 272 | apply(rule_tac x=u in exI) by(auto intro!: exI) | |
| 273 | qed | |
| 274 | ||
| 275 | subsection {* Some relations between affine hull and subspaces. *}
 | |
| 276 | ||
| 277 | lemma affine_hull_insert_subset_span: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 278 | fixes a :: "'a::euclidean_space" | 
| 33175 | 279 |   shows "affine hull (insert a s) \<subseteq> {a + v| v . v \<in> span {x - a | x . x \<in> s}}"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 280 | unfolding subset_eq Ball_def unfolding affine_hull_explicit span_explicit mem_Collect_eq | 
| 33175 | 281 | apply(rule,rule) apply(erule exE)+ apply(erule conjE)+ proof- | 
| 282 |   fix x t u assume as:"finite t" "t \<noteq> {}" "t \<subseteq> insert a s" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = x"
 | |
| 283 |   have "(\<lambda>x. x - a) ` (t - {a}) \<subseteq> {x - a |x. x \<in> s}" using as(3) by auto
 | |
| 284 |   thus "\<exists>v. x = a + v \<and> (\<exists>S u. finite S \<and> S \<subseteq> {x - a |x. x \<in> s} \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = v)"
 | |
| 285 | apply(rule_tac x="x - a" in exI) | |
| 286 | apply (rule conjI, simp) | |
| 287 |     apply(rule_tac x="(\<lambda>x. x - a) ` (t - {a})" in exI)
 | |
| 288 | apply(rule_tac x="\<lambda>x. u (x + a)" in exI) | |
| 289 | apply (rule conjI) using as(1) apply simp | |
| 290 | apply (erule conjI) | |
| 291 | using as(1) | |
| 292 | apply (simp add: setsum_reindex[unfolded inj_on_def] scaleR_right_diff_distrib setsum_subtractf scaleR_left.setsum[THEN sym] setsum_diff1 scaleR_left_diff_distrib) | |
| 293 | unfolding as by simp qed | |
| 294 | ||
| 295 | lemma affine_hull_insert_span: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 296 | fixes a :: "'a::euclidean_space" | 
| 33175 | 297 | assumes "a \<notin> s" | 
| 298 | shows "affine hull (insert a s) = | |
| 299 |             {a + v | v . v \<in> span {x - a | x.  x \<in> s}}"
 | |
| 300 | apply(rule, rule affine_hull_insert_subset_span) unfolding subset_eq Ball_def | |
| 301 | unfolding affine_hull_explicit and mem_Collect_eq proof(rule,rule,erule exE,erule conjE) | |
| 302 |   fix y v assume "y = a + v" "v \<in> span {x - a |x. x \<in> s}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 303 |   then obtain t u where obt:"finite t" "t \<subseteq> {x - a |x. x \<in> s}" "a + (\<Sum>v\<in>t. u v *\<^sub>R v) = y" unfolding span_explicit by auto
 | 
| 33175 | 304 | def f \<equiv> "(\<lambda>x. x + a) ` t" | 
| 305 | have f:"finite f" "f \<subseteq> s" "(\<Sum>v\<in>f. u (v - a) *\<^sub>R (v - a)) = y - a" unfolding f_def using obt | |
| 306 | by(auto simp add: setsum_reindex[unfolded inj_on_def]) | |
| 307 |   have *:"f \<inter> {a} = {}" "f \<inter> - {a} = f" using f(2) assms by auto
 | |
| 308 |   show "\<exists>sa u. finite sa \<and> sa \<noteq> {} \<and> sa \<subseteq> insert a s \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y"
 | |
| 309 | apply(rule_tac x="insert a f" in exI) | |
| 310 | apply(rule_tac x="\<lambda>x. if x=a then 1 - setsum (\<lambda>x. u (x - a)) f else u (x - a)" in exI) | |
| 311 | using assms and f unfolding setsum_clauses(2)[OF f(1)] and if_smult | |
| 35577 | 312 | unfolding setsum_cases[OF f(1), of "\<lambda>x. x = a"] | 
| 313 | by (auto simp add: setsum_subtractf scaleR_left.setsum algebra_simps *) qed | |
| 33175 | 314 | |
| 315 | lemma affine_hull_span: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 316 | fixes a :: "'a::euclidean_space" | 
| 33175 | 317 | assumes "a \<in> s" | 
| 318 |   shows "affine hull s = {a + v | v. v \<in> span {x - a | x. x \<in> s - {a}}}"
 | |
| 319 |   using affine_hull_insert_span[of a "s - {a}", unfolded insert_Diff[OF assms]] by auto
 | |
| 320 | ||
| 321 | subsection {* Cones. *}
 | |
| 322 | ||
| 323 | definition | |
| 324 | cone :: "'a::real_vector set \<Rightarrow> bool" where | |
| 325 | "cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" | |
| 326 | ||
| 327 | lemma cone_empty[intro, simp]: "cone {}"
 | |
| 328 | unfolding cone_def by auto | |
| 329 | ||
| 330 | lemma cone_univ[intro, simp]: "cone UNIV" | |
| 331 | unfolding cone_def by auto | |
| 332 | ||
| 333 | lemma cone_Inter[intro]: "(\<forall>s\<in>f. cone s) \<Longrightarrow> cone(\<Inter> f)" | |
| 334 | unfolding cone_def by auto | |
| 335 | ||
| 336 | subsection {* Conic hull. *}
 | |
| 337 | ||
| 338 | lemma cone_cone_hull: "cone (cone hull s)" | |
| 339 |   unfolding hull_def using cone_Inter[of "{t \<in> conic. s \<subseteq> t}"] 
 | |
| 340 | by (auto simp add: mem_def) | |
| 341 | ||
| 342 | lemma cone_hull_eq: "(cone hull s = s) \<longleftrightarrow> cone s" | |
| 343 | apply(rule hull_eq[unfolded mem_def]) | |
| 344 | using cone_Inter unfolding subset_eq by (auto simp add: mem_def) | |
| 345 | ||
| 346 | subsection {* Affine dependence and consequential theorems (from Lars Schewe). *}
 | |
| 347 | ||
| 348 | definition | |
| 349 | affine_dependent :: "'a::real_vector set \<Rightarrow> bool" where | |
| 350 |   "affine_dependent s \<longleftrightarrow> (\<exists>x\<in>s. x \<in> (affine hull (s - {x})))"
 | |
| 351 | ||
| 352 | lemma affine_dependent_explicit: | |
| 353 | "affine_dependent p \<longleftrightarrow> | |
| 354 | (\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> | |
| 355 | (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)" | |
| 356 | unfolding affine_dependent_def affine_hull_explicit mem_Collect_eq apply(rule) | |
| 357 | apply(erule bexE,erule exE,erule exE) apply(erule conjE)+ defer apply(erule exE,erule exE) apply(erule conjE)+ apply(erule bexE) | |
| 358 | proof- | |
| 359 |   fix x s u assume as:"x \<in> p" "finite s" "s \<noteq> {}" "s \<subseteq> p - {x}" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"
 | |
| 360 | have "x\<notin>s" using as(1,4) by auto | |
| 361 | show "\<exists>s u. finite s \<and> s \<subseteq> p \<and> setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = 0" | |
| 362 | apply(rule_tac x="insert x s" in exI, rule_tac x="\<lambda>v. if v = x then - 1 else u v" in exI) | |
| 363 | unfolding if_smult and setsum_clauses(2)[OF as(2)] and setsum_delta_notmem[OF `x\<notin>s`] and as using as by auto | |
| 364 | next | |
| 365 | fix s u v assume as:"finite s" "s \<subseteq> p" "setsum u s = 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" "v \<in> s" "u v \<noteq> 0" | |
| 366 |   have "s \<noteq> {v}" using as(3,6) by auto
 | |
| 367 |   thus "\<exists>x\<in>p. \<exists>s u. finite s \<and> s \<noteq> {} \<and> s \<subseteq> p - {x} \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" 
 | |
| 368 |     apply(rule_tac x=v in bexI, rule_tac x="s - {v}" in exI, rule_tac x="\<lambda>x. - (1 / u v) * u x" in exI)
 | |
| 369 | unfolding scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] unfolding setsum_right_distrib[THEN sym] and setsum_diff1[OF as(1)] using as by auto | |
| 370 | qed | |
| 371 | ||
| 372 | lemma affine_dependent_explicit_finite: | |
| 373 | fixes s :: "'a::real_vector set" assumes "finite s" | |
| 374 | shows "affine_dependent s \<longleftrightarrow> (\<exists>u. setsum u s = 0 \<and> (\<exists>v\<in>s. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = 0)" | |
| 375 | (is "?lhs = ?rhs") | |
| 376 | proof | |
| 377 | have *:"\<And>vt u v. (if vt then u v else 0) *\<^sub>R v = (if vt then (u v) *\<^sub>R v else (0::'a))" by auto | |
| 378 | assume ?lhs | |
| 379 | then obtain t u v where "finite t" "t \<subseteq> s" "setsum u t = 0" "v\<in>t" "u v \<noteq> 0" "(\<Sum>v\<in>t. u v *\<^sub>R v) = 0" | |
| 380 | unfolding affine_dependent_explicit by auto | |
| 381 | thus ?rhs apply(rule_tac x="\<lambda>x. if x\<in>t then u x else 0" in exI) | |
| 382 | apply auto unfolding * and setsum_restrict_set[OF assms, THEN sym] | |
| 383 | unfolding Int_absorb1[OF `t\<subseteq>s`] by auto | |
| 384 | next | |
| 385 | assume ?rhs | |
| 386 | then obtain u v where "setsum u s = 0" "v\<in>s" "u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0" by auto | |
| 387 | thus ?lhs unfolding affine_dependent_explicit using assms by auto | |
| 388 | qed | |
| 389 | ||
| 390 | subsection {* A general lemma. *}
 | |
| 391 | ||
| 392 | lemma convex_connected: | |
| 393 | fixes s :: "'a::real_normed_vector set" | |
| 394 | assumes "convex s" shows "connected s" | |
| 395 | proof- | |
| 396 |   { fix e1 e2 assume as:"open e1" "open e2" "e1 \<inter> e2 \<inter> s = {}" "s \<subseteq> e1 \<union> e2" 
 | |
| 397 |     assume "e1 \<inter> s \<noteq> {}" "e2 \<inter> s \<noteq> {}"
 | |
| 398 | then obtain x1 x2 where x1:"x1\<in>e1" "x1\<in>s" and x2:"x2\<in>e2" "x2\<in>s" by auto | |
| 399 | hence n:"norm (x1 - x2) > 0" unfolding zero_less_norm_iff using as(3) by auto | |
| 400 | ||
| 401 |     { fix x e::real assume as:"0 \<le> x" "x \<le> 1" "0 < e"
 | |
| 402 |       { fix y have *:"(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2) = (y - x) *\<^sub>R x1 - (y - x) *\<^sub>R x2"
 | |
| 403 | by (simp add: algebra_simps) | |
| 404 | assume "\<bar>y - x\<bar> < e / norm (x1 - x2)" | |
| 405 | hence "norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e" | |
| 406 | unfolding * and scaleR_right_diff_distrib[THEN sym] | |
| 407 | unfolding less_divide_eq using n by auto } | |
| 408 | hence "\<exists>d>0. \<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> norm ((1 - x) *\<^sub>R x1 + x *\<^sub>R x2 - ((1 - y) *\<^sub>R x1 + y *\<^sub>R x2)) < e" | |
| 409 | apply(rule_tac x="e / norm (x1 - x2)" in exI) using as | |
| 410 | apply auto unfolding zero_less_divide_iff using n by simp } note * = this | |
| 411 | ||
| 412 | have "\<exists>x\<ge>0. x \<le> 1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1 \<and> (1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" | |
| 413 | apply(rule connected_real_lemma) apply (simp add: `x1\<in>e1` `x2\<in>e2` dist_commute)+ | |
| 414 | using * apply(simp add: dist_norm) | |
| 415 | using as(1,2)[unfolded open_dist] apply simp | |
| 416 | using as(1,2)[unfolded open_dist] apply simp | |
| 417 | using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] using x1 x2 | |
| 418 | using as(3) by auto | |
| 419 | then obtain x where "x\<ge>0" "x\<le>1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e1" "(1 - x) *\<^sub>R x1 + x *\<^sub>R x2 \<notin> e2" by auto | |
| 420 | hence False using as(4) | |
| 421 | using assms[unfolded convex_alt, THEN bspec[where x=x1], THEN bspec[where x=x2]] | |
| 422 | using x1(2) x2(2) by auto } | |
| 423 | thus ?thesis unfolding connected_def by auto | |
| 424 | qed | |
| 425 | ||
| 426 | subsection {* One rather trivial consequence. *}
 | |
| 427 | ||
| 34964 | 428 | lemma connected_UNIV[intro]: "connected (UNIV :: 'a::real_normed_vector set)" | 
| 33175 | 429 | by(simp add: convex_connected convex_UNIV) | 
| 430 | ||
| 36623 | 431 | subsection {* Balls, being convex, are connected. *}
 | 
| 33175 | 432 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 433 | lemma convex_box: fixes a::"'a::euclidean_space" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 434 |   assumes "\<And>i. i<DIM('a) \<Longrightarrow> convex {x. P i x}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 435 |   shows "convex {x. \<forall>i<DIM('a). P i (x$$i)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 436 | using assms unfolding convex_def by(auto simp add:euclidean_simps) | 
| 33175 | 437 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 438 | lemma convex_positive_orthant: "convex {x::'a::euclidean_space. (\<forall>i<DIM('a). 0 \<le> x$$i)}"
 | 
| 36623 | 439 | by (rule convex_box) (simp add: atLeast_def[symmetric] convex_real_interval) | 
| 33175 | 440 | |
| 441 | lemma convex_local_global_minimum: | |
| 442 | fixes s :: "'a::real_normed_vector set" | |
| 443 | assumes "0<e" "convex_on s f" "ball x e \<subseteq> s" "\<forall>y\<in>ball x e. f x \<le> f y" | |
| 444 | shows "\<forall>y\<in>s. f x \<le> f y" | |
| 445 | proof(rule ccontr) | |
| 446 | have "x\<in>s" using assms(1,3) by auto | |
| 447 | assume "\<not> (\<forall>y\<in>s. f x \<le> f y)" | |
| 448 | then obtain y where "y\<in>s" and y:"f x > f y" by auto | |
| 449 | hence xy:"0 < dist x y" by (auto simp add: dist_nz[THEN sym]) | |
| 450 | ||
| 451 | then obtain u where "0 < u" "u \<le> 1" and u:"u < e / dist x y" | |
| 452 | using real_lbound_gt_zero[of 1 "e / dist x y"] using xy `e>0` and divide_pos_pos[of e "dist x y"] by auto | |
| 453 | hence "f ((1-u) *\<^sub>R x + u *\<^sub>R y) \<le> (1-u) * f x + u * f y" using `x\<in>s` `y\<in>s` | |
| 454 | using assms(2)[unfolded convex_on_def, THEN bspec[where x=x], THEN bspec[where x=y], THEN spec[where x="1-u"]] by auto | |
| 455 | moreover | |
| 456 | have *:"x - ((1 - u) *\<^sub>R x + u *\<^sub>R y) = u *\<^sub>R (x - y)" by (simp add: algebra_simps) | |
| 457 | have "(1 - u) *\<^sub>R x + u *\<^sub>R y \<in> ball x e" unfolding mem_ball dist_norm unfolding * and norm_scaleR and abs_of_pos[OF `0<u`] unfolding dist_norm[THEN sym] | |
| 458 | using u unfolding pos_less_divide_eq[OF xy] by auto | |
| 459 | hence "f x \<le> f ((1 - u) *\<^sub>R x + u *\<^sub>R y)" using assms(4) by auto | |
| 460 | ultimately show False using mult_strict_left_mono[OF y `u>0`] unfolding left_diff_distrib by auto | |
| 461 | qed | |
| 462 | ||
| 463 | lemma convex_ball: | |
| 464 | fixes x :: "'a::real_normed_vector" | |
| 465 | shows "convex (ball x e)" | |
| 466 | proof(auto simp add: convex_def) | |
| 467 | fix y z assume yz:"dist x y < e" "dist x z < e" | |
| 468 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 469 | have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz | |
| 470 | using convex_distance[of "ball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto | |
| 36623 | 471 | thus "dist x (u *\<^sub>R y + v *\<^sub>R z) < e" using convex_bound_lt[OF yz uv] by auto | 
| 33175 | 472 | qed | 
| 473 | ||
| 474 | lemma convex_cball: | |
| 475 | fixes x :: "'a::real_normed_vector" | |
| 476 | shows "convex(cball x e)" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 477 | proof(auto simp add: convex_def Ball_def) | 
| 33175 | 478 | fix y z assume yz:"dist x y \<le> e" "dist x z \<le> e" | 
| 479 | fix u v ::real assume uv:" 0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 480 | have "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> u * dist x y + v * dist x z" using uv yz | |
| 481 | using convex_distance[of "cball x e" x, unfolded convex_on_def, THEN bspec[where x=y], THEN bspec[where x=z]] by auto | |
| 36623 | 482 | thus "dist x (u *\<^sub>R y + v *\<^sub>R z) \<le> e" using convex_bound_le[OF yz uv] by auto | 
| 33175 | 483 | qed | 
| 484 | ||
| 485 | lemma connected_ball: | |
| 486 | fixes x :: "'a::real_normed_vector" | |
| 487 | shows "connected (ball x e)" | |
| 488 | using convex_connected convex_ball by auto | |
| 489 | ||
| 490 | lemma connected_cball: | |
| 491 | fixes x :: "'a::real_normed_vector" | |
| 492 | shows "connected(cball x e)" | |
| 493 | using convex_connected convex_cball by auto | |
| 494 | ||
| 495 | subsection {* Convex hull. *}
 | |
| 496 | ||
| 497 | lemma convex_convex_hull: "convex(convex hull s)" | |
| 498 |   unfolding hull_def using convex_Inter[of "{t\<in>convex. s\<subseteq>t}"]
 | |
| 499 | unfolding mem_def by auto | |
| 500 | ||
| 34064 
eee04bbbae7e
avoid dependency on implicit dest rule predicate1D in proofs
 haftmann parents: 
33758diff
changeset | 501 | lemma convex_hull_eq: "convex hull s = s \<longleftrightarrow> convex s" | 
| 36071 | 502 | by (metis convex_convex_hull hull_same mem_def) | 
| 33175 | 503 | |
| 504 | lemma bounded_convex_hull: | |
| 505 | fixes s :: "'a::real_normed_vector set" | |
| 506 | assumes "bounded s" shows "bounded(convex hull s)" | |
| 507 | proof- from assms obtain B where B:"\<forall>x\<in>s. norm x \<le> B" unfolding bounded_iff by auto | |
| 508 | show ?thesis apply(rule bounded_subset[OF bounded_cball, of _ 0 B]) | |
| 509 | unfolding subset_hull[unfolded mem_def, of convex, OF convex_cball] | |
| 510 | unfolding subset_eq mem_cball dist_norm using B by auto qed | |
| 511 | ||
| 512 | lemma finite_imp_bounded_convex_hull: | |
| 513 | fixes s :: "'a::real_normed_vector set" | |
| 514 | shows "finite s \<Longrightarrow> bounded(convex hull s)" | |
| 515 | using bounded_convex_hull finite_imp_bounded by auto | |
| 516 | ||
| 517 | subsection {* Stepping theorems for convex hulls of finite sets. *}
 | |
| 518 | ||
| 519 | lemma convex_hull_empty[simp]: "convex hull {} = {}"
 | |
| 520 | apply(rule hull_unique) unfolding mem_def by auto | |
| 521 | ||
| 522 | lemma convex_hull_singleton[simp]: "convex hull {a} = {a}"
 | |
| 523 | apply(rule hull_unique) unfolding mem_def by auto | |
| 524 | ||
| 525 | lemma convex_hull_insert: | |
| 526 | fixes s :: "'a::real_vector set" | |
| 527 |   assumes "s \<noteq> {}"
 | |
| 528 |   shows "convex hull (insert a s) = {x. \<exists>u\<ge>0. \<exists>v\<ge>0. \<exists>b. (u + v = 1) \<and>
 | |
| 529 | b \<in> (convex hull s) \<and> (x = u *\<^sub>R a + v *\<^sub>R b)}" (is "?xyz = ?hull") | |
| 530 | apply(rule,rule hull_minimal,rule) unfolding mem_def[of _ convex] and insert_iff prefer 3 apply rule proof- | |
| 531 | fix x assume x:"x = a \<or> x \<in> s" | |
| 532 | thus "x\<in>?hull" apply rule unfolding mem_Collect_eq apply(rule_tac x=1 in exI) defer | |
| 533 | apply(rule_tac x=0 in exI) using assms hull_subset[of s convex] by auto | |
| 534 | next | |
| 535 | fix x assume "x\<in>?hull" | |
| 536 | then obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "x = u *\<^sub>R a + v *\<^sub>R b" by auto | |
| 537 | have "a\<in>convex hull insert a s" "b\<in>convex hull insert a s" | |
| 538 |     using hull_mono[of s "insert a s" convex] hull_mono[of "{a}" "insert a s" convex] and obt(4) by auto
 | |
| 539 | thus "x\<in> convex hull insert a s" unfolding obt(5) using convex_convex_hull[of "insert a s", unfolded convex_def] | |
| 540 | apply(erule_tac x=a in ballE) apply(erule_tac x=b in ballE) apply(erule_tac x=u in allE) using obt by auto | |
| 541 | next | |
| 542 | show "convex ?hull" unfolding convex_def apply(rule,rule,rule,rule,rule,rule,rule) proof- | |
| 543 | fix x y u v assume as:"(0::real) \<le> u" "0 \<le> v" "u + v = 1" "x\<in>?hull" "y\<in>?hull" | |
| 544 | from as(4) obtain u1 v1 b1 where obt1:"u1\<ge>0" "v1\<ge>0" "u1 + v1 = 1" "b1 \<in> convex hull s" "x = u1 *\<^sub>R a + v1 *\<^sub>R b1" by auto | |
| 545 | from as(5) obtain u2 v2 b2 where obt2:"u2\<ge>0" "v2\<ge>0" "u2 + v2 = 1" "b2 \<in> convex hull s" "y = u2 *\<^sub>R a + v2 *\<^sub>R b2" by auto | |
| 546 | have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps) | |
| 547 | have "\<exists>b \<in> convex hull s. u *\<^sub>R x + v *\<^sub>R y = (u * u1) *\<^sub>R a + (v * u2) *\<^sub>R a + (b - (u * u1) *\<^sub>R b - (v * u2) *\<^sub>R b)" | |
| 548 | proof(cases "u * v1 + v * v2 = 0") | |
| 549 | have *:"\<And>(x::'a) s1 s2. x - s1 *\<^sub>R x - s2 *\<^sub>R x = ((1::real) - (s1 + s2)) *\<^sub>R x" by (auto simp add: algebra_simps) | |
| 36071 | 550 | case True hence **:"u * v1 = 0" "v * v2 = 0" | 
| 551 | using mult_nonneg_nonneg[OF `u\<ge>0` `v1\<ge>0`] mult_nonneg_nonneg[OF `v\<ge>0` `v2\<ge>0`] by arith+ | |
| 33175 | 552 | hence "u * u1 + v * u2 = 1" using as(3) obt1(3) obt2(3) by auto | 
| 553 | thus ?thesis unfolding obt1(5) obt2(5) * using assms hull_subset[of s convex] by(auto simp add: ** scaleR_right_distrib) | |
| 554 | next | |
| 555 | have "1 - (u * u1 + v * u2) = (u + v) - (u * u1 + v * u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) | |
| 556 | also have "\<dots> = u * (v1 + u1 - u1) + v * (v2 + u2 - u2)" using as(3) obt1(3) obt2(3) by (auto simp add: field_simps) | |
| 557 | also have "\<dots> = u * v1 + v * v2" by simp finally have **:"1 - (u * u1 + v * u2) = u * v1 + v * v2" by auto | |
| 558 | case False have "0 \<le> u * v1 + v * v2" "0 \<le> u * v1" "0 \<le> u * v1 + v * v2" "0 \<le> v * v2" apply - | |
| 559 | apply(rule add_nonneg_nonneg) prefer 4 apply(rule add_nonneg_nonneg) apply(rule_tac [!] mult_nonneg_nonneg) | |
| 560 | using as(1,2) obt1(1,2) obt2(1,2) by auto | |
| 561 | thus ?thesis unfolding obt1(5) obt2(5) unfolding * and ** using False | |
| 562 | apply(rule_tac x="((u * v1) / (u * v1 + v * v2)) *\<^sub>R b1 + ((v * v2) / (u * v1 + v * v2)) *\<^sub>R b2" in bexI) defer | |
| 563 | apply(rule convex_convex_hull[of s, unfolded convex_def, rule_format]) using obt1(4) obt2(4) | |
| 564 | unfolding add_divide_distrib[THEN sym] and real_0_le_divide_iff | |
| 565 | by (auto simp add: scaleR_left_distrib scaleR_right_distrib) | |
| 566 | qed note * = this | |
| 36071 | 567 | have u1:"u1 \<le> 1" unfolding obt1(3)[THEN sym] and not_le using obt1(2) by auto | 
| 568 | have u2:"u2 \<le> 1" unfolding obt2(3)[THEN sym] and not_le using obt2(2) by auto | |
| 33175 | 569 | have "u1 * u + u2 * v \<le> (max u1 u2) * u + (max u1 u2) * v" apply(rule add_mono) | 
| 570 | apply(rule_tac [!] mult_right_mono) using as(1,2) obt1(1,2) obt2(1,2) by auto | |
| 571 | also have "\<dots> \<le> 1" unfolding mult.add_right[THEN sym] and as(3) using u1 u2 by auto | |
| 572 | finally | |
| 573 | show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x="u * u1 + v * u2" in exI) | |
| 574 | apply(rule conjI) defer apply(rule_tac x="1 - u * u1 - v * u2" in exI) unfolding Bex_def | |
| 575 | using as(1,2) obt1(1,2) obt2(1,2) * by(auto intro!: mult_nonneg_nonneg add_nonneg_nonneg simp add: algebra_simps) | |
| 576 | qed | |
| 577 | qed | |
| 578 | ||
| 579 | ||
| 580 | subsection {* Explicit expression for convex hull. *}
 | |
| 581 | ||
| 582 | lemma convex_hull_indexed: | |
| 583 | fixes s :: "'a::real_vector set" | |
| 584 |   shows "convex hull s = {y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> s) \<and>
 | |
| 585 |                             (setsum u {1..k} = 1) \<and>
 | |
| 586 |                             (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} = y)}" (is "?xyz = ?hull")
 | |
| 587 | apply(rule hull_unique) unfolding mem_def[of _ convex] apply(rule) defer | |
| 588 | apply(subst convex_def) apply(rule,rule,rule,rule,rule,rule,rule) | |
| 589 | proof- | |
| 590 | fix x assume "x\<in>s" | |
| 591 | thus "x \<in> ?hull" unfolding mem_Collect_eq apply(rule_tac x=1 in exI, rule_tac x="\<lambda>x. 1" in exI) by auto | |
| 592 | next | |
| 593 | fix t assume as:"s \<subseteq> t" "convex t" | |
| 594 | show "?hull \<subseteq> t" apply(rule) unfolding mem_Collect_eq apply(erule exE | erule conjE)+ proof- | |
| 595 |     fix x k u y assume assm:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
 | |
| 596 | show "x\<in>t" unfolding assm(3)[THEN sym] apply(rule as(2)[unfolded convex, rule_format]) | |
| 597 | using assm(1,2) as(1) by auto qed | |
| 598 | next | |
| 599 | fix x y u v assume uv:"0\<le>u" "0\<le>v" "u+v=(1::real)" and xy:"x\<in>?hull" "y\<in>?hull" | |
| 600 |   from xy obtain k1 u1 x1 where x:"\<forall>i\<in>{1::nat..k1}. 0\<le>u1 i \<and> x1 i \<in> s" "setsum u1 {Suc 0..k1} = 1" "(\<Sum>i = Suc 0..k1. u1 i *\<^sub>R x1 i) = x" by auto
 | |
| 601 |   from xy obtain k2 u2 x2 where y:"\<forall>i\<in>{1::nat..k2}. 0\<le>u2 i \<and> x2 i \<in> s" "setsum u2 {Suc 0..k2} = 1" "(\<Sum>i = Suc 0..k2. u2 i *\<^sub>R x2 i) = y" by auto
 | |
| 602 | have *:"\<And>P (x1::'a) x2 s1 s2 i.(if P i then s1 else s2) *\<^sub>R (if P i then x1 else x2) = (if P i then s1 *\<^sub>R x1 else s2 *\<^sub>R x2)" | |
| 603 |     "{1..k1 + k2} \<inter> {1..k1} = {1..k1}" "{1..k1 + k2} \<inter> - {1..k1} = (\<lambda>i. i + k1) ` {1..k2}"
 | |
| 604 | prefer 3 apply(rule,rule) unfolding image_iff apply(rule_tac x="x - k1" in bexI) by(auto simp add: not_le) | |
| 605 |   have inj:"inj_on (\<lambda>i. i + k1) {1..k2}" unfolding inj_on_def by auto  
 | |
| 606 | show "u *\<^sub>R x + v *\<^sub>R y \<in> ?hull" apply(rule) | |
| 607 |     apply(rule_tac x="k1 + k2" in exI, rule_tac x="\<lambda>i. if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)" in exI)
 | |
| 608 |     apply(rule_tac x="\<lambda>i. if i \<in> {1..k1} then x1 i else x2 (i - k1)" in exI) apply(rule,rule) defer apply(rule)
 | |
| 35577 | 609 | unfolding * and setsum_cases[OF finite_atLeastAtMost[of 1 "k1 + k2"]] and setsum_reindex[OF inj] and o_def Collect_mem_eq | 
| 33175 | 610 | unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] setsum_right_distrib[THEN sym] proof- | 
| 611 |     fix i assume i:"i \<in> {1..k1+k2}"
 | |
| 612 |     show "0 \<le> (if i \<in> {1..k1} then u * u1 i else v * u2 (i - k1)) \<and> (if i \<in> {1..k1} then x1 i else x2 (i - k1)) \<in> s"
 | |
| 613 |     proof(cases "i\<in>{1..k1}")
 | |
| 614 | case True thus ?thesis using mult_nonneg_nonneg[of u "u1 i"] and uv(1) x(1)[THEN bspec[where x=i]] by auto | |
| 615 | next def j \<equiv> "i - k1" | |
| 616 |       case False with i have "j \<in> {1..k2}" unfolding j_def by auto
 | |
| 617 | thus ?thesis unfolding j_def[symmetric] using False | |
| 618 | using mult_nonneg_nonneg[of v "u2 j"] and uv(2) y(1)[THEN bspec[where x=j]] by auto qed | |
| 619 | qed(auto simp add: not_le x(2,3) y(2,3) uv(3)) | |
| 620 | qed | |
| 621 | ||
| 622 | lemma convex_hull_finite: | |
| 623 | fixes s :: "'a::real_vector set" | |
| 624 | assumes "finite s" | |
| 625 |   shows "convex hull s = {y. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and>
 | |
| 626 | setsum u s = 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y}" (is "?HULL = ?set") | |
| 627 | proof(rule hull_unique, auto simp add: mem_def[of _ convex] convex_def[of ?set]) | |
| 628 | fix x assume "x\<in>s" thus " \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>x\<in>s. u x *\<^sub>R x) = x" | |
| 629 | apply(rule_tac x="\<lambda>y. if x=y then 1 else 0" in exI) apply auto | |
| 630 | unfolding setsum_delta'[OF assms] and setsum_delta''[OF assms] by auto | |
| 631 | next | |
| 632 | fix u v ::real assume uv:"0 \<le> u" "0 \<le> v" "u + v = 1" | |
| 633 | fix ux assume ux:"\<forall>x\<in>s. 0 \<le> ux x" "setsum ux s = (1::real)" | |
| 634 | fix uy assume uy:"\<forall>x\<in>s. 0 \<le> uy x" "setsum uy s = (1::real)" | |
| 635 |   { fix x assume "x\<in>s"
 | |
| 636 | hence "0 \<le> u * ux x + v * uy x" using ux(1)[THEN bspec[where x=x]] uy(1)[THEN bspec[where x=x]] and uv(1,2) | |
| 637 | by (auto, metis add_nonneg_nonneg mult_nonneg_nonneg uv(1) uv(2)) } | |
| 638 | moreover have "(\<Sum>x\<in>s. u * ux x + v * uy x) = 1" | |
| 639 | unfolding setsum_addf and setsum_right_distrib[THEN sym] and ux(2) uy(2) using uv(3) by auto | |
| 640 | moreover have "(\<Sum>x\<in>s. (u * ux x + v * uy x) *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)" | |
| 641 | unfolding scaleR_left_distrib and setsum_addf and scaleR_scaleR[THEN sym] and scaleR_right.setsum [symmetric] by auto | |
| 642 | ultimately show "\<exists>uc. (\<forall>x\<in>s. 0 \<le> uc x) \<and> setsum uc s = 1 \<and> (\<Sum>x\<in>s. uc x *\<^sub>R x) = u *\<^sub>R (\<Sum>x\<in>s. ux x *\<^sub>R x) + v *\<^sub>R (\<Sum>x\<in>s. uy x *\<^sub>R x)" | |
| 643 | apply(rule_tac x="\<lambda>x. u * ux x + v * uy x" in exI) by auto | |
| 644 | next | |
| 645 | fix t assume t:"s \<subseteq> t" "convex t" | |
| 646 | fix u assume u:"\<forall>x\<in>s. 0 \<le> u x" "setsum u s = (1::real)" | |
| 647 | thus "(\<Sum>x\<in>s. u x *\<^sub>R x) \<in> t" using t(2)[unfolded convex_explicit, THEN spec[where x=s], THEN spec[where x=u]] | |
| 648 | using assms and t(1) by auto | |
| 649 | qed | |
| 650 | ||
| 651 | subsection {* Another formulation from Lars Schewe. *}
 | |
| 652 | ||
| 653 | lemma setsum_constant_scaleR: | |
| 654 | fixes y :: "'a::real_vector" | |
| 655 | shows "(\<Sum>x\<in>A. y) = of_nat (card A) *\<^sub>R y" | |
| 656 | apply (cases "finite A") | |
| 657 | apply (induct set: finite) | |
| 658 | apply (simp_all add: algebra_simps) | |
| 659 | done | |
| 660 | ||
| 661 | lemma convex_hull_explicit: | |
| 662 | fixes p :: "'a::real_vector set" | |
| 663 |   shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and>
 | |
| 664 | (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" (is "?lhs = ?rhs") | |
| 665 | proof- | |
| 666 |   { fix x assume "x\<in>?lhs"
 | |
| 667 |     then obtain k u y where obt:"\<forall>i\<in>{1::nat..k}. 0 \<le> u i \<and> y i \<in> p" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R y i) = x"
 | |
| 668 | unfolding convex_hull_indexed by auto | |
| 669 | ||
| 670 |     have fin:"finite {1..k}" by auto
 | |
| 671 |     have fin':"\<And>v. finite {i \<in> {1..k}. y i = v}" by auto
 | |
| 672 |     { fix j assume "j\<in>{1..k}"
 | |
| 673 |       hence "y j \<in> p" "0 \<le> setsum u {i. Suc 0 \<le> i \<and> i \<le> k \<and> y i = y j}"
 | |
| 674 | using obt(1)[THEN bspec[where x=j]] and obt(2) apply simp | |
| 675 | apply(rule setsum_nonneg) using obt(1) by auto } | |
| 676 | moreover | |
| 677 |     have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v}) = 1"  
 | |
| 678 | unfolding setsum_image_gen[OF fin, THEN sym] using obt(2) by auto | |
| 679 |     moreover have "(\<Sum>v\<in>y ` {1..k}. setsum u {i \<in> {1..k}. y i = v} *\<^sub>R v) = x"
 | |
| 680 | using setsum_image_gen[OF fin, of "\<lambda>i. u i *\<^sub>R y i" y, THEN sym] | |
| 681 | unfolding scaleR_left.setsum using obt(3) by auto | |
| 682 | ultimately have "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = x" | |
| 683 |       apply(rule_tac x="y ` {1..k}" in exI)
 | |
| 684 |       apply(rule_tac x="\<lambda>v. setsum u {i\<in>{1..k}. y i = v}" in exI) by auto
 | |
| 685 | hence "x\<in>?rhs" by auto } | |
| 686 | moreover | |
| 687 |   { fix y assume "y\<in>?rhs"
 | |
| 688 | then obtain s u where obt:"finite s" "s \<subseteq> p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto | |
| 689 | ||
| 690 |     obtain f where f:"inj_on f {1..card s}" "f ` {1..card s} = s" using ex_bij_betw_nat_finite_1[OF obt(1)] unfolding bij_betw_def by auto
 | |
| 691 | ||
| 692 |     { fix i::nat assume "i\<in>{1..card s}"
 | |
| 693 | hence "f i \<in> s" apply(subst f(2)[THEN sym]) by auto | |
| 694 | hence "0 \<le> u (f i)" "f i \<in> p" using obt(2,3) by auto } | |
| 695 |     moreover have *:"finite {1..card s}" by auto
 | |
| 696 |     { fix y assume "y\<in>s"
 | |
| 697 |       then obtain i where "i\<in>{1..card s}" "f i = y" using f using image_iff[of y f "{1..card s}"] by auto
 | |
| 698 |       hence "{x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = {i}" apply auto using f(1)[unfolded inj_on_def] apply(erule_tac x=x in ballE) by auto
 | |
| 699 |       hence "card {x. Suc 0 \<le> x \<and> x \<le> card s \<and> f x = y} = 1" by auto
 | |
| 700 |       hence "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x)) = u y"
 | |
| 701 |             "(\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x) = u y *\<^sub>R y"
 | |
| 702 | by (auto simp add: setsum_constant_scaleR) } | |
| 703 | ||
| 704 | hence "(\<Sum>x = 1..card s. u (f x)) = 1" "(\<Sum>i = 1..card s. u (f i) *\<^sub>R f i) = y" | |
| 705 | unfolding setsum_image_gen[OF *(1), of "\<lambda>x. u (f x) *\<^sub>R f x" f] and setsum_image_gen[OF *(1), of "\<lambda>x. u (f x)" f] | |
| 706 |       unfolding f using setsum_cong2[of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x) *\<^sub>R f x)" "\<lambda>v. u v *\<^sub>R v"]
 | |
| 707 |       using setsum_cong2 [of s "\<lambda>y. (\<Sum>x\<in>{x \<in> {1..card s}. f x = y}. u (f x))" u] unfolding obt(4,5) by auto
 | |
| 708 | ||
| 709 |     ultimately have "\<exists>k u x. (\<forall>i\<in>{1..k}. 0 \<le> u i \<and> x i \<in> p) \<and> setsum u {1..k} = 1 \<and> (\<Sum>i::nat = 1..k. u i *\<^sub>R x i) = y"
 | |
| 710 | apply(rule_tac x="card s" in exI) apply(rule_tac x="u \<circ> f" in exI) apply(rule_tac x=f in exI) by fastsimp | |
| 711 | hence "y \<in> ?lhs" unfolding convex_hull_indexed by auto } | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 712 | ultimately show ?thesis unfolding set_eq_iff by blast | 
| 33175 | 713 | qed | 
| 714 | ||
| 715 | subsection {* A stepping theorem for that expansion. *}
 | |
| 716 | ||
| 717 | lemma convex_hull_finite_step: | |
| 718 | fixes s :: "'a::real_vector set" assumes "finite s" | |
| 719 | shows "(\<exists>u. (\<forall>x\<in>insert a s. 0 \<le> u x) \<and> setsum u (insert a s) = w \<and> setsum (\<lambda>x. u x *\<^sub>R x) (insert a s) = y) | |
| 720 | \<longleftrightarrow> (\<exists>v\<ge>0. \<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = w - v \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y - v *\<^sub>R a)" (is "?lhs = ?rhs") | |
| 721 | proof(rule, case_tac[!] "a\<in>s") | |
| 722 | assume "a\<in>s" hence *:"insert a s = s" by auto | |
| 723 | assume ?lhs thus ?rhs unfolding * apply(rule_tac x=0 in exI) by auto | |
| 724 | next | |
| 725 | assume ?lhs then obtain u where u:"\<forall>x\<in>insert a s. 0 \<le> u x" "setsum u (insert a s) = w" "(\<Sum>x\<in>insert a s. u x *\<^sub>R x) = y" by auto | |
| 726 | assume "a\<notin>s" thus ?rhs apply(rule_tac x="u a" in exI) using u(1)[THEN bspec[where x=a]] apply simp | |
| 727 | apply(rule_tac x=u in exI) using u[unfolded setsum_clauses(2)[OF assms]] and `a\<notin>s` by auto | |
| 728 | next | |
| 729 | assume "a\<in>s" hence *:"insert a s = s" by auto | |
| 730 | have fin:"finite (insert a s)" using assms by auto | |
| 731 | assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto | |
| 732 | show ?lhs apply(rule_tac x="\<lambda>x. (if a = x then v else 0) + u x" in exI) unfolding scaleR_left_distrib and setsum_addf and setsum_delta''[OF fin] and setsum_delta'[OF fin] | |
| 733 | unfolding setsum_clauses(2)[OF assms] using uv and uv(2)[THEN bspec[where x=a]] and `a\<in>s` by auto | |
| 734 | next | |
| 735 | assume ?rhs then obtain v u where uv:"v\<ge>0" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = w - v" "(\<Sum>x\<in>s. u x *\<^sub>R x) = y - v *\<^sub>R a" by auto | |
| 736 | moreover assume "a\<notin>s" moreover have "(\<Sum>x\<in>s. if a = x then v else u x) = setsum u s" "(\<Sum>x\<in>s. (if a = x then v else u x) *\<^sub>R x) = (\<Sum>x\<in>s. u x *\<^sub>R x)" | |
| 737 | apply(rule_tac setsum_cong2) defer apply(rule_tac setsum_cong2) using `a\<notin>s` by auto | |
| 738 | ultimately show ?lhs apply(rule_tac x="\<lambda>x. if a = x then v else u x" in exI) unfolding setsum_clauses(2)[OF assms] by auto | |
| 739 | qed | |
| 740 | ||
| 741 | subsection {* Hence some special cases. *}
 | |
| 742 | ||
| 743 | lemma convex_hull_2: | |
| 744 |   "convex hull {a,b} = {u *\<^sub>R a + v *\<^sub>R b | u v. 0 \<le> u \<and> 0 \<le> v \<and> u + v = 1}"
 | |
| 745 | proof- have *:"\<And>u. (\<forall>x\<in>{a, b}. 0 \<le> u x) \<longleftrightarrow> 0 \<le> u a \<and> 0 \<le> u b" by auto have **:"finite {b}" by auto
 | |
| 746 | show ?thesis apply(simp add: convex_hull_finite) unfolding convex_hull_finite_step[OF **, of a 1, unfolded * conj_assoc] | |
| 747 | apply auto apply(rule_tac x=v in exI) apply(rule_tac x="1 - v" in exI) apply simp | |
| 748 | apply(rule_tac x=u in exI) apply simp apply(rule_tac x="\<lambda>x. v" in exI) by simp qed | |
| 749 | ||
| 750 | lemma convex_hull_2_alt: "convex hull {a,b} = {a + u *\<^sub>R (b - a) | u.  0 \<le> u \<and> u \<le> 1}"
 | |
| 751 | unfolding convex_hull_2 unfolding Collect_def | |
| 752 | proof(rule ext) have *:"\<And>x y ::real. x + y = 1 \<longleftrightarrow> x = 1 - y" by auto | |
| 753 | fix x show "(\<exists>v u. x = v *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> v \<and> 0 \<le> u \<and> v + u = 1) = (\<exists>u. x = a + u *\<^sub>R (b - a) \<and> 0 \<le> u \<and> u \<le> 1)" | |
| 754 | unfolding * apply auto apply(rule_tac[!] x=u in exI) by (auto simp add: algebra_simps) qed | |
| 755 | ||
| 756 | lemma convex_hull_3: | |
| 757 |   "convex hull {a,b,c} = { u *\<^sub>R a + v *\<^sub>R b + w *\<^sub>R c | u v w. 0 \<le> u \<and> 0 \<le> v \<and> 0 \<le> w \<and> u + v + w = 1}"
 | |
| 758 | proof- | |
| 759 |   have fin:"finite {a,b,c}" "finite {b,c}" "finite {c}" by auto
 | |
| 760 | have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 761 | "\<And>x y z ::_::euclidean_space. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by (auto simp add: field_simps) | 
| 33175 | 762 | show ?thesis unfolding convex_hull_finite[OF fin(1)] and Collect_def and convex_hull_finite_step[OF fin(2)] and * | 
| 763 | unfolding convex_hull_finite_step[OF fin(3)] apply(rule ext) apply simp apply auto | |
| 764 | apply(rule_tac x=va in exI) apply (rule_tac x="u c" in exI) apply simp | |
| 765 | apply(rule_tac x="1 - v - w" in exI) apply simp apply(rule_tac x=v in exI) apply simp apply(rule_tac x="\<lambda>x. w" in exI) by simp qed | |
| 766 | ||
| 767 | lemma convex_hull_3_alt: | |
| 768 |   "convex hull {a,b,c} = {a + u *\<^sub>R (b - a) + v *\<^sub>R (c - a) | u v.  0 \<le> u \<and> 0 \<le> v \<and> u + v \<le> 1}"
 | |
| 769 | proof- have *:"\<And>x y z ::real. x + y + z = 1 \<longleftrightarrow> x = 1 - y - z" by auto | |
| 770 | show ?thesis unfolding convex_hull_3 apply (auto simp add: *) apply(rule_tac x=v in exI) apply(rule_tac x=w in exI) apply (simp add: algebra_simps) | |
| 771 | apply(rule_tac x=u in exI) apply(rule_tac x=v in exI) by (simp add: algebra_simps) qed | |
| 772 | ||
| 773 | subsection {* Relations among closure notions and corresponding hulls. *}
 | |
| 774 | ||
| 775 | text {* TODO: Generalize linear algebra concepts defined in @{text
 | |
| 776 | Euclidean_Space.thy} so that we can generalize these lemmas. *} | |
| 777 | ||
| 778 | lemma subspace_imp_affine: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 779 | fixes s :: "(_::euclidean_space) set" shows "subspace s \<Longrightarrow> affine s" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 780 | unfolding subspace_def affine_def by auto | 
| 33175 | 781 | |
| 782 | lemma affine_imp_convex: "affine s \<Longrightarrow> convex s" | |
| 783 | unfolding affine_def convex_def by auto | |
| 784 | ||
| 785 | lemma subspace_imp_convex: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 786 | fixes s :: "(_::euclidean_space) set" shows "subspace s \<Longrightarrow> convex s" | 
| 33175 | 787 | using subspace_imp_affine affine_imp_convex by auto | 
| 788 | ||
| 789 | lemma affine_hull_subset_span: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 790 | fixes s :: "(_::euclidean_space) set" shows "(affine hull s) \<subseteq> (span s)" | 
| 36071 | 791 | by (metis hull_minimal mem_def span_inc subspace_imp_affine subspace_span) | 
| 33175 | 792 | |
| 793 | lemma convex_hull_subset_span: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 794 | fixes s :: "(_::euclidean_space) set" shows "(convex hull s) \<subseteq> (span s)" | 
| 36071 | 795 | by (metis hull_minimal mem_def span_inc subspace_imp_convex subspace_span) | 
| 33175 | 796 | |
| 797 | lemma convex_hull_subset_affine_hull: "(convex hull s) \<subseteq> (affine hull s)" | |
| 36071 | 798 | by (metis affine_affine_hull affine_imp_convex hull_minimal hull_subset mem_def) | 
| 799 | ||
| 33175 | 800 | |
| 801 | lemma affine_dependent_imp_dependent: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 802 | fixes s :: "(_::euclidean_space) set" shows "affine_dependent s \<Longrightarrow> dependent s" | 
| 33175 | 803 | unfolding affine_dependent_def dependent_def | 
| 804 | using affine_hull_subset_span by auto | |
| 805 | ||
| 806 | lemma dependent_imp_affine_dependent: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 807 | fixes s :: "(_::euclidean_space) set" | 
| 33175 | 808 |   assumes "dependent {x - a| x . x \<in> s}" "a \<notin> s"
 | 
| 809 | shows "affine_dependent (insert a s)" | |
| 810 | proof- | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 811 | from assms(1)[unfolded dependent_explicit] obtain S u v | 
| 33175 | 812 |     where obt:"finite S" "S \<subseteq> {x - a |x. x \<in> s}" "v\<in>S" "u v  \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0" by auto
 | 
| 813 | def t \<equiv> "(\<lambda>x. x + a) ` S" | |
| 814 | ||
| 815 | have inj:"inj_on (\<lambda>x. x + a) S" unfolding inj_on_def by auto | |
| 816 | have "0\<notin>S" using obt(2) assms(2) unfolding subset_eq by auto | |
| 817 | have fin:"finite t" and "t\<subseteq>s" unfolding t_def using obt(1,2) by auto | |
| 818 | ||
| 819 | hence "finite (insert a t)" and "insert a t \<subseteq> insert a s" by auto | |
| 820 | moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x)) = (\<Sum>x\<in>t. Q x)" | |
| 821 | apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto | |
| 822 | have "(\<Sum>x\<in>insert a t. if x = a then - (\<Sum>x\<in>t. u (x - a)) else u (x - a)) = 0" | |
| 823 | unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` apply auto unfolding * by auto | |
| 824 | moreover have "\<exists>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) \<noteq> 0" | |
| 825 | apply(rule_tac x="v + a" in bexI) using obt(3,4) and `0\<notin>S` unfolding t_def by auto | |
| 826 | moreover have *:"\<And>P Q. (\<Sum>x\<in>t. (if x = a then P x else Q x) *\<^sub>R x) = (\<Sum>x\<in>t. Q x *\<^sub>R x)" | |
| 827 | apply(rule setsum_cong2) using `a\<notin>s` `t\<subseteq>s` by auto | |
| 828 | have "(\<Sum>x\<in>t. u (x - a)) *\<^sub>R a = (\<Sum>v\<in>t. u (v - a) *\<^sub>R v)" | |
| 829 | unfolding scaleR_left.setsum unfolding t_def and setsum_reindex[OF inj] and o_def | |
| 830 | using obt(5) by (auto simp add: setsum_addf scaleR_right_distrib) | |
| 831 | hence "(\<Sum>v\<in>insert a t. (if v = a then - (\<Sum>x\<in>t. u (x - a)) else u (v - a)) *\<^sub>R v) = 0" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 832 | unfolding setsum_clauses(2)[OF fin] using `a\<notin>s` `t\<subseteq>s` by (auto simp add: *) | 
| 33175 | 833 | ultimately show ?thesis unfolding affine_dependent_explicit | 
| 834 | apply(rule_tac x="insert a t" in exI) by auto | |
| 835 | qed | |
| 836 | ||
| 837 | lemma convex_cone: | |
| 838 | "convex s \<and> cone s \<longleftrightarrow> (\<forall>x\<in>s. \<forall>y\<in>s. (x + y) \<in> s) \<and> (\<forall>x\<in>s. \<forall>c\<ge>0. (c *\<^sub>R x) \<in> s)" (is "?lhs = ?rhs") | |
| 839 | proof- | |
| 840 |   { fix x y assume "x\<in>s" "y\<in>s" and ?lhs
 | |
| 841 | hence "2 *\<^sub>R x \<in>s" "2 *\<^sub>R y \<in> s" unfolding cone_def by auto | |
| 842 | hence "x + y \<in> s" using `?lhs`[unfolded convex_def, THEN conjunct1] | |
| 843 | apply(erule_tac x="2*\<^sub>R x" in ballE) apply(erule_tac x="2*\<^sub>R y" in ballE) | |
| 844 | apply(erule_tac x="1/2" in allE) apply simp apply(erule_tac x="1/2" in allE) by auto } | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 845 | thus ?thesis unfolding convex_def cone_def by blast | 
| 33175 | 846 | qed | 
| 847 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 848 | lemma affine_dependent_biggerset: fixes s::"('a::euclidean_space) set"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 849 |   assumes "finite s" "card s \<ge> DIM('a) + 2"
 | 
| 33175 | 850 | shows "affine_dependent s" | 
| 851 | proof- | |
| 852 |   have "s\<noteq>{}" using assms by auto then obtain a where "a\<in>s" by auto
 | |
| 853 |   have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
 | |
| 854 |   have "card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
 | |
| 855 | apply(rule card_image) unfolding inj_on_def by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 856 |   also have "\<dots> > DIM('a)" using assms(2)
 | 
| 33175 | 857 | unfolding card_Diff_singleton[OF assms(1) `a\<in>s`] by auto | 
| 858 | finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym]) | |
| 859 | apply(rule dependent_imp_affine_dependent) | |
| 860 | apply(rule dependent_biggerset) by auto qed | |
| 861 | ||
| 862 | lemma affine_dependent_biggerset_general: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 863 |   assumes "finite (s::('a::euclidean_space) set)" "card s \<ge> dim s + 2"
 | 
| 33175 | 864 | shows "affine_dependent s" | 
| 865 | proof- | |
| 866 |   from assms(2) have "s \<noteq> {}" by auto
 | |
| 867 | then obtain a where "a\<in>s" by auto | |
| 868 |   have *:"{x - a |x. x \<in> s - {a}} = (\<lambda>x. x - a) ` (s - {a})" by auto
 | |
| 869 |   have **:"card {x - a |x. x \<in> s - {a}} = card (s - {a})" unfolding * 
 | |
| 870 | apply(rule card_image) unfolding inj_on_def by auto | |
| 871 |   have "dim {x - a |x. x \<in> s - {a}} \<le> dim s"
 | |
| 872 | apply(rule subset_le_dim) unfolding subset_eq | |
| 873 | using `a\<in>s` by (auto simp add:span_superset span_sub) | |
| 874 | also have "\<dots> < dim s + 1" by auto | |
| 875 |   also have "\<dots> \<le> card (s - {a})" using assms
 | |
| 876 | using card_Diff_singleton[OF assms(1) `a\<in>s`] by auto | |
| 877 | finally show ?thesis apply(subst insert_Diff[OF `a\<in>s`, THEN sym]) | |
| 878 | apply(rule dependent_imp_affine_dependent) apply(rule dependent_biggerset_general) unfolding ** by auto qed | |
| 879 | ||
| 880 | subsection {* Caratheodory's theorem. *}
 | |
| 881 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 882 | lemma convex_hull_caratheodory: fixes p::"('a::euclidean_space) set"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 883 |   shows "convex hull p = {y. \<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 \<and>
 | 
| 33175 | 884 | (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> setsum (\<lambda>v. u v *\<^sub>R v) s = y}" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 885 | unfolding convex_hull_explicit set_eq_iff mem_Collect_eq | 
| 33175 | 886 | proof(rule,rule) | 
| 887 | fix y let ?P = "\<lambda>n. \<exists>s u. finite s \<and> card s = n \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" | |
| 888 | assume "\<exists>s u. finite s \<and> s \<subseteq> p \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" | |
| 889 | then obtain N where "?P N" by auto | |
| 890 | hence "\<exists>n\<le>N. (\<forall>k<n. \<not> ?P k) \<and> ?P n" apply(rule_tac ex_least_nat_le) by auto | |
| 891 | then obtain n where "?P n" and smallest:"\<forall>k<n. \<not> ?P k" by blast | |
| 892 | then obtain s u where obt:"finite s" "card s = n" "s\<subseteq>p" "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = y" by auto | |
| 893 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 894 |   have "card s \<le> DIM('a) + 1" proof(rule ccontr, simp only: not_le)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 895 |     assume "DIM('a) + 1 < card s"
 | 
| 33175 | 896 | hence "affine_dependent s" using affine_dependent_biggerset[OF obt(1)] by auto | 
| 897 | then obtain w v where wv:"setsum w s = 0" "v\<in>s" "w v \<noteq> 0" "(\<Sum>v\<in>s. w v *\<^sub>R v) = 0" | |
| 898 | using affine_dependent_explicit_finite[OF obt(1)] by auto | |
| 899 |     def i \<equiv> "(\<lambda>v. (u v) / (- w v)) ` {v\<in>s. w v < 0}"  def t \<equiv> "Min i"
 | |
| 900 | have "\<exists>x\<in>s. w x < 0" proof(rule ccontr, simp add: not_less) | |
| 901 | assume as:"\<forall>x\<in>s. 0 \<le> w x" | |
| 902 |       hence "setsum w (s - {v}) \<ge> 0" apply(rule_tac setsum_nonneg) by auto
 | |
| 903 | hence "setsum w s > 0" unfolding setsum_diff1'[OF obt(1) `v\<in>s`] | |
| 904 | using as[THEN bspec[where x=v]] and `v\<in>s` using `w v \<noteq> 0` by auto | |
| 905 | thus False using wv(1) by auto | |
| 906 |     qed hence "i\<noteq>{}" unfolding i_def by auto
 | |
| 907 | ||
| 908 | hence "t \<ge> 0" using Min_ge_iff[of i 0 ] and obt(1) unfolding t_def i_def | |
| 909 | using obt(4)[unfolded le_less] apply auto unfolding divide_le_0_iff by auto | |
| 910 | have t:"\<forall>v\<in>s. u v + t * w v \<ge> 0" proof | |
| 911 | fix v assume "v\<in>s" hence v:"0\<le>u v" using obt(4)[THEN bspec[where x=v]] by auto | |
| 912 | show"0 \<le> u v + t * w v" proof(cases "w v < 0") | |
| 913 | case False thus ?thesis apply(rule_tac add_nonneg_nonneg) | |
| 914 | using v apply simp apply(rule mult_nonneg_nonneg) using `t\<ge>0` by auto next | |
| 915 | case True hence "t \<le> u v / (- w v)" using `v\<in>s` | |
| 916 | unfolding t_def i_def apply(rule_tac Min_le) using obt(1) by auto | |
| 917 | thus ?thesis unfolding real_0_le_add_iff | |
| 918 | using pos_le_divide_eq[OF True[unfolded neg_0_less_iff_less[THEN sym]]] by auto | |
| 919 | qed qed | |
| 920 | ||
| 921 | obtain a where "a\<in>s" and "t = (\<lambda>v. (u v) / (- w v)) a" and "w a < 0" | |
| 922 |       using Min_in[OF _ `i\<noteq>{}`] and obt(1) unfolding i_def t_def by auto
 | |
| 923 | hence a:"a\<in>s" "u a + t * w a = 0" by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 924 |     have *:"\<And>f. setsum f (s - {a}) = setsum f s - ((f a)::'b::ab_group_add)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 925 | unfolding setsum_diff1'[OF obt(1) `a\<in>s`] by auto | 
| 33175 | 926 | have "(\<Sum>v\<in>s. u v + t * w v) = 1" | 
| 927 | unfolding setsum_addf wv(1) setsum_right_distrib[THEN sym] obt(5) by auto | |
| 928 | moreover have "(\<Sum>v\<in>s. u v *\<^sub>R v + (t * w v) *\<^sub>R v) - (u a *\<^sub>R a + (t * w a) *\<^sub>R a) = y" | |
| 929 | unfolding setsum_addf obt(6) scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] wv(4) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 930 | using a(2) [THEN eq_neg_iff_add_eq_0 [THEN iffD2]] by simp | 
| 33175 | 931 |     ultimately have "?P (n - 1)" apply(rule_tac x="(s - {a})" in exI)
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 932 | apply(rule_tac x="\<lambda>v. u v + t * w v" in exI) using obt(1-3) and t and a | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 933 | by (auto simp add: * scaleR_left_distrib) | 
| 33175 | 934 | thus False using smallest[THEN spec[where x="n - 1"]] by auto qed | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 935 |   thus "\<exists>s u. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1
 | 
| 33175 | 936 | \<and> (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s = 1 \<and> (\<Sum>v\<in>s. u v *\<^sub>R v) = y" using obt by auto | 
| 937 | qed auto | |
| 938 | ||
| 939 | lemma caratheodory: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 940 |  "convex hull p = {x::'a::euclidean_space. \<exists>s. finite s \<and> s \<subseteq> p \<and>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 941 |       card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s}"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 942 | unfolding set_eq_iff apply(rule, rule) unfolding mem_Collect_eq proof- | 
| 33175 | 943 | fix x assume "x \<in> convex hull p" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 944 |   then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> DIM('a) + 1"
 | 
| 33175 | 945 | "\<forall>x\<in>s. 0 \<le> u x" "setsum u s = 1" "(\<Sum>v\<in>s. u v *\<^sub>R v) = x"unfolding convex_hull_caratheodory by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 946 |   thus "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s"
 | 
| 33175 | 947 | apply(rule_tac x=s in exI) using hull_subset[of s convex] | 
| 948 | using convex_convex_hull[unfolded convex_explicit, of s, THEN spec[where x=s], THEN spec[where x=u]] by auto | |
| 949 | next | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 950 |   fix x assume "\<exists>s. finite s \<and> s \<subseteq> p \<and> card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 951 |   then obtain s where "finite s" "s \<subseteq> p" "card s \<le> DIM('a) + 1" "x \<in> convex hull s" by auto
 | 
| 33175 | 952 | thus "x \<in> convex hull p" using hull_mono[OF `s\<subseteq>p`] by auto | 
| 953 | qed | |
| 954 | ||
| 955 | subsection {* Openness and compactness are preserved by convex hull operation. *}
 | |
| 956 | ||
| 34964 | 957 | lemma open_convex_hull[intro]: | 
| 33175 | 958 | fixes s :: "'a::real_normed_vector set" | 
| 959 | assumes "open s" | |
| 960 | shows "open(convex hull s)" | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 961 | unfolding open_contains_cball convex_hull_explicit unfolding mem_Collect_eq ball_simps(10) | 
| 33175 | 962 | proof(rule, rule) fix a | 
| 963 | assume "\<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = a" | |
| 964 | then obtain t u where obt:"finite t" "t\<subseteq>s" "\<forall>x\<in>t. 0 \<le> u x" "setsum u t = 1" "(\<Sum>v\<in>t. u v *\<^sub>R v) = a" by auto | |
| 965 | ||
| 966 | from assms[unfolded open_contains_cball] obtain b where b:"\<forall>x\<in>s. 0 < b x \<and> cball x (b x) \<subseteq> s" | |
| 967 | using bchoice[of s "\<lambda>x e. e>0 \<and> cball x e \<subseteq> s"] by auto | |
| 968 |   have "b ` t\<noteq>{}" unfolding i_def using obt by auto  def i \<equiv> "b ` t"
 | |
| 969 | ||
| 970 |   show "\<exists>e>0. cball a e \<subseteq> {y. \<exists>sa u. finite sa \<and> sa \<subseteq> s \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y}"
 | |
| 971 | apply(rule_tac x="Min i" in exI) unfolding subset_eq apply rule defer apply rule unfolding mem_Collect_eq | |
| 972 | proof- | |
| 973 |     show "0 < Min i" unfolding i_def and Min_gr_iff[OF finite_imageI[OF obt(1)] `b \` t\<noteq>{}`]
 | |
| 974 | using b apply simp apply rule apply(erule_tac x=x in ballE) using `t\<subseteq>s` by auto | |
| 975 | next fix y assume "y \<in> cball a (Min i)" | |
| 976 | hence y:"norm (a - y) \<le> Min i" unfolding dist_norm[THEN sym] by auto | |
| 977 |     { fix x assume "x\<in>t"
 | |
| 978 | hence "Min i \<le> b x" unfolding i_def apply(rule_tac Min_le) using obt(1) by auto | |
| 979 | hence "x + (y - a) \<in> cball x (b x)" using y unfolding mem_cball dist_norm by auto | |
| 980 | moreover from `x\<in>t` have "x\<in>s" using obt(2) by auto | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 981 | ultimately have "x + (y - a) \<in> s" using y and b[THEN bspec[where x=x]] unfolding subset_eq by fast } | 
| 33175 | 982 | moreover | 
| 983 | have *:"inj_on (\<lambda>v. v + (y - a)) t" unfolding inj_on_def by auto | |
| 984 | have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a))) = 1" | |
| 985 | unfolding setsum_reindex[OF *] o_def using obt(4) by auto | |
| 986 | moreover have "(\<Sum>v\<in>(\<lambda>v. v + (y - a)) ` t. u (v - (y - a)) *\<^sub>R v) = y" | |
| 987 | unfolding setsum_reindex[OF *] o_def using obt(4,5) | |
| 988 | by (simp add: setsum_addf setsum_subtractf scaleR_left.setsum[THEN sym] scaleR_right_distrib) | |
| 989 | ultimately show "\<exists>sa u. finite sa \<and> (\<forall>x\<in>sa. x \<in> s) \<and> (\<forall>x\<in>sa. 0 \<le> u x) \<and> setsum u sa = 1 \<and> (\<Sum>v\<in>sa. u v *\<^sub>R v) = y" | |
| 990 | apply(rule_tac x="(\<lambda>v. v + (y - a)) ` t" in exI) apply(rule_tac x="\<lambda>v. u (v - (y - a))" in exI) | |
| 991 | using obt(1, 3) by auto | |
| 992 | qed | |
| 993 | qed | |
| 994 | ||
| 995 | lemma compact_convex_combinations: | |
| 996 | fixes s t :: "'a::real_normed_vector set" | |
| 997 | assumes "compact s" "compact t" | |
| 998 |   shows "compact { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t}"
 | |
| 999 | proof- | |
| 1000 |   let ?X = "{0..1} \<times> s \<times> t"
 | |
| 1001 | let ?h = "(\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))" | |
| 1002 |   have *:"{ (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> t} = ?h ` ?X"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1003 | apply(rule set_eqI) unfolding image_iff mem_Collect_eq | 
| 33175 | 1004 | apply rule apply auto | 
| 1005 | apply (rule_tac x=u in rev_bexI, simp) | |
| 1006 | apply (erule rev_bexI, erule rev_bexI, simp) | |
| 1007 | by auto | |
| 1008 |   have "continuous_on ({0..1} \<times> s \<times> t)
 | |
| 1009 | (\<lambda>z. (1 - fst z) *\<^sub>R fst (snd z) + fst z *\<^sub>R snd (snd z))" | |
| 1010 | unfolding continuous_on by (rule ballI) (intro tendsto_intros) | |
| 1011 | thus ?thesis unfolding * | |
| 1012 | apply (rule compact_continuous_image) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1013 | apply (intro compact_Times compact_interval assms) | 
| 33175 | 1014 | done | 
| 1015 | qed | |
| 1016 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1017 | lemma compact_convex_hull: fixes s::"('a::euclidean_space) set"
 | 
| 33175 | 1018 | assumes "compact s" shows "compact(convex hull s)" | 
| 1019 | proof(cases "s={}")
 | |
| 1020 | case True thus ?thesis using compact_empty by simp | |
| 1021 | next | |
| 1022 | case False then obtain w where "w\<in>s" by auto | |
| 1023 | show ?thesis unfolding caratheodory[of s] | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1024 |   proof(induct ("DIM('a) + 1"))
 | 
| 33175 | 1025 |     have *:"{x.\<exists>sa. finite sa \<and> sa \<subseteq> s \<and> card sa \<le> 0 \<and> x \<in> convex hull sa} = {}" 
 | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1026 | using compact_empty by auto | 
| 33175 | 1027 | case 0 thus ?case unfolding * by simp | 
| 1028 | next | |
| 1029 | case (Suc n) | |
| 1030 | show ?case proof(cases "n=0") | |
| 1031 |       case True have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} = s"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1032 | unfolding set_eq_iff and mem_Collect_eq proof(rule, rule) | 
| 33175 | 1033 | fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | 
| 1034 | then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto | |
| 1035 | show "x\<in>s" proof(cases "card t = 0") | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1036 | case True thus ?thesis using t(4) unfolding card_0_eq[OF t(1)] by simp | 
| 33175 | 1037 | next | 
| 1038 | case False hence "card t = Suc 0" using t(3) `n=0` by auto | |
| 1039 |           then obtain a where "t = {a}" unfolding card_Suc_eq by auto
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1040 | thus ?thesis using t(2,4) by simp | 
| 33175 | 1041 | qed | 
| 1042 | next | |
| 1043 | fix x assume "x\<in>s" | |
| 1044 | thus "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1045 |           apply(rule_tac x="{x}" in exI) unfolding convex_hull_singleton by auto 
 | |
| 1046 | qed thus ?thesis using assms by simp | |
| 1047 | next | |
| 1048 |       case False have "{x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t} =
 | |
| 1049 |         { (1 - u) *\<^sub>R x + u *\<^sub>R y | x y u. 
 | |
| 1050 |         0 \<le> u \<and> u \<le> 1 \<and> x \<in> s \<and> y \<in> {x. \<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> x \<in> convex hull t}}"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1051 | unfolding set_eq_iff and mem_Collect_eq proof(rule,rule) | 
| 33175 | 1052 | fix x assume "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and> | 
| 1053 | 0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)" | |
| 1054 | then obtain u v c t where obt:"x = (1 - c) *\<^sub>R u + c *\<^sub>R v" | |
| 1055 | "0 \<le> c \<and> c \<le> 1" "u \<in> s" "finite t" "t \<subseteq> s" "card t \<le> n" "v \<in> convex hull t" by auto | |
| 1056 | moreover have "(1 - c) *\<^sub>R u + c *\<^sub>R v \<in> convex hull insert u t" | |
| 1057 | apply(rule mem_convex) using obt(2) and convex_convex_hull and hull_subset[of "insert u t" convex] | |
| 1058 | using obt(7) and hull_mono[of t "insert u t"] by auto | |
| 1059 | ultimately show "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1060 | apply(rule_tac x="insert u t" in exI) by (auto simp add: card_insert_if) | |
| 1061 | next | |
| 1062 | fix x assume "\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> Suc n \<and> x \<in> convex hull t" | |
| 1063 | then obtain t where t:"finite t" "t \<subseteq> s" "card t \<le> Suc n" "x \<in> convex hull t" by auto | |
| 1064 | let ?P = "\<exists>u v c. x = (1 - c) *\<^sub>R u + c *\<^sub>R v \<and> | |
| 1065 | 0 \<le> c \<and> c \<le> 1 \<and> u \<in> s \<and> (\<exists>t. finite t \<and> t \<subseteq> s \<and> card t \<le> n \<and> v \<in> convex hull t)" | |
| 1066 | show ?P proof(cases "card t = Suc n") | |
| 1067 | case False hence "card t \<le> n" using t(3) by auto | |
| 1068 | thus ?P apply(rule_tac x=w in exI, rule_tac x=x in exI, rule_tac x=1 in exI) using `w\<in>s` and t | |
| 1069 | by(auto intro!: exI[where x=t]) | |
| 1070 | next | |
| 1071 | case True then obtain a u where au:"t = insert a u" "a\<notin>u" apply(drule_tac card_eq_SucD) by auto | |
| 1072 |           show ?P proof(cases "u={}")
 | |
| 1073 | case True hence "x=a" using t(4)[unfolded au] by auto | |
| 1074 | show ?P unfolding `x=a` apply(rule_tac x=a in exI, rule_tac x=a in exI, rule_tac x=1 in exI) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1075 |               using t and `n\<noteq>0` unfolding au by(auto intro!: exI[where x="{a}"])
 | 
| 33175 | 1076 | next | 
| 1077 | case False obtain ux vx b where obt:"ux\<ge>0" "vx\<ge>0" "ux + vx = 1" "b \<in> convex hull u" "x = ux *\<^sub>R a + vx *\<^sub>R b" | |
| 1078 | using t(4)[unfolded au convex_hull_insert[OF False]] by auto | |
| 1079 | have *:"1 - vx = ux" using obt(3) by auto | |
| 1080 | show ?P apply(rule_tac x=a in exI, rule_tac x=b in exI, rule_tac x=vx in exI) | |
| 1081 | using obt and t(1-3) unfolding au and * using card_insert_disjoint[OF _ au(2)] | |
| 1082 | by(auto intro!: exI[where x=u]) | |
| 1083 | qed | |
| 1084 | qed | |
| 1085 | qed | |
| 1086 | thus ?thesis using compact_convex_combinations[OF assms Suc] by simp | |
| 1087 | qed | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1088 | qed | 
| 33175 | 1089 | qed | 
| 1090 | ||
| 1091 | lemma finite_imp_compact_convex_hull: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1092 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1093 | shows "finite s \<Longrightarrow> compact(convex hull s)" | 
| 36071 | 1094 | by (metis compact_convex_hull finite_imp_compact) | 
| 33175 | 1095 | |
| 1096 | subsection {* Extremal points of a simplex are some vertices. *}
 | |
| 1097 | ||
| 1098 | lemma dist_increases_online: | |
| 1099 | fixes a b d :: "'a::real_inner" | |
| 1100 | assumes "d \<noteq> 0" | |
| 1101 | shows "dist a (b + d) > dist a b \<or> dist a (b - d) > dist a b" | |
| 1102 | proof(cases "inner a d - inner b d > 0") | |
| 1103 | case True hence "0 < inner d d + (inner a d * 2 - inner b d * 2)" | |
| 1104 | apply(rule_tac add_pos_pos) using assms by auto | |
| 1105 | thus ?thesis apply(rule_tac disjI2) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff | |
| 1106 | by (simp add: algebra_simps inner_commute) | |
| 1107 | next | |
| 1108 | case False hence "0 < inner d d + (inner b d * 2 - inner a d * 2)" | |
| 1109 | apply(rule_tac add_pos_nonneg) using assms by auto | |
| 1110 | thus ?thesis apply(rule_tac disjI1) unfolding dist_norm and norm_eq_sqrt_inner and real_sqrt_less_iff | |
| 1111 | by (simp add: algebra_simps inner_commute) | |
| 1112 | qed | |
| 1113 | ||
| 1114 | lemma norm_increases_online: | |
| 1115 | fixes d :: "'a::real_inner" | |
| 1116 | shows "d \<noteq> 0 \<Longrightarrow> norm(a + d) > norm a \<or> norm(a - d) > norm a" | |
| 1117 | using dist_increases_online[of d a 0] unfolding dist_norm by auto | |
| 1118 | ||
| 1119 | lemma simplex_furthest_lt: | |
| 1120 | fixes s::"'a::real_inner set" assumes "finite s" | |
| 1121 | shows "\<forall>x \<in> (convex hull s). x \<notin> s \<longrightarrow> (\<exists>y\<in>(convex hull s). norm(x - a) < norm(y - a))" | |
| 1122 | proof(induct_tac rule: finite_induct[of s]) | |
| 1123 | fix x s assume as:"finite s" "x\<notin>s" "\<forall>x\<in>convex hull s. x \<notin> s \<longrightarrow> (\<exists>y\<in>convex hull s. norm (x - a) < norm (y - a))" | |
| 1124 | show "\<forall>xa\<in>convex hull insert x s. xa \<notin> insert x s \<longrightarrow> (\<exists>y\<in>convex hull insert x s. norm (xa - a) < norm (y - a))" | |
| 1125 |   proof(rule,rule,cases "s = {}")
 | |
| 1126 | case False fix y assume y:"y \<in> convex hull insert x s" "y \<notin> insert x s" | |
| 1127 | obtain u v b where obt:"u\<ge>0" "v\<ge>0" "u + v = 1" "b \<in> convex hull s" "y = u *\<^sub>R x + v *\<^sub>R b" | |
| 1128 | using y(1)[unfolded convex_hull_insert[OF False]] by auto | |
| 1129 | show "\<exists>z\<in>convex hull insert x s. norm (y - a) < norm (z - a)" | |
| 1130 | proof(cases "y\<in>convex hull s") | |
| 1131 | case True then obtain z where "z\<in>convex hull s" "norm (y - a) < norm (z - a)" | |
| 1132 | using as(3)[THEN bspec[where x=y]] and y(2) by auto | |
| 1133 | thus ?thesis apply(rule_tac x=z in bexI) unfolding convex_hull_insert[OF False] by auto | |
| 1134 | next | |
| 1135 | case False show ?thesis using obt(3) proof(cases "u=0", case_tac[!] "v=0") | |
| 1136 | assume "u=0" "v\<noteq>0" hence "y = b" using obt by auto | |
| 1137 | thus ?thesis using False and obt(4) by auto | |
| 1138 | next | |
| 1139 | assume "u\<noteq>0" "v=0" hence "y = x" using obt by auto | |
| 1140 | thus ?thesis using y(2) by auto | |
| 1141 | next | |
| 1142 | assume "u\<noteq>0" "v\<noteq>0" | |
| 1143 | then obtain w where w:"w>0" "w<u" "w<v" using real_lbound_gt_zero[of u v] and obt(1,2) by auto | |
| 1144 | have "x\<noteq>b" proof(rule ccontr) | |
| 1145 | assume "\<not> x\<noteq>b" hence "y=b" unfolding obt(5) | |
| 1146 | using obt(3) by(auto simp add: scaleR_left_distrib[THEN sym]) | |
| 1147 | thus False using obt(4) and False by simp qed | |
| 1148 | hence *:"w *\<^sub>R (x - b) \<noteq> 0" using w(1) by auto | |
| 1149 | show ?thesis using dist_increases_online[OF *, of a y] | |
| 1150 | proof(erule_tac disjE) | |
| 1151 | assume "dist a y < dist a (y + w *\<^sub>R (x - b))" | |
| 1152 | hence "norm (y - a) < norm ((u + w) *\<^sub>R x + (v - w) *\<^sub>R b - a)" | |
| 1153 | unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps) | |
| 1154 | moreover have "(u + w) *\<^sub>R x + (v - w) *\<^sub>R b \<in> convex hull insert x s" | |
| 1155 |             unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 | |
| 1156 | apply(rule_tac x="u + w" in exI) apply rule defer | |
| 1157 | apply(rule_tac x="v - w" in exI) using `u\<ge>0` and w and obt(3,4) by auto | |
| 1158 | ultimately show ?thesis by auto | |
| 1159 | next | |
| 1160 | assume "dist a y < dist a (y - w *\<^sub>R (x - b))" | |
| 1161 | hence "norm (y - a) < norm ((u - w) *\<^sub>R x + (v + w) *\<^sub>R b - a)" | |
| 1162 | unfolding dist_commute[of a] unfolding dist_norm obt(5) by (simp add: algebra_simps) | |
| 1163 | moreover have "(u - w) *\<^sub>R x + (v + w) *\<^sub>R b \<in> convex hull insert x s" | |
| 1164 |             unfolding convex_hull_insert[OF `s\<noteq>{}`] and mem_Collect_eq
 | |
| 1165 | apply(rule_tac x="u - w" in exI) apply rule defer | |
| 1166 | apply(rule_tac x="v + w" in exI) using `u\<ge>0` and w and obt(3,4) by auto | |
| 1167 | ultimately show ?thesis by auto | |
| 1168 | qed | |
| 1169 | qed auto | |
| 1170 | qed | |
| 1171 | qed auto | |
| 1172 | qed (auto simp add: assms) | |
| 1173 | ||
| 1174 | lemma simplex_furthest_le: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1175 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1176 |   assumes "finite s" "s \<noteq> {}"
 | 
| 1177 | shows "\<exists>y\<in>s. \<forall>x\<in>(convex hull s). norm(x - a) \<le> norm(y - a)" | |
| 1178 | proof- | |
| 1179 |   have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
 | |
| 1180 | then obtain x where x:"x\<in>convex hull s" "\<forall>y\<in>convex hull s. norm (y - a) \<le> norm (x - a)" | |
| 1181 | using distance_attains_sup[OF finite_imp_compact_convex_hull[OF assms(1)], of a] | |
| 1182 | unfolding dist_commute[of a] unfolding dist_norm by auto | |
| 1183 | thus ?thesis proof(cases "x\<in>s") | |
| 1184 | case False then obtain y where "y\<in>convex hull s" "norm (x - a) < norm (y - a)" | |
| 1185 | using simplex_furthest_lt[OF assms(1), THEN bspec[where x=x]] and x(1) by auto | |
| 1186 | thus ?thesis using x(2)[THEN bspec[where x=y]] by auto | |
| 1187 | qed auto | |
| 1188 | qed | |
| 1189 | ||
| 1190 | lemma simplex_furthest_le_exists: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1191 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1192 | shows "finite s \<Longrightarrow> (\<forall>x\<in>(convex hull s). \<exists>y\<in>s. norm(x - a) \<le> norm(y - a))" | 
| 1193 |   using simplex_furthest_le[of s] by (cases "s={}")auto
 | |
| 1194 | ||
| 1195 | lemma simplex_extremal_le: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1196 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1197 |   assumes "finite s" "s \<noteq> {}"
 | 
| 1198 | shows "\<exists>u\<in>s. \<exists>v\<in>s. \<forall>x\<in>convex hull s. \<forall>y \<in> convex hull s. norm(x - y) \<le> norm(u - v)" | |
| 1199 | proof- | |
| 1200 |   have "convex hull s \<noteq> {}" using hull_subset[of s convex] and assms(2) by auto
 | |
| 1201 | then obtain u v where obt:"u\<in>convex hull s" "v\<in>convex hull s" | |
| 1202 | "\<forall>x\<in>convex hull s. \<forall>y\<in>convex hull s. norm (x - y) \<le> norm (u - v)" | |
| 1203 | using compact_sup_maxdistance[OF finite_imp_compact_convex_hull[OF assms(1)]] by auto | |
| 1204 | thus ?thesis proof(cases "u\<notin>s \<or> v\<notin>s", erule_tac disjE) | |
| 1205 | assume "u\<notin>s" then obtain y where "y\<in>convex hull s" "norm (u - v) < norm (y - v)" | |
| 1206 | using simplex_furthest_lt[OF assms(1), THEN bspec[where x=u]] and obt(1) by auto | |
| 1207 | thus ?thesis using obt(3)[THEN bspec[where x=y], THEN bspec[where x=v]] and obt(2) by auto | |
| 1208 | next | |
| 1209 | assume "v\<notin>s" then obtain y where "y\<in>convex hull s" "norm (v - u) < norm (y - u)" | |
| 1210 | using simplex_furthest_lt[OF assms(1), THEN bspec[where x=v]] and obt(2) by auto | |
| 1211 | thus ?thesis using obt(3)[THEN bspec[where x=u], THEN bspec[where x=y]] and obt(1) | |
| 1212 | by (auto simp add: norm_minus_commute) | |
| 1213 | qed auto | |
| 1214 | qed | |
| 1215 | ||
| 1216 | lemma simplex_extremal_le_exists: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1217 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1218 | shows "finite s \<Longrightarrow> x \<in> convex hull s \<Longrightarrow> y \<in> convex hull s | 
| 1219 | \<Longrightarrow> (\<exists>u\<in>s. \<exists>v\<in>s. norm(x - y) \<le> norm(u - v))" | |
| 1220 |   using convex_hull_empty simplex_extremal_le[of s] by(cases "s={}")auto
 | |
| 1221 | ||
| 1222 | subsection {* Closest point of a convex set is unique, with a continuous projection. *}
 | |
| 1223 | ||
| 1224 | definition | |
| 36337 | 1225 |   closest_point :: "'a::{real_inner,heine_borel} set \<Rightarrow> 'a \<Rightarrow> 'a" where
 | 
| 33175 | 1226 | "closest_point s a = (SOME x. x \<in> s \<and> (\<forall>y\<in>s. dist a x \<le> dist a y))" | 
| 1227 | ||
| 1228 | lemma closest_point_exists: | |
| 1229 |   assumes "closed s" "s \<noteq> {}"
 | |
| 1230 | shows "closest_point s a \<in> s" "\<forall>y\<in>s. dist a (closest_point s a) \<le> dist a y" | |
| 1231 | unfolding closest_point_def apply(rule_tac[!] someI2_ex) | |
| 1232 | using distance_attains_inf[OF assms(1,2), of a] by auto | |
| 1233 | ||
| 1234 | lemma closest_point_in_set: | |
| 1235 |   "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s a) \<in> s"
 | |
| 1236 | by(meson closest_point_exists) | |
| 1237 | ||
| 1238 | lemma closest_point_le: | |
| 1239 | "closed s \<Longrightarrow> x \<in> s \<Longrightarrow> dist a (closest_point s a) \<le> dist a x" | |
| 1240 | using closest_point_exists[of s] by auto | |
| 1241 | ||
| 1242 | lemma closest_point_self: | |
| 1243 | assumes "x \<in> s" shows "closest_point s x = x" | |
| 1244 | unfolding closest_point_def apply(rule some1_equality, rule ex1I[of _ x]) | |
| 1245 | using assms by auto | |
| 1246 | ||
| 1247 | lemma closest_point_refl: | |
| 1248 |  "closed s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> (closest_point s x = x \<longleftrightarrow> x \<in> s)"
 | |
| 1249 | using closest_point_in_set[of s x] closest_point_self[of x s] by auto | |
| 1250 | ||
| 36337 | 1251 | lemma closer_points_lemma: | 
| 33175 | 1252 | assumes "inner y z > 0" | 
| 1253 | shows "\<exists>u>0. \<forall>v>0. v \<le> u \<longrightarrow> norm(v *\<^sub>R z - y) < norm y" | |
| 1254 | proof- have z:"inner z z > 0" unfolding inner_gt_zero_iff using assms by auto | |
| 1255 | thus ?thesis using assms apply(rule_tac x="inner y z / inner z z" in exI) apply(rule) defer proof(rule+) | |
| 1256 | fix v assume "0<v" "v \<le> inner y z / inner z z" | |
| 1257 | thus "norm (v *\<^sub>R z - y) < norm y" unfolding norm_lt using z and assms | |
| 1258 | by (simp add: field_simps inner_diff inner_commute mult_strict_left_mono[OF _ `0<v`]) | |
| 1259 | qed(rule divide_pos_pos, auto) qed | |
| 1260 | ||
| 1261 | lemma closer_point_lemma: | |
| 1262 | assumes "inner (y - x) (z - x) > 0" | |
| 1263 | shows "\<exists>u>0. u \<le> 1 \<and> dist (x + u *\<^sub>R (z - x)) y < dist x y" | |
| 1264 | proof- obtain u where "u>0" and u:"\<forall>v>0. v \<le> u \<longrightarrow> norm (v *\<^sub>R (z - x) - (y - x)) < norm (y - x)" | |
| 1265 | using closer_points_lemma[OF assms] by auto | |
| 1266 | show ?thesis apply(rule_tac x="min u 1" in exI) using u[THEN spec[where x="min u 1"]] and `u>0` | |
| 1267 | unfolding dist_norm by(auto simp add: norm_minus_commute field_simps) qed | |
| 1268 | ||
| 1269 | lemma any_closest_point_dot: | |
| 1270 | assumes "convex s" "closed s" "x \<in> s" "y \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z" | |
| 1271 | shows "inner (a - x) (y - x) \<le> 0" | |
| 1272 | proof(rule ccontr) assume "\<not> inner (a - x) (y - x) \<le> 0" | |
| 1273 | then obtain u where u:"u>0" "u\<le>1" "dist (x + u *\<^sub>R (y - x)) a < dist x a" using closer_point_lemma[of a x y] by auto | |
| 1274 | let ?z = "(1 - u) *\<^sub>R x + u *\<^sub>R y" have "?z \<in> s" using mem_convex[OF assms(1,3,4), of u] using u by auto | |
| 1275 | thus False using assms(5)[THEN bspec[where x="?z"]] and u(3) by (auto simp add: dist_commute algebra_simps) qed | |
| 1276 | ||
| 1277 | lemma any_closest_point_unique: | |
| 36337 | 1278 | fixes x :: "'a::real_inner" | 
| 33175 | 1279 | assumes "convex s" "closed s" "x \<in> s" "y \<in> s" | 
| 1280 | "\<forall>z\<in>s. dist a x \<le> dist a z" "\<forall>z\<in>s. dist a y \<le> dist a z" | |
| 1281 | shows "x = y" using any_closest_point_dot[OF assms(1-4,5)] and any_closest_point_dot[OF assms(1-2,4,3,6)] | |
| 1282 | unfolding norm_pths(1) and norm_le_square | |
| 1283 | by (auto simp add: algebra_simps) | |
| 1284 | ||
| 1285 | lemma closest_point_unique: | |
| 1286 | assumes "convex s" "closed s" "x \<in> s" "\<forall>z\<in>s. dist a x \<le> dist a z" | |
| 1287 | shows "x = closest_point s a" | |
| 1288 | using any_closest_point_unique[OF assms(1-3) _ assms(4), of "closest_point s a"] | |
| 1289 | using closest_point_exists[OF assms(2)] and assms(3) by auto | |
| 1290 | ||
| 1291 | lemma closest_point_dot: | |
| 1292 | assumes "convex s" "closed s" "x \<in> s" | |
| 1293 | shows "inner (a - closest_point s a) (x - closest_point s a) \<le> 0" | |
| 1294 | apply(rule any_closest_point_dot[OF assms(1,2) _ assms(3)]) | |
| 1295 | using closest_point_exists[OF assms(2)] and assms(3) by auto | |
| 1296 | ||
| 1297 | lemma closest_point_lt: | |
| 1298 | assumes "convex s" "closed s" "x \<in> s" "x \<noteq> closest_point s a" | |
| 1299 | shows "dist a (closest_point s a) < dist a x" | |
| 1300 | apply(rule ccontr) apply(rule_tac notE[OF assms(4)]) | |
| 1301 | apply(rule closest_point_unique[OF assms(1-3), of a]) | |
| 1302 | using closest_point_le[OF assms(2), of _ a] by fastsimp | |
| 1303 | ||
| 1304 | lemma closest_point_lipschitz: | |
| 1305 |   assumes "convex s" "closed s" "s \<noteq> {}"
 | |
| 1306 | shows "dist (closest_point s x) (closest_point s y) \<le> dist x y" | |
| 1307 | proof- | |
| 1308 | have "inner (x - closest_point s x) (closest_point s y - closest_point s x) \<le> 0" | |
| 1309 | "inner (y - closest_point s y) (closest_point s x - closest_point s y) \<le> 0" | |
| 1310 | apply(rule_tac[!] any_closest_point_dot[OF assms(1-2)]) | |
| 1311 | using closest_point_exists[OF assms(2-3)] by auto | |
| 1312 | thus ?thesis unfolding dist_norm and norm_le | |
| 1313 | using inner_ge_zero[of "(x - closest_point s x) - (y - closest_point s y)"] | |
| 1314 | by (simp add: inner_add inner_diff inner_commute) qed | |
| 1315 | ||
| 1316 | lemma continuous_at_closest_point: | |
| 1317 |   assumes "convex s" "closed s" "s \<noteq> {}"
 | |
| 1318 | shows "continuous (at x) (closest_point s)" | |
| 1319 | unfolding continuous_at_eps_delta | |
| 1320 | using le_less_trans[OF closest_point_lipschitz[OF assms]] by auto | |
| 1321 | ||
| 1322 | lemma continuous_on_closest_point: | |
| 1323 |   assumes "convex s" "closed s" "s \<noteq> {}"
 | |
| 1324 | shows "continuous_on t (closest_point s)" | |
| 36071 | 1325 | by(metis continuous_at_imp_continuous_on continuous_at_closest_point[OF assms]) | 
| 33175 | 1326 | |
| 1327 | subsection {* Various point-to-set separating/supporting hyperplane theorems. *}
 | |
| 1328 | ||
| 1329 | lemma supporting_hyperplane_closed_point: | |
| 36337 | 1330 |   fixes z :: "'a::{real_inner,heine_borel}"
 | 
| 33175 | 1331 |   assumes "convex s" "closed s" "s \<noteq> {}" "z \<notin> s"
 | 
| 1332 | shows "\<exists>a b. \<exists>y\<in>s. inner a z < b \<and> (inner a y = b) \<and> (\<forall>x\<in>s. inner a x \<ge> b)" | |
| 1333 | proof- | |
| 1334 | from distance_attains_inf[OF assms(2-3)] obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" by auto | |
| 1335 | show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) y" in exI, rule_tac x=y in bexI) | |
| 1336 | apply rule defer apply rule defer apply(rule, rule ccontr) using `y\<in>s` proof- | |
| 1337 | show "inner (y - z) z < inner (y - z) y" apply(subst diff_less_iff(1)[THEN sym]) | |
| 1338 | unfolding inner_diff_right[THEN sym] and inner_gt_zero_iff using `y\<in>s` `z\<notin>s` by auto | |
| 1339 | next | |
| 1340 | fix x assume "x\<in>s" have *:"\<forall>u. 0 \<le> u \<and> u \<le> 1 \<longrightarrow> dist z y \<le> dist z ((1 - u) *\<^sub>R y + u *\<^sub>R x)" | |
| 1341 | using assms(1)[unfolded convex_alt] and y and `x\<in>s` and `y\<in>s` by auto | |
| 1342 | assume "\<not> inner (y - z) y \<le> inner (y - z) x" then obtain v where | |
| 1343 | "v>0" "v\<le>1" "dist (y + v *\<^sub>R (x - y)) z < dist y z" using closer_point_lemma[of z y x] apply - by (auto simp add: inner_diff) | |
| 1344 | thus False using *[THEN spec[where x=v]] by(auto simp add: dist_commute algebra_simps) | |
| 1345 | qed auto | |
| 1346 | qed | |
| 1347 | ||
| 1348 | lemma separating_hyperplane_closed_point: | |
| 36337 | 1349 |   fixes z :: "'a::{real_inner,heine_borel}"
 | 
| 33175 | 1350 | assumes "convex s" "closed s" "z \<notin> s" | 
| 1351 | shows "\<exists>a b. inner a z < b \<and> (\<forall>x\<in>s. inner a x > b)" | |
| 1352 | proof(cases "s={}")
 | |
| 1353 | case True thus ?thesis apply(rule_tac x="-z" in exI, rule_tac x=1 in exI) | |
| 1354 | using less_le_trans[OF _ inner_ge_zero[of z]] by auto | |
| 1355 | next | |
| 1356 | case False obtain y where "y\<in>s" and y:"\<forall>x\<in>s. dist z y \<le> dist z x" | |
| 1357 | using distance_attains_inf[OF assms(2) False] by auto | |
| 1358 | show ?thesis apply(rule_tac x="y - z" in exI, rule_tac x="inner (y - z) z + (norm(y - z))\<twosuperior> / 2" in exI) | |
| 1359 | apply rule defer apply rule proof- | |
| 1360 | fix x assume "x\<in>s" | |
| 1361 | have "\<not> 0 < inner (z - y) (x - y)" apply(rule_tac notI) proof(drule closer_point_lemma) | |
| 1362 | assume "\<exists>u>0. u \<le> 1 \<and> dist (y + u *\<^sub>R (x - y)) z < dist y z" | |
| 1363 | then obtain u where "u>0" "u\<le>1" "dist (y + u *\<^sub>R (x - y)) z < dist y z" by auto | |
| 1364 | thus False using y[THEN bspec[where x="y + u *\<^sub>R (x - y)"]] | |
| 1365 | using assms(1)[unfolded convex_alt, THEN bspec[where x=y]] | |
| 1366 | using `x\<in>s` `y\<in>s` by (auto simp add: dist_commute algebra_simps) qed | |
| 1367 | moreover have "0 < norm (y - z) ^ 2" using `y\<in>s` `z\<notin>s` by auto | |
| 1368 | hence "0 < inner (y - z) (y - z)" unfolding power2_norm_eq_inner by simp | |
| 1369 | ultimately show "inner (y - z) z + (norm (y - z))\<twosuperior> / 2 < inner (y - z) x" | |
| 1370 | unfolding power2_norm_eq_inner and not_less by (auto simp add: field_simps inner_commute inner_diff) | |
| 1371 | qed(insert `y\<in>s` `z\<notin>s`, auto) | |
| 1372 | qed | |
| 1373 | ||
| 1374 | lemma separating_hyperplane_closed_0: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1375 |   assumes "convex (s::('a::euclidean_space) set)" "closed s" "0 \<notin> s"
 | 
| 33175 | 1376 | shows "\<exists>a b. a \<noteq> 0 \<and> 0 < b \<and> (\<forall>x\<in>s. inner a x > b)" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1377 |   proof(cases "s={}")
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1378 | case True have "norm ((basis 0)::'a) = 1" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1379 | hence "norm ((basis 0)::'a) = 1" "basis 0 \<noteq> (0::'a)" defer | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1380 | apply(subst norm_le_zero_iff[THEN sym]) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1381 | thus ?thesis apply(rule_tac x="basis 0" in exI, rule_tac x=1 in exI) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1382 | using True using DIM_positive[where 'a='a] by auto | 
| 33175 | 1383 | next case False thus ?thesis using False using separating_hyperplane_closed_point[OF assms] | 
| 35542 | 1384 | apply - apply(erule exE)+ unfolding inner.zero_right apply(rule_tac x=a in exI, rule_tac x=b in exI) by auto qed | 
| 33175 | 1385 | |
| 1386 | subsection {* Now set-to-set for closed/compact sets. *}
 | |
| 1387 | ||
| 1388 | lemma separating_hyperplane_closed_compact: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1389 |   assumes "convex (s::('a::euclidean_space) set)" "closed s" "convex t" "compact t" "t \<noteq> {}" "s \<inter> t = {}"
 | 
| 33175 | 1390 | shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)" | 
| 1391 | proof(cases "s={}")
 | |
| 1392 | case True | |
| 1393 | obtain b where b:"b>0" "\<forall>x\<in>t. norm x \<le> b" using compact_imp_bounded[OF assms(4)] unfolding bounded_pos by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1394 | obtain z::"'a" where z:"norm z = b + 1" using vector_choose_size[of "b + 1"] and b(1) by auto | 
| 33175 | 1395 | hence "z\<notin>t" using b(2)[THEN bspec[where x=z]] by auto | 
| 1396 | then obtain a b where ab:"inner a z < b" "\<forall>x\<in>t. b < inner a x" | |
| 1397 | using separating_hyperplane_closed_point[OF assms(3) compact_imp_closed[OF assms(4)], of z] by auto | |
| 1398 | thus ?thesis using True by auto | |
| 1399 | next | |
| 1400 | case False then obtain y where "y\<in>s" by auto | |
| 1401 |   obtain a b where "0 < b" "\<forall>x\<in>{x - y |x y. x \<in> s \<and> y \<in> t}. b < inner a x"
 | |
| 1402 | using separating_hyperplane_closed_point[OF convex_differences[OF assms(1,3)], of 0] | |
| 1403 | using closed_compact_differences[OF assms(2,4)] using assms(6) by(auto, blast) | |
| 1404 | hence ab:"\<forall>x\<in>s. \<forall>y\<in>t. b + inner a y < inner a x" apply- apply(rule,rule) apply(erule_tac x="x - y" in ballE) by (auto simp add: inner_diff) | |
| 33270 | 1405 | def k \<equiv> "Sup ((\<lambda>x. inner a x) ` t)" | 
| 33175 | 1406 | show ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-(k + b / 2)" in exI) | 
| 1407 | apply(rule,rule) defer apply(rule) unfolding inner_minus_left and neg_less_iff_less proof- | |
| 1408 | from ab have "((\<lambda>x. inner a x) ` t) *<= (inner a y - b)" | |
| 1409 | apply(erule_tac x=y in ballE) apply(rule setleI) using `y\<in>s` by auto | |
| 33270 | 1410 | hence k:"isLub UNIV ((\<lambda>x. inner a x) ` t) k" unfolding k_def apply(rule_tac Sup) using assms(5) by auto | 
| 33175 | 1411 | fix x assume "x\<in>t" thus "inner a x < (k + b / 2)" using `0<b` and isLubD2[OF k, of "inner a x"] by auto | 
| 1412 | next | |
| 1413 | fix x assume "x\<in>s" | |
| 33270 | 1414 | hence "k \<le> inner a x - b" unfolding k_def apply(rule_tac Sup_least) using assms(5) | 
| 33175 | 1415 | using ab[THEN bspec[where x=x]] by auto | 
| 1416 | thus "k + b / 2 < inner a x" using `0 < b` by auto | |
| 1417 | qed | |
| 1418 | qed | |
| 1419 | ||
| 1420 | lemma separating_hyperplane_compact_closed: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1421 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1422 |   assumes "convex s" "compact s" "s \<noteq> {}" "convex t" "closed t" "s \<inter> t = {}"
 | 
| 1423 | shows "\<exists>a b. (\<forall>x\<in>s. inner a x < b) \<and> (\<forall>x\<in>t. inner a x > b)" | |
| 1424 | proof- obtain a b where "(\<forall>x\<in>t. inner a x < b) \<and> (\<forall>x\<in>s. b < inner a x)" | |
| 1425 | using separating_hyperplane_closed_compact[OF assms(4-5,1-2,3)] and assms(6) by auto | |
| 1426 | thus ?thesis apply(rule_tac x="-a" in exI, rule_tac x="-b" in exI) by auto qed | |
| 1427 | ||
| 1428 | subsection {* General case without assuming closure and getting non-strict separation. *}
 | |
| 1429 | ||
| 1430 | lemma separating_hyperplane_set_0: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1431 | assumes "convex s" "(0::'a::euclidean_space) \<notin> s" | 
| 33175 | 1432 | shows "\<exists>a. a \<noteq> 0 \<and> (\<forall>x\<in>s. 0 \<le> inner a x)" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1433 | proof- let ?k = "\<lambda>c. {x::'a. 0 \<le> inner c x}"
 | 
| 33175 | 1434 |   have "frontier (cball 0 1) \<inter> (\<Inter> (?k ` s)) \<noteq> {}"
 | 
| 1435 | apply(rule compact_imp_fip) apply(rule compact_frontier[OF compact_cball]) | |
| 1436 | defer apply(rule,rule,erule conjE) proof- | |
| 1437 | fix f assume as:"f \<subseteq> ?k ` s" "finite f" | |
| 1438 | obtain c where c:"f = ?k ` c" "c\<subseteq>s" "finite c" using finite_subset_image[OF as(2,1)] by auto | |
| 1439 | then obtain a b where ab:"a \<noteq> 0" "0 < b" "\<forall>x\<in>convex hull c. b < inner a x" | |
| 1440 | using separating_hyperplane_closed_0[OF convex_convex_hull, of c] | |
| 1441 | using finite_imp_compact_convex_hull[OF c(3), THEN compact_imp_closed] and assms(2) | |
| 1442 | using subset_hull[unfolded mem_def, of convex, OF assms(1), THEN sym, of c] by auto | |
| 1443 | hence "\<exists>x. norm x = 1 \<and> (\<forall>y\<in>c. 0 \<le> inner y x)" apply(rule_tac x="inverse(norm a) *\<^sub>R a" in exI) | |
| 1444 | using hull_subset[of c convex] unfolding subset_eq and inner_scaleR | |
| 1445 | apply- apply rule defer apply rule apply(rule mult_nonneg_nonneg) | |
| 1446 | by(auto simp add: inner_commute elim!: ballE) | |
| 1447 |     thus "frontier (cball 0 1) \<inter> \<Inter>f \<noteq> {}" unfolding c(1) frontier_cball dist_norm by auto
 | |
| 1448 | qed(insert closed_halfspace_ge, auto) | |
| 1449 | then obtain x where "norm x = 1" "\<forall>y\<in>s. x\<in>?k y" unfolding frontier_cball dist_norm by auto | |
| 1450 | thus ?thesis apply(rule_tac x=x in exI) by(auto simp add: inner_commute) qed | |
| 1451 | ||
| 1452 | lemma separating_hyperplane_sets: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1453 |   assumes "convex s" "convex (t::('a::euclidean_space) set)" "s \<noteq> {}" "t \<noteq> {}" "s \<inter> t = {}"
 | 
| 33175 | 1454 | shows "\<exists>a b. a \<noteq> 0 \<and> (\<forall>x\<in>s. inner a x \<le> b) \<and> (\<forall>x\<in>t. inner a x \<ge> b)" | 
| 1455 | proof- from separating_hyperplane_set_0[OF convex_differences[OF assms(2,1)]] | |
| 33270 | 1456 |   obtain a where "a\<noteq>0" "\<forall>x\<in>{x - y |x y. x \<in> t \<and> y \<in> s}. 0 \<le> inner a x" 
 | 
| 1457 | using assms(3-5) by auto | |
| 1458 | hence "\<forall>x\<in>t. \<forall>y\<in>s. inner a y \<le> inner a x" | |
| 1459 | by (force simp add: inner_diff) | |
| 1460 | thus ?thesis | |
| 1461 | apply(rule_tac x=a in exI, rule_tac x="Sup ((\<lambda>x. inner a x) ` s)" in exI) using `a\<noteq>0` | |
| 1462 | apply auto | |
| 1463 | apply (rule Sup[THEN isLubD2]) | |
| 1464 | prefer 4 | |
| 1465 | apply (rule Sup_least) | |
| 1466 | using assms(3-5) apply (auto simp add: setle_def) | |
| 36071 | 1467 | apply metis | 
| 33270 | 1468 | done | 
| 1469 | qed | |
| 33175 | 1470 | |
| 1471 | subsection {* More convexity generalities. *}
 | |
| 1472 | ||
| 1473 | lemma convex_closure: | |
| 1474 | fixes s :: "'a::real_normed_vector set" | |
| 1475 | assumes "convex s" shows "convex(closure s)" | |
| 1476 | unfolding convex_def Ball_def closure_sequential | |
| 1477 | apply(rule,rule,rule,rule,rule,rule,rule,rule,rule) apply(erule_tac exE)+ | |
| 1478 | apply(rule_tac x="\<lambda>n. u *\<^sub>R xb n + v *\<^sub>R xc n" in exI) apply(rule,rule) | |
| 1479 | apply(rule assms[unfolded convex_def, rule_format]) prefer 6 | |
| 1480 | apply(rule Lim_add) apply(rule_tac [1-2] Lim_cmul) by auto | |
| 1481 | ||
| 1482 | lemma convex_interior: | |
| 1483 | fixes s :: "'a::real_normed_vector set" | |
| 1484 | assumes "convex s" shows "convex(interior s)" | |
| 1485 | unfolding convex_alt Ball_def mem_interior apply(rule,rule,rule,rule,rule,rule) apply(erule exE | erule conjE)+ proof- | |
| 1486 | fix x y u assume u:"0 \<le> u" "u \<le> (1::real)" | |
| 1487 | fix e d assume ed:"ball x e \<subseteq> s" "ball y d \<subseteq> s" "0<d" "0<e" | |
| 1488 | show "\<exists>e>0. ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) e \<subseteq> s" apply(rule_tac x="min d e" in exI) | |
| 1489 | apply rule unfolding subset_eq defer apply rule proof- | |
| 1490 | fix z assume "z \<in> ball ((1 - u) *\<^sub>R x + u *\<^sub>R y) (min d e)" | |
| 1491 | hence "(1- u) *\<^sub>R (z - u *\<^sub>R (y - x)) + u *\<^sub>R (z + (1 - u) *\<^sub>R (y - x)) \<in> s" | |
| 1492 | apply(rule_tac assms[unfolded convex_alt, rule_format]) | |
| 1493 | using ed(1,2) and u unfolding subset_eq mem_ball Ball_def dist_norm by(auto simp add: algebra_simps) | |
| 1494 | thus "z \<in> s" using u by (auto simp add: algebra_simps) qed(insert u ed(3-4), auto) qed | |
| 1495 | ||
| 34964 | 1496 | lemma convex_hull_eq_empty[simp]: "convex hull s = {} \<longleftrightarrow> s = {}"
 | 
| 33175 | 1497 | using hull_subset[of s convex] convex_hull_empty by auto | 
| 1498 | ||
| 1499 | subsection {* Moving and scaling convex hulls. *}
 | |
| 1500 | ||
| 1501 | lemma convex_hull_translation_lemma: | |
| 1502 | "convex hull ((\<lambda>x. a + x) ` s) \<subseteq> (\<lambda>x. a + x) ` (convex hull s)" | |
| 36071 | 1503 | by (metis convex_convex_hull convex_translation hull_minimal hull_subset image_mono mem_def) | 
| 33175 | 1504 | |
| 1505 | lemma convex_hull_bilemma: fixes neg | |
| 1506 | assumes "(\<forall>s a. (convex hull (up a s)) \<subseteq> up a (convex hull s))" | |
| 1507 | shows "(\<forall>s. up a (up (neg a) s) = s) \<and> (\<forall>s. up (neg a) (up a s) = s) \<and> (\<forall>s t a. s \<subseteq> t \<longrightarrow> up a s \<subseteq> up a t) | |
| 1508 | \<Longrightarrow> \<forall>s. (convex hull (up a s)) = up a (convex hull s)" | |
| 1509 | using assms by(metis subset_antisym) | |
| 1510 | ||
| 1511 | lemma convex_hull_translation: | |
| 1512 | "convex hull ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (convex hull s)" | |
| 1513 | apply(rule convex_hull_bilemma[rule_format, of _ _ "\<lambda>a. -a"], rule convex_hull_translation_lemma) unfolding image_image by auto | |
| 1514 | ||
| 1515 | lemma convex_hull_scaling_lemma: | |
| 1516 | "(convex hull ((\<lambda>x. c *\<^sub>R x) ` s)) \<subseteq> (\<lambda>x. c *\<^sub>R x) ` (convex hull s)" | |
| 36071 | 1517 | by (metis convex_convex_hull convex_scaling hull_subset mem_def subset_hull subset_image_iff) | 
| 33175 | 1518 | |
| 1519 | lemma convex_hull_scaling: | |
| 1520 | "convex hull ((\<lambda>x. c *\<^sub>R x) ` s) = (\<lambda>x. c *\<^sub>R x) ` (convex hull s)" | |
| 1521 | apply(cases "c=0") defer apply(rule convex_hull_bilemma[rule_format, of _ _ inverse]) apply(rule convex_hull_scaling_lemma) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1522 | unfolding image_image scaleR_scaleR by(auto simp add:image_constant_conv) | 
| 33175 | 1523 | |
| 1524 | lemma convex_hull_affinity: | |
| 1525 | "convex hull ((\<lambda>x. a + c *\<^sub>R x) ` s) = (\<lambda>x. a + c *\<^sub>R x) ` (convex hull s)" | |
| 36071 | 1526 | by(simp only: image_image[THEN sym] convex_hull_scaling convex_hull_translation) | 
| 33175 | 1527 | |
| 1528 | subsection {* Convex set as intersection of halfspaces. *}
 | |
| 1529 | ||
| 1530 | lemma convex_halfspace_intersection: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1531 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1532 | assumes "closed s" "convex s" | 
| 1533 |   shows "s = \<Inter> {h. s \<subseteq> h \<and> (\<exists>a b. h = {x. inner a x \<le> b})}"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1534 | apply(rule set_eqI, rule) unfolding Inter_iff Ball_def mem_Collect_eq apply(rule,rule,erule conjE) proof- | 
| 33175 | 1535 |   fix x  assume "\<forall>xa. s \<subseteq> xa \<and> (\<exists>a b. xa = {x. inner a x \<le> b}) \<longrightarrow> x \<in> xa"
 | 
| 1536 |   hence "\<forall>a b. s \<subseteq> {x. inner a x \<le> b} \<longrightarrow> x \<in> {x. inner a x \<le> b}" by blast
 | |
| 1537 | thus "x\<in>s" apply(rule_tac ccontr) apply(drule separating_hyperplane_closed_point[OF assms(2,1)]) | |
| 1538 | apply(erule exE)+ apply(erule_tac x="-a" in allE, erule_tac x="-b" in allE) by auto | |
| 1539 | qed auto | |
| 1540 | ||
| 1541 | subsection {* Radon's theorem (from Lars Schewe). *}
 | |
| 1542 | ||
| 1543 | lemma radon_ex_lemma: | |
| 1544 | assumes "finite c" "affine_dependent c" | |
| 1545 | shows "\<exists>u. setsum u c = 0 \<and> (\<exists>v\<in>c. u v \<noteq> 0) \<and> setsum (\<lambda>v. u v *\<^sub>R v) c = 0" | |
| 1546 | proof- from assms(2)[unfolded affine_dependent_explicit] guess s .. then guess u .. | |
| 1547 | thus ?thesis apply(rule_tac x="\<lambda>v. if v\<in>s then u v else 0" in exI) unfolding if_smult scaleR_zero_left | |
| 1548 | and setsum_restrict_set[OF assms(1), THEN sym] by(auto simp add: Int_absorb1) qed | |
| 1549 | ||
| 1550 | lemma radon_s_lemma: | |
| 1551 | assumes "finite s" "setsum f s = (0::real)" | |
| 1552 |   shows "setsum f {x\<in>s. 0 < f x} = - setsum f {x\<in>s. f x < 0}"
 | |
| 1553 | proof- have *:"\<And>x. (if f x < 0 then f x else 0) + (if 0 < f x then f x else 0) = f x" by auto | |
| 1554 | show ?thesis unfolding real_add_eq_0_iff[THEN sym] and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and * | |
| 1555 | using assms(2) by assumption qed | |
| 1556 | ||
| 1557 | lemma radon_v_lemma: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1558 | assumes "finite s" "setsum f s = 0" "\<forall>x. g x = (0::real) \<longrightarrow> f x = (0::'a::euclidean_space)" | 
| 33175 | 1559 |   shows "(setsum f {x\<in>s. 0 < g x}) = - setsum f {x\<in>s. g x < 0}"
 | 
| 1560 | proof- | |
| 1561 | have *:"\<And>x. (if 0 < g x then f x else 0) + (if g x < 0 then f x else 0) = f x" using assms(3) by auto | |
| 1562 | show ?thesis unfolding eq_neg_iff_add_eq_0 and setsum_restrict_set''[OF assms(1)] and setsum_addf[THEN sym] and * | |
| 1563 | using assms(2) by assumption qed | |
| 1564 | ||
| 1565 | lemma radon_partition: | |
| 1566 | assumes "finite c" "affine_dependent c" | |
| 1567 |   shows "\<exists>m p. m \<inter> p = {} \<and> m \<union> p = c \<and> (convex hull m) \<inter> (convex hull p) \<noteq> {}" proof-
 | |
| 1568 | obtain u v where uv:"setsum u c = 0" "v\<in>c" "u v \<noteq> 0" "(\<Sum>v\<in>c. u v *\<^sub>R v) = 0" using radon_ex_lemma[OF assms] by auto | |
| 1569 |   have fin:"finite {x \<in> c. 0 < u x}" "finite {x \<in> c. 0 > u x}" using assms(1) by auto
 | |
| 1570 |   def z \<equiv> "(inverse (setsum u {x\<in>c. u x > 0})) *\<^sub>R setsum (\<lambda>x. u x *\<^sub>R x) {x\<in>c. u x > 0}"
 | |
| 1571 |   have "setsum u {x \<in> c. 0 < u x} \<noteq> 0" proof(cases "u v \<ge> 0")
 | |
| 1572 | case False hence "u v < 0" by auto | |
| 1573 |     thus ?thesis proof(cases "\<exists>w\<in>{x \<in> c. 0 < u x}. u w > 0") 
 | |
| 1574 | case True thus ?thesis using setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] by auto | |
| 1575 | next | |
| 1576 | case False hence "setsum u c \<le> setsum (\<lambda>x. if x=v then u v else 0) c" apply(rule_tac setsum_mono) by auto | |
| 1577 | thus ?thesis unfolding setsum_delta[OF assms(1)] using uv(2) and `u v < 0` and uv(1) by auto qed | |
| 1578 | qed (insert setsum_nonneg_eq_0_iff[of _ u, OF fin(1)] uv(2-3), auto) | |
| 1579 | ||
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 1580 |   hence *:"setsum u {x\<in>c. u x > 0} > 0" unfolding less_le apply(rule_tac conjI, rule_tac setsum_nonneg) by auto
 | 
| 33175 | 1581 |   moreover have "setsum u ({x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}) = setsum u c"
 | 
| 1582 |     "(\<Sum>x\<in>{x \<in> c. 0 < u x} \<union> {x \<in> c. u x < 0}. u x *\<^sub>R x) = (\<Sum>x\<in>c. u x *\<^sub>R x)"
 | |
| 1583 | using assms(1) apply(rule_tac[!] setsum_mono_zero_left) by auto | |
| 1584 |   hence "setsum u {x \<in> c. 0 < u x} = - setsum u {x \<in> c. 0 > u x}"
 | |
| 1585 |    "(\<Sum>x\<in>{x \<in> c. 0 < u x}. u x *\<^sub>R x) = - (\<Sum>x\<in>{x \<in> c. 0 > u x}. u x *\<^sub>R x)" 
 | |
| 1586 | unfolding eq_neg_iff_add_eq_0 using uv(1,4) by (auto simp add: setsum_Un_zero[OF fin, THEN sym]) | |
| 1587 |   moreover have "\<forall>x\<in>{v \<in> c. u v < 0}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * - u x" 
 | |
| 1588 | apply (rule) apply (rule mult_nonneg_nonneg) using * by auto | |
| 1589 | ||
| 1590 |   ultimately have "z \<in> convex hull {v \<in> c. u v \<le> 0}" unfolding convex_hull_explicit mem_Collect_eq
 | |
| 1591 |     apply(rule_tac x="{v \<in> c. u v < 0}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * - u y" in exI)
 | |
| 1592 | using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1593 | by(auto simp add: setsum_negf mult_right.setsum[THEN sym]) | 
| 33175 | 1594 |   moreover have "\<forall>x\<in>{v \<in> c. 0 < u v}. 0 \<le> inverse (setsum u {x \<in> c. 0 < u x}) * u x" 
 | 
| 1595 | apply (rule) apply (rule mult_nonneg_nonneg) using * by auto | |
| 1596 |   hence "z \<in> convex hull {v \<in> c. u v > 0}" unfolding convex_hull_explicit mem_Collect_eq
 | |
| 1597 |     apply(rule_tac x="{v \<in> c. 0 < u v}" in exI, rule_tac x="\<lambda>y. inverse (setsum u {x\<in>c. u x > 0}) * u y" in exI)
 | |
| 1598 | using assms(1) unfolding scaleR_scaleR[THEN sym] scaleR_right.setsum [symmetric] and z_def using * | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1599 | by(auto simp add: setsum_negf mult_right.setsum[THEN sym]) | 
| 33175 | 1600 |   ultimately show ?thesis apply(rule_tac x="{v\<in>c. u v \<le> 0}" in exI, rule_tac x="{v\<in>c. u v > 0}" in exI) by auto
 | 
| 1601 | qed | |
| 1602 | ||
| 1603 | lemma radon: assumes "affine_dependent c" | |
| 1604 |   obtains m p where "m\<subseteq>c" "p\<subseteq>c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}"
 | |
| 1605 | proof- from assms[unfolded affine_dependent_explicit] guess s .. then guess u .. | |
| 1606 | hence *:"finite s" "affine_dependent s" and s:"s \<subseteq> c" unfolding affine_dependent_explicit by auto | |
| 1607 | from radon_partition[OF *] guess m .. then guess p .. | |
| 1608 | thus ?thesis apply(rule_tac that[of p m]) using s by auto qed | |
| 1609 | ||
| 1610 | subsection {* Helly's theorem. *}
 | |
| 1611 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1612 | lemma helly_induct: fixes f::"('a::euclidean_space) set set"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1613 |   assumes "card f = n" "n \<ge> DIM('a) + 1"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1614 |   "\<forall>s\<in>f. convex s" "\<forall>t\<subseteq>f. card t = DIM('a) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
 | 
| 33175 | 1615 |   shows "\<Inter> f \<noteq> {}"
 | 
| 33715 | 1616 | using assms proof(induct n arbitrary: f) | 
| 33175 | 1617 | case (Suc n) | 
| 33715 | 1618 | have "finite f" using `card f = Suc n` by (auto intro: card_ge_0_finite) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1619 | show "\<Inter> f \<noteq> {}" apply(cases "n = DIM('a)") apply(rule Suc(5)[rule_format])
 | 
| 33715 | 1620 | unfolding `card f = Suc n` proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1621 |   assume ng:"n \<noteq> DIM('a)" hence "\<exists>X. \<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" apply(rule_tac bchoice) unfolding ex_in_conv
 | 
| 33715 | 1622 | apply(rule, rule Suc(1)[rule_format]) unfolding card_Diff_singleton_if[OF `finite f`] `card f = Suc n` | 
| 1623 | defer defer apply(rule Suc(4)[rule_format]) defer apply(rule Suc(5)[rule_format]) using Suc(3) `finite f` by auto | |
| 33175 | 1624 |   then obtain X where X:"\<forall>s\<in>f. X s \<in> \<Inter>(f - {s})" by auto
 | 
| 1625 | show ?thesis proof(cases "inj_on X f") | |
| 1626 | case False then obtain s t where st:"s\<noteq>t" "s\<in>f" "t\<in>f" "X s = X t" unfolding inj_on_def by auto | |
| 1627 |     hence *:"\<Inter> f = \<Inter> (f - {s}) \<inter> \<Inter> (f - {t})" by auto
 | |
| 1628 | show ?thesis unfolding * unfolding ex_in_conv[THEN sym] apply(rule_tac x="X s" in exI) | |
| 1629 | apply(rule, rule X[rule_format]) using X st by auto | |
| 1630 |   next case True then obtain m p where mp:"m \<inter> p = {}" "m \<union> p = X ` f" "convex hull m \<inter> convex hull p \<noteq> {}"
 | |
| 1631 | using radon_partition[of "X ` f"] and affine_dependent_biggerset[of "X ` f"] | |
| 33715 | 1632 | unfolding card_image[OF True] and `card f = Suc n` using Suc(3) `finite f` and ng by auto | 
| 33175 | 1633 | have "m \<subseteq> X ` f" "p \<subseteq> X ` f" using mp(2) by auto | 
| 1634 | then obtain g h where gh:"m = X ` g" "p = X ` h" "g \<subseteq> f" "h \<subseteq> f" unfolding subset_image_iff by auto | |
| 1635 | hence "f \<union> (g \<union> h) = f" by auto | |
| 1636 | hence f:"f = g \<union> h" using inj_on_Un_image_eq_iff[of X f "g \<union> h"] and True | |
| 1637 | unfolding mp(2)[unfolded image_Un[THEN sym] gh] by auto | |
| 1638 |     have *:"g \<inter> h = {}" using mp(1) unfolding gh using inj_on_image_Int[OF True gh(3,4)] by auto
 | |
| 1639 | have "convex hull (X ` h) \<subseteq> \<Inter> g" "convex hull (X ` g) \<subseteq> \<Inter> h" | |
| 33715 | 1640 | apply(rule_tac [!] hull_minimal) using Suc gh(3-4) unfolding mem_def unfolding subset_eq | 
| 33175 | 1641 | apply(rule_tac [2] convex_Inter, rule_tac [4] convex_Inter) apply rule prefer 3 apply rule proof- | 
| 1642 | fix x assume "x\<in>X ` g" then guess y unfolding image_iff .. | |
| 1643 | thus "x\<in>\<Inter>h" using X[THEN bspec[where x=y]] using * f by auto next | |
| 1644 | fix x assume "x\<in>X ` h" then guess y unfolding image_iff .. | |
| 1645 | thus "x\<in>\<Inter>g" using X[THEN bspec[where x=y]] using * f by auto | |
| 1646 | qed(auto) | |
| 1647 | thus ?thesis unfolding f using mp(3)[unfolded gh] by blast qed | |
| 37647 | 1648 | qed(auto) qed(auto) | 
| 33175 | 1649 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1650 | lemma helly: fixes f::"('a::euclidean_space) set set"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1651 |   assumes "card f \<ge> DIM('a) + 1" "\<forall>s\<in>f. convex s"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1652 |           "\<forall>t\<subseteq>f. card t = DIM('a) + 1 \<longrightarrow> \<Inter> t \<noteq> {}"
 | 
| 33175 | 1653 |   shows "\<Inter> f \<noteq>{}"
 | 
| 33715 | 1654 | apply(rule helly_induct) using assms by auto | 
| 33175 | 1655 | |
| 1656 | subsection {* Convex hull is "preserved" by a linear function. *}
 | |
| 1657 | ||
| 1658 | lemma convex_hull_linear_image: | |
| 1659 | assumes "bounded_linear f" | |
| 1660 | shows "f ` (convex hull s) = convex hull (f ` s)" | |
| 1661 | apply rule unfolding subset_eq ball_simps apply(rule_tac[!] hull_induct, rule hull_inc) prefer 3 | |
| 1662 | apply(erule imageE)apply(rule_tac x=xa in image_eqI) apply assumption | |
| 1663 | apply(rule hull_subset[unfolded subset_eq, rule_format]) apply assumption | |
| 1664 | proof- | |
| 1665 | interpret f: bounded_linear f by fact | |
| 1666 |   show "convex {x. f x \<in> convex hull f ` s}" 
 | |
| 1667 | unfolding convex_def by(auto simp add: f.scaleR f.add convex_convex_hull[unfolded convex_def, rule_format]) next | |
| 1668 | interpret f: bounded_linear f by fact | |
| 1669 |   show "convex {x. x \<in> f ` (convex hull s)}" using  convex_convex_hull[unfolded convex_def, of s] 
 | |
| 1670 | unfolding convex_def by (auto simp add: f.scaleR [symmetric] f.add [symmetric]) | |
| 1671 | qed auto | |
| 1672 | ||
| 1673 | lemma in_convex_hull_linear_image: | |
| 1674 | assumes "bounded_linear f" "x \<in> convex hull s" | |
| 1675 | shows "(f x) \<in> convex hull (f ` s)" | |
| 1676 | using convex_hull_linear_image[OF assms(1)] assms(2) by auto | |
| 1677 | ||
| 1678 | subsection {* Homeomorphism of all convex compact sets with nonempty interior. *}
 | |
| 1679 | ||
| 1680 | lemma compact_frontier_line_lemma: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1681 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1682 | assumes "compact s" "0 \<in> s" "x \<noteq> 0" | 
| 1683 | obtains u where "0 \<le> u" "(u *\<^sub>R x) \<in> frontier s" "\<forall>v>u. (v *\<^sub>R x) \<notin> s" | |
| 1684 | proof- | |
| 1685 | obtain b where b:"b>0" "\<forall>x\<in>s. norm x \<le> b" using compact_imp_bounded[OF assms(1), unfolded bounded_pos] by auto | |
| 1686 |   let ?A = "{y. \<exists>u. 0 \<le> u \<and> u \<le> b / norm(x) \<and> (y = u *\<^sub>R x)}"
 | |
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1687 |   have A:"?A = (\<lambda>u. u *\<^sub>R x) ` {0 .. b / norm x}"
 | 
| 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1688 | by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1689 |   have *:"\<And>x A B. x\<in>A \<Longrightarrow> x\<in>B \<Longrightarrow> A\<inter>B \<noteq> {}" by blast
 | 
| 33175 | 1690 | have "compact ?A" unfolding A apply(rule compact_continuous_image, rule continuous_at_imp_continuous_on) | 
| 1691 | apply(rule, rule continuous_vmul) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1692 | apply(rule continuous_at_id) by(rule compact_interval) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1693 |   moreover have "{y. \<exists>u\<ge>0. u \<le> b / norm x \<and> y = u *\<^sub>R x} \<inter> s \<noteq> {}" apply(rule *[OF _ assms(2)])
 | 
| 33175 | 1694 | unfolding mem_Collect_eq using `b>0` assms(3) by(auto intro!: divide_nonneg_pos) | 
| 1695 | ultimately obtain u y where obt: "u\<ge>0" "u \<le> b / norm x" "y = u *\<^sub>R x" | |
| 1696 | "y\<in>?A" "y\<in>s" "\<forall>z\<in>?A \<inter> s. dist 0 z \<le> dist 0 y" using distance_attains_sup[OF compact_inter[OF _ assms(1), of ?A], of 0] by auto | |
| 1697 | ||
| 1698 | have "norm x > 0" using assms(3)[unfolded zero_less_norm_iff[THEN sym]] by auto | |
| 1699 |   { fix v assume as:"v > u" "v *\<^sub>R x \<in> s"
 | |
| 1700 | hence "v \<le> b / norm x" using b(2)[rule_format, OF as(2)] | |
| 1701 | using `u\<ge>0` unfolding pos_le_divide_eq[OF `norm x > 0`] by auto | |
| 1702 | hence "norm (v *\<^sub>R x) \<le> norm y" apply(rule_tac obt(6)[rule_format, unfolded dist_0_norm]) apply(rule IntI) defer | |
| 1703 | apply(rule as(2)) unfolding mem_Collect_eq apply(rule_tac x=v in exI) | |
| 1704 | using as(1) `u\<ge>0` by(auto simp add:field_simps) | |
| 1705 | hence False unfolding obt(3) using `u\<ge>0` `norm x > 0` `v>u` by(auto simp add:field_simps) | |
| 1706 | } note u_max = this | |
| 1707 | ||
| 1708 | have "u *\<^sub>R x \<in> frontier s" unfolding frontier_straddle apply(rule,rule,rule) apply(rule_tac x="u *\<^sub>R x" in bexI) unfolding obt(3)[THEN sym] | |
| 1709 | prefer 3 apply(rule_tac x="(u + (e / 2) / norm x) *\<^sub>R x" in exI) apply(rule, rule) proof- | |
| 1710 | fix e assume "0 < e" and as:"(u + e / 2 / norm x) *\<^sub>R x \<in> s" | |
| 1711 | hence "u + e / 2 / norm x > u" using`norm x > 0` by(auto simp del:zero_less_norm_iff intro!: divide_pos_pos) | |
| 1712 | thus False using u_max[OF _ as] by auto | |
| 1713 | qed(insert `y\<in>s`, auto simp add: dist_norm scaleR_left_distrib obt(3)) | |
| 36071 | 1714 | thus ?thesis by(metis that[of u] u_max obt(1)) | 
| 1715 | qed | |
| 33175 | 1716 | |
| 1717 | lemma starlike_compact_projective: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1718 | assumes "compact s" "cball (0::'a::euclidean_space) 1 \<subseteq> s " | 
| 33175 | 1719 | "\<forall>x\<in>s. \<forall>u. 0 \<le> u \<and> u < 1 \<longrightarrow> (u *\<^sub>R x) \<in> (s - frontier s )" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1720 | shows "s homeomorphic (cball (0::'a::euclidean_space) 1)" | 
| 33175 | 1721 | proof- | 
| 1722 | have fs:"frontier s \<subseteq> s" apply(rule frontier_subset_closed) using compact_imp_closed[OF assms(1)] by simp | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1723 | def pi \<equiv> "\<lambda>x::'a. inverse (norm x) *\<^sub>R x" | 
| 33175 | 1724 | have "0 \<notin> frontier s" unfolding frontier_straddle apply(rule ccontr) unfolding not_not apply(erule_tac x=1 in allE) | 
| 1725 | using assms(2)[unfolded subset_eq Ball_def mem_cball] by auto | |
| 1726 | have injpi:"\<And>x y. pi x = pi y \<and> norm x = norm y \<longleftrightarrow> x = y" unfolding pi_def by auto | |
| 1727 | ||
| 1728 |   have contpi:"continuous_on (UNIV - {0}) pi" apply(rule continuous_at_imp_continuous_on)
 | |
| 1729 | apply rule unfolding pi_def | |
| 1730 | apply (rule continuous_mul) | |
| 1731 | apply (rule continuous_at_inv[unfolded o_def]) | |
| 1732 | apply (rule continuous_at_norm) | |
| 1733 | apply simp | |
| 1734 | apply (rule continuous_at_id) | |
| 1735 | done | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1736 |   def sphere \<equiv> "{x::'a. norm x = 1}"
 | 
| 33175 | 1737 | have pi:"\<And>x. x \<noteq> 0 \<Longrightarrow> pi x \<in> sphere" "\<And>x u. u>0 \<Longrightarrow> pi (u *\<^sub>R x) = pi x" unfolding pi_def sphere_def by auto | 
| 1738 | ||
| 1739 | have "0\<in>s" using assms(2) and centre_in_cball[of 0 1] by auto | |
| 1740 | have front_smul:"\<forall>x\<in>frontier s. \<forall>u\<ge>0. u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" proof(rule,rule,rule) | |
| 1741 | fix x u assume x:"x\<in>frontier s" and "(0::real)\<le>u" | |
| 1742 | hence "x\<noteq>0" using `0\<notin>frontier s` by auto | |
| 1743 | obtain v where v:"0 \<le> v" "v *\<^sub>R x \<in> frontier s" "\<forall>w>v. w *\<^sub>R x \<notin> s" | |
| 1744 | using compact_frontier_line_lemma[OF assms(1) `0\<in>s` `x\<noteq>0`] by auto | |
| 1745 | have "v=1" apply(rule ccontr) unfolding neq_iff apply(erule disjE) proof- | |
| 1746 | assume "v<1" thus False using v(3)[THEN spec[where x=1]] using x and fs by auto next | |
| 1747 | assume "v>1" thus False using assms(3)[THEN bspec[where x="v *\<^sub>R x"], THEN spec[where x="inverse v"]] | |
| 1748 | using v and x and fs unfolding inverse_less_1_iff by auto qed | |
| 1749 | show "u *\<^sub>R x \<in> s \<longleftrightarrow> u \<le> 1" apply rule using v(3)[unfolded `v=1`, THEN spec[where x=u]] proof- | |
| 1750 | assume "u\<le>1" thus "u *\<^sub>R x \<in> s" apply(cases "u=1") | |
| 1751 | using assms(3)[THEN bspec[where x=x], THEN spec[where x=u]] using `0\<le>u` and x and fs by auto qed auto qed | |
| 1752 | ||
| 1753 | have "\<exists>surf. homeomorphism (frontier s) sphere pi surf" | |
| 1754 | apply(rule homeomorphism_compact) apply(rule compact_frontier[OF assms(1)]) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1755 | apply(rule continuous_on_subset[OF contpi]) defer apply(rule set_eqI,rule) | 
| 33175 | 1756 | unfolding inj_on_def prefer 3 apply(rule,rule,rule) | 
| 1757 | proof- fix x assume "x\<in>pi ` frontier s" then obtain y where "y\<in>frontier s" "x = pi y" by auto | |
| 1758 | thus "x \<in> sphere" using pi(1)[of y] and `0 \<notin> frontier s` by auto | |
| 1759 | next fix x assume "x\<in>sphere" hence "norm x = 1" "x\<noteq>0" unfolding sphere_def by auto | |
| 1760 | then obtain u where "0 \<le> u" "u *\<^sub>R x \<in> frontier s" "\<forall>v>u. v *\<^sub>R x \<notin> s" | |
| 1761 | using compact_frontier_line_lemma[OF assms(1) `0\<in>s`, of x] by auto | |
| 1762 | thus "x \<in> pi ` frontier s" unfolding image_iff le_less pi_def apply(rule_tac x="u *\<^sub>R x" in bexI) using `norm x = 1` `0\<notin>frontier s` by auto | |
| 1763 | next fix x y assume as:"x \<in> frontier s" "y \<in> frontier s" "pi x = pi y" | |
| 1764 | hence xys:"x\<in>s" "y\<in>s" using fs by auto | |
| 1765 | from as(1,2) have nor:"norm x \<noteq> 0" "norm y \<noteq> 0" using `0\<notin>frontier s` by auto | |
| 1766 | from nor have x:"x = norm x *\<^sub>R ((inverse (norm y)) *\<^sub>R y)" unfolding as(3)[unfolded pi_def, THEN sym] by auto | |
| 1767 | from nor have y:"y = norm y *\<^sub>R ((inverse (norm x)) *\<^sub>R x)" unfolding as(3)[unfolded pi_def] by auto | |
| 1768 | have "0 \<le> norm y * inverse (norm x)" "0 \<le> norm x * inverse (norm y)" | |
| 1769 | unfolding divide_inverse[THEN sym] apply(rule_tac[!] divide_nonneg_pos) using nor by auto | |
| 1770 | hence "norm x = norm y" apply(rule_tac ccontr) unfolding neq_iff | |
| 1771 | using x y and front_smul[THEN bspec, OF as(1), THEN spec[where x="norm y * (inverse (norm x))"]] | |
| 1772 | using front_smul[THEN bspec, OF as(2), THEN spec[where x="norm x * (inverse (norm y))"]] | |
| 1773 | using xys nor by(auto simp add:field_simps divide_le_eq_1 divide_inverse[THEN sym]) | |
| 1774 | thus "x = y" apply(subst injpi[THEN sym]) using as(3) by auto | |
| 1775 | qed(insert `0 \<notin> frontier s`, auto) | |
| 1776 | then obtain surf where surf:"\<forall>x\<in>frontier s. surf (pi x) = x" "pi ` frontier s = sphere" "continuous_on (frontier s) pi" | |
| 1777 | "\<forall>y\<in>sphere. pi (surf y) = y" "surf ` sphere = frontier s" "continuous_on sphere surf" unfolding homeomorphism_def by auto | |
| 1778 | ||
| 1779 |   have cont_surfpi:"continuous_on (UNIV -  {0}) (surf \<circ> pi)" apply(rule continuous_on_compose, rule contpi)
 | |
| 1780 | apply(rule continuous_on_subset[of sphere], rule surf(6)) using pi(1) by auto | |
| 1781 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1782 |   { fix x assume as:"x \<in> cball (0::'a) 1"
 | 
| 33175 | 1783 | have "norm x *\<^sub>R surf (pi x) \<in> s" proof(cases "x=0 \<or> norm x = 1") | 
| 1784 | case False hence "pi x \<in> sphere" "norm x < 1" using pi(1)[of x] as by(auto simp add: dist_norm) | |
| 1785 | thus ?thesis apply(rule_tac assms(3)[rule_format, THEN DiffD1]) | |
| 1786 | apply(rule_tac fs[unfolded subset_eq, rule_format]) | |
| 1787 | unfolding surf(5)[THEN sym] by auto | |
| 1788 | next case True thus ?thesis apply rule defer unfolding pi_def apply(rule fs[unfolded subset_eq, rule_format]) | |
| 1789 | unfolding surf(5)[unfolded sphere_def, THEN sym] using `0\<in>s` by auto qed } note hom = this | |
| 1790 | ||
| 1791 |   { fix x assume "x\<in>s"
 | |
| 1792 | hence "x \<in> (\<lambda>x. norm x *\<^sub>R surf (pi x)) ` cball 0 1" proof(cases "x=0") | |
| 1793 | case True show ?thesis unfolding image_iff True apply(rule_tac x=0 in bexI) by auto | |
| 1794 | next let ?a = "inverse (norm (surf (pi x)))" | |
| 1795 | case False hence invn:"inverse (norm x) \<noteq> 0" by auto | |
| 1796 | from False have pix:"pi x\<in>sphere" using pi(1) by auto | |
| 1797 | hence "pi (surf (pi x)) = pi x" apply(rule_tac surf(4)[rule_format]) by assumption | |
| 1798 | hence **:"norm x *\<^sub>R (?a *\<^sub>R surf (pi x)) = x" apply(rule_tac scaleR_left_imp_eq[OF invn]) unfolding pi_def using invn by auto | |
| 1799 | hence *:"?a * norm x > 0" and"?a > 0" "?a \<noteq> 0" using surf(5) `0\<notin>frontier s` apply - | |
| 1800 | apply(rule_tac mult_pos_pos) using False[unfolded zero_less_norm_iff[THEN sym]] by auto | |
| 1801 | have "norm (surf (pi x)) \<noteq> 0" using ** False by auto | |
| 1802 | hence "norm x = norm ((?a * norm x) *\<^sub>R surf (pi x))" | |
| 1803 | unfolding norm_scaleR abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] by auto | |
| 1804 | moreover have "pi x = pi ((inverse (norm (surf (pi x))) * norm x) *\<^sub>R surf (pi x))" | |
| 1805 | unfolding pi(2)[OF *] surf(4)[rule_format, OF pix] .. | |
| 1806 | moreover have "surf (pi x) \<in> frontier s" using surf(5) pix by auto | |
| 1807 | hence "dist 0 (inverse (norm (surf (pi x))) *\<^sub>R x) \<le> 1" unfolding dist_norm | |
| 1808 | using ** and * using front_smul[THEN bspec[where x="surf (pi x)"], THEN spec[where x="norm x * ?a"]] | |
| 1809 | using False `x\<in>s` by(auto simp add:field_simps) | |
| 1810 | ultimately show ?thesis unfolding image_iff apply(rule_tac x="inverse (norm (surf(pi x))) *\<^sub>R x" in bexI) | |
| 1811 | apply(subst injpi[THEN sym]) unfolding abs_mult abs_norm_cancel abs_of_pos[OF `?a > 0`] | |
| 1812 | unfolding pi(2)[OF `?a > 0`] by auto | |
| 1813 | qed } note hom2 = this | |
| 1814 | ||
| 1815 | show ?thesis apply(subst homeomorphic_sym) apply(rule homeomorphic_compact[where f="\<lambda>x. norm x *\<^sub>R surf (pi x)"]) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1816 | apply(rule compact_cball) defer apply(rule set_eqI, rule, erule imageE, drule hom) | 
| 33175 | 1817 | prefer 4 apply(rule continuous_at_imp_continuous_on, rule) apply(rule_tac [3] hom2) proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1818 | fix x::"'a" assume as:"x \<in> cball 0 1" | 
| 33175 | 1819 | thus "continuous (at x) (\<lambda>x. norm x *\<^sub>R surf (pi x))" proof(cases "x=0") | 
| 1820 | case False thus ?thesis apply(rule_tac continuous_mul, rule_tac continuous_at_norm) | |
| 1821 | using cont_surfpi unfolding continuous_on_eq_continuous_at[OF open_delete[OF open_UNIV]] o_def by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1822 | next obtain B where B:"\<forall>x\<in>s. norm x \<le> B" using compact_imp_bounded[OF assms(1)] unfolding bounded_iff by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1823 | hence "B > 0" using assms(2) unfolding subset_eq apply(erule_tac x="basis 0" in ballE) defer | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1824 | apply(erule_tac x="basis 0" in ballE) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1825 | unfolding Ball_def mem_cball dist_norm using DIM_positive[where 'a='a] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1826 | by(auto simp add:norm_basis[unfolded One_nat_def]) | 
| 33175 | 1827 | case True show ?thesis unfolding True continuous_at Lim_at apply(rule,rule) apply(rule_tac x="e / B" in exI) | 
| 1828 | apply(rule) apply(rule divide_pos_pos) prefer 3 apply(rule,rule,erule conjE) | |
| 36586 | 1829 | unfolding norm_zero scaleR_zero_left dist_norm diff_0_right norm_scaleR abs_norm_cancel proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1830 | fix e and x::"'a" assume as:"norm x < e / B" "0 < norm x" "0<e" | 
| 33175 | 1831 | hence "surf (pi x) \<in> frontier s" using pi(1)[of x] unfolding surf(5)[THEN sym] by auto | 
| 1832 | hence "norm (surf (pi x)) \<le> B" using B fs by auto | |
| 1833 | hence "norm x * norm (surf (pi x)) \<le> norm x * B" using as(2) by auto | |
| 1834 | also have "\<dots> < e / B * B" apply(rule mult_strict_right_mono) using as(1) `B>0` by auto | |
| 1835 | also have "\<dots> = e" using `B>0` by auto | |
| 1836 | finally show "norm x * norm (surf (pi x)) < e" by assumption | |
| 1837 | qed(insert `B>0`, auto) qed | |
| 1838 |   next { fix x assume as:"surf (pi x) = 0"
 | |
| 1839 | have "x = 0" proof(rule ccontr) | |
| 1840 | assume "x\<noteq>0" hence "pi x \<in> sphere" using pi(1) by auto | |
| 1841 | hence "surf (pi x) \<in> frontier s" using surf(5) by auto | |
| 1842 | thus False using `0\<notin>frontier s` unfolding as by simp qed | |
| 1843 | } note surf_0 = this | |
| 1844 | show "inj_on (\<lambda>x. norm x *\<^sub>R surf (pi x)) (cball 0 1)" unfolding inj_on_def proof(rule,rule,rule) | |
| 1845 | fix x y assume as:"x \<in> cball 0 1" "y \<in> cball 0 1" "norm x *\<^sub>R surf (pi x) = norm y *\<^sub>R surf (pi y)" | |
| 1846 | thus "x=y" proof(cases "x=0 \<or> y=0") | |
| 1847 | case True thus ?thesis using as by(auto elim: surf_0) next | |
| 1848 | case False | |
| 1849 | hence "pi (surf (pi x)) = pi (surf (pi y))" using as(3) | |
| 1850 | using pi(2)[of "norm x" "surf (pi x)"] pi(2)[of "norm y" "surf (pi y)"] by auto | |
| 1851 | moreover have "pi x \<in> sphere" "pi y \<in> sphere" using pi(1) False by auto | |
| 1852 | ultimately have *:"pi x = pi y" using surf(4)[THEN bspec[where x="pi x"]] surf(4)[THEN bspec[where x="pi y"]] by auto | |
| 1853 | moreover have "norm x = norm y" using as(3)[unfolded *] using False by(auto dest:surf_0) | |
| 1854 | ultimately show ?thesis using injpi by auto qed qed | |
| 1855 | qed auto qed | |
| 1856 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1857 | lemma homeomorphic_convex_compact_lemma: fixes s::"('a::euclidean_space) set"
 | 
| 33175 | 1858 | assumes "convex s" "compact s" "cball 0 1 \<subseteq> s" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1859 | shows "s homeomorphic (cball (0::'a) 1)" | 
| 33175 | 1860 | apply(rule starlike_compact_projective[OF assms(2-3)]) proof(rule,rule,rule,erule conjE) | 
| 1861 | fix x u assume as:"x \<in> s" "0 \<le> u" "u < (1::real)" | |
| 1862 | hence "u *\<^sub>R x \<in> interior s" unfolding interior_def mem_Collect_eq | |
| 1863 | apply(rule_tac x="ball (u *\<^sub>R x) (1 - u)" in exI) apply(rule, rule open_ball) | |
| 1864 | unfolding centre_in_ball apply rule defer apply(rule) unfolding mem_ball proof- | |
| 1865 | fix y assume "dist (u *\<^sub>R x) y < 1 - u" | |
| 1866 | hence "inverse (1 - u) *\<^sub>R (y - u *\<^sub>R x) \<in> s" | |
| 1867 | using assms(3) apply(erule_tac subsetD) unfolding mem_cball dist_commute dist_norm | |
| 1868 | unfolding group_add_class.diff_0 group_add_class.diff_0_right norm_minus_cancel norm_scaleR | |
| 1869 | apply (rule mult_left_le_imp_le[of "1 - u"]) | |
| 36844 | 1870 | unfolding mult_assoc[symmetric] using `u<1` by auto | 
| 33175 | 1871 | thus "y \<in> s" using assms(1)[unfolded convex_def, rule_format, of "inverse(1 - u) *\<^sub>R (y - u *\<^sub>R x)" x "1 - u" u] | 
| 1872 | using as unfolding scaleR_scaleR by auto qed auto | |
| 1873 | thus "u *\<^sub>R x \<in> s - frontier s" using frontier_def and interior_subset by auto qed | |
| 1874 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1875 | lemma homeomorphic_convex_compact_cball: fixes e::real and s::"('a::euclidean_space) set"
 | 
| 33175 | 1876 |   assumes "convex s" "compact s" "interior s \<noteq> {}" "0 < e"
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1877 | shows "s homeomorphic (cball (b::'a) e)" | 
| 33175 | 1878 | proof- obtain a where "a\<in>interior s" using assms(3) by auto | 
| 1879 | then obtain d where "d>0" and d:"cball a d \<subseteq> s" unfolding mem_interior_cball by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1880 | let ?d = "inverse d" and ?n = "0::'a" | 
| 33175 | 1881 | have "cball ?n 1 \<subseteq> (\<lambda>x. inverse d *\<^sub>R (x - a)) ` s" | 
| 1882 | apply(rule, rule_tac x="d *\<^sub>R x + a" in image_eqI) defer | |
| 1883 | apply(rule d[unfolded subset_eq, rule_format]) using `d>0` unfolding mem_cball dist_norm | |
| 1884 | by(auto simp add: mult_right_le_one_le) | |
| 1885 | hence "(\<lambda>x. inverse d *\<^sub>R (x - a)) ` s homeomorphic cball ?n 1" | |
| 1886 | using homeomorphic_convex_compact_lemma[of "(\<lambda>x. ?d *\<^sub>R -a + ?d *\<^sub>R x) ` s", OF convex_affinity compact_affinity] | |
| 1887 | using assms(1,2) by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib) | |
| 1888 | thus ?thesis apply(rule_tac homeomorphic_trans[OF _ homeomorphic_balls(2)[of 1 _ ?n]]) | |
| 1889 | apply(rule homeomorphic_trans[OF homeomorphic_affinity[of "?d" s "?d *\<^sub>R -a"]]) | |
| 1890 | using `d>0` `e>0` by(auto simp add: uminus_add_conv_diff scaleR_right_diff_distrib) qed | |
| 1891 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1892 | lemma homeomorphic_convex_compact: fixes s::"('a::euclidean_space) set" and t::"('a) set"
 | 
| 33175 | 1893 |   assumes "convex s" "compact s" "interior s \<noteq> {}"
 | 
| 1894 |           "convex t" "compact t" "interior t \<noteq> {}"
 | |
| 1895 | shows "s homeomorphic t" | |
| 1896 | using assms by(meson zero_less_one homeomorphic_trans homeomorphic_convex_compact_cball homeomorphic_sym) | |
| 1897 | ||
| 1898 | subsection {* Epigraphs of convex functions. *}
 | |
| 1899 | ||
| 36338 | 1900 | definition "epigraph s (f::_ \<Rightarrow> real) = {xy. fst xy \<in> s \<and> f (fst xy) \<le> snd xy}"
 | 
| 1901 | ||
| 1902 | lemma mem_epigraph: "(x, y) \<in> epigraph s f \<longleftrightarrow> x \<in> s \<and> f x \<le> y" unfolding epigraph_def by auto | |
| 33175 | 1903 | |
| 34964 | 1904 | (** This might break sooner or later. In fact it did already once. **) | 
| 33175 | 1905 | lemma convex_epigraph: | 
| 1906 | "convex(epigraph s f) \<longleftrightarrow> convex_on s f \<and> convex s" | |
| 36338 | 1907 | unfolding convex_def convex_on_def | 
| 1908 | unfolding Ball_def split_paired_All epigraph_def | |
| 1909 | unfolding mem_Collect_eq fst_conv snd_conv fst_add snd_add fst_scaleR snd_scaleR Ball_def[symmetric] | |
| 34964 | 1910 | apply safe defer apply(erule_tac x=x in allE,erule_tac x="f x" in allE) apply safe | 
| 1911 | apply(erule_tac x=xa in allE,erule_tac x="f xa" in allE) prefer 3 | |
| 36338 | 1912 | apply(rule_tac y="u * f a + v * f aa" in order_trans) defer by(auto intro!:mult_left_mono add_mono) | 
| 33175 | 1913 | |
| 36071 | 1914 | lemma convex_epigraphI: | 
| 1915 | "convex_on s f \<Longrightarrow> convex s \<Longrightarrow> convex(epigraph s f)" | |
| 1916 | unfolding convex_epigraph by auto | |
| 1917 | ||
| 1918 | lemma convex_epigraph_convex: | |
| 1919 | "convex s \<Longrightarrow> convex_on s f \<longleftrightarrow> convex(epigraph s f)" | |
| 1920 | by(simp add: convex_epigraph) | |
| 33175 | 1921 | |
| 1922 | subsection {* Use this to derive general bound property of convex function. *}
 | |
| 1923 | ||
| 1924 | lemma convex_on: | |
| 1925 | assumes "convex s" | |
| 1926 |   shows "convex_on s f \<longleftrightarrow> (\<forall>k u x. (\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> x i \<in> s) \<and> setsum u {1..k} = 1 \<longrightarrow>
 | |
| 1927 |    f (setsum (\<lambda>i. u i *\<^sub>R x i) {1..k} ) \<le> setsum (\<lambda>i. u i * f(x i)) {1..k} ) "
 | |
| 1928 | unfolding convex_epigraph_convex[OF assms] convex epigraph_def Ball_def mem_Collect_eq | |
| 36338 | 1929 | unfolding fst_setsum snd_setsum fst_scaleR snd_scaleR | 
| 1930 | apply safe | |
| 1931 | apply (drule_tac x=k in spec) | |
| 1932 | apply (drule_tac x=u in spec) | |
| 1933 | apply (drule_tac x="\<lambda>i. (x i, f (x i))" in spec) | |
| 1934 | apply simp | |
| 1935 | using assms[unfolded convex] apply simp | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 1936 | apply(rule_tac y="\<Sum>i = 1..k. u i * f (fst (x i))" in order_trans) | 
| 36338 | 1937 | defer apply(rule setsum_mono) apply(erule_tac x=i in allE) unfolding real_scaleR_def | 
| 34964 | 1938 | apply(rule mult_left_mono)using assms[unfolded convex] by auto | 
| 33175 | 1939 | |
| 36338 | 1940 | |
| 33175 | 1941 | subsection {* Convexity of general and special intervals. *}
 | 
| 1942 | ||
| 37732 
6432bf0d7191
generalize type of is_interval to class euclidean_space
 huffman parents: 
37673diff
changeset | 1943 | lemma convexI: (* TODO: move to Library/Convex.thy *) | 
| 
6432bf0d7191
generalize type of is_interval to class euclidean_space
 huffman parents: 
37673diff
changeset | 1944 | assumes "\<And>x y u v. \<lbrakk>x \<in> s; y \<in> s; 0 \<le> u; 0 \<le> v; u + v = 1\<rbrakk> \<Longrightarrow> u *\<^sub>R x + v *\<^sub>R y \<in> s" | 
| 
6432bf0d7191
generalize type of is_interval to class euclidean_space
 huffman parents: 
37673diff
changeset | 1945 | shows "convex s" | 
| 
6432bf0d7191
generalize type of is_interval to class euclidean_space
 huffman parents: 
37673diff
changeset | 1946 | using assms unfolding convex_def by fast | 
| 
6432bf0d7191
generalize type of is_interval to class euclidean_space
 huffman parents: 
37673diff
changeset | 1947 | |
| 33175 | 1948 | lemma is_interval_convex: | 
| 37732 
6432bf0d7191
generalize type of is_interval to class euclidean_space
 huffman parents: 
37673diff
changeset | 1949 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1950 | assumes "is_interval s" shows "convex s" | 
| 37732 
6432bf0d7191
generalize type of is_interval to class euclidean_space
 huffman parents: 
37673diff
changeset | 1951 | proof (rule convexI) | 
| 33175 | 1952 | fix x y u v assume as:"x \<in> s" "y \<in> s" "0 \<le> u" "0 \<le> v" "u + v = (1::real)" | 
| 1953 | hence *:"u = 1 - v" "1 - v \<ge> 0" and **:"v = 1 - u" "1 - u \<ge> 0" by auto | |
| 1954 |   { fix a b assume "\<not> b \<le> u * a + v * b"
 | |
| 1955 | hence "u * a < (1 - v) * b" unfolding not_le using as(4) by(auto simp add: field_simps) | |
| 1956 | hence "a < b" unfolding * using as(4) *(2) apply(rule_tac mult_left_less_imp_less[of "1 - v"]) by(auto simp add: field_simps) | |
| 1957 | hence "a \<le> u * a + v * b" unfolding * using as(4) by (auto simp add: field_simps intro!:mult_right_mono) | |
| 1958 | } moreover | |
| 1959 |   { fix a b assume "\<not> u * a + v * b \<le> a"
 | |
| 1960 | hence "v * b > (1 - u) * a" unfolding not_le using as(4) by(auto simp add: field_simps) | |
| 36350 | 1961 | hence "a < b" unfolding * using as(4) apply(rule_tac mult_left_less_imp_less) by(auto simp add: field_simps) | 
| 33175 | 1962 | hence "u * a + v * b \<le> b" unfolding ** using **(2) as(3) by(auto simp add: field_simps intro!:mult_right_mono) } | 
| 1963 | ultimately show "u *\<^sub>R x + v *\<^sub>R y \<in> s" apply- apply(rule assms[unfolded is_interval_def, rule_format, OF as(1,2)]) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1964 | using as(3-) DIM_positive[where 'a='a] by(auto simp add:euclidean_simps) qed | 
| 33175 | 1965 | |
| 1966 | lemma is_interval_connected: | |
| 37732 
6432bf0d7191
generalize type of is_interval to class euclidean_space
 huffman parents: 
37673diff
changeset | 1967 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 1968 | shows "is_interval s \<Longrightarrow> connected s" | 
| 1969 | using is_interval_convex convex_connected by auto | |
| 1970 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 1971 | lemma convex_interval: "convex {a .. b}" "convex {a<..<b::'a::ordered_euclidean_space}"
 | 
| 33175 | 1972 | apply(rule_tac[!] is_interval_convex) using is_interval_interval by auto | 
| 1973 | ||
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 1974 | (* FIXME: rewrite these lemmas without using vec1 | 
| 33175 | 1975 | subsection {* On @{text "real^1"}, @{text "is_interval"}, @{text "convex"} and @{text "connected"} are all equivalent. *}
 | 
| 1976 | ||
| 1977 | lemma is_interval_1: | |
| 1978 | "is_interval s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. \<forall> x. dest_vec1 a \<le> dest_vec1 x \<and> dest_vec1 x \<le> dest_vec1 b \<longrightarrow> x \<in> s)" | |
| 34964 | 1979 | unfolding is_interval_def forall_1 by auto | 
| 33175 | 1980 | |
| 1981 | lemma is_interval_connected_1: "is_interval s \<longleftrightarrow> connected (s::(real^1) set)" | |
| 1982 | apply(rule, rule is_interval_connected, assumption) unfolding is_interval_1 | |
| 1983 | apply(rule,rule,rule,rule,erule conjE,rule ccontr) proof- | |
| 1984 | fix a b x assume as:"connected s" "a \<in> s" "b \<in> s" "dest_vec1 a \<le> dest_vec1 x" "dest_vec1 x \<le> dest_vec1 b" "x\<notin>s" | |
| 1985 | hence *:"dest_vec1 a < dest_vec1 x" "dest_vec1 x < dest_vec1 b" apply(rule_tac [!] ccontr) unfolding not_less by auto | |
| 1986 |   let ?halfl = "{z. inner (basis 1) z < dest_vec1 x} " and ?halfr = "{z. inner (basis 1) z > dest_vec1 x} "
 | |
| 1987 |   { fix y assume "y \<in> s" have "y \<in> ?halfr \<union> ?halfl" apply(rule ccontr)
 | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 1988 | using as(6) `y\<in>s` by (auto simp add: inner_vector_def) } | 
| 34964 | 1989 | moreover have "a\<in>?halfl" "b\<in>?halfr" using * by (auto simp add: inner_vector_def) | 
| 33175 | 1990 |   hence "?halfl \<inter> s \<noteq> {}" "?halfr \<inter> s \<noteq> {}"  using as(2-3) by auto
 | 
| 1991 | ultimately show False apply(rule_tac notE[OF as(1)[unfolded connected_def]]) | |
| 1992 | apply(rule_tac x="?halfl" in exI, rule_tac x="?halfr" in exI) | |
| 36071 | 1993 | apply(rule, rule open_halfspace_lt, rule, rule open_halfspace_gt) | 
| 1994 | by(auto simp add: field_simps) qed | |
| 33175 | 1995 | |
| 1996 | lemma is_interval_convex_1: | |
| 1997 | "is_interval s \<longleftrightarrow> convex (s::(real^1) set)" | |
| 36071 | 1998 | by(metis is_interval_convex convex_connected is_interval_connected_1) | 
| 33175 | 1999 | |
| 2000 | lemma convex_connected_1: | |
| 2001 | "connected s \<longleftrightarrow> convex (s::(real^1) set)" | |
| 36071 | 2002 | by(metis is_interval_convex convex_connected is_interval_connected_1) | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2003 | *) | 
| 33175 | 2004 | subsection {* Another intermediate value theorem formulation. *}
 | 
| 2005 | ||
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37647diff
changeset | 2006 | lemma ivt_increasing_component_on_1: fixes f::"real \<Rightarrow> 'a::euclidean_space" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2007 |   assumes "a \<le> b" "continuous_on {a .. b} f" "(f a)$$k \<le> y" "y \<le> (f b)$$k"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2008 |   shows "\<exists>x\<in>{a..b}. (f x)$$k = y"
 | 
| 33175 | 2009 | proof- have "f a \<in> f ` {a..b}" "f b \<in> f ` {a..b}" apply(rule_tac[!] imageI) 
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2010 | using assms(1) by auto | 
| 33175 | 2011 |   thus ?thesis using connected_ivt_component[of "f ` {a..b}" "f a" "f b" k y]
 | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2012 | using connected_continuous_image[OF assms(2) convex_connected[OF convex_real_interval(5)]] | 
| 33175 | 2013 | using assms by(auto intro!: imageI) qed | 
| 2014 | ||
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37647diff
changeset | 2015 | lemma ivt_increasing_component_1: fixes f::"real \<Rightarrow> 'a::euclidean_space" | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2016 |   shows "a \<le> b \<Longrightarrow> \<forall>x\<in>{a .. b}. continuous (at x) f
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2017 |    \<Longrightarrow> f a$$k \<le> y \<Longrightarrow> y \<le> f b$$k \<Longrightarrow> \<exists>x\<in>{a..b}. (f x)$$k = y"
 | 
| 36071 | 2018 | by(rule ivt_increasing_component_on_1) | 
| 2019 | (auto simp add: continuous_at_imp_continuous_on) | |
| 33175 | 2020 | |
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37647diff
changeset | 2021 | lemma ivt_decreasing_component_on_1: fixes f::"real \<Rightarrow> 'a::euclidean_space" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2022 |   assumes "a \<le> b" "continuous_on {a .. b} f" "(f b)$$k \<le> y" "y \<le> (f a)$$k"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2023 |   shows "\<exists>x\<in>{a..b}. (f x)$$k = y"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2024 | apply(subst neg_equal_iff_equal[THEN sym]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2025 | using ivt_increasing_component_on_1[of a b "\<lambda>x. - f x" k "- y"] using assms using continuous_on_neg | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2026 | by (auto simp add:euclidean_simps) | 
| 33175 | 2027 | |
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37647diff
changeset | 2028 | lemma ivt_decreasing_component_1: fixes f::"real \<Rightarrow> 'a::euclidean_space" | 
| 36431 
340755027840
move definitions and theorems for type real^1 to separate theory file
 huffman parents: 
36365diff
changeset | 2029 |   shows "a \<le> b \<Longrightarrow> \<forall>x\<in>{a .. b}. continuous (at x) f
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2030 |     \<Longrightarrow> f b$$k \<le> y \<Longrightarrow> y \<le> f a$$k \<Longrightarrow> \<exists>x\<in>{a..b}. (f x)$$k = y"
 | 
| 36071 | 2031 | by(rule ivt_decreasing_component_on_1) | 
| 2032 | (auto simp: continuous_at_imp_continuous_on) | |
| 33175 | 2033 | |
| 2034 | subsection {* A bound within a convex hull, and so an interval. *}
 | |
| 2035 | ||
| 2036 | lemma convex_on_convex_hull_bound: | |
| 2037 | assumes "convex_on (convex hull s) f" "\<forall>x\<in>s. f x \<le> b" | |
| 2038 | shows "\<forall>x\<in> convex hull s. f x \<le> b" proof | |
| 2039 | fix x assume "x\<in>convex hull s" | |
| 2040 |   then obtain k u v where obt:"\<forall>i\<in>{1..k::nat}. 0 \<le> u i \<and> v i \<in> s" "setsum u {1..k} = 1" "(\<Sum>i = 1..k. u i *\<^sub>R v i) = x"
 | |
| 2041 | unfolding convex_hull_indexed mem_Collect_eq by auto | |
| 2042 |   have "(\<Sum>i = 1..k. u i * f (v i)) \<le> b" using setsum_mono[of "{1..k}" "\<lambda>i. u i * f (v i)" "\<lambda>i. u i * b"]
 | |
| 2043 | unfolding setsum_left_distrib[THEN sym] obt(2) mult_1 apply(drule_tac meta_mp) apply(rule mult_left_mono) | |
| 2044 | using assms(2) obt(1) by auto | |
| 2045 | thus "f x \<le> b" using assms(1)[unfolded convex_on[OF convex_convex_hull], rule_format, of k u v] | |
| 2046 | unfolding obt(2-3) using obt(1) and hull_subset[unfolded subset_eq, rule_format, of _ s] by auto qed | |
| 2047 | ||
| 2048 | lemma unit_interval_convex_hull: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2049 |   "{0::'a::ordered_euclidean_space .. (\<chi>\<chi> i. 1)} = convex hull {x. \<forall>i<DIM('a). (x$$i = 0) \<or> (x$$i = 1)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2050 | (is "?int = convex hull ?points") | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2051 | proof- have 01:"{0,(\<chi>\<chi> i. 1)} \<subseteq> convex hull ?points" apply rule apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2052 |   { fix n x assume "x\<in>{0::'a::ordered_euclidean_space .. \<chi>\<chi> i. 1}" "n \<le> DIM('a)" "card {i. i<DIM('a) \<and> x$$i \<noteq> 0} \<le> n" 
 | 
| 33175 | 2053 | hence "x\<in>convex hull ?points" proof(induct n arbitrary: x) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2054 | case 0 hence "x = 0" apply(subst euclidean_eq) apply rule by auto | 
| 33175 | 2055 | thus "x\<in>convex hull ?points" using 01 by auto | 
| 2056 | next | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2057 |     case (Suc n) show "x\<in>convex hull ?points" proof(cases "{i. i<DIM('a) \<and> x$$i \<noteq> 0} = {}")
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2058 | case True hence "x = 0" apply(subst euclidean_eq) by auto | 
| 33175 | 2059 | thus "x\<in>convex hull ?points" using 01 by auto | 
| 2060 | next | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2061 |       case False def xi \<equiv> "Min ((\<lambda>i. x$$i) ` {i. i<DIM('a) \<and> x$$i \<noteq> 0})"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2062 |       have "xi \<in> (\<lambda>i. x$$i) ` {i. i<DIM('a) \<and> x$$i \<noteq> 0}" unfolding xi_def apply(rule Min_in) using False by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2063 |       then obtain i where i':"x$$i = xi" "x$$i \<noteq> 0" "i<DIM('a)" by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2064 |       have i:"\<And>j. j<DIM('a) \<Longrightarrow> x$$j > 0 \<Longrightarrow> x$$i \<le> x$$j"
 | 
| 33175 | 2065 | unfolding i'(1) xi_def apply(rule_tac Min_le) unfolding image_iff | 
| 2066 | defer apply(rule_tac x=j in bexI) using i' by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2067 | have i01:"x$$i \<le> 1" "x$$i > 0" using Suc(2)[unfolded mem_interval,rule_format,of i] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2068 | using i'(2-) `x$$i \<noteq> 0` by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2069 | show ?thesis proof(cases "x$$i=1") | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2070 |         case True have "\<forall>j\<in>{i. i<DIM('a) \<and> x$$i \<noteq> 0}. x$$j = 1" apply(rule, rule ccontr) unfolding mem_Collect_eq
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2071 |         proof(erule conjE) fix j assume as:"x $$ j \<noteq> 0" "x $$ j \<noteq> 1" "j<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2072 |           hence j:"x$$j \<in> {0<..<1}" using Suc(2) by(auto simp add: eucl_le[where 'a='a] elim!:allE[where x=j])
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2073 |           hence "x$$j \<in> op $$ x ` {i. i<DIM('a) \<and> x $$ i \<noteq> 0}" using as(3) by auto 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2074 | hence "x$$j \<ge> x$$i" unfolding i'(1) xi_def apply(rule_tac Min_le) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2075 | thus False using True Suc(2) j by(auto simp add: elim!:ballE[where x=j]) qed | 
| 33175 | 2076 | thus "x\<in>convex hull ?points" apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2077 | by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2078 | next let ?y = "\<lambda>j. if x$$j = 0 then 0 else (x$$j - x$$i) / (1 - x$$i)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2079 | case False hence *:"x = x$$i *\<^sub>R (\<chi>\<chi> j. if x$$j = 0 then 0 else 1) + (1 - x$$i) *\<^sub>R (\<chi>\<chi> j. ?y j)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2080 | apply(subst euclidean_eq) by(auto simp add: field_simps euclidean_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2081 |         { fix j assume j:"j<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2082 | have "x$$j \<noteq> 0 \<Longrightarrow> 0 \<le> (x $$ j - x $$ i) / (1 - x $$ i)" "(x $$ j - x $$ i) / (1 - x $$ i) \<le> 1" | 
| 33175 | 2083 | apply(rule_tac divide_nonneg_pos) using i(1)[of j] using False i01 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2084 | using Suc(2)[unfolded mem_interval, rule_format, of j] using j | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2085 | by(auto simp add:field_simps euclidean_simps) | 
| 33175 | 2086 | hence "0 \<le> ?y j \<and> ?y j \<le> 1" by auto } | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2087 |         moreover have "i\<in>{j. j<DIM('a) \<and> x$$j \<noteq> 0} - {j. j<DIM('a) \<and> ((\<chi>\<chi> j. ?y j)::'a) $$ j \<noteq> 0}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2088 | using i01 using i'(3) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2089 |         hence "{j. j<DIM('a) \<and> x$$j \<noteq> 0} \<noteq> {j. j<DIM('a) \<and> ((\<chi>\<chi> j. ?y j)::'a) $$ j \<noteq> 0}" using i'(3) by blast
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2090 |         hence **:"{j. j<DIM('a) \<and> ((\<chi>\<chi> j. ?y j)::'a) $$ j \<noteq> 0} \<subset> {j. j<DIM('a) \<and> x$$j \<noteq> 0}" apply - apply rule 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2091 | by( auto simp add:euclidean_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2092 |         have "card {j. j<DIM('a) \<and> ((\<chi>\<chi> j. ?y j)::'a) $$ j \<noteq> 0} \<le> n"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2093 | using less_le_trans[OF psubset_card_mono[OF _ **] Suc(4)] by auto | 
| 33175 | 2094 | ultimately show ?thesis apply(subst *) apply(rule convex_convex_hull[unfolded convex_def, rule_format]) | 
| 2095 | apply(rule_tac hull_subset[unfolded subset_eq, rule_format]) defer apply(rule Suc(1)) | |
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2096 | unfolding mem_interval using i01 Suc(3) by auto | 
| 33175 | 2097 | qed qed qed } note * = this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2098 |   have **:"DIM('a) = card {..<DIM('a)}" by auto
 | 
| 33175 | 2099 | show ?thesis apply rule defer apply(rule hull_minimal) unfolding subset_eq prefer 3 apply rule | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2100 |     apply(rule_tac n2="DIM('a)" in *) prefer 3 apply(subst(2) **) 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2101 | apply(rule card_mono) using 01 and convex_interval(1) prefer 5 apply - apply rule | 
| 33175 | 2102 | unfolding mem_interval apply rule unfolding mem_Collect_eq apply(erule_tac x=i in allE) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2103 | by(auto simp add: mem_def[of _ convex]) qed | 
| 33175 | 2104 | |
| 2105 | subsection {* And this is a finite set of vertices. *}
 | |
| 2106 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2107 | lemma unit_cube_convex_hull: obtains s where "finite s" "{0 .. (\<chi>\<chi> i. 1)::'a::ordered_euclidean_space} = convex hull s"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2108 |   apply(rule that[of "{x::'a. \<forall>i<DIM('a). x$$i=0 \<or> x$$i=1}"])
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2109 |   apply(rule finite_subset[of _ "(\<lambda>s. (\<chi>\<chi> i. if i\<in>s then 1::real else 0)::'a) ` Pow {..<DIM('a)}"])
 | 
| 33175 | 2110 | prefer 3 apply(rule unit_interval_convex_hull) apply rule unfolding mem_Collect_eq proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2111 |   fix x::"'a" assume as:"\<forall>i<DIM('a). x $$ i = 0 \<or> x $$ i = 1"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2112 |   show "x \<in> (\<lambda>s. \<chi>\<chi> i. if i \<in> s then 1 else 0) ` Pow {..<DIM('a)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2113 |     apply(rule image_eqI[where x="{i. i<DIM('a) \<and> x$$i = 1}"])
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2114 | using as apply(subst euclidean_eq) by auto qed auto | 
| 33175 | 2115 | |
| 2116 | subsection {* Hence any cube (could do any nonempty interval). *}
 | |
| 2117 | ||
| 2118 | lemma cube_convex_hull: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2119 |   assumes "0 < d" obtains s::"('a::ordered_euclidean_space) set" where
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2120 |   "finite s" "{x - (\<chi>\<chi> i. d) .. x + (\<chi>\<chi> i. d)} = convex hull s" proof-
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2121 | let ?d = "(\<chi>\<chi> i. d)::'a" | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2122 |   have *:"{x - ?d .. x + ?d} = (\<lambda>y. x - ?d + (2 * d) *\<^sub>R y) ` {0 .. \<chi>\<chi> i. 1}" apply(rule set_eqI, rule)
 | 
| 33175 | 2123 | unfolding image_iff defer apply(erule bexE) proof- | 
| 2124 |     fix y assume as:"y\<in>{x - ?d .. x + ?d}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2125 |     { fix i assume i:"i<DIM('a)" have "x $$ i \<le> d + y $$ i" "y $$ i \<le> d + x $$ i"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2126 | using as[unfolded mem_interval, THEN spec[where x=i]] i | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2127 | by(auto simp add:euclidean_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2128 | hence "1 \<ge> inverse d * (x $$ i - y $$ i)" "1 \<ge> inverse d * (y $$ i - x $$ i)" | 
| 33175 | 2129 | apply(rule_tac[!] mult_left_le_imp_le[OF _ assms]) unfolding mult_assoc[THEN sym] | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2130 | using assms by(auto simp add: field_simps) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2131 | hence "inverse d * (x $$ i * 2) \<le> 2 + inverse d * (y $$ i * 2)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2132 | "inverse d * (y $$ i * 2) \<le> 2 + inverse d * (x $$ i * 2)" by(auto simp add:field_simps) } | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2133 |     hence "inverse (2 * d) *\<^sub>R (y - (x - ?d)) \<in> {0..\<chi>\<chi> i.1}" unfolding mem_interval using assms
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2134 | by(auto simp add: euclidean_simps field_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2135 |     thus "\<exists>z\<in>{0..\<chi>\<chi> i.1}. y = x - ?d + (2 * d) *\<^sub>R z" apply- apply(rule_tac x="inverse (2 * d) *\<^sub>R (y - (x - ?d))" in bexI) 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2136 | using assms by auto | 
| 33175 | 2137 | next | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2138 |     fix y z assume as:"z\<in>{0..\<chi>\<chi> i.1}" "y = x - ?d + (2*d) *\<^sub>R z" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2139 |     have "\<And>i. i<DIM('a) \<Longrightarrow> 0 \<le> d * z $$ i \<and> d * z $$ i \<le> d"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2140 | using assms as(1)[unfolded mem_interval] apply(erule_tac x=i in allE) | 
| 33175 | 2141 | apply rule apply(rule mult_nonneg_nonneg) prefer 3 apply(rule mult_right_le_one_le) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2142 | using assms by auto | 
| 33175 | 2143 |     thus "y \<in> {x - ?d..x + ?d}" unfolding as(2) mem_interval apply- apply rule using as(1)[unfolded mem_interval]
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2144 | apply(erule_tac x=i in allE) using assms by(auto simp add: euclidean_simps) qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2145 |   obtain s where "finite s" "{0::'a..\<chi>\<chi> i.1} = convex hull s" using unit_cube_convex_hull by auto
 | 
| 33175 | 2146 | thus ?thesis apply(rule_tac that[of "(\<lambda>y. x - ?d + (2 * d) *\<^sub>R y)` s"]) unfolding * and convex_hull_affinity by auto qed | 
| 2147 | ||
| 2148 | subsection {* Bounded convex function on open set is continuous. *}
 | |
| 2149 | ||
| 2150 | lemma convex_on_bounded_continuous: | |
| 36338 | 2151 |   fixes s :: "('a::real_normed_vector) set"
 | 
| 33175 | 2152 | assumes "open s" "convex_on s f" "\<forall>x\<in>s. abs(f x) \<le> b" | 
| 2153 | shows "continuous_on s f" | |
| 2154 | apply(rule continuous_at_imp_continuous_on) unfolding continuous_at_real_range proof(rule,rule,rule) | |
| 2155 | fix x e assume "x\<in>s" "(0::real) < e" | |
| 2156 | def B \<equiv> "abs b + 1" | |
| 2157 | have B:"0 < B" "\<And>x. x\<in>s \<Longrightarrow> abs (f x) \<le> B" | |
| 2158 | unfolding B_def defer apply(drule assms(3)[rule_format]) by auto | |
| 2159 | obtain k where "k>0"and k:"cball x k \<subseteq> s" using assms(1)[unfolded open_contains_cball, THEN bspec[where x=x]] using `x\<in>s` by auto | |
| 2160 | show "\<exists>d>0. \<forall>x'. norm (x' - x) < d \<longrightarrow> \<bar>f x' - f x\<bar> < e" | |
| 2161 | apply(rule_tac x="min (k / 2) (e / (2 * B) * k)" in exI) apply rule defer proof(rule,rule) | |
| 2162 | fix y assume as:"norm (y - x) < min (k / 2) (e / (2 * B) * k)" | |
| 2163 | show "\<bar>f y - f x\<bar> < e" proof(cases "y=x") | |
| 2164 | case False def t \<equiv> "k / norm (y - x)" | |
| 2165 | have "2 < t" "0<t" unfolding t_def using as False and `k>0` by(auto simp add:field_simps) | |
| 2166 | have "y\<in>s" apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm | |
| 2167 | apply(rule order_trans[of _ "2 * norm (x - y)"]) using as by(auto simp add: field_simps norm_minus_commute) | |
| 2168 |       { def w \<equiv> "x + t *\<^sub>R (y - x)"
 | |
| 2169 | have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm | |
| 2170 | unfolding t_def using `k>0` by auto | |
| 2171 | have "(1 / t) *\<^sub>R x + - x + ((t - 1) / t) *\<^sub>R x = (1 / t - 1 + (t - 1) / t) *\<^sub>R x" by (auto simp add: algebra_simps) | |
| 2172 | also have "\<dots> = 0" using `t>0` by(auto simp add:field_simps) | |
| 2173 | finally have w:"(1 / t) *\<^sub>R w + ((t - 1) / t) *\<^sub>R x = y" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps) | |
| 2174 | have "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) | |
| 2175 | hence "(f w - f x) / t < e" | |
| 2176 | using B(2)[OF `w\<in>s`] and B(2)[OF `x\<in>s`] using `t>0` by(auto simp add:field_simps) | |
| 2177 | hence th1:"f y - f x < e" apply- apply(rule le_less_trans) defer apply assumption | |
| 2178 | using assms(2)[unfolded convex_on_def,rule_format,of w x "1/t" "(t - 1)/t", unfolded w] | |
| 2179 | using `0<t` `2<t` and `x\<in>s` `w\<in>s` by(auto simp add:field_simps) } | |
| 2180 | moreover | |
| 2181 |       { def w \<equiv> "x - t *\<^sub>R (y - x)"
 | |
| 2182 | have "w\<in>s" unfolding w_def apply(rule k[unfolded subset_eq,rule_format]) unfolding mem_cball dist_norm | |
| 2183 | unfolding t_def using `k>0` by auto | |
| 2184 | have "(1 / (1 + t)) *\<^sub>R x + (t / (1 + t)) *\<^sub>R x = (1 / (1 + t) + t / (1 + t)) *\<^sub>R x" by (auto simp add: algebra_simps) | |
| 2185 | also have "\<dots>=x" using `t>0` by (auto simp add:field_simps) | |
| 2186 | finally have w:"(1 / (1+t)) *\<^sub>R w + (t / (1 + t)) *\<^sub>R y = x" unfolding w_def using False and `t>0` by (auto simp add: algebra_simps) | |
| 2187 | have "2 * B < e * t" unfolding t_def using `0<e` `0<k` `B>0` and as and False by (auto simp add:field_simps) | |
| 2188 | hence *:"(f w - f y) / t < e" using B(2)[OF `w\<in>s`] and B(2)[OF `y\<in>s`] using `t>0` by(auto simp add:field_simps) | |
| 2189 | have "f x \<le> 1 / (1 + t) * f w + (t / (1 + t)) * f y" | |
| 2190 | using assms(2)[unfolded convex_on_def,rule_format,of w y "1/(1+t)" "t / (1+t)",unfolded w] | |
| 2191 | using `0<t` `2<t` and `y\<in>s` `w\<in>s` by (auto simp add:field_simps) | |
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 2192 | also have "\<dots> = (f w + t * f y) / (1 + t)" using `t>0` unfolding divide_inverse by (auto simp add:field_simps) | 
| 33175 | 2193 | also have "\<dots> < e + f y" using `t>0` * `e>0` by(auto simp add:field_simps) | 
| 2194 | finally have "f x - f y < e" by auto } | |
| 2195 | ultimately show ?thesis by auto | |
| 2196 | qed(insert `0<e`, auto) | |
| 2197 | qed(insert `0<e` `0<k` `0<B`, auto simp add:field_simps intro!:mult_pos_pos) qed | |
| 2198 | ||
| 2199 | subsection {* Upper bound on a ball implies upper and lower bounds. *}
 | |
| 2200 | ||
| 2201 | lemma convex_bounds_lemma: | |
| 36338 | 2202 | fixes x :: "'a::real_normed_vector" | 
| 33175 | 2203 | assumes "convex_on (cball x e) f" "\<forall>y \<in> cball x e. f y \<le> b" | 
| 2204 | shows "\<forall>y \<in> cball x e. abs(f y) \<le> b + 2 * abs(f x)" | |
| 2205 | apply(rule) proof(cases "0 \<le> e") case True | |
| 2206 | fix y assume y:"y\<in>cball x e" def z \<equiv> "2 *\<^sub>R x - y" | |
| 36338 | 2207 | have *:"x - (2 *\<^sub>R x - y) = y - x" by (simp add: scaleR_2) | 
| 33175 | 2208 | have z:"z\<in>cball x e" using y unfolding z_def mem_cball dist_norm * by(auto simp add: norm_minus_commute) | 
| 2209 | have "(1 / 2) *\<^sub>R y + (1 / 2) *\<^sub>R z = x" unfolding z_def by (auto simp add: algebra_simps) | |
| 2210 | thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using assms(1)[unfolded convex_on_def,rule_format, OF y z, of "1/2" "1/2"] | |
| 2211 | using assms(2)[rule_format,OF y] assms(2)[rule_format,OF z] by(auto simp add:field_simps) | |
| 2212 | next case False fix y assume "y\<in>cball x e" | |
| 2213 | hence "dist x y < 0" using False unfolding mem_cball not_le by (auto simp del: dist_not_less_zero) | |
| 2214 | thus "\<bar>f y\<bar> \<le> b + 2 * \<bar>f x\<bar>" using zero_le_dist[of x y] by auto qed | |
| 2215 | ||
| 2216 | subsection {* Hence a convex function on an open set is continuous. *}
 | |
| 2217 | ||
| 2218 | lemma convex_on_continuous: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2219 |   assumes "open (s::('a::ordered_euclidean_space) set)" "convex_on s f" 
 | 
| 37673 
f69f4b079275
generalize more lemmas from ordered_euclidean_space to euclidean_space
 huffman parents: 
37647diff
changeset | 2220 | (* FIXME: generalize to euclidean_space *) | 
| 33175 | 2221 | shows "continuous_on s f" | 
| 2222 | unfolding continuous_on_eq_continuous_at[OF assms(1)] proof | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2223 | note dimge1 = DIM_positive[where 'a='a] | 
| 33175 | 2224 | fix x assume "x\<in>s" | 
| 2225 | then obtain e where e:"cball x e \<subseteq> s" "e>0" using assms(1) unfolding open_contains_cball by auto | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2226 |   def d \<equiv> "e / real DIM('a)"
 | 
| 33175 | 2227 | have "0 < d" unfolding d_def using `e>0` dimge1 by(rule_tac divide_pos_pos, auto) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2228 | let ?d = "(\<chi>\<chi> i. d)::'a" | 
| 33175 | 2229 |   obtain c where c:"finite c" "{x - ?d..x + ?d} = convex hull c" using cube_convex_hull[OF `d>0`, of x] by auto
 | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2230 |   have "x\<in>{x - ?d..x + ?d}" using `d>0` unfolding mem_interval by(auto simp add:euclidean_simps)
 | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2231 |   hence "c\<noteq>{}" using c by auto
 | 
| 33175 | 2232 | def k \<equiv> "Max (f ` c)" | 
| 2233 |   have "convex_on {x - ?d..x + ?d} f" apply(rule convex_on_subset[OF assms(2)])
 | |
| 2234 | apply(rule subset_trans[OF _ e(1)]) unfolding subset_eq mem_cball proof | |
| 2235 |     fix z assume z:"z\<in>{x - ?d..x + ?d}"
 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2236 |     have e:"e = setsum (\<lambda>i. d) {..<DIM('a)}" unfolding setsum_constant d_def using dimge1
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2237 | unfolding real_eq_of_nat by auto | 
| 33175 | 2238 | show "dist x z \<le> e" unfolding dist_norm e apply(rule_tac order_trans[OF norm_le_l1], rule setsum_mono) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2239 | using z[unfolded mem_interval] apply(erule_tac x=i in allE) by(auto simp add:euclidean_simps) qed | 
| 33175 | 2240 |   hence k:"\<forall>y\<in>{x - ?d..x + ?d}. f y \<le> k" unfolding c(2) apply(rule_tac convex_on_convex_hull_bound) apply assumption
 | 
| 2241 | unfolding k_def apply(rule, rule Max_ge) using c(1) by auto | |
| 37647 | 2242 | have "d \<le> e" unfolding d_def apply(rule mult_imp_div_pos_le) using `e>0` dimge1 unfolding mult_le_cancel_left1 by auto | 
| 33175 | 2243 | hence dsube:"cball x d \<subseteq> cball x e" unfolding subset_eq Ball_def mem_cball by auto | 
| 2244 | have conv:"convex_on (cball x d) f" apply(rule convex_on_subset, rule convex_on_subset[OF assms(2)]) apply(rule e(1)) using dsube by auto | |
| 2245 | hence "\<forall>y\<in>cball x d. abs (f y) \<le> k + 2 * abs (f x)" apply(rule_tac convex_bounds_lemma) apply assumption proof | |
| 2246 | fix y assume y:"y\<in>cball x d" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2247 |     { fix i assume "i<DIM('a)" hence "x $$ i - d \<le> y $$ i"  "y $$ i \<le> x $$ i + d" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2248 | using order_trans[OF component_le_norm y[unfolded mem_cball dist_norm], of i] by(auto simp add:euclidean_simps) } | 
| 33175 | 2249 | thus "f y \<le> k" apply(rule_tac k[rule_format]) unfolding mem_cball mem_interval dist_norm | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2250 | by(auto simp add:euclidean_simps) qed | 
| 33175 | 2251 | hence "continuous_on (ball x d) f" apply(rule_tac convex_on_bounded_continuous) | 
| 33270 | 2252 | apply(rule open_ball, rule convex_on_subset[OF conv], rule ball_subset_cball) | 
| 2253 | apply force | |
| 2254 | done | |
| 2255 | thus "continuous (at x) f" unfolding continuous_on_eq_continuous_at[OF open_ball] | |
| 2256 | using `d>0` by auto | |
| 2257 | qed | |
| 2258 | ||
| 2259 | subsection {* Line segments, Starlike Sets, etc.*}
 | |
| 2260 | ||
| 2261 | (* Use the same overloading tricks as for intervals, so that | |
| 2262 | segment[a,b] is closed and segment(a,b) is open relative to affine hull. *) | |
| 33175 | 2263 | |
| 2264 | definition | |
| 36338 | 2265 | midpoint :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a" where | 
| 33175 | 2266 | "midpoint a b = (inverse (2::real)) *\<^sub>R (a + b)" | 
| 2267 | ||
| 2268 | definition | |
| 36341 | 2269 | open_segment :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a set" where | 
| 33175 | 2270 |   "open_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real.  0 < u \<and> u < 1}"
 | 
| 2271 | ||
| 2272 | definition | |
| 36341 | 2273 | closed_segment :: "'a::real_vector \<Rightarrow> 'a \<Rightarrow> 'a set" where | 
| 33175 | 2274 |   "closed_segment a b = {(1 - u) *\<^sub>R a + u *\<^sub>R b | u::real. 0 \<le> u \<and> u \<le> 1}"
 | 
| 2275 | ||
| 2276 | definition "between = (\<lambda> (a,b). closed_segment a b)" | |
| 2277 | ||
| 2278 | lemmas segment = open_segment_def closed_segment_def | |
| 2279 | ||
| 2280 | definition "starlike s \<longleftrightarrow> (\<exists>a\<in>s. \<forall>x\<in>s. closed_segment a x \<subseteq> s)" | |
| 2281 | ||
| 2282 | lemma midpoint_refl: "midpoint x x = x" | |
| 2283 | unfolding midpoint_def unfolding scaleR_right_distrib unfolding scaleR_left_distrib[THEN sym] by auto | |
| 2284 | ||
| 2285 | lemma midpoint_sym: "midpoint a b = midpoint b a" unfolding midpoint_def by (auto simp add: scaleR_right_distrib) | |
| 2286 | ||
| 36338 | 2287 | lemma midpoint_eq_iff: "midpoint a b = c \<longleftrightarrow> a + b = c + c" | 
| 2288 | proof - | |
| 2289 | have "midpoint a b = c \<longleftrightarrow> scaleR 2 (midpoint a b) = scaleR 2 c" | |
| 2290 | by simp | |
| 2291 | thus ?thesis | |
| 2292 | unfolding midpoint_def scaleR_2 [symmetric] by simp | |
| 2293 | qed | |
| 2294 | ||
| 33175 | 2295 | lemma dist_midpoint: | 
| 36338 | 2296 | fixes a b :: "'a::real_normed_vector" shows | 
| 33175 | 2297 | "dist a (midpoint a b) = (dist a b) / 2" (is ?t1) | 
| 2298 | "dist b (midpoint a b) = (dist a b) / 2" (is ?t2) | |
| 2299 | "dist (midpoint a b) a = (dist a b) / 2" (is ?t3) | |
| 2300 | "dist (midpoint a b) b = (dist a b) / 2" (is ?t4) | |
| 2301 | proof- | |
| 36338 | 2302 | have *: "\<And>x y::'a. 2 *\<^sub>R x = - y \<Longrightarrow> norm x = (norm y) / 2" unfolding equation_minus_iff by auto | 
| 2303 | have **:"\<And>x y::'a. 2 *\<^sub>R x = y \<Longrightarrow> norm x = (norm y) / 2" by auto | |
| 33175 | 2304 | note scaleR_right_distrib [simp] | 
| 36338 | 2305 | show ?t1 unfolding midpoint_def dist_norm apply (rule **) | 
| 2306 | by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2) | |
| 2307 | show ?t2 unfolding midpoint_def dist_norm apply (rule *) | |
| 2308 | by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2) | |
| 2309 | show ?t3 unfolding midpoint_def dist_norm apply (rule *) | |
| 2310 | by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2) | |
| 2311 | show ?t4 unfolding midpoint_def dist_norm apply (rule **) | |
| 2312 | by (simp add: scaleR_right_diff_distrib, simp add: scaleR_2) | |
| 2313 | qed | |
| 33175 | 2314 | |
| 2315 | lemma midpoint_eq_endpoint: | |
| 36338 | 2316 | "midpoint a b = a \<longleftrightarrow> a = b" | 
| 33175 | 2317 | "midpoint a b = b \<longleftrightarrow> a = b" | 
| 36338 | 2318 | unfolding midpoint_eq_iff by auto | 
| 33175 | 2319 | |
| 2320 | lemma convex_contains_segment: | |
| 2321 | "convex s \<longleftrightarrow> (\<forall>a\<in>s. \<forall>b\<in>s. closed_segment a b \<subseteq> s)" | |
| 2322 | unfolding convex_alt closed_segment_def by auto | |
| 2323 | ||
| 2324 | lemma convex_imp_starlike: | |
| 2325 |   "convex s \<Longrightarrow> s \<noteq> {} \<Longrightarrow> starlike s"
 | |
| 2326 | unfolding convex_contains_segment starlike_def by auto | |
| 2327 | ||
| 2328 | lemma segment_convex_hull: | |
| 2329 |  "closed_segment a b = convex hull {a,b}" proof-
 | |
| 2330 |   have *:"\<And>x. {x} \<noteq> {}" by auto
 | |
| 2331 | have **:"\<And>u v. u + v = 1 \<longleftrightarrow> u = 1 - (v::real)" by auto | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2332 | show ?thesis unfolding segment convex_hull_insert[OF *] convex_hull_singleton apply(rule set_eqI) | 
| 33175 | 2333 | unfolding mem_Collect_eq apply(rule,erule exE) | 
| 2334 | apply(rule_tac x="1 - u" in exI) apply rule defer apply(rule_tac x=u in exI) defer | |
| 2335 | apply(erule exE, (erule conjE)?)+ apply(rule_tac x="1 - u" in exI) unfolding ** by auto qed | |
| 2336 | ||
| 2337 | lemma convex_segment: "convex (closed_segment a b)" | |
| 2338 | unfolding segment_convex_hull by(rule convex_convex_hull) | |
| 2339 | ||
| 2340 | lemma ends_in_segment: "a \<in> closed_segment a b" "b \<in> closed_segment a b" | |
| 2341 | unfolding segment_convex_hull apply(rule_tac[!] hull_subset[unfolded subset_eq, rule_format]) by auto | |
| 2342 | ||
| 2343 | lemma segment_furthest_le: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2344 | fixes a b x y :: "'a::euclidean_space" | 
| 33175 | 2345 | assumes "x \<in> closed_segment a b" shows "norm(y - x) \<le> norm(y - a) \<or> norm(y - x) \<le> norm(y - b)" proof- | 
| 2346 |   obtain z where "z\<in>{a, b}" "norm (x - y) \<le> norm (z - y)" using simplex_furthest_le[of "{a, b}" y]
 | |
| 2347 | using assms[unfolded segment_convex_hull] by auto | |
| 2348 | thus ?thesis by(auto simp add:norm_minus_commute) qed | |
| 2349 | ||
| 2350 | lemma segment_bound: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2351 | fixes x a b :: "'a::euclidean_space" | 
| 33175 | 2352 | assumes "x \<in> closed_segment a b" | 
| 2353 | shows "norm(x - a) \<le> norm(b - a)" "norm(x - b) \<le> norm(b - a)" | |
| 2354 | using segment_furthest_le[OF assms, of a] | |
| 2355 | using segment_furthest_le[OF assms, of b] | |
| 2356 | by (auto simp add:norm_minus_commute) | |
| 2357 | ||
| 2358 | lemma segment_refl:"closed_segment a a = {a}" unfolding segment by (auto simp add: algebra_simps)
 | |
| 2359 | ||
| 2360 | lemma between_mem_segment: "between (a,b) x \<longleftrightarrow> x \<in> closed_segment a b" | |
| 2361 | unfolding between_def mem_def by auto | |
| 2362 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2363 | lemma between:"between (a,b) (x::'a::euclidean_space) \<longleftrightarrow> dist a b = (dist a x) + (dist x b)" | 
| 33175 | 2364 | proof(cases "a = b") | 
| 2365 | case True thus ?thesis unfolding between_def split_conv mem_def[of x, symmetric] | |
| 2366 | by(auto simp add:segment_refl dist_commute) next | |
| 2367 | case False hence Fal:"norm (a - b) \<noteq> 0" and Fal2: "norm (a - b) > 0" by auto | |
| 2368 | have *:"\<And>u. a - ((1 - u) *\<^sub>R a + u *\<^sub>R b) = u *\<^sub>R (a - b)" by (auto simp add: algebra_simps) | |
| 2369 | show ?thesis unfolding between_def split_conv mem_def[of x, symmetric] closed_segment_def mem_Collect_eq | |
| 2370 | apply rule apply(erule exE, (erule conjE)+) apply(subst dist_triangle_eq) proof- | |
| 2371 | fix u assume as:"x = (1 - u) *\<^sub>R a + u *\<^sub>R b" "0 \<le> u" "u \<le> 1" | |
| 2372 | hence *:"a - x = u *\<^sub>R (a - b)" "x - b = (1 - u) *\<^sub>R (a - b)" | |
| 2373 | unfolding as(1) by(auto simp add:algebra_simps) | |
| 2374 | show "norm (a - x) *\<^sub>R (x - b) = norm (x - b) *\<^sub>R (a - x)" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2375 | unfolding norm_minus_commute[of x a] * using as(2,3) | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2376 | by(auto simp add: field_simps) | 
| 33175 | 2377 | next assume as:"dist a b = dist a x + dist x b" | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2378 | have "norm (a - x) / norm (a - b) \<le> 1" unfolding divide_le_eq_1_pos[OF Fal2] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2379 | unfolding as[unfolded dist_norm] norm_ge_zero by auto | 
| 33175 | 2380 | thus "\<exists>u. x = (1 - u) *\<^sub>R a + u *\<^sub>R b \<and> 0 \<le> u \<and> u \<le> 1" apply(rule_tac x="dist a x / dist a b" in exI) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2381 | unfolding dist_norm apply(subst euclidean_eq) apply rule defer apply(rule, rule divide_nonneg_pos) prefer 4 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2382 |       proof(rule,rule) fix i assume i:"i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2383 | have "((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $$ i = | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2384 | ((norm (a - b) - norm (a - x)) * (a $$ i) + norm (a - x) * (b $$ i)) / norm (a - b)" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2385 | using Fal by(auto simp add: field_simps euclidean_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2386 | also have "\<dots> = x$$i" apply(rule divide_eq_imp[OF Fal]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2387 | unfolding as[unfolded dist_norm] using as[unfolded dist_triangle_eq] apply- | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2388 | apply(subst (asm) euclidean_eq) using i apply(erule_tac x=i in allE) by(auto simp add:field_simps euclidean_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2389 | finally show "x $$ i = ((1 - norm (a - x) / norm (a - b)) *\<^sub>R a + (norm (a - x) / norm (a - b)) *\<^sub>R b) $$ i" | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2390 | by auto | 
| 33175 | 2391 | qed(insert Fal2, auto) qed qed | 
| 2392 | ||
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2393 | lemma between_midpoint: fixes a::"'a::euclidean_space" shows | 
| 33175 | 2394 | "between (a,b) (midpoint a b)" (is ?t1) | 
| 2395 | "between (b,a) (midpoint a b)" (is ?t2) | |
| 2396 | proof- have *:"\<And>x y z. x = (1/2::real) *\<^sub>R z \<Longrightarrow> y = (1/2) *\<^sub>R z \<Longrightarrow> norm z = norm x + norm y" by auto | |
| 2397 | show ?t1 ?t2 unfolding between midpoint_def dist_norm apply(rule_tac[!] *) | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2398 | unfolding euclidean_eq[where 'a='a] | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2399 | by(auto simp add:field_simps euclidean_simps) qed | 
| 33175 | 2400 | |
| 2401 | lemma between_mem_convex_hull: | |
| 2402 |   "between (a,b) x \<longleftrightarrow> x \<in> convex hull {a,b}"
 | |
| 2403 | unfolding between_mem_segment segment_convex_hull .. | |
| 2404 | ||
| 2405 | subsection {* Shrinking towards the interior of a convex set. *}
 | |
| 2406 | ||
| 2407 | lemma mem_interior_convex_shrink: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2408 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 2409 | assumes "convex s" "c \<in> interior s" "x \<in> s" "0 < e" "e \<le> 1" | 
| 2410 | shows "x - e *\<^sub>R (x - c) \<in> interior s" | |
| 2411 | proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto | |
| 2412 | show ?thesis unfolding mem_interior apply(rule_tac x="e*d" in exI) | |
| 2413 | apply(rule) defer unfolding subset_eq Ball_def mem_ball proof(rule,rule) | |
| 2414 | fix y assume as:"dist (x - e *\<^sub>R (x - c)) y < e * d" | |
| 2415 | have *:"y = (1 - (1 - e)) *\<^sub>R ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) + (1 - e) *\<^sub>R x" using `e>0` by (auto simp add: scaleR_left_diff_distrib scaleR_right_diff_distrib) | |
| 2416 | have "dist c ((1 / e) *\<^sub>R y - ((1 - e) / e) *\<^sub>R x) = abs(1/e) * norm (e *\<^sub>R c - y + (1 - e) *\<^sub>R x)" | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2417 | unfolding dist_norm unfolding norm_scaleR[THEN sym] apply(rule arg_cong[where f=norm]) using `e>0` | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2418 | by(auto simp add: euclidean_simps euclidean_eq[where 'a='a] field_simps) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2419 | also have "\<dots> = abs(1/e) * norm (x - e *\<^sub>R (x - c) - y)" by(auto intro!:arg_cong[where f=norm] simp add: algebra_simps) | 
| 33175 | 2420 | also have "\<dots> < d" using as[unfolded dist_norm] and `e>0` | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 2421 | by(auto simp add:pos_divide_less_eq[OF `e>0`] mult_commute) | 
| 33175 | 2422 | finally show "y \<in> s" apply(subst *) apply(rule assms(1)[unfolded convex_alt,rule_format]) | 
| 2423 | apply(rule d[unfolded subset_eq,rule_format]) unfolding mem_ball using assms(3-5) by auto | |
| 2424 | qed(rule mult_pos_pos, insert `e>0` `d>0`, auto) qed | |
| 2425 | ||
| 2426 | lemma mem_interior_closure_convex_shrink: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2427 |   fixes s :: "('a::euclidean_space) set"
 | 
| 33175 | 2428 | assumes "convex s" "c \<in> interior s" "x \<in> closure s" "0 < e" "e \<le> 1" | 
| 2429 | shows "x - e *\<^sub>R (x - c) \<in> interior s" | |
| 2430 | proof- obtain d where "d>0" and d:"ball c d \<subseteq> s" using assms(2) unfolding mem_interior by auto | |
| 2431 | have "\<exists>y\<in>s. norm (y - x) * (1 - e) < e * d" proof(cases "x\<in>s") | |
| 2432 | case True thus ?thesis using `e>0` `d>0` by(rule_tac bexI[where x=x], auto intro!: mult_pos_pos) next | |
| 2433 | case False hence x:"x islimpt s" using assms(3)[unfolded closure_def] by auto | |
| 2434 | show ?thesis proof(cases "e=1") | |
| 2435 | case True obtain y where "y\<in>s" "y \<noteq> x" "dist y x < 1" | |
| 2436 | using x[unfolded islimpt_approachable,THEN spec[where x=1]] by auto | |
| 2437 | thus ?thesis apply(rule_tac x=y in bexI) unfolding True using `d>0` by auto next | |
| 2438 | case False hence "0 < e * d / (1 - e)" and *:"1 - e > 0" | |
| 2439 | using `e\<le>1` `e>0` `d>0` by(auto intro!:mult_pos_pos divide_pos_pos) | |
| 2440 | then obtain y where "y\<in>s" "y \<noteq> x" "dist y x < e * d / (1 - e)" | |
| 2441 | using x[unfolded islimpt_approachable,THEN spec[where x="e*d / (1 - e)"]] by auto | |
| 2442 | thus ?thesis apply(rule_tac x=y in bexI) unfolding dist_norm using pos_less_divide_eq[OF *] by auto qed qed | |
| 2443 | then obtain y where "y\<in>s" and y:"norm (y - x) * (1 - e) < e * d" by auto | |
| 2444 | def z \<equiv> "c + ((1 - e) / e) *\<^sub>R (x - y)" | |
| 2445 | have *:"x - e *\<^sub>R (x - c) = y - e *\<^sub>R (y - z)" unfolding z_def using `e>0` by (auto simp add: scaleR_right_diff_distrib scaleR_right_distrib scaleR_left_diff_distrib) | |
| 2446 | have "z\<in>interior s" apply(rule subset_interior[OF d,unfolded subset_eq,rule_format]) | |
| 2447 | unfolding interior_open[OF open_ball] mem_ball z_def dist_norm using y and assms(4,5) | |
| 2448 | by(auto simp add:field_simps norm_minus_commute) | |
| 2449 | thus ?thesis unfolding * apply - apply(rule mem_interior_convex_shrink) | |
| 2450 | using assms(1,4-5) `y\<in>s` by auto qed | |
| 2451 | ||
| 2452 | subsection {* Some obvious but surprisingly hard simplex lemmas. *}
 | |
| 2453 | ||
| 2454 | lemma simplex: | |
| 2455 | assumes "finite s" "0 \<notin> s" | |
| 2456 |   shows "convex hull (insert 0 s) =  { y. (\<exists>u. (\<forall>x\<in>s. 0 \<le> u x) \<and> setsum u s \<le> 1 \<and> setsum (\<lambda>x. u x *\<^sub>R x) s = y)}"
 | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2457 | unfolding convex_hull_finite[OF finite.insertI[OF assms(1)]] apply(rule set_eqI, rule) unfolding mem_Collect_eq | 
| 33175 | 2458 | apply(erule_tac[!] exE) apply(erule_tac[!] conjE)+ unfolding setsum_clauses(2)[OF assms(1)] | 
| 2459 | apply(rule_tac x=u in exI) defer apply(rule_tac x="\<lambda>x. if x = 0 then 1 - setsum u s else u x" in exI) using assms(2) | |
| 2460 | unfolding if_smult and setsum_delta_notmem[OF assms(2)] by auto | |
| 2461 | ||
| 2462 | lemma std_simplex: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2463 |   "convex hull (insert 0 { basis i | i. i<DIM('a)}) =
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2464 |         {x::'a::euclidean_space . (\<forall>i<DIM('a). 0 \<le> x$$i) \<and> setsum (\<lambda>i. x$$i) {..<DIM('a)} \<le> 1 }"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2465 | (is "convex hull (insert 0 ?p) = ?s") | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2466 | proof- let ?D = "{..<DIM('a)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2467 | have *:"finite ?p" "0\<notin>?p" by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2468 |   have "{(basis i)::'a |i. i<DIM('a)} = basis ` ?D" by auto
 | 
| 33175 | 2469 | note sumbas = this setsum_reindex[OF basis_inj, unfolded o_def] | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2470 | show ?thesis unfolding simplex[OF *] apply(rule set_eqI) unfolding mem_Collect_eq apply rule | 
| 33175 | 2471 | apply(erule exE, (erule conjE)+) apply(erule_tac[2] conjE)+ proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2472 |     fix x::"'a" and u assume as: "\<forall>x\<in>{basis i |i. i<DIM('a)}. 0 \<le> u x"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2473 |       "setsum u {basis i |i. i<DIM('a)} \<le> 1" "(\<Sum>x\<in>{basis i |i. i<DIM('a)}. u x *\<^sub>R x) = x"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2474 |     have *:"\<forall>i<DIM('a). u (basis i) = x$$i" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2475 | proof safe case goal1 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2476 |       have "x$$i = (\<Sum>j<DIM('a). (if j = i then u (basis j) else 0))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2477 | unfolding as(3)[THEN sym] euclidean_component.setsum unfolding sumbas | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2478 | apply(rule setsum_cong2) by(auto simp add: basis_component) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2479 | also have "... = u (basis i)" apply(subst setsum_delta) using goal1 by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2480 | finally show ?case by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2481 | qed | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2482 |     hence **:"setsum u {basis i |i. i<DIM('a)} = setsum (op $$ x) ?D" unfolding sumbas 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2483 | apply-apply(rule setsum_cong2) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2484 |     show "(\<forall>i<DIM('a). 0 \<le> x $$ i) \<and> setsum (op $$ x) ?D \<le> 1" apply - proof(rule,rule,rule)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2485 |       fix i assume i:"i<DIM('a)" show "0 \<le> x$$i"  unfolding *[rule_format,OF i,THEN sym]
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2486 | apply(rule_tac as(1)[rule_format]) using i by auto | 
| 33175 | 2487 | qed(insert as(2)[unfolded **], auto) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2488 |   next fix x::"'a" assume as:"\<forall>i<DIM('a). 0 \<le> x $$ i" "setsum (op $$ x) ?D \<le> 1"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2489 |     show "\<exists>u. (\<forall>x\<in>{basis i |i. i<DIM('a)}. 0 \<le> u x) \<and>
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2490 |       setsum u {basis i |i. i<DIM('a)} \<le> 1 \<and> (\<Sum>x\<in>{basis i |i. i<DIM('a)}. u x *\<^sub>R x) = x"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2491 | apply(rule_tac x="\<lambda>y. inner y x" in exI) apply safe using as(1) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2492 |       proof- show "(\<Sum>y\<in>{basis i |i. i < DIM('a)}. y \<bullet> x) \<le> 1" unfolding sumbas
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2493 | using as(2) unfolding euclidean_component_def[THEN sym] . | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2494 |         show "(\<Sum>xa\<in>{basis i |i. i < DIM('a)}. (xa \<bullet> x) *\<^sub>R xa) = x" unfolding sumbas
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2495 | apply(subst (7) euclidean_representation) apply(rule setsum_cong2) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2496 | unfolding euclidean_component_def by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2497 | qed (auto simp add:euclidean_component_def) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2498 | qed qed | 
| 33175 | 2499 | |
| 2500 | lemma interior_std_simplex: | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2501 |   "interior (convex hull (insert 0 { basis i| i. i<DIM('a)})) =
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2502 |   {x::'a::euclidean_space. (\<forall>i<DIM('a). 0 < x$$i) \<and> setsum (\<lambda>i. x$$i) {..<DIM('a)} < 1 }"
 | 
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 2503 | apply(rule set_eqI) unfolding mem_interior std_simplex unfolding subset_eq mem_Collect_eq Ball_def mem_ball | 
| 33175 | 2504 | unfolding Ball_def[symmetric] apply rule apply(erule exE, (erule conjE)+) defer apply(erule conjE) proof- | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2505 |   fix x::"'a" and e assume "0<e" and as:"\<forall>xa. dist x xa < e \<longrightarrow> (\<forall>x<DIM('a). 0 \<le> xa $$ x) \<and> setsum (op $$ xa) {..<DIM('a)} \<le> 1"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2506 |   show "(\<forall>xa<DIM('a). 0 < x $$ xa) \<and> setsum (op $$ x) {..<DIM('a)} < 1" apply(safe) proof-
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2507 |     fix i assume i:"i<DIM('a)" thus "0 < x $$ i" using as[THEN spec[where x="x - (e / 2) *\<^sub>R basis i"]] and `e>0`
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2508 | unfolding dist_norm by(auto simp add: inner_simps euclidean_component_def dot_basis elim!:allE[where x=i]) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2509 | next have **:"dist x (x + (e / 2) *\<^sub>R basis 0) < e" using `e>0` | 
| 38642 
8fa437809c67
dropped type classes mult_mono and mult_mono1; tuned names of technical rule duplicates
 haftmann parents: 
37732diff
changeset | 2510 | unfolding dist_norm by(auto intro!: mult_strict_left_mono) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2511 |     have "\<And>i. i<DIM('a) \<Longrightarrow> (x + (e / 2) *\<^sub>R basis 0) $$ i = x$$i + (if i = 0 then e/2 else 0)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2512 | unfolding euclidean_component_def by(auto simp add:inner_simps dot_basis) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2513 |     hence *:"setsum (op $$ (x + (e / 2) *\<^sub>R basis 0)) {..<DIM('a)} = setsum (\<lambda>i. x$$i + (if 0 = i then e/2 else 0)) {..<DIM('a)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2514 | apply(rule_tac setsum_cong) by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2515 |     have "setsum (op $$ x) {..<DIM('a)} < setsum (op $$ (x + (e / 2) *\<^sub>R basis 0)) {..<DIM('a)}" unfolding * setsum_addf
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2516 | using `0<e` DIM_positive[where 'a='a] apply(subst setsum_delta') by auto | 
| 33175 | 2517 | also have "\<dots> \<le> 1" using ** apply(drule_tac as[rule_format]) by auto | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2518 |     finally show "setsum (op $$ x) {..<DIM('a)} < 1" by auto qed
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2519 | next fix x::"'a" assume as:"\<forall>i<DIM('a). 0 < x $$ i" "setsum (op $$ x) {..<DIM('a)} < 1"
 | 
| 33175 | 2520 | guess a using UNIV_witness[where 'a='b] .. | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2521 |   let ?d = "(1 - setsum (op $$ x) {..<DIM('a)}) / real (DIM('a))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2522 |   have "Min ((op $$ x) ` {..<DIM('a)}) > 0" apply(rule Min_grI) using as(1) by auto
 | 
| 37647 | 2523 | moreover have"?d > 0" apply(rule divide_pos_pos) using as(2) by(auto simp add: Suc_le_eq) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2524 |   ultimately show "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> (\<forall>i<DIM('a). 0 \<le> y $$ i) \<and> setsum (op $$ y) {..<DIM('a)} \<le> 1"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2525 |     apply(rule_tac x="min (Min ((op $$ x) ` {..<DIM('a)})) ?D" in exI) apply rule defer apply(rule,rule) proof-
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2526 |     fix y assume y:"dist x y < min (Min (op $$ x ` {..<DIM('a)})) ?d"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2527 |     have "setsum (op $$ y) {..<DIM('a)} \<le> setsum (\<lambda>i. x$$i + ?d) {..<DIM('a)}" proof(rule setsum_mono)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2528 |       fix i assume "i\<in>{..<DIM('a)}" hence "abs (y$$i - x$$i) < ?d" apply-apply(rule le_less_trans)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2529 | using component_le_norm[of "y - x" i] | 
| 36362 
06475a1547cb
fix lots of looping simp calls and other warnings
 huffman parents: 
36341diff
changeset | 2530 | using y[unfolded min_less_iff_conj dist_norm, THEN conjunct2] by(auto simp add: norm_minus_commute) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2531 | thus "y $$ i \<le> x $$ i + ?d" by auto qed | 
| 37647 | 2532 | also have "\<dots> \<le> 1" unfolding setsum_addf setsum_constant card_enum real_eq_of_nat by(auto simp add: Suc_le_eq) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2533 |     finally show "(\<forall>i<DIM('a). 0 \<le> y $$ i) \<and> setsum (op $$ y) {..<DIM('a)} \<le> 1" 
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2534 |     proof safe fix i assume i:"i<DIM('a)"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2535 | have "norm (x - y) < x$$i" apply(rule less_le_trans) | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2536 | apply(rule y[unfolded min_less_iff_conj dist_norm, THEN conjunct1]) using i by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2537 | thus "0 \<le> y$$i" using component_le_norm[of "x - y" i] and as(1)[rule_format, of i] by auto | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2538 | qed qed auto qed | 
| 33175 | 2539 | |
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2540 | lemma interior_std_simplex_nonempty: obtains a::"'a::euclidean_space" where | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2541 |   "a \<in> interior(convex hull (insert 0 {basis i | i . i<DIM('a)}))" proof-
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2542 |   let ?D = "{..<DIM('a)}" let ?a = "setsum (\<lambda>b::'a. inverse (2 * real DIM('a)) *\<^sub>R b) {(basis i) | i. i<DIM('a)}"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2543 |   have *:"{basis i :: 'a | i. i<DIM('a)} = basis ` ?D" by auto
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2544 |   { fix i assume i:"i<DIM('a)" have "?a $$ i = inverse (2 * real DIM('a))"
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2545 | unfolding euclidean_component.setsum * and setsum_reindex[OF basis_inj] and o_def | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2546 |       apply(rule trans[of _ "setsum (\<lambda>j. if i = j then inverse (2 * real DIM('a)) else 0) ?D"]) apply(rule setsum_cong2)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2547 | defer apply(subst setsum_delta') unfolding euclidean_component_def using i by(auto simp add:dot_basis) } | 
| 33175 | 2548 | note ** = this | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2549 | show ?thesis apply(rule that[of ?a]) unfolding interior_std_simplex mem_Collect_eq proof safe | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2550 |     fix i assume i:"i<DIM('a)" show "0 < ?a $$ i" unfolding **[OF i] by(auto simp add: Suc_le_eq)
 | 
| 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2551 |   next have "setsum (op $$ ?a) ?D = setsum (\<lambda>i. inverse (2 * real DIM('a))) ?D" apply(rule setsum_cong2, rule **) by auto
 | 
| 36778 
739a9379e29b
avoid using real-specific versions of generic lemmas
 huffman parents: 
36725diff
changeset | 2552 | also have "\<dots> < 1" unfolding setsum_constant card_enum real_eq_of_nat divide_inverse[THEN sym] by (auto simp add:field_simps) | 
| 37489 
44e42d392c6e
Introduce a type class for euclidean spaces, port most lemmas from real^'n to this type class.
 hoelzl parents: 
36844diff
changeset | 2553 | finally show "setsum (op $$ ?a) ?D < 1" by auto qed qed | 
| 33175 | 2554 | |
| 2555 | end |