11414
|
1 |
\begin{theindex}
|
|
2 |
|
11424
|
3 |
\item \emph {$\forall \tmspace +\thinmuskip {.1667em}$}, \bold{189}
|
|
4 |
\item \isasymforall, \bold{3}
|
11414
|
5 |
\item \ttall, \bold{189}
|
11424
|
6 |
\item \emph {$\exists \tmspace +\thinmuskip {.1667em}$}, \bold{189}
|
|
7 |
\item \isasymexists, \bold{3}
|
11414
|
8 |
\item \texttt{?}, \hyperpage{5}, \bold{189}
|
|
9 |
\item \emph {$\varepsilon $}, \bold{189}
|
|
10 |
\item \isasymuniqex, \bold{3}, \bold{189}
|
|
11 |
\item \ttuniquex, \bold{189}
|
11424
|
12 |
\item \emph {$\wedge $}, \bold{189}
|
|
13 |
\item \isasymand, \bold{3}
|
11414
|
14 |
\item {\texttt {\&}}, \bold{189}
|
|
15 |
\item \texttt {=}, \bold{3}
|
11424
|
16 |
\item \emph {$\DOTSB \relbar \joinrel \rightarrow $}, \bold{189}
|
|
17 |
\item \isasymimp, \bold{3}
|
11414
|
18 |
\item \texttt {-->}, \bold{189}
|
11424
|
19 |
\item \emph {$\neg $}, \bold{189}
|
|
20 |
\item \isasymnot, \bold{3}
|
11414
|
21 |
\item \verb$~$, \bold{189}
|
|
22 |
\item \emph {$\not =$}, \bold{189}
|
|
23 |
\item \verb$~=$, \bold{189}
|
11424
|
24 |
\item \emph {$\vee $}, \bold{189}
|
|
25 |
\item \isasymor, \bold{3}
|
11414
|
26 |
\item \ttor, \bold{189}
|
|
27 |
\item \emph {$\circ $}, \bold{189}
|
|
28 |
\item \emph {$\mid $}\nobreakspace {}\emph {$\mid $}, \bold{189}
|
|
29 |
\item \texttt {*}, \bold{20, 21}, \bold{189}
|
|
30 |
\item \texttt {+}, \bold{20, 21}
|
|
31 |
\item \texttt {-}, \bold{20, 21}
|
|
32 |
\item \emph {$\le $}, \bold{20, 21}, \bold{189}
|
|
33 |
\item \texttt {<=}, \bold{189}
|
|
34 |
\item \texttt {<}, \bold{20, 21}
|
|
35 |
\item \texttt{[]}, \bold{7}
|
|
36 |
\item \texttt{\#}, \bold{7}
|
|
37 |
\item \texttt{\at}, \bold{8}, \hyperpage{189}
|
|
38 |
\item \emph {$\in $}, \bold{189}
|
|
39 |
\item \texttt {:}, \bold{189}
|
|
40 |
\item \isasymnotin, \bold{189}
|
|
41 |
\item \verb$~:$, \bold{189}
|
|
42 |
\item \emph {$\subseteq $}, \bold{189}
|
|
43 |
\item \emph {$\subset $}, \bold{189}
|
|
44 |
\item \emph {$\cap $}, \bold{189}
|
|
45 |
\item \emph {$\cup $}, \bold{189}
|
|
46 |
\item \isasymInter, \bold{189}
|
|
47 |
\item \isasymUnion, \bold{189}
|
|
48 |
\item \isasyminverse, \bold{189}
|
|
49 |
\item \verb$^-1$, \bold{189}
|
|
50 |
\item \isactrlsup{\isacharasterisk}, \bold{189}
|
|
51 |
\item \verb$^$\texttt{*}, \bold{189}
|
|
52 |
\item \isasymAnd, \bold{10}, \bold{189}
|
|
53 |
\item \ttAnd, \bold{189}
|
|
54 |
\item \emph {$\equiv $}, \bold{23}, \bold{189}
|
|
55 |
\item \texttt {==}, \bold{189}
|
11424
|
56 |
\item \emph {$\rightleftharpoons $}, \bold{24}, \bold{189}
|
|
57 |
\item \emph {$\rightharpoonup $}, \bold{24}, \bold{189}
|
|
58 |
\item \emph {$\leftharpoondown $}, \bold{24}, \bold{189}
|
11414
|
59 |
\item \emph {$\Rightarrow $}, \bold{3}, \bold{189}
|
|
60 |
\item \texttt {=>}, \bold{189}
|
|
61 |
\item \texttt {<=}, \bold{189}
|
|
62 |
\item \emph {$\DOTSB \Relbar \joinrel \Rightarrow $}, \bold{189}
|
|
63 |
\item \texttt {==>}, \bold{189}
|
|
64 |
\item \emph {$\mathopen {[\mkern -3mu[}$}, \bold{10}, \bold{189}
|
|
65 |
\item \ttlbr, \bold{189}
|
|
66 |
\item \emph {$\mathclose {]\mkern -3mu]}$}, \bold{10}, \bold{189}
|
|
67 |
\item \ttrbr, \bold{189}
|
|
68 |
\item \emph {$\lambda $}, \bold{3}, \bold{189}
|
|
69 |
\item \texttt {\%}, \bold{189}
|
|
70 |
\item \texttt {,}, \bold{29}
|
|
71 |
\item \texttt {;}, \bold{5}
|
|
72 |
\item \emph {$\times $}, \bold{21}, \bold{189}
|
|
73 |
\item \texttt {'a}, \bold{3}
|
|
74 |
\item \texttt {()}, \bold{22}
|
|
75 |
\item \texttt {::}, \bold{4}
|
|
76 |
\item \isa {+} (tactical), \hyperpage{83}
|
|
77 |
\item \isa {<*lex*>}, \see{lexicographic product}{1}
|
|
78 |
\item \isa {?} (tactical), \hyperpage{83}
|
|
79 |
\item \texttt{|} (tactical), \hyperpage{83}
|
|
80 |
|
|
81 |
\indexspace
|
|
82 |
|
11424
|
83 |
\item \isa {0} (constant), \hyperpage{20, 21}, \hyperpage{133}
|
|
84 |
\item \isa {1} (symbol), \hyperpage{133}
|
|
85 |
\item \isa {2} (symbol), \hyperpage{133}
|
11414
|
86 |
|
|
87 |
\indexspace
|
|
88 |
|
|
89 |
\item abandon proof, \bold{11}
|
|
90 |
\item abandon theory, \bold{14}
|
11424
|
91 |
\item \isa {abs} (constant), \hyperpage{135}
|
11414
|
92 |
\item \texttt {abs}, \bold{189}
|
11424
|
93 |
\item absolute value, \hyperpage{135}
|
11414
|
94 |
\item \isa {add_assoc} (theorem), \bold{134}
|
|
95 |
\item \isa {add_commute} (theorem), \bold{134}
|
|
96 |
\item \isa {add_mult_distrib} (theorem), \bold{133}
|
|
97 |
\item \texttt {ALL}, \bold{189}
|
|
98 |
\item \isa {All} (constant), \hyperpage{93}
|
|
99 |
\item \isa {allE} (theorem), \bold{65}
|
|
100 |
\item \isa {allI} (theorem), \bold{64}
|
11424
|
101 |
\item \isacommand {apply} (command), \hyperpage{13}
|
11414
|
102 |
\item \isa {arg_cong} (theorem), \bold{80}
|
11424
|
103 |
\item \isa {arith} (method), \hyperpage{21}, \hyperpage{131}
|
11414
|
104 |
\item arithmetic, \hyperpage{20--21}, \hyperpage{31}
|
|
105 |
\item \textsc {ascii} symbols, \bold{189}
|
|
106 |
\item associative-commutative function, \hyperpage{158}
|
|
107 |
\item \isa {assumption} (method), \hyperpage{53}
|
|
108 |
\item assumptions
|
|
109 |
\subitem renaming, \hyperpage{66--67}
|
|
110 |
\subitem reusing, \hyperpage{67}
|
|
111 |
\item \isa {auto}, \hyperpage{36}
|
|
112 |
\item \isa {auto} (method), \hyperpage{76}
|
|
113 |
\item \isa {axclass}, \hyperpage{144--150}
|
|
114 |
\item axiom of choice, \hyperpage{70}
|
|
115 |
\item axiomatic type class, \hyperpage{144--150}
|
|
116 |
|
|
117 |
\indexspace
|
|
118 |
|
|
119 |
\item \isacommand {back} (command), \hyperpage{62}
|
|
120 |
\item \isa {Ball} (constant), \hyperpage{93}
|
|
121 |
\item \isa {ballI} (theorem), \bold{92}
|
|
122 |
\item \isa {best} (method), \hyperpage{75, 76}
|
|
123 |
\item \isa {Bex} (constant), \hyperpage{93}
|
|
124 |
\item \isa {bexE} (theorem), \bold{92}
|
|
125 |
\item \isa {bexI} (theorem), \bold{92}
|
|
126 |
\item \isa {bij_def} (theorem), \bold{94}
|
|
127 |
\item bijections, \hyperpage{94}
|
|
128 |
\item binomial coefficients, \hyperpage{93}
|
|
129 |
\item bisimulation, \bold{100}
|
|
130 |
\item \isa {blast} (method), \hyperpage{72--75}
|
|
131 |
\item \isa {bool}, \hyperpage{2}, \bold{3}
|
|
132 |
\item \isa {bspec} (theorem), \bold{92}
|
|
133 |
\item \isacommand{by} (command), \hyperpage{57}
|
|
134 |
|
|
135 |
\indexspace
|
|
136 |
|
|
137 |
\item \isa {card} (constant), \hyperpage{93}
|
|
138 |
\item \isa {card_Pow} (theorem), \bold{93}
|
|
139 |
\item \isa {card_Un_Int} (theorem), \bold{93}
|
|
140 |
\item cardinality, \hyperpage{93}
|
|
141 |
\item \isa {case}, \bold{3}, \hyperpage{4}, \bold{16},
|
|
142 |
\hyperpage{30, 31}
|
|
143 |
\item case distinction, \bold{17}
|
|
144 |
\item case splits, \bold{29}
|
|
145 |
\item \isa {case_tac}, \bold{17}
|
|
146 |
\item \isa {case_tac} (method), \hyperpage{85}
|
|
147 |
\item \isa {clarify} (method), \hyperpage{74}, \hyperpage{76}
|
|
148 |
\item \isa {clarsimp} (method), \hyperpage{75, 76}
|
|
149 |
\item \isa {classical} (theorem), \bold{57}
|
|
150 |
\item closure
|
|
151 |
\subitem reflexive and transitive, \hyperpage{96--98}
|
|
152 |
\item coinduction, \bold{100}
|
|
153 |
\item \isa {Collect} (constant), \hyperpage{93}
|
|
154 |
\item \isa {comp_def} (theorem), \bold{96}
|
|
155 |
\item \isa {Compl_iff} (theorem), \bold{90}
|
|
156 |
\item complement
|
|
157 |
\subitem of a set, \hyperpage{89}
|
|
158 |
\item composition
|
|
159 |
\subitem of functions, \bold{94}
|
|
160 |
\subitem of relations, \bold{96}
|
|
161 |
\item congruence rules, \bold{157}
|
|
162 |
\item \isa {conjE} (theorem), \bold{55}
|
|
163 |
\item \isa {conjI} (theorem), \bold{52}
|
|
164 |
\item \isa {Cons}, \bold{7}
|
|
165 |
\item \isa {constdefs}, \bold{23}
|
|
166 |
\item contrapositives, \hyperpage{57}
|
|
167 |
\item converse
|
|
168 |
\subitem of a relation, \bold{96}
|
|
169 |
\item \isa {converse_iff} (theorem), \bold{96}
|
|
170 |
\item CTL, \hyperpage{100--110}
|
|
171 |
|
|
172 |
\indexspace
|
|
173 |
|
|
174 |
\item \isa {datatype}, \hyperpage{7}, \hyperpage{36--42}
|
11424
|
175 |
\item \isacommand {defer} (command), \hyperpage{14}, \hyperpage{84}
|
11414
|
176 |
\item definition, \bold{23}
|
|
177 |
\subitem unfolding, \bold{28}
|
|
178 |
\item \isa {defs}, \bold{23}
|
|
179 |
\item descriptions
|
|
180 |
\subitem definite, \hyperpage{69}
|
|
181 |
\subitem indefinite, \hyperpage{70}
|
|
182 |
\item \isa {dest} (attribute), \hyperpage{86}
|
|
183 |
\item destruction rules, \hyperpage{55}
|
|
184 |
\item \isa {diff_mult_distrib} (theorem), \bold{133}
|
|
185 |
\item difference
|
|
186 |
\subitem of sets, \bold{90}
|
|
187 |
\item \isa {disjCI} (theorem), \bold{58}
|
|
188 |
\item \isa {disjE} (theorem), \bold{54}
|
|
189 |
\item \isa {div}, \bold{20}
|
11424
|
190 |
\item divides relation, \hyperpage{68}, \hyperpage{78},
|
|
191 |
\hyperpage{85--87}, \hyperpage{134}
|
|
192 |
\item division
|
|
193 |
\subitem by negative numbers, \hyperpage{135}
|
|
194 |
\subitem by zero, \hyperpage{134}
|
|
195 |
\subitem for type \protect\isa{nat}, \hyperpage{133}
|
11414
|
196 |
\item domain
|
|
197 |
\subitem of a relation, \hyperpage{96}
|
|
198 |
\item \isa {Domain_iff} (theorem), \bold{96}
|
|
199 |
\item done, \bold{11}
|
|
200 |
\item \isa {drule_tac} (method), \hyperpage{60}, \hyperpage{80}
|
11424
|
201 |
\item \isa {dvd_add} (theorem), \bold{134}
|
11414
|
202 |
\item \isa {dvd_anti_sym} (theorem), \bold{134}
|
11424
|
203 |
\item \isa {dvd_def} (theorem), \bold{134}
|
11414
|
204 |
|
|
205 |
\indexspace
|
|
206 |
|
|
207 |
\item \isa {elim!} (attribute), \hyperpage{115}
|
|
208 |
\item elimination rules, \hyperpage{53--54}
|
|
209 |
\item \isa {Eps} (constant), \hyperpage{93}
|
|
210 |
\item equality
|
|
211 |
\subitem of functions, \bold{93}
|
|
212 |
\subitem of sets, \bold{90}
|
|
213 |
\item \isa {equalityE} (theorem), \bold{90}
|
|
214 |
\item \isa {equalityI} (theorem), \bold{90}
|
|
215 |
\item \isa {erule}, \hyperpage{54}
|
|
216 |
\item \isa {erule_tac} (method), \hyperpage{60}
|
|
217 |
\item Euclid's algorithm, \hyperpage{85--87}
|
|
218 |
\item even numbers
|
|
219 |
\subitem defining inductively, \hyperpage{111--115}
|
|
220 |
\item \texttt {EX}, \bold{189}
|
|
221 |
\item \isa {Ex} (constant), \hyperpage{93}
|
|
222 |
\item \isa {exE} (theorem), \bold{66}
|
|
223 |
\item \isa {exI} (theorem), \bold{66}
|
|
224 |
\item \isa {ext} (theorem), \bold{93}
|
|
225 |
\item extensionality
|
|
226 |
\subitem for functions, \bold{93, 94}
|
|
227 |
\subitem for sets, \bold{90}
|
|
228 |
\item \ttEXU, \bold{189}
|
|
229 |
|
|
230 |
\indexspace
|
|
231 |
|
|
232 |
\item \isa {False}, \bold{3}
|
|
233 |
\item \isa {fast} (method), \hyperpage{75, 76}
|
|
234 |
\item \isa {finite} (symbol), \hyperpage{93}
|
|
235 |
\item \isa {Finites} (constant), \hyperpage{93}
|
|
236 |
\item fixed points, \hyperpage{100}
|
|
237 |
\item flag, \hyperpage{3, 4}, \hyperpage{31}
|
|
238 |
\subitem (re)setting, \bold{3}
|
|
239 |
\item \isa {force} (method), \hyperpage{75, 76}
|
|
240 |
\item formula, \bold{3}
|
|
241 |
\item forward proof, \hyperpage{76--82}
|
|
242 |
\item \isa {frule} (method), \hyperpage{67}
|
|
243 |
\item \isa {frule_tac} (method), \hyperpage{60}
|
|
244 |
\item \isa {fst}, \bold{21}
|
|
245 |
\item functions, \hyperpage{93--95}
|
|
246 |
|
|
247 |
\indexspace
|
|
248 |
|
|
249 |
\item \isa {gcd} (constant), \hyperpage{76--78}, \hyperpage{85--87}
|
|
250 |
\item generalizing for induction, \hyperpage{113}
|
|
251 |
\item Girard, Jean-Yves, \fnote{55}
|
|
252 |
\item ground terms example, \hyperpage{119--124}
|
|
253 |
|
|
254 |
\indexspace
|
|
255 |
|
11424
|
256 |
\item \isa {hd} (constant), \hyperpage{15}
|
11414
|
257 |
\item higher-order pattern, \bold{159}
|
|
258 |
\item Hilbert's $\varepsilon$-operator, \hyperpage{69--71}
|
11424
|
259 |
\item {\textit {hypreal}} (type), \hyperpage{137}
|
11414
|
260 |
|
|
261 |
\indexspace
|
|
262 |
|
|
263 |
\item \isa {Id_def} (theorem), \bold{96}
|
|
264 |
\item \isa {id_def} (theorem), \bold{94}
|
|
265 |
\item identifier, \bold{4}
|
|
266 |
\subitem qualified, \bold{2}
|
|
267 |
\item identity function, \bold{94}
|
|
268 |
\item identity relation, \bold{96}
|
|
269 |
\item \isa {if}, \bold{3}, \hyperpage{4}
|
|
270 |
\item \isa {iff} (attribute), \hyperpage{73, 74}, \hyperpage{86},
|
|
271 |
\hyperpage{114}
|
|
272 |
\item \isa {iffD1} (theorem), \bold{78}
|
|
273 |
\item \isa {iffD2} (theorem), \bold{78}
|
|
274 |
\item image
|
|
275 |
\subitem under a function, \bold{95}
|
|
276 |
\subitem under a relation, \bold{96}
|
|
277 |
\item \isa {image_def} (theorem), \bold{95}
|
|
278 |
\item \isa {Image_iff} (theorem), \bold{96}
|
|
279 |
\item \isa {impI} (theorem), \bold{56}
|
|
280 |
\item implication, \hyperpage{56--57}
|
|
281 |
\item \isa {induct_tac}, \hyperpage{10}, \hyperpage{17},
|
|
282 |
\hyperpage{50}, \hyperpage{172}
|
|
283 |
\item induction, \hyperpage{168--175}
|
|
284 |
\subitem recursion, \hyperpage{49--50}
|
|
285 |
\subitem structural, \bold{17}
|
|
286 |
\subitem well-founded, \hyperpage{99}
|
|
287 |
\item \isacommand {inductive} (command), \hyperpage{111}
|
|
288 |
\item inductive definition, \hyperpage{111--129}
|
|
289 |
\subitem simultaneous, \hyperpage{125}
|
|
290 |
\item \isacommand {inductive\_cases} (command), \hyperpage{115},
|
|
291 |
\hyperpage{123}
|
|
292 |
\item \isa {infixr}, \bold{8}
|
|
293 |
\item \isa {inj_on_def} (theorem), \bold{94}
|
|
294 |
\item injections, \hyperpage{94}
|
|
295 |
\item inner syntax, \bold{9}
|
|
296 |
\item \isa {insert} (constant), \hyperpage{91}
|
|
297 |
\item \isa {insert} (method), \hyperpage{80--82}
|
|
298 |
\item instance, \bold{145}
|
|
299 |
\item \texttt {INT}, \bold{189}
|
|
300 |
\item \texttt {Int}, \bold{189}
|
11424
|
301 |
\item \isa {int} (type), \hyperpage{135}
|
11414
|
302 |
\item \isa {INT_iff} (theorem), \bold{92}
|
|
303 |
\item \isa {IntD1} (theorem), \bold{89}
|
|
304 |
\item \isa {IntD2} (theorem), \bold{89}
|
11424
|
305 |
\item integers, \hyperpage{135}
|
11414
|
306 |
\item \isa {INTER} (constant), \hyperpage{93}
|
|
307 |
\item \texttt {Inter}, \bold{189}
|
|
308 |
\item \isa {Inter_iff} (theorem), \bold{92}
|
|
309 |
\item intersection, \hyperpage{89}
|
|
310 |
\subitem indexed, \hyperpage{92}
|
|
311 |
\item \isa {IntI} (theorem), \bold{89}
|
|
312 |
\item \isa {intro} (method), \hyperpage{58}
|
|
313 |
\item \isa {intro!} (attribute), \hyperpage{112}
|
|
314 |
\item introduction rules, \hyperpage{52--53}
|
|
315 |
\item \isa {inv} (constant), \hyperpage{70}
|
|
316 |
\item \isa {inv_image_def} (theorem), \bold{99}
|
|
317 |
\item inverse
|
|
318 |
\subitem of a function, \bold{94}
|
|
319 |
\subitem of a relation, \bold{96}
|
|
320 |
\item inverse image
|
|
321 |
\subitem of a function, \hyperpage{95}
|
|
322 |
\subitem of a relation, \hyperpage{98}
|
|
323 |
|
|
324 |
\indexspace
|
|
325 |
|
11424
|
326 |
\item \isacommand {kill} (command), \hyperpage{14}
|
11414
|
327 |
|
|
328 |
\indexspace
|
|
329 |
|
11424
|
330 |
\item \isa {LEAST}, \bold{21}
|
11414
|
331 |
\item least number operator, \hyperpage{69}
|
|
332 |
\item lemma, \hyperpage{11}
|
|
333 |
\item \isa {lemma}, \bold{11}
|
|
334 |
\item \isacommand {lemmas} (command), \hyperpage{77}, \hyperpage{86}
|
11424
|
335 |
\item \isa {length} (symbol), \hyperpage{15}
|
11414
|
336 |
\item \isa {length_induct}, \bold{172}
|
|
337 |
\item \isa {less_than} (constant), \hyperpage{98}
|
|
338 |
\item \isa {less_than_iff} (theorem), \bold{98}
|
|
339 |
\item \isa {let}, \bold{3}, \hyperpage{4}, \hyperpage{29}
|
|
340 |
\item \isa {lex_prod_def} (theorem), \bold{99}
|
|
341 |
\item lexicographic product, \bold{99}, \hyperpage{160}
|
|
342 |
\item {\texttt{lfp}}
|
|
343 |
\subitem applications of, \see{CTL}{100}
|
11424
|
344 |
\item linear arithmetic, \bold{21}, \hyperpage{131}
|
11414
|
345 |
\item \isa {list}, \hyperpage{2}, \bold{7}, \bold{15}
|
|
346 |
\item \isa {lists_mono} (theorem), \bold{121}
|
|
347 |
|
|
348 |
\indexspace
|
|
349 |
|
|
350 |
\item \isa {Main}, \bold{2}
|
|
351 |
\item major premise, \bold{59}
|
|
352 |
\item \isa {max}, \bold{20, 21}
|
|
353 |
\item measure function, \bold{45}, \bold{98}
|
|
354 |
\item \isa {measure_def} (theorem), \bold{99}
|
|
355 |
\item meta-logic, \bold{64}
|
11424
|
356 |
\item methods, \bold{14}
|
11414
|
357 |
\item \isa {min}, \bold{20, 21}
|
|
358 |
\item \isa {mod}, \bold{20}
|
11424
|
359 |
\item \isa {mod_div_equality} (theorem), \bold{133}
|
11414
|
360 |
\item \isa {mod_mult_distrib} (theorem), \bold{133}
|
|
361 |
\item \emph{modus ponens}, \hyperpage{51}, \hyperpage{56}
|
|
362 |
\item \isa {mono_def} (theorem), \bold{100}
|
|
363 |
\item monotone functions, \bold{100}, \hyperpage{123}
|
|
364 |
\subitem and inductive definitions, \hyperpage{121--122}
|
|
365 |
\item \isa {mp} (theorem), \bold{56}
|
|
366 |
\item multiset ordering, \bold{99}
|
|
367 |
|
|
368 |
\indexspace
|
|
369 |
|
11424
|
370 |
\item \isa {nat}, \hyperpage{2}
|
|
371 |
\item \isa {nat} (type), \hyperpage{133--134}
|
|
372 |
\item {\textit {nat}} (type), \hyperpage{20}
|
11414
|
373 |
\item natural deduction, \hyperpage{51--52}
|
11424
|
374 |
\item natural numbers, \hyperpage{133--134}
|
11414
|
375 |
\item negation, \hyperpage{57--59}
|
|
376 |
\item \isa {Nil}, \bold{7}
|
|
377 |
\item \isa {no_asm}, \bold{27}
|
|
378 |
\item \isa {no_asm_simp}, \bold{27}
|
|
379 |
\item \isa {no_asm_use}, \bold{28}
|
11424
|
380 |
\item non-standard reals, \hyperpage{137}
|
11414
|
381 |
\item \isa {None}, \bold{22}
|
|
382 |
\item \isa {notE} (theorem), \bold{57}
|
|
383 |
\item \isa {notI} (theorem), \bold{57}
|
11424
|
384 |
\item numeric literals, \hyperpage{132}
|
|
385 |
\subitem for type \protect\isa{nat}, \hyperpage{133}
|
|
386 |
\subitem for type \protect\isa{real}, \hyperpage{136}
|
11414
|
387 |
|
|
388 |
\indexspace
|
|
389 |
|
|
390 |
\item \isa {O} (symbol), \hyperpage{96}
|
|
391 |
\item \texttt {o}, \bold{189}
|
|
392 |
\item \isa {o_def} (theorem), \bold{94}
|
|
393 |
\item \isa {OF} (attribute), \hyperpage{78--79}
|
|
394 |
\item \isa {of} (attribute), \hyperpage{77}, \hyperpage{79}
|
|
395 |
\item \isa {oops}, \bold{11}
|
|
396 |
\item \isa {option}, \bold{22}
|
|
397 |
\item ordered rewriting, \bold{158}
|
|
398 |
\item outer syntax, \bold{9}
|
|
399 |
\item overloading, \hyperpage{144--146}
|
11424
|
400 |
\subitem and arithmetic, \hyperpage{132}
|
11414
|
401 |
|
|
402 |
\indexspace
|
|
403 |
|
|
404 |
\item pair, \bold{21}, \hyperpage{137--140}
|
|
405 |
\item parent theory, \bold{2}
|
|
406 |
\item partial function, \hyperpage{164}
|
|
407 |
\item pattern, higher-order, \bold{159}
|
|
408 |
\item PDL, \hyperpage{102--105}
|
|
409 |
\item permutative rewrite rule, \bold{158}
|
11424
|
410 |
\item \isacommand {pr} (command), \hyperpage{14}, \hyperpage{83}
|
|
411 |
\item \isacommand {prefer} (command), \hyperpage{14}, \hyperpage{84}
|
11414
|
412 |
\item primitive recursion, \bold{16}
|
|
413 |
\item \isa {primrec}, \hyperpage{8}, \bold{16}, \hyperpage{36--42}
|
|
414 |
\item product type, \see{pair}{1}
|
|
415 |
\item proof
|
|
416 |
\subitem abandon, \bold{11}
|
|
417 |
\item Proof General, \bold{5}
|
|
418 |
\item proofs
|
|
419 |
\subitem examples of failing, \hyperpage{71--72}
|
|
420 |
|
|
421 |
\indexspace
|
|
422 |
|
|
423 |
\item quantifiers
|
|
424 |
\subitem and inductive definitions, \hyperpage{119--121}
|
|
425 |
\subitem existential, \hyperpage{66}
|
|
426 |
\subitem for sets, \hyperpage{92}
|
|
427 |
\subitem instantiating, \hyperpage{68}
|
|
428 |
\subitem universal, \hyperpage{63--66}
|
|
429 |
|
|
430 |
\indexspace
|
|
431 |
|
|
432 |
\item \isa {r_into_rtrancl} (theorem), \bold{96}
|
|
433 |
\item \isa {r_into_trancl} (theorem), \bold{97}
|
|
434 |
\item range
|
|
435 |
\subitem of a function, \hyperpage{95}
|
|
436 |
\subitem of a relation, \hyperpage{96}
|
|
437 |
\item \isa {range} (symbol), \hyperpage{95}
|
|
438 |
\item \isa {Range_iff} (theorem), \bold{96}
|
11424
|
439 |
\item \isa {real} (type), \hyperpage{136--137}
|
|
440 |
\item real numbers, \hyperpage{136--137}
|
11414
|
441 |
\item \isa {recdef}, \hyperpage{45--50}, \hyperpage{160--168}
|
|
442 |
\item \isacommand {recdef} (command), \hyperpage{98}
|
11424
|
443 |
\item \protect\isacommand{recdef} (command)
|
|
444 |
\subitem and numeric literals, \hyperpage{132}
|
11414
|
445 |
\item \isa {recdef_cong}, \bold{164}
|
|
446 |
\item \isa {recdef_simp}, \bold{47}
|
|
447 |
\item \isa {recdef_wf}, \bold{162}
|
|
448 |
\item recursion
|
|
449 |
\subitem well-founded, \bold{161}
|
|
450 |
\item recursion induction, \hyperpage{49--50}
|
11424
|
451 |
\item \isacommand {redo} (command), \hyperpage{14}
|
11414
|
452 |
\item relations, \hyperpage{95--98}
|
|
453 |
\subitem well-founded, \hyperpage{98--99}
|
|
454 |
\item \isa {rename_tac} (method), \hyperpage{66--67}
|
|
455 |
\item \isa {rev}, \bold{8}
|
|
456 |
\item rewrite rule, \bold{26}
|
|
457 |
\subitem permutative, \bold{158}
|
|
458 |
\item rewriting, \bold{26}
|
|
459 |
\subitem ordered, \bold{158}
|
|
460 |
\item \isa {rotate_tac}, \bold{28}
|
|
461 |
\item \isa {rtrancl_refl} (theorem), \bold{96}
|
|
462 |
\item \isa {rtrancl_trans} (theorem), \bold{96}
|
|
463 |
\item rule induction, \hyperpage{112--114}
|
|
464 |
\item rule inversion, \hyperpage{114--115}, \hyperpage{123--124}
|
|
465 |
\item \isa {rule_tac} (method), \hyperpage{60}
|
|
466 |
\subitem and renaming, \hyperpage{67}
|
|
467 |
|
|
468 |
\indexspace
|
|
469 |
|
|
470 |
\item \isa {safe} (method), \hyperpage{75, 76}
|
|
471 |
\item safe rules, \bold{73}
|
|
472 |
\item schematic variable, \bold{4}
|
|
473 |
\item \isa {set}, \hyperpage{2}
|
|
474 |
\item {\textit {set}} (type), \hyperpage{89}
|
|
475 |
\item set comprehensions, \hyperpage{91--92}
|
|
476 |
\item \isa {set_ext} (theorem), \bold{90}
|
|
477 |
\item sets, \hyperpage{89--93}
|
|
478 |
\subitem finite, \hyperpage{93}
|
|
479 |
\subitem notation for finite, \bold{91}
|
|
480 |
\item \isa {show_brackets}, \bold{4}
|
|
481 |
\item \isa {show_types}, \bold{3}
|
|
482 |
\item \texttt {show_types}, \hyperpage{14}
|
|
483 |
\item \isa {simp} (attribute), \bold{9}, \hyperpage{26}
|
|
484 |
\item \isa {simp} (method), \bold{26}
|
|
485 |
\item \isa {simp_all}, \hyperpage{26}, \hyperpage{36}
|
|
486 |
\item simplification, \hyperpage{25--32}, \hyperpage{157--160}
|
|
487 |
\subitem of let-expressions, \hyperpage{29}
|
|
488 |
\subitem ordered, \bold{158}
|
|
489 |
\subitem with definitions, \hyperpage{28}
|
|
490 |
\subitem with/of assumptions, \hyperpage{27}
|
|
491 |
\item simplification rule, \bold{26}, \hyperpage{159--160}
|
|
492 |
\item \isa {simplified} (attribute), \hyperpage{77}, \hyperpage{79}
|
|
493 |
\item simplifier, \bold{25}
|
11424
|
494 |
\item \isa {size} (constant), \hyperpage{15}
|
11414
|
495 |
\item \isa {snd}, \bold{21}
|
|
496 |
\item \isa {SOME} (symbol), \hyperpage{69}
|
|
497 |
\item \texttt {SOME}, \bold{189}
|
|
498 |
\item \isa {Some}, \bold{22}
|
|
499 |
\item \isa {some_equality} (theorem), \bold{69}
|
11424
|
500 |
\item \isa {someI} (theorem), \bold{70}
|
11414
|
501 |
\item \isa {someI2} (theorem), \bold{70}
|
11424
|
502 |
\item \isa {someI_ex} (theorem), \bold{71}
|
11414
|
503 |
\item sort, \bold{150}
|
|
504 |
\item \isa {spec} (theorem), \bold{64}
|
|
505 |
\item \isa {split} (constant), \bold{137}
|
|
506 |
\item \isa {split} (method, attr.), \hyperpage{29--31}
|
|
507 |
\item split rule, \bold{30}
|
|
508 |
\item \isa {split_if}, \bold{30}
|
|
509 |
\item \isa {ssubst} (theorem), \bold{61}
|
|
510 |
\item structural induction, \bold{17}
|
|
511 |
\item \isa {subgoal_tac} (method), \hyperpage{81, 82}
|
|
512 |
\item subset relation, \bold{90}
|
|
513 |
\item \isa {subsetD} (theorem), \bold{90}
|
|
514 |
\item \isa {subsetI} (theorem), \bold{90}
|
|
515 |
\item \isa {subst} (method), \hyperpage{61}
|
|
516 |
\item substitution, \hyperpage{61--63}
|
11424
|
517 |
\item \isa {Suc} (constant), \hyperpage{20}
|
11414
|
518 |
\item \isa {surj_def} (theorem), \bold{94}
|
|
519 |
\item surjections, \hyperpage{94}
|
|
520 |
\item \isa {sym} (theorem), \bold{77}
|
|
521 |
\item syntax translation, \bold{23}
|
|
522 |
|
|
523 |
\indexspace
|
|
524 |
|
|
525 |
\item tactic, \bold{10}
|
|
526 |
\item tacticals, \hyperpage{82--83}
|
|
527 |
\item term, \bold{3}
|
11424
|
528 |
\item \isacommand {term} (command), \hyperpage{14}
|
11414
|
529 |
\item term rewriting, \bold{26}
|
|
530 |
\item termination, \see{total function}{1}
|
|
531 |
\item \isa {THEN} (attribute), \bold{77}, \hyperpage{79},
|
|
532 |
\hyperpage{86}
|
|
533 |
\item theorem, \hyperpage{11}
|
|
534 |
\item \isa {theorem}, \bold{9}, \hyperpage{11}
|
|
535 |
\item theory, \bold{2}
|
|
536 |
\subitem abandon, \bold{14}
|
|
537 |
\item theory file, \bold{2}
|
11424
|
538 |
\item \isacommand {thm} (command), \hyperpage{14}
|
|
539 |
\item \isa {tl} (constant), \hyperpage{15}
|
11414
|
540 |
\item total function, \hyperpage{9}
|
|
541 |
\item \isa {trace_simp}, \bold{31}
|
|
542 |
\item tracing the simplifier, \bold{31}
|
|
543 |
\item \isa {trancl_trans} (theorem), \bold{97}
|
11424
|
544 |
\item \isa {translations}, \bold{24}
|
11414
|
545 |
\item \isa {True}, \bold{3}
|
|
546 |
\item tuple, \see{pair}{1}
|
11424
|
547 |
\item \isacommand {typ} (command), \hyperpage{14}
|
11414
|
548 |
\item type, \bold{2}
|
|
549 |
\item type constraint, \bold{4}
|
|
550 |
\item type declaration, \bold{150}
|
|
551 |
\item type definition, \bold{151}
|
|
552 |
\item type inference, \bold{3}
|
|
553 |
\item type synonym, \bold{22}
|
|
554 |
\item type variable, \bold{3}
|
|
555 |
\item \isa {typedecl}, \bold{151}
|
|
556 |
\item \isa {typedef}, \bold{151}
|
11424
|
557 |
\item \isa {types}, \bold{23}
|
11414
|
558 |
|
|
559 |
\indexspace
|
|
560 |
|
|
561 |
\item \texttt {UN}, \bold{189}
|
|
562 |
\item \texttt {Un}, \bold{189}
|
|
563 |
\item \isa {UN_E} (theorem), \bold{92}
|
|
564 |
\item \isa {UN_I} (theorem), \bold{92}
|
|
565 |
\item \isa {UN_iff} (theorem), \bold{92}
|
|
566 |
\item \isa {Un_subset_iff} (theorem), \bold{90}
|
|
567 |
\item underdefined function, \hyperpage{165}
|
11424
|
568 |
\item \isacommand {undo} (command), \hyperpage{14}
|
11414
|
569 |
\item \isa {unfold}, \bold{28}
|
|
570 |
\item unification, \hyperpage{60--63}
|
|
571 |
\item \isa {UNION} (constant), \hyperpage{93}
|
|
572 |
\item \texttt {Union}, \bold{189}
|
|
573 |
\item union
|
|
574 |
\subitem indexed, \hyperpage{92}
|
|
575 |
\item \isa {Union_iff} (theorem), \bold{92}
|
|
576 |
\item \isa {unit}, \bold{22}
|
|
577 |
\item unknown, \bold{4}
|
|
578 |
\item unknowns, \bold{52}
|
|
579 |
\item unsafe rules, \bold{73}
|
|
580 |
\item updating a function, \bold{93}
|
|
581 |
|
|
582 |
\indexspace
|
|
583 |
|
|
584 |
\item variable, \bold{4}
|
|
585 |
\subitem schematic, \bold{4}
|
|
586 |
\subitem type, \bold{3}
|
|
587 |
\item \isa {vimage_def} (theorem), \bold{95}
|
|
588 |
|
|
589 |
\indexspace
|
|
590 |
|
|
591 |
\item \isa {wf_induct} (theorem), \bold{99}
|
|
592 |
\item \isa {while}, \bold{167}
|
|
593 |
|
|
594 |
\end{theindex}
|