author | wenzelm |
Mon, 03 Sep 2012 22:51:33 +0200 | |
changeset 49106 | aa09d99bf414 |
parent 46953 | 2b6e55924af3 |
child 58871 | c399ae4b836f |
permissions | -rw-r--r-- |
1478 | 1 |
(* Title: ZF/OrderArith.thy |
2 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
437 | 3 |
Copyright 1994 University of Cambridge |
4 |
*) |
|
5 |
||
13356 | 6 |
header{*Combining Orderings: Foundations of Ordinal Arithmetic*} |
7 |
||
16417 | 8 |
theory OrderArith imports Order Sum Ordinal begin |
437 | 9 |
|
24893 | 10 |
definition |
437 | 11 |
(*disjoint sum of two relations; underlies ordinal addition*) |
24893 | 12 |
radd :: "[i,i,i,i]=>i" where |
46953 | 13 |
"radd(A,r,B,s) == |
14 |
{z: (A+B) * (A+B). |
|
15 |
(\<exists>x y. z = <Inl(x), Inr(y)>) | |
|
16 |
(\<exists>x' x. z = <Inl(x'), Inl(x)> & <x',x>:r) | |
|
46820 | 17 |
(\<exists>y' y. z = <Inr(y'), Inr(y)> & <y',y>:s)}" |
437 | 18 |
|
24893 | 19 |
definition |
437 | 20 |
(*lexicographic product of two relations; underlies ordinal multiplication*) |
24893 | 21 |
rmult :: "[i,i,i,i]=>i" where |
46953 | 22 |
"rmult(A,r,B,s) == |
23 |
{z: (A*B) * (A*B). |
|
24 |
\<exists>x' y' x y. z = <<x',y'>, <x,y>> & |
|
1155 | 25 |
(<x',x>: r | (x'=x & <y',y>: s))}" |
437 | 26 |
|
24893 | 27 |
definition |
437 | 28 |
(*inverse image of a relation*) |
24893 | 29 |
rvimage :: "[i,i,i]=>i" where |
46953 | 30 |
"rvimage(A,f,r) == {z \<in> A*A. \<exists>x y. z = <x,y> & <f`x,f`y>: r}" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
31 |
|
24893 | 32 |
definition |
33 |
measure :: "[i, i\<Rightarrow>i] \<Rightarrow> i" where |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
34 |
"measure(A,f) == {<x,y>: A*A. f(x) < f(y)}" |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
35 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
36 |
|
13356 | 37 |
subsection{*Addition of Relations -- Disjoint Sum*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
38 |
|
13512 | 39 |
subsubsection{*Rewrite rules. Can be used to obtain introduction rules*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
40 |
|
46953 | 41 |
lemma radd_Inl_Inr_iff [iff]: |
42 |
"<Inl(a), Inr(b)> \<in> radd(A,r,B,s) \<longleftrightarrow> a \<in> A & b \<in> B" |
|
13356 | 43 |
by (unfold radd_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
44 |
|
46953 | 45 |
lemma radd_Inl_iff [iff]: |
46 |
"<Inl(a'), Inl(a)> \<in> radd(A,r,B,s) \<longleftrightarrow> a':A & a \<in> A & <a',a>:r" |
|
13356 | 47 |
by (unfold radd_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
48 |
|
46953 | 49 |
lemma radd_Inr_iff [iff]: |
50 |
"<Inr(b'), Inr(b)> \<in> radd(A,r,B,s) \<longleftrightarrow> b':B & b \<in> B & <b',b>:s" |
|
13356 | 51 |
by (unfold radd_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
52 |
|
46953 | 53 |
lemma radd_Inr_Inl_iff [simp]: |
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
54 |
"<Inr(b), Inl(a)> \<in> radd(A,r,B,s) \<longleftrightarrow> False" |
13356 | 55 |
by (unfold radd_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
56 |
|
46953 | 57 |
declare radd_Inr_Inl_iff [THEN iffD1, dest!] |
13823 | 58 |
|
13512 | 59 |
subsubsection{*Elimination Rule*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
60 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
61 |
lemma raddE: |
46953 | 62 |
"[| <p',p> \<in> radd(A,r,B,s); |
63 |
!!x y. [| p'=Inl(x); x \<in> A; p=Inr(y); y \<in> B |] ==> Q; |
|
64 |
!!x' x. [| p'=Inl(x'); p=Inl(x); <x',x>: r; x':A; x \<in> A |] ==> Q; |
|
65 |
!!y' y. [| p'=Inr(y'); p=Inr(y); <y',y>: s; y':B; y \<in> B |] ==> Q |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
66 |
|] ==> Q" |
46953 | 67 |
by (unfold radd_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
68 |
|
13512 | 69 |
subsubsection{*Type checking*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
70 |
|
46820 | 71 |
lemma radd_type: "radd(A,r,B,s) \<subseteq> (A+B) * (A+B)" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
72 |
apply (unfold radd_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
73 |
apply (rule Collect_subset) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
74 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
75 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
76 |
lemmas field_radd = radd_type [THEN field_rel_subset] |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
77 |
|
13512 | 78 |
subsubsection{*Linearity*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
79 |
|
46953 | 80 |
lemma linear_radd: |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
81 |
"[| linear(A,r); linear(B,s) |] ==> linear(A+B,radd(A,r,B,s))" |
46953 | 82 |
by (unfold linear_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
83 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
84 |
|
13512 | 85 |
subsubsection{*Well-foundedness*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
86 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
87 |
lemma wf_on_radd: "[| wf[A](r); wf[B](s) |] ==> wf[A+B](radd(A,r,B,s))" |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
88 |
apply (rule wf_onI2) |
46820 | 89 |
apply (subgoal_tac "\<forall>x\<in>A. Inl (x) \<in> Ba") |
13512 | 90 |
--{*Proving the lemma, which is needed twice!*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
91 |
prefer 2 |
46820 | 92 |
apply (erule_tac V = "y \<in> A + B" in thin_rl) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
93 |
apply (rule_tac ballI) |
13784 | 94 |
apply (erule_tac r = r and a = x in wf_on_induct, assumption) |
46953 | 95 |
apply blast |
13512 | 96 |
txt{*Returning to main part of proof*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
97 |
apply safe |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
98 |
apply blast |
46953 | 99 |
apply (erule_tac r = s and a = ya in wf_on_induct, assumption, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
100 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
101 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
102 |
lemma wf_radd: "[| wf(r); wf(s) |] ==> wf(radd(field(r),r,field(s),s))" |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
103 |
apply (simp add: wf_iff_wf_on_field) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
104 |
apply (rule wf_on_subset_A [OF _ field_radd]) |
46953 | 105 |
apply (blast intro: wf_on_radd) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
106 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
107 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
108 |
lemma well_ord_radd: |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
109 |
"[| well_ord(A,r); well_ord(B,s) |] ==> well_ord(A+B, radd(A,r,B,s))" |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
110 |
apply (rule well_ordI) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
111 |
apply (simp add: well_ord_def wf_on_radd) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
112 |
apply (simp add: well_ord_def tot_ord_def linear_radd) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
113 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
114 |
|
13512 | 115 |
subsubsection{*An @{term ord_iso} congruence law*} |
437 | 116 |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
117 |
lemma sum_bij: |
46953 | 118 |
"[| f \<in> bij(A,C); g \<in> bij(B,D) |] |
46820 | 119 |
==> (\<lambda>z\<in>A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) \<in> bij(A+B, C+D)" |
46953 | 120 |
apply (rule_tac d = "case (%x. Inl (converse(f)`x), %y. Inr(converse(g)`y))" |
13356 | 121 |
in lam_bijective) |
46953 | 122 |
apply (typecheck add: bij_is_inj inj_is_fun) |
123 |
apply (auto simp add: left_inverse_bij right_inverse_bij) |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
124 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
125 |
|
46953 | 126 |
lemma sum_ord_iso_cong: |
127 |
"[| f \<in> ord_iso(A,r,A',r'); g \<in> ord_iso(B,s,B',s') |] ==> |
|
128 |
(\<lambda>z\<in>A+B. case(%x. Inl(f`x), %y. Inr(g`y), z)) |
|
46820 | 129 |
\<in> ord_iso(A+B, radd(A,r,B,s), A'+B', radd(A',r',B',s'))" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
130 |
apply (unfold ord_iso_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
131 |
apply (safe intro!: sum_bij) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
132 |
(*Do the beta-reductions now*) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
133 |
apply (auto cong add: conj_cong simp add: bij_is_fun [THEN apply_type]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
134 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
135 |
|
46953 | 136 |
(*Could we prove an ord_iso result? Perhaps |
46820 | 137 |
ord_iso(A+B, radd(A,r,B,s), A \<union> B, r \<union> s) *) |
46953 | 138 |
lemma sum_disjoint_bij: "A \<inter> B = 0 ==> |
46820 | 139 |
(\<lambda>z\<in>A+B. case(%x. x, %y. y, z)) \<in> bij(A+B, A \<union> B)" |
46953 | 140 |
apply (rule_tac d = "%z. if z \<in> A then Inl (z) else Inr (z) " in lam_bijective) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
141 |
apply auto |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
142 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
143 |
|
13512 | 144 |
subsubsection{*Associativity*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
145 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
146 |
lemma sum_assoc_bij: |
46953 | 147 |
"(\<lambda>z\<in>(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) |
46820 | 148 |
\<in> bij((A+B)+C, A+(B+C))" |
46953 | 149 |
apply (rule_tac d = "case (%x. Inl (Inl (x)), case (%x. Inl (Inr (x)), Inr))" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
150 |
in lam_bijective) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
151 |
apply auto |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
152 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
153 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
154 |
lemma sum_assoc_ord_iso: |
46953 | 155 |
"(\<lambda>z\<in>(A+B)+C. case(case(Inl, %y. Inr(Inl(y))), %y. Inr(Inr(y)), z)) |
156 |
\<in> ord_iso((A+B)+C, radd(A+B, radd(A,r,B,s), C, t), |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
157 |
A+(B+C), radd(A, r, B+C, radd(B,s,C,t)))" |
13356 | 158 |
by (rule sum_assoc_bij [THEN ord_isoI], auto) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
159 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
160 |
|
13356 | 161 |
subsection{*Multiplication of Relations -- Lexicographic Product*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
162 |
|
13512 | 163 |
subsubsection{*Rewrite rule. Can be used to obtain introduction rules*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
164 |
|
46953 | 165 |
lemma rmult_iff [iff]: |
166 |
"<<a',b'>, <a,b>> \<in> rmult(A,r,B,s) \<longleftrightarrow> |
|
167 |
(<a',a>: r & a':A & a \<in> A & b': B & b \<in> B) | |
|
168 |
(<b',b>: s & a'=a & a \<in> A & b': B & b \<in> B)" |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
169 |
|
13356 | 170 |
by (unfold rmult_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
171 |
|
46953 | 172 |
lemma rmultE: |
173 |
"[| <<a',b'>, <a,b>> \<in> rmult(A,r,B,s); |
|
174 |
[| <a',a>: r; a':A; a \<in> A; b':B; b \<in> B |] ==> Q; |
|
175 |
[| <b',b>: s; a \<in> A; a'=a; b':B; b \<in> B |] ==> Q |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
176 |
|] ==> Q" |
46953 | 177 |
by blast |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
178 |
|
13512 | 179 |
subsubsection{*Type checking*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
180 |
|
46820 | 181 |
lemma rmult_type: "rmult(A,r,B,s) \<subseteq> (A*B) * (A*B)" |
13356 | 182 |
by (unfold rmult_def, rule Collect_subset) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
183 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
184 |
lemmas field_rmult = rmult_type [THEN field_rel_subset] |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
185 |
|
13512 | 186 |
subsubsection{*Linearity*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
187 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
188 |
lemma linear_rmult: |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
189 |
"[| linear(A,r); linear(B,s) |] ==> linear(A*B,rmult(A,r,B,s))" |
46953 | 190 |
by (simp add: linear_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
191 |
|
13512 | 192 |
subsubsection{*Well-foundedness*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
193 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
194 |
lemma wf_on_rmult: "[| wf[A](r); wf[B](s) |] ==> wf[A*B](rmult(A,r,B,s))" |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
195 |
apply (rule wf_onI2) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
196 |
apply (erule SigmaE) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
197 |
apply (erule ssubst) |
46820 | 198 |
apply (subgoal_tac "\<forall>b\<in>B. <x,b>: Ba", blast) |
13784 | 199 |
apply (erule_tac a = x in wf_on_induct, assumption) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
200 |
apply (rule ballI) |
13784 | 201 |
apply (erule_tac a = b in wf_on_induct, assumption) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
202 |
apply (best elim!: rmultE bspec [THEN mp]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
203 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
204 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
205 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
206 |
lemma wf_rmult: "[| wf(r); wf(s) |] ==> wf(rmult(field(r),r,field(s),s))" |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
207 |
apply (simp add: wf_iff_wf_on_field) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
208 |
apply (rule wf_on_subset_A [OF _ field_rmult]) |
46953 | 209 |
apply (blast intro: wf_on_rmult) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
210 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
211 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
212 |
lemma well_ord_rmult: |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
213 |
"[| well_ord(A,r); well_ord(B,s) |] ==> well_ord(A*B, rmult(A,r,B,s))" |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
214 |
apply (rule well_ordI) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
215 |
apply (simp add: well_ord_def wf_on_rmult) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
216 |
apply (simp add: well_ord_def tot_ord_def linear_rmult) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
217 |
done |
9883 | 218 |
|
219 |
||
13512 | 220 |
subsubsection{*An @{term ord_iso} congruence law*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
221 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
222 |
lemma prod_bij: |
46953 | 223 |
"[| f \<in> bij(A,C); g \<in> bij(B,D) |] |
46820 | 224 |
==> (lam <x,y>:A*B. <f`x, g`y>) \<in> bij(A*B, C*D)" |
46953 | 225 |
apply (rule_tac d = "%<x,y>. <converse (f) `x, converse (g) `y>" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
226 |
in lam_bijective) |
46953 | 227 |
apply (typecheck add: bij_is_inj inj_is_fun) |
228 |
apply (auto simp add: left_inverse_bij right_inverse_bij) |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
229 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
230 |
|
46953 | 231 |
lemma prod_ord_iso_cong: |
232 |
"[| f \<in> ord_iso(A,r,A',r'); g \<in> ord_iso(B,s,B',s') |] |
|
233 |
==> (lam <x,y>:A*B. <f`x, g`y>) |
|
46820 | 234 |
\<in> ord_iso(A*B, rmult(A,r,B,s), A'*B', rmult(A',r',B',s'))" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
235 |
apply (unfold ord_iso_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
236 |
apply (safe intro!: prod_bij) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
237 |
apply (simp_all add: bij_is_fun [THEN apply_type]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
238 |
apply (blast intro: bij_is_inj [THEN inj_apply_equality]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
239 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
240 |
|
46820 | 241 |
lemma singleton_prod_bij: "(\<lambda>z\<in>A. <x,z>) \<in> bij(A, {x}*A)" |
13784 | 242 |
by (rule_tac d = snd in lam_bijective, auto) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
243 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
244 |
(*Used??*) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
245 |
lemma singleton_prod_ord_iso: |
46953 | 246 |
"well_ord({x},xr) ==> |
46820 | 247 |
(\<lambda>z\<in>A. <x,z>) \<in> ord_iso(A, r, {x}*A, rmult({x}, xr, A, r))" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
248 |
apply (rule singleton_prod_bij [THEN ord_isoI]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
249 |
apply (simp (no_asm_simp)) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
250 |
apply (blast dest: well_ord_is_wf [THEN wf_on_not_refl]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
251 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
252 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
253 |
(*Here we build a complicated function term, then simplify it using |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
254 |
case_cong, id_conv, comp_lam, case_case.*) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
255 |
lemma prod_sum_singleton_bij: |
46953 | 256 |
"a\<notin>C ==> |
257 |
(\<lambda>x\<in>C*B + D. case(%x. x, %y.<a,y>, x)) |
|
46820 | 258 |
\<in> bij(C*B + D, C*B \<union> {a}*D)" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
259 |
apply (rule subst_elem) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
260 |
apply (rule id_bij [THEN sum_bij, THEN comp_bij]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
261 |
apply (rule singleton_prod_bij) |
13269 | 262 |
apply (rule sum_disjoint_bij, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
263 |
apply (simp (no_asm_simp) cong add: case_cong) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
264 |
apply (rule comp_lam [THEN trans, symmetric]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
265 |
apply (fast elim!: case_type) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
266 |
apply (simp (no_asm_simp) add: case_case) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
267 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
268 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
269 |
lemma prod_sum_singleton_ord_iso: |
46953 | 270 |
"[| a \<in> A; well_ord(A,r) |] ==> |
271 |
(\<lambda>x\<in>pred(A,a,r)*B + pred(B,b,s). case(%x. x, %y.<a,y>, x)) |
|
272 |
\<in> ord_iso(pred(A,a,r)*B + pred(B,b,s), |
|
273 |
radd(A*B, rmult(A,r,B,s), B, s), |
|
46820 | 274 |
pred(A,a,r)*B \<union> {a}*pred(B,b,s), rmult(A,r,B,s))" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
275 |
apply (rule prod_sum_singleton_bij [THEN ord_isoI]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
276 |
apply (simp (no_asm_simp) add: pred_iff well_ord_is_wf [THEN wf_on_not_refl]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
277 |
apply (auto elim!: well_ord_is_wf [THEN wf_on_asym] predE) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
278 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
279 |
|
13512 | 280 |
subsubsection{*Distributive law*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
281 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
282 |
lemma sum_prod_distrib_bij: |
46953 | 283 |
"(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) |
46820 | 284 |
\<in> bij((A+B)*C, (A*C)+(B*C))" |
46953 | 285 |
by (rule_tac d = "case (%<x,y>.<Inl (x),y>, %<x,y>.<Inr (x),y>) " |
13356 | 286 |
in lam_bijective, auto) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
287 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
288 |
lemma sum_prod_distrib_ord_iso: |
46953 | 289 |
"(lam <x,z>:(A+B)*C. case(%y. Inl(<y,z>), %y. Inr(<y,z>), x)) |
290 |
\<in> ord_iso((A+B)*C, rmult(A+B, radd(A,r,B,s), C, t), |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
291 |
(A*C)+(B*C), radd(A*C, rmult(A,r,C,t), B*C, rmult(B,s,C,t)))" |
13356 | 292 |
by (rule sum_prod_distrib_bij [THEN ord_isoI], auto) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
293 |
|
13512 | 294 |
subsubsection{*Associativity*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
295 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
296 |
lemma prod_assoc_bij: |
46820 | 297 |
"(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) \<in> bij((A*B)*C, A*(B*C))" |
13356 | 298 |
by (rule_tac d = "%<x, <y,z>>. <<x,y>, z>" in lam_bijective, auto) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
299 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
300 |
lemma prod_assoc_ord_iso: |
46953 | 301 |
"(lam <<x,y>, z>:(A*B)*C. <x,<y,z>>) |
302 |
\<in> ord_iso((A*B)*C, rmult(A*B, rmult(A,r,B,s), C, t), |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
303 |
A*(B*C), rmult(A, r, B*C, rmult(B,s,C,t)))" |
13356 | 304 |
by (rule prod_assoc_bij [THEN ord_isoI], auto) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
305 |
|
13356 | 306 |
subsection{*Inverse Image of a Relation*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
307 |
|
13512 | 308 |
subsubsection{*Rewrite rule*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
309 |
|
46953 | 310 |
lemma rvimage_iff: "<a,b> \<in> rvimage(A,f,r) \<longleftrightarrow> <f`a,f`b>: r & a \<in> A & b \<in> A" |
13269 | 311 |
by (unfold rvimage_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
312 |
|
13512 | 313 |
subsubsection{*Type checking*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
314 |
|
46820 | 315 |
lemma rvimage_type: "rvimage(A,f,r) \<subseteq> A*A" |
13784 | 316 |
by (unfold rvimage_def, rule Collect_subset) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
317 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
318 |
lemmas field_rvimage = rvimage_type [THEN field_rel_subset] |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
319 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
320 |
lemma rvimage_converse: "rvimage(A,f, converse(r)) = converse(rvimage(A,f,r))" |
13269 | 321 |
by (unfold rvimage_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
322 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
323 |
|
13512 | 324 |
subsubsection{*Partial Ordering Properties*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
325 |
|
46953 | 326 |
lemma irrefl_rvimage: |
327 |
"[| f \<in> inj(A,B); irrefl(B,r) |] ==> irrefl(A, rvimage(A,f,r))" |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
328 |
apply (unfold irrefl_def rvimage_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
329 |
apply (blast intro: inj_is_fun [THEN apply_type]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
330 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
331 |
|
46953 | 332 |
lemma trans_on_rvimage: |
333 |
"[| f \<in> inj(A,B); trans[B](r) |] ==> trans[A](rvimage(A,f,r))" |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
334 |
apply (unfold trans_on_def rvimage_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
335 |
apply (blast intro: inj_is_fun [THEN apply_type]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
336 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
337 |
|
46953 | 338 |
lemma part_ord_rvimage: |
339 |
"[| f \<in> inj(A,B); part_ord(B,r) |] ==> part_ord(A, rvimage(A,f,r))" |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
340 |
apply (unfold part_ord_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
341 |
apply (blast intro!: irrefl_rvimage trans_on_rvimage) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
342 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
343 |
|
13512 | 344 |
subsubsection{*Linearity*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
345 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
346 |
lemma linear_rvimage: |
46953 | 347 |
"[| f \<in> inj(A,B); linear(B,r) |] ==> linear(A,rvimage(A,f,r))" |
348 |
apply (simp add: inj_def linear_def rvimage_iff) |
|
349 |
apply (blast intro: apply_funtype) |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
350 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
351 |
|
46953 | 352 |
lemma tot_ord_rvimage: |
353 |
"[| f \<in> inj(A,B); tot_ord(B,r) |] ==> tot_ord(A, rvimage(A,f,r))" |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
354 |
apply (unfold tot_ord_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
355 |
apply (blast intro!: part_ord_rvimage linear_rvimage) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
356 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
357 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
358 |
|
13512 | 359 |
subsubsection{*Well-foundedness*} |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
360 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
361 |
lemma wf_rvimage [intro!]: "wf(r) ==> wf(rvimage(A,f,r))" |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
362 |
apply (simp (no_asm_use) add: rvimage_def wf_eq_minimal) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
363 |
apply clarify |
46953 | 364 |
apply (subgoal_tac "\<exists>w. w \<in> {w: {f`x. x \<in> Q}. \<exists>x. x \<in> Q & (f`x = w) }") |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
365 |
apply (erule allE) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
366 |
apply (erule impE) |
13269 | 367 |
apply assumption |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
368 |
apply blast |
46953 | 369 |
apply blast |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
370 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
371 |
|
13544 | 372 |
text{*But note that the combination of @{text wf_imp_wf_on} and |
22710 | 373 |
@{text wf_rvimage} gives @{prop "wf(r) ==> wf[C](rvimage(A,f,r))"}*} |
46953 | 374 |
lemma wf_on_rvimage: "[| f \<in> A->B; wf[B](r) |] ==> wf[A](rvimage(A,f,r))" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
375 |
apply (rule wf_onI2) |
46953 | 376 |
apply (subgoal_tac "\<forall>z\<in>A. f`z=f`y \<longrightarrow> z \<in> Ba") |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
377 |
apply blast |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
378 |
apply (erule_tac a = "f`y" in wf_on_induct) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
379 |
apply (blast intro!: apply_funtype) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
380 |
apply (blast intro!: apply_funtype dest!: rvimage_iff [THEN iffD1]) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
381 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
382 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
383 |
(*Note that we need only wf[A](...) and linear(A,...) to get the result!*) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
384 |
lemma well_ord_rvimage: |
46953 | 385 |
"[| f \<in> inj(A,B); well_ord(B,r) |] ==> well_ord(A, rvimage(A,f,r))" |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
386 |
apply (rule well_ordI) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
387 |
apply (unfold well_ord_def tot_ord_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
388 |
apply (blast intro!: wf_on_rvimage inj_is_fun) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
389 |
apply (blast intro!: linear_rvimage) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
390 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
391 |
|
46953 | 392 |
lemma ord_iso_rvimage: |
393 |
"f \<in> bij(A,B) ==> f \<in> ord_iso(A, rvimage(A,f,s), B, s)" |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
394 |
apply (unfold ord_iso_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
395 |
apply (simp add: rvimage_iff) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
396 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
397 |
|
46953 | 398 |
lemma ord_iso_rvimage_eq: |
399 |
"f \<in> ord_iso(A,r, B,s) ==> rvimage(A,f,s) = r \<inter> A*A" |
|
13356 | 400 |
by (unfold ord_iso_def rvimage_def, blast) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
401 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
402 |
|
13634 | 403 |
subsection{*Every well-founded relation is a subset of some inverse image of |
404 |
an ordinal*} |
|
405 |
||
406 |
lemma wf_rvimage_Ord: "Ord(i) \<Longrightarrow> wf(rvimage(A, f, Memrel(i)))" |
|
407 |
by (blast intro: wf_rvimage wf_Memrel) |
|
408 |
||
409 |
||
24893 | 410 |
definition |
411 |
wfrank :: "[i,i]=>i" where |
|
13634 | 412 |
"wfrank(r,a) == wfrec(r, a, %x f. \<Union>y \<in> r-``{x}. succ(f`y))" |
413 |
||
24893 | 414 |
definition |
415 |
wftype :: "i=>i" where |
|
13634 | 416 |
"wftype(r) == \<Union>y \<in> range(r). succ(wfrank(r,y))" |
417 |
||
418 |
lemma wfrank: "wf(r) ==> wfrank(r,a) = (\<Union>y \<in> r-``{a}. succ(wfrank(r,y)))" |
|
419 |
by (subst wfrank_def [THEN def_wfrec], simp_all) |
|
420 |
||
421 |
lemma Ord_wfrank: "wf(r) ==> Ord(wfrank(r,a))" |
|
422 |
apply (rule_tac a=a in wf_induct, assumption) |
|
423 |
apply (subst wfrank, assumption) |
|
424 |
apply (rule Ord_succ [THEN Ord_UN], blast) |
|
425 |
done |
|
426 |
||
427 |
lemma wfrank_lt: "[|wf(r); <a,b> \<in> r|] ==> wfrank(r,a) < wfrank(r,b)" |
|
428 |
apply (rule_tac a1 = b in wfrank [THEN ssubst], assumption) |
|
429 |
apply (rule UN_I [THEN ltI]) |
|
430 |
apply (simp add: Ord_wfrank vimage_iff)+ |
|
431 |
done |
|
432 |
||
433 |
lemma Ord_wftype: "wf(r) ==> Ord(wftype(r))" |
|
434 |
by (simp add: wftype_def Ord_wfrank) |
|
435 |
||
436 |
lemma wftypeI: "\<lbrakk>wf(r); x \<in> field(r)\<rbrakk> \<Longrightarrow> wfrank(r,x) \<in> wftype(r)" |
|
437 |
apply (simp add: wftype_def) |
|
438 |
apply (blast intro: wfrank_lt [THEN ltD]) |
|
439 |
done |
|
440 |
||
441 |
||
442 |
lemma wf_imp_subset_rvimage: |
|
46820 | 443 |
"[|wf(r); r \<subseteq> A*A|] ==> \<exists>i f. Ord(i) & r \<subseteq> rvimage(A, f, Memrel(i))" |
13634 | 444 |
apply (rule_tac x="wftype(r)" in exI) |
445 |
apply (rule_tac x="\<lambda>x\<in>A. wfrank(r,x)" in exI) |
|
446 |
apply (simp add: Ord_wftype, clarify) |
|
447 |
apply (frule subsetD, assumption, clarify) |
|
448 |
apply (simp add: rvimage_iff wfrank_lt [THEN ltD]) |
|
449 |
apply (blast intro: wftypeI) |
|
450 |
done |
|
451 |
||
452 |
theorem wf_iff_subset_rvimage: |
|
46821
ff6b0c1087f2
Using mathematical notation for <-> and cardinal arithmetic
paulson
parents:
46820
diff
changeset
|
453 |
"relation(r) ==> wf(r) \<longleftrightarrow> (\<exists>i f A. Ord(i) & r \<subseteq> rvimage(A, f, Memrel(i)))" |
13634 | 454 |
by (blast dest!: relation_field_times_field wf_imp_subset_rvimage |
455 |
intro: wf_rvimage_Ord [THEN wf_subset]) |
|
456 |
||
457 |
||
13544 | 458 |
subsection{*Other Results*} |
459 |
||
46820 | 460 |
lemma wf_times: "A \<inter> B = 0 ==> wf(A*B)" |
13544 | 461 |
by (simp add: wf_def, blast) |
462 |
||
463 |
text{*Could also be used to prove @{text wf_radd}*} |
|
464 |
lemma wf_Un: |
|
46820 | 465 |
"[| range(r) \<inter> domain(s) = 0; wf(r); wf(s) |] ==> wf(r \<union> s)" |
46953 | 466 |
apply (simp add: wf_def, clarify) |
467 |
apply (rule equalityI) |
|
468 |
prefer 2 apply blast |
|
469 |
apply clarify |
|
13544 | 470 |
apply (drule_tac x=Z in spec) |
46820 | 471 |
apply (drule_tac x="Z \<inter> domain(s)" in spec) |
46953 | 472 |
apply simp |
473 |
apply (blast intro: elim: equalityE) |
|
13544 | 474 |
done |
475 |
||
476 |
subsubsection{*The Empty Relation*} |
|
477 |
||
478 |
lemma wf0: "wf(0)" |
|
479 |
by (simp add: wf_def, blast) |
|
480 |
||
481 |
lemma linear0: "linear(0,0)" |
|
482 |
by (simp add: linear_def) |
|
483 |
||
484 |
lemma well_ord0: "well_ord(0,0)" |
|
485 |
by (blast intro: wf_imp_wf_on well_ordI wf0 linear0) |
|
13512 | 486 |
|
487 |
subsubsection{*The "measure" relation is useful with wfrec*} |
|
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
488 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
489 |
lemma measure_eq_rvimage_Memrel: |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
490 |
"measure(A,f) = rvimage(A,Lambda(A,f),Memrel(Collect(RepFun(A,f),Ord)))" |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
491 |
apply (simp (no_asm) add: measure_def rvimage_def Memrel_iff) |
13269 | 492 |
apply (rule equalityI, auto) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
493 |
apply (auto intro: Ord_in_Ord simp add: lt_def) |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
494 |
done |
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
495 |
|
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
496 |
lemma wf_measure [iff]: "wf(measure(A,f))" |
13356 | 497 |
by (simp (no_asm) add: measure_eq_rvimage_Memrel wf_Memrel wf_rvimage) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
498 |
|
46953 | 499 |
lemma measure_iff [iff]: "<x,y> \<in> measure(A,f) \<longleftrightarrow> x \<in> A & y \<in> A & f(x)<f(y)" |
13356 | 500 |
by (simp (no_asm) add: measure_def) |
13140
6d97dbb189a9
converted Order.ML OrderType.ML OrderArith.ML to Isar format
paulson
parents:
9883
diff
changeset
|
501 |
|
46953 | 502 |
lemma linear_measure: |
13544 | 503 |
assumes Ordf: "!!x. x \<in> A ==> Ord(f(x))" |
504 |
and inj: "!!x y. [|x \<in> A; y \<in> A; f(x) = f(y) |] ==> x=y" |
|
505 |
shows "linear(A, measure(A,f))" |
|
46953 | 506 |
apply (auto simp add: linear_def) |
507 |
apply (rule_tac i="f(x)" and j="f(y)" in Ord_linear_lt) |
|
508 |
apply (simp_all add: Ordf) |
|
509 |
apply (blast intro: inj) |
|
13544 | 510 |
done |
511 |
||
512 |
lemma wf_on_measure: "wf[B](measure(A,f))" |
|
513 |
by (rule wf_imp_wf_on [OF wf_measure]) |
|
514 |
||
46953 | 515 |
lemma well_ord_measure: |
13544 | 516 |
assumes Ordf: "!!x. x \<in> A ==> Ord(f(x))" |
517 |
and inj: "!!x y. [|x \<in> A; y \<in> A; f(x) = f(y) |] ==> x=y" |
|
518 |
shows "well_ord(A, measure(A,f))" |
|
519 |
apply (rule well_ordI) |
|
46953 | 520 |
apply (rule wf_on_measure) |
521 |
apply (blast intro: linear_measure Ordf inj) |
|
13544 | 522 |
done |
523 |
||
46820 | 524 |
lemma measure_type: "measure(A,f) \<subseteq> A*A" |
13544 | 525 |
by (auto simp add: measure_def) |
526 |
||
13512 | 527 |
subsubsection{*Well-foundedness of Unions*} |
528 |
||
529 |
lemma wf_on_Union: |
|
530 |
assumes wfA: "wf[A](r)" |
|
531 |
and wfB: "!!a. a\<in>A ==> wf[B(a)](s)" |
|
46953 | 532 |
and ok: "!!a u v. [|<u,v> \<in> s; v \<in> B(a); a \<in> A|] |
13512 | 533 |
==> (\<exists>a'\<in>A. <a',a> \<in> r & u \<in> B(a')) | u \<in> B(a)" |
534 |
shows "wf[\<Union>a\<in>A. B(a)](s)" |
|
535 |
apply (rule wf_onI2) |
|
536 |
apply (erule UN_E) |
|
537 |
apply (subgoal_tac "\<forall>z \<in> B(a). z \<in> Ba", blast) |
|
538 |
apply (rule_tac a = a in wf_on_induct [OF wfA], assumption) |
|
539 |
apply (rule ballI) |
|
540 |
apply (rule_tac a = z in wf_on_induct [OF wfB], assumption, assumption) |
|
46953 | 541 |
apply (rename_tac u) |
542 |
apply (drule_tac x=u in bspec, blast) |
|
13512 | 543 |
apply (erule mp, clarify) |
46953 | 544 |
apply (frule ok, assumption+, blast) |
13512 | 545 |
done |
546 |
||
14120 | 547 |
subsubsection{*Bijections involving Powersets*} |
548 |
||
549 |
lemma Pow_sum_bij: |
|
46953 | 550 |
"(\<lambda>Z \<in> Pow(A+B). <{x \<in> A. Inl(x) \<in> Z}, {y \<in> B. Inr(y) \<in> Z}>) |
14120 | 551 |
\<in> bij(Pow(A+B), Pow(A)*Pow(B))" |
46953 | 552 |
apply (rule_tac d = "%<X,Y>. {Inl (x). x \<in> X} \<union> {Inr (y). y \<in> Y}" |
14120 | 553 |
in lam_bijective) |
554 |
apply force+ |
|
555 |
done |
|
556 |
||
557 |
text{*As a special case, we have @{term "bij(Pow(A*B), A -> Pow(B))"} *} |
|
558 |
lemma Pow_Sigma_bij: |
|
46953 | 559 |
"(\<lambda>r \<in> Pow(Sigma(A,B)). \<lambda>x \<in> A. r``{x}) |
14171
0cab06e3bbd0
Extended the notion of letter and digit, such that now one may use greek,
skalberg
parents:
14120
diff
changeset
|
560 |
\<in> bij(Pow(Sigma(A,B)), \<Pi> x \<in> A. Pow(B(x)))" |
14120 | 561 |
apply (rule_tac d = "%f. \<Union>x \<in> A. \<Union>y \<in> f`x. {<x,y>}" in lam_bijective) |
562 |
apply (blast intro: lam_type) |
|
563 |
apply (blast dest: apply_type, simp_all) |
|
564 |
apply fast (*strange, but blast can't do it*) |
|
565 |
apply (rule fun_extension, auto) |
|
566 |
by blast |
|
567 |
||
437 | 568 |
end |