| author | aspinall | 
| Tue, 30 Jan 2007 13:16:58 +0100 | |
| changeset 22215 | ac81ad3436bc | 
| parent 21524 | 7843e2fd14a9 | 
| child 22808 | a7daa74e2980 | 
| permissions | -rw-r--r-- | 
| 17441 | 1  | 
(* Title: CTT/CTT.thy  | 
| 0 | 2  | 
ID: $Id$  | 
3  | 
Author: Lawrence C Paulson, Cambridge University Computer Laboratory  | 
|
4  | 
Copyright 1993 University of Cambridge  | 
|
5  | 
*)  | 
|
6  | 
||
| 17441 | 7  | 
header {* Constructive Type Theory *}
 | 
| 0 | 8  | 
|
| 17441 | 9  | 
theory CTT  | 
10  | 
imports Pure  | 
|
| 19761 | 11  | 
uses "~~/src/Provers/typedsimp.ML" ("rew.ML")
 | 
| 17441 | 12  | 
begin  | 
13  | 
||
14  | 
typedecl i  | 
|
15  | 
typedecl t  | 
|
16  | 
typedecl o  | 
|
| 0 | 17  | 
|
18  | 
consts  | 
|
19  | 
(*Types*)  | 
|
| 17441 | 20  | 
F :: "t"  | 
21  | 
T :: "t" (*F is empty, T contains one element*)  | 
|
| 0 | 22  | 
contr :: "i=>i"  | 
23  | 
tt :: "i"  | 
|
24  | 
(*Natural numbers*)  | 
|
25  | 
N :: "t"  | 
|
26  | 
succ :: "i=>i"  | 
|
27  | 
rec :: "[i, i, [i,i]=>i] => i"  | 
|
28  | 
(*Unions*)  | 
|
| 17441 | 29  | 
inl :: "i=>i"  | 
30  | 
inr :: "i=>i"  | 
|
| 0 | 31  | 
when :: "[i, i=>i, i=>i]=>i"  | 
32  | 
(*General Sum and Binary Product*)  | 
|
33  | 
Sum :: "[t, i=>t]=>t"  | 
|
| 17441 | 34  | 
fst :: "i=>i"  | 
35  | 
snd :: "i=>i"  | 
|
| 0 | 36  | 
split :: "[i, [i,i]=>i] =>i"  | 
37  | 
(*General Product and Function Space*)  | 
|
38  | 
Prod :: "[t, i=>t]=>t"  | 
|
| 14765 | 39  | 
(*Types*)  | 
40  | 
"+" :: "[t,t]=>t" (infixr 40)  | 
|
| 0 | 41  | 
(*Equality type*)  | 
42  | 
Eq :: "[t,i,i]=>t"  | 
|
43  | 
eq :: "i"  | 
|
44  | 
(*Judgements*)  | 
|
45  | 
  Type      :: "t => prop"          ("(_ type)" [10] 5)
 | 
|
| 
10467
 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 
paulson 
parents: 
3837 
diff
changeset
 | 
46  | 
  Eqtype    :: "[t,t]=>prop"        ("(_ =/ _)" [10,10] 5)
 | 
| 0 | 47  | 
  Elem      :: "[i, t]=>prop"       ("(_ /: _)" [10,10] 5)
 | 
| 
10467
 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 
paulson 
parents: 
3837 
diff
changeset
 | 
48  | 
  Eqelem    :: "[i,i,t]=>prop"      ("(_ =/ _ :/ _)" [10,10,10] 5)
 | 
| 0 | 49  | 
  Reduce    :: "[i,i]=>prop"        ("Reduce[_,_]")
 | 
50  | 
(*Types*)  | 
|
| 14765 | 51  | 
|
| 0 | 52  | 
(*Functions*)  | 
53  | 
lambda :: "(i => i) => i" (binder "lam " 10)  | 
|
54  | 
"`" :: "[i,i]=>i" (infixl 60)  | 
|
55  | 
(*Natural numbers*)  | 
|
56  | 
  "0"       :: "i"                  ("0")
 | 
|
57  | 
(*Pairing*)  | 
|
58  | 
  pair      :: "[i,i]=>i"           ("(1<_,/_>)")
 | 
|
59  | 
||
| 14765 | 60  | 
syntax  | 
| 19761 | 61  | 
  "_PROD"   :: "[idt,t,t]=>t"       ("(3PROD _:_./ _)" 10)
 | 
62  | 
  "_SUM"    :: "[idt,t,t]=>t"       ("(3SUM _:_./ _)" 10)
 | 
|
| 0 | 63  | 
translations  | 
| 19761 | 64  | 
"PROD x:A. B" == "Prod(A, %x. B)"  | 
65  | 
"SUM x:A. B" == "Sum(A, %x. B)"  | 
|
66  | 
||
67  | 
abbreviation  | 
|
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
68  | 
Arrow :: "[t,t]=>t" (infixr "-->" 30) where  | 
| 19761 | 69  | 
"A --> B == PROD _:A. B"  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
70  | 
abbreviation  | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
71  | 
Times :: "[t,t]=>t" (infixr "*" 50) where  | 
| 19761 | 72  | 
"A * B == SUM _:A. B"  | 
| 0 | 73  | 
|
| 21210 | 74  | 
notation (xsymbols)  | 
| 21524 | 75  | 
lambda (binder "\<lambda>\<lambda>" 10) and  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
76  | 
  Elem  ("(_ /\<in> _)" [10,10] 5) and
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
77  | 
  Eqelem  ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) and
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
78  | 
Arrow (infixr "\<longrightarrow>" 30) and  | 
| 19761 | 79  | 
Times (infixr "\<times>" 50)  | 
| 17441 | 80  | 
|
| 21210 | 81  | 
notation (HTML output)  | 
| 21524 | 82  | 
lambda (binder "\<lambda>\<lambda>" 10) and  | 
| 
21404
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
83  | 
  Elem  ("(_ /\<in> _)" [10,10] 5) and
 | 
| 
 
eb85850d3eb7
more robust syntax for definition/abbreviation/notation;
 
wenzelm 
parents: 
21210 
diff
changeset
 | 
84  | 
  Eqelem  ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) and
 | 
| 19761 | 85  | 
Times (infixr "\<times>" 50)  | 
| 17441 | 86  | 
|
| 
10467
 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 
paulson 
parents: 
3837 
diff
changeset
 | 
87  | 
syntax (xsymbols)  | 
| 21524 | 88  | 
  "_PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
 | 
89  | 
  "_SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
 | 
|
| 
10467
 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 
paulson 
parents: 
3837 
diff
changeset
 | 
90  | 
|
| 14565 | 91  | 
syntax (HTML output)  | 
| 21524 | 92  | 
  "_PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
 | 
93  | 
  "_SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
 | 
|
| 14565 | 94  | 
|
| 17441 | 95  | 
axioms  | 
| 0 | 96  | 
|
97  | 
(*Reduction: a weaker notion than equality; a hack for simplification.  | 
|
98  | 
Reduce[a,b] means either that a=b:A for some A or else that "a" and "b"  | 
|
99  | 
are textually identical.*)  | 
|
100  | 
||
101  | 
(*does not verify a:A! Sound because only trans_red uses a Reduce premise  | 
|
102  | 
No new theorems can be proved about the standard judgements.*)  | 
|
| 17441 | 103  | 
refl_red: "Reduce[a,a]"  | 
104  | 
red_if_equal: "a = b : A ==> Reduce[a,b]"  | 
|
105  | 
trans_red: "[| a = b : A; Reduce[b,c] |] ==> a = c : A"  | 
|
| 0 | 106  | 
|
107  | 
(*Reflexivity*)  | 
|
108  | 
||
| 17441 | 109  | 
refl_type: "A type ==> A = A"  | 
110  | 
refl_elem: "a : A ==> a = a : A"  | 
|
| 0 | 111  | 
|
112  | 
(*Symmetry*)  | 
|
113  | 
||
| 17441 | 114  | 
sym_type: "A = B ==> B = A"  | 
115  | 
sym_elem: "a = b : A ==> b = a : A"  | 
|
| 0 | 116  | 
|
117  | 
(*Transitivity*)  | 
|
118  | 
||
| 17441 | 119  | 
trans_type: "[| A = B; B = C |] ==> A = C"  | 
120  | 
trans_elem: "[| a = b : A; b = c : A |] ==> a = c : A"  | 
|
| 0 | 121  | 
|
| 17441 | 122  | 
equal_types: "[| a : A; A = B |] ==> a : B"  | 
123  | 
equal_typesL: "[| a = b : A; A = B |] ==> a = b : B"  | 
|
| 0 | 124  | 
|
125  | 
(*Substitution*)  | 
|
126  | 
||
| 17441 | 127  | 
subst_type: "[| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type"  | 
128  | 
subst_typeL: "[| a = c : A; !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)"  | 
|
| 0 | 129  | 
|
| 17441 | 130  | 
subst_elem: "[| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)"  | 
131  | 
subst_elemL:  | 
|
| 0 | 132  | 
"[| a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)"  | 
133  | 
||
134  | 
||
135  | 
(*The type N -- natural numbers*)  | 
|
136  | 
||
| 17441 | 137  | 
NF: "N type"  | 
138  | 
NI0: "0 : N"  | 
|
139  | 
NI_succ: "a : N ==> succ(a) : N"  | 
|
140  | 
NI_succL: "a = b : N ==> succ(a) = succ(b) : N"  | 
|
| 0 | 141  | 
|
| 17441 | 142  | 
NE:  | 
143  | 
"[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]  | 
|
| 3837 | 144  | 
==> rec(p, a, %u v. b(u,v)) : C(p)"  | 
| 0 | 145  | 
|
| 17441 | 146  | 
NEL:  | 
147  | 
"[| p = q : N; a = c : C(0);  | 
|
148  | 
!!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |]  | 
|
| 3837 | 149  | 
==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)"  | 
| 0 | 150  | 
|
| 17441 | 151  | 
NC0:  | 
152  | 
"[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |]  | 
|
| 3837 | 153  | 
==> rec(0, a, %u v. b(u,v)) = a : C(0)"  | 
| 0 | 154  | 
|
| 17441 | 155  | 
NC_succ:  | 
156  | 
"[| p: N; a: C(0);  | 
|
157  | 
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==>  | 
|
| 3837 | 158  | 
rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))"  | 
| 0 | 159  | 
|
160  | 
(*The fourth Peano axiom. See page 91 of Martin-Lof's book*)  | 
|
| 17441 | 161  | 
zero_ne_succ:  | 
| 0 | 162  | 
"[| a: N; 0 = succ(a) : N |] ==> 0: F"  | 
163  | 
||
164  | 
||
165  | 
(*The Product of a family of types*)  | 
|
166  | 
||
| 17441 | 167  | 
ProdF: "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type"  | 
| 0 | 168  | 
|
| 17441 | 169  | 
ProdFL:  | 
170  | 
"[| A = C; !!x. x:A ==> B(x) = D(x) |] ==>  | 
|
| 3837 | 171  | 
PROD x:A. B(x) = PROD x:C. D(x)"  | 
| 0 | 172  | 
|
| 17441 | 173  | 
ProdI:  | 
| 3837 | 174  | 
"[| A type; !!x. x:A ==> b(x):B(x)|] ==> lam x. b(x) : PROD x:A. B(x)"  | 
| 0 | 175  | 
|
| 17441 | 176  | 
ProdIL:  | 
177  | 
"[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==>  | 
|
| 3837 | 178  | 
lam x. b(x) = lam x. c(x) : PROD x:A. B(x)"  | 
| 0 | 179  | 
|
| 17441 | 180  | 
ProdE: "[| p : PROD x:A. B(x); a : A |] ==> p`a : B(a)"  | 
181  | 
ProdEL: "[| p=q: PROD x:A. B(x); a=b : A |] ==> p`a = q`b : B(a)"  | 
|
| 0 | 182  | 
|
| 17441 | 183  | 
ProdC:  | 
184  | 
"[| a : A; !!x. x:A ==> b(x) : B(x)|] ==>  | 
|
| 3837 | 185  | 
(lam x. b(x)) ` a = b(a) : B(a)"  | 
| 0 | 186  | 
|
| 17441 | 187  | 
ProdC2:  | 
| 3837 | 188  | 
"p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)"  | 
| 0 | 189  | 
|
190  | 
||
191  | 
(*The Sum of a family of types*)  | 
|
192  | 
||
| 17441 | 193  | 
SumF: "[| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type"  | 
194  | 
SumFL:  | 
|
| 3837 | 195  | 
"[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A. B(x) = SUM x:C. D(x)"  | 
| 0 | 196  | 
|
| 17441 | 197  | 
SumI: "[| a : A; b : B(a) |] ==> <a,b> : SUM x:A. B(x)"  | 
198  | 
SumIL: "[| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)"  | 
|
| 0 | 199  | 
|
| 17441 | 200  | 
SumE:  | 
201  | 
"[| p: SUM x:A. B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]  | 
|
| 3837 | 202  | 
==> split(p, %x y. c(x,y)) : C(p)"  | 
| 0 | 203  | 
|
| 17441 | 204  | 
SumEL:  | 
205  | 
"[| p=q : SUM x:A. B(x);  | 
|
206  | 
!!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|]  | 
|
| 3837 | 207  | 
==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)"  | 
| 0 | 208  | 
|
| 17441 | 209  | 
SumC:  | 
210  | 
"[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |]  | 
|
| 3837 | 211  | 
==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)"  | 
| 0 | 212  | 
|
| 17441 | 213  | 
fst_def: "fst(a) == split(a, %x y. x)"  | 
214  | 
snd_def: "snd(a) == split(a, %x y. y)"  | 
|
| 0 | 215  | 
|
216  | 
||
217  | 
(*The sum of two types*)  | 
|
218  | 
||
| 17441 | 219  | 
PlusF: "[| A type; B type |] ==> A+B type"  | 
220  | 
PlusFL: "[| A = C; B = D |] ==> A+B = C+D"  | 
|
| 0 | 221  | 
|
| 17441 | 222  | 
PlusI_inl: "[| a : A; B type |] ==> inl(a) : A+B"  | 
223  | 
PlusI_inlL: "[| a = c : A; B type |] ==> inl(a) = inl(c) : A+B"  | 
|
| 0 | 224  | 
|
| 17441 | 225  | 
PlusI_inr: "[| A type; b : B |] ==> inr(b) : A+B"  | 
226  | 
PlusI_inrL: "[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B"  | 
|
| 0 | 227  | 
|
| 17441 | 228  | 
PlusE:  | 
229  | 
"[| p: A+B; !!x. x:A ==> c(x): C(inl(x));  | 
|
230  | 
!!y. y:B ==> d(y): C(inr(y)) |]  | 
|
| 3837 | 231  | 
==> when(p, %x. c(x), %y. d(y)) : C(p)"  | 
| 0 | 232  | 
|
| 17441 | 233  | 
PlusEL:  | 
234  | 
"[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x));  | 
|
235  | 
!!y. y: B ==> d(y) = f(y) : C(inr(y)) |]  | 
|
| 3837 | 236  | 
==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)"  | 
| 0 | 237  | 
|
| 17441 | 238  | 
PlusC_inl:  | 
239  | 
"[| a: A; !!x. x:A ==> c(x): C(inl(x));  | 
|
240  | 
!!y. y:B ==> d(y): C(inr(y)) |]  | 
|
| 3837 | 241  | 
==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))"  | 
| 0 | 242  | 
|
| 17441 | 243  | 
PlusC_inr:  | 
244  | 
"[| b: B; !!x. x:A ==> c(x): C(inl(x));  | 
|
245  | 
!!y. y:B ==> d(y): C(inr(y)) |]  | 
|
| 3837 | 246  | 
==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))"  | 
| 0 | 247  | 
|
248  | 
||
249  | 
(*The type Eq*)  | 
|
250  | 
||
| 17441 | 251  | 
EqF: "[| A type; a : A; b : A |] ==> Eq(A,a,b) type"  | 
252  | 
EqFL: "[| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)"  | 
|
253  | 
EqI: "a = b : A ==> eq : Eq(A,a,b)"  | 
|
254  | 
EqE: "p : Eq(A,a,b) ==> a = b : A"  | 
|
| 0 | 255  | 
|
256  | 
(*By equality of types, can prove C(p) from C(eq), an elimination rule*)  | 
|
| 17441 | 257  | 
EqC: "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)"  | 
| 0 | 258  | 
|
259  | 
(*The type F*)  | 
|
260  | 
||
| 17441 | 261  | 
FF: "F type"  | 
262  | 
FE: "[| p: F; C type |] ==> contr(p) : C"  | 
|
263  | 
FEL: "[| p = q : F; C type |] ==> contr(p) = contr(q) : C"  | 
|
| 0 | 264  | 
|
265  | 
(*The type T  | 
|
266  | 
Martin-Lof's book (page 68) discusses elimination and computation.  | 
|
267  | 
Elimination can be derived by computation and equality of types,  | 
|
268  | 
but with an extra premise C(x) type x:T.  | 
|
269  | 
Also computation can be derived from elimination. *)  | 
|
270  | 
||
| 17441 | 271  | 
TF: "T type"  | 
272  | 
TI: "tt : T"  | 
|
273  | 
TE: "[| p : T; c : C(tt) |] ==> c : C(p)"  | 
|
274  | 
TEL: "[| p = q : T; c = d : C(tt) |] ==> c = d : C(p)"  | 
|
275  | 
TC: "p : T ==> p = tt : T"  | 
|
| 0 | 276  | 
|
| 19761 | 277  | 
|
278  | 
subsection "Tactics and derived rules for Constructive Type Theory"  | 
|
279  | 
||
280  | 
(*Formation rules*)  | 
|
281  | 
lemmas form_rls = NF ProdF SumF PlusF EqF FF TF  | 
|
282  | 
and formL_rls = ProdFL SumFL PlusFL EqFL  | 
|
283  | 
||
284  | 
(*Introduction rules  | 
|
285  | 
OMITTED: EqI, because its premise is an eqelem, not an elem*)  | 
|
286  | 
lemmas intr_rls = NI0 NI_succ ProdI SumI PlusI_inl PlusI_inr TI  | 
|
287  | 
and intrL_rls = NI_succL ProdIL SumIL PlusI_inlL PlusI_inrL  | 
|
288  | 
||
289  | 
(*Elimination rules  | 
|
290  | 
OMITTED: EqE, because its conclusion is an eqelem, not an elem  | 
|
291  | 
TE, because it does not involve a constructor *)  | 
|
292  | 
lemmas elim_rls = NE ProdE SumE PlusE FE  | 
|
293  | 
and elimL_rls = NEL ProdEL SumEL PlusEL FEL  | 
|
294  | 
||
295  | 
(*OMITTED: eqC are TC because they make rewriting loop: p = un = un = ... *)  | 
|
296  | 
lemmas comp_rls = NC0 NC_succ ProdC SumC PlusC_inl PlusC_inr  | 
|
297  | 
||
298  | 
(*rules with conclusion a:A, an elem judgement*)  | 
|
299  | 
lemmas element_rls = intr_rls elim_rls  | 
|
300  | 
||
301  | 
(*Definitions are (meta)equality axioms*)  | 
|
302  | 
lemmas basic_defs = fst_def snd_def  | 
|
303  | 
||
304  | 
(*Compare with standard version: B is applied to UNSIMPLIFIED expression! *)  | 
|
305  | 
lemma SumIL2: "[| c=a : A; d=b : B(a) |] ==> <c,d> = <a,b> : Sum(A,B)"  | 
|
306  | 
apply (rule sym_elem)  | 
|
307  | 
apply (rule SumIL)  | 
|
308  | 
apply (rule_tac [!] sym_elem)  | 
|
309  | 
apply assumption+  | 
|
310  | 
done  | 
|
311  | 
||
312  | 
lemmas intrL2_rls = NI_succL ProdIL SumIL2 PlusI_inlL PlusI_inrL  | 
|
313  | 
||
314  | 
(*Exploit p:Prod(A,B) to create the assumption z:B(a).  | 
|
315  | 
A more natural form of product elimination. *)  | 
|
316  | 
lemma subst_prodE:  | 
|
317  | 
assumes "p: Prod(A,B)"  | 
|
318  | 
and "a: A"  | 
|
319  | 
and "!!z. z: B(a) ==> c(z): C(z)"  | 
|
320  | 
shows "c(p`a): C(p`a)"  | 
|
321  | 
apply (rule prems ProdE)+  | 
|
322  | 
done  | 
|
323  | 
||
324  | 
||
325  | 
subsection {* Tactics for type checking *}
 | 
|
326  | 
||
327  | 
ML {*
 | 
|
328  | 
||
329  | 
local  | 
|
330  | 
||
331  | 
fun is_rigid_elem (Const("CTT.Elem",_) $ a $ _) = not(is_Var (head_of a))
 | 
|
332  | 
  | is_rigid_elem (Const("CTT.Eqelem",_) $ a $ _ $ _) = not(is_Var (head_of a))
 | 
|
333  | 
  | is_rigid_elem (Const("CTT.Type",_) $ a) = not(is_Var (head_of a))
 | 
|
334  | 
| is_rigid_elem _ = false  | 
|
335  | 
||
336  | 
in  | 
|
337  | 
||
338  | 
(*Try solving a:A or a=b:A by assumption provided a is rigid!*)  | 
|
339  | 
val test_assume_tac = SUBGOAL(fn (prem,i) =>  | 
|
340  | 
if is_rigid_elem (Logic.strip_assums_concl prem)  | 
|
341  | 
then assume_tac i else no_tac)  | 
|
342  | 
||
343  | 
fun ASSUME tf i = test_assume_tac i ORELSE tf i  | 
|
344  | 
||
345  | 
end;  | 
|
346  | 
||
347  | 
*}  | 
|
348  | 
||
349  | 
(*For simplification: type formation and checking,  | 
|
350  | 
but no equalities between terms*)  | 
|
351  | 
lemmas routine_rls = form_rls formL_rls refl_type element_rls  | 
|
352  | 
||
353  | 
ML {*
 | 
|
354  | 
local  | 
|
355  | 
val routine_rls = thms "routine_rls";  | 
|
356  | 
val form_rls = thms "form_rls";  | 
|
357  | 
val intr_rls = thms "intr_rls";  | 
|
358  | 
val element_rls = thms "element_rls";  | 
|
359  | 
val equal_rls = form_rls @ element_rls @ thms "intrL_rls" @  | 
|
360  | 
thms "elimL_rls" @ thms "refl_elem"  | 
|
361  | 
in  | 
|
362  | 
||
363  | 
fun routine_tac rls prems = ASSUME (filt_resolve_tac (prems @ rls) 4);  | 
|
364  | 
||
365  | 
(*Solve all subgoals "A type" using formation rules. *)  | 
|
366  | 
val form_tac = REPEAT_FIRST (ASSUME (filt_resolve_tac(form_rls) 1));  | 
|
367  | 
||
368  | 
(*Type checking: solve a:A (a rigid, A flexible) by intro and elim rules. *)  | 
|
369  | 
fun typechk_tac thms =  | 
|
370  | 
let val tac = filt_resolve_tac (thms @ form_rls @ element_rls) 3  | 
|
371  | 
in REPEAT_FIRST (ASSUME tac) end  | 
|
372  | 
||
373  | 
(*Solve a:A (a flexible, A rigid) by introduction rules.  | 
|
374  | 
Cannot use stringtrees (filt_resolve_tac) since  | 
|
375  | 
goals like ?a:SUM(A,B) have a trivial head-string *)  | 
|
376  | 
fun intr_tac thms =  | 
|
377  | 
let val tac = filt_resolve_tac(thms@form_rls@intr_rls) 1  | 
|
378  | 
in REPEAT_FIRST (ASSUME tac) end  | 
|
379  | 
||
380  | 
(*Equality proving: solve a=b:A (where a is rigid) by long rules. *)  | 
|
381  | 
fun equal_tac thms =  | 
|
382  | 
REPEAT_FIRST (ASSUME (filt_resolve_tac (thms @ equal_rls) 3))  | 
|
| 0 | 383  | 
|
| 17441 | 384  | 
end  | 
| 19761 | 385  | 
|
386  | 
*}  | 
|
387  | 
||
388  | 
||
389  | 
subsection {* Simplification *}
 | 
|
390  | 
||
391  | 
(*To simplify the type in a goal*)  | 
|
392  | 
lemma replace_type: "[| B = A; a : A |] ==> a : B"  | 
|
393  | 
apply (rule equal_types)  | 
|
394  | 
apply (rule_tac [2] sym_type)  | 
|
395  | 
apply assumption+  | 
|
396  | 
done  | 
|
397  | 
||
398  | 
(*Simplify the parameter of a unary type operator.*)  | 
|
399  | 
lemma subst_eqtyparg:  | 
|
400  | 
assumes "a=c : A"  | 
|
401  | 
and "!!z. z:A ==> B(z) type"  | 
|
402  | 
shows "B(a)=B(c)"  | 
|
403  | 
apply (rule subst_typeL)  | 
|
404  | 
apply (rule_tac [2] refl_type)  | 
|
405  | 
apply (rule prems)  | 
|
406  | 
apply assumption  | 
|
407  | 
done  | 
|
408  | 
||
409  | 
(*Simplification rules for Constructive Type Theory*)  | 
|
410  | 
lemmas reduction_rls = comp_rls [THEN trans_elem]  | 
|
411  | 
||
412  | 
ML {*
 | 
|
413  | 
local  | 
|
414  | 
val EqI = thm "EqI";  | 
|
415  | 
val EqE = thm "EqE";  | 
|
416  | 
val NE = thm "NE";  | 
|
417  | 
val FE = thm "FE";  | 
|
418  | 
val ProdI = thm "ProdI";  | 
|
419  | 
val SumI = thm "SumI";  | 
|
420  | 
val SumE = thm "SumE";  | 
|
421  | 
val PlusE = thm "PlusE";  | 
|
422  | 
val PlusI_inl = thm "PlusI_inl";  | 
|
423  | 
val PlusI_inr = thm "PlusI_inr";  | 
|
424  | 
val subst_prodE = thm "subst_prodE";  | 
|
425  | 
val intr_rls = thms "intr_rls";  | 
|
426  | 
in  | 
|
427  | 
||
428  | 
(*Converts each goal "e : Eq(A,a,b)" into "a=b:A" for simplification.  | 
|
429  | 
Uses other intro rules to avoid changing flexible goals.*)  | 
|
430  | 
val eqintr_tac = REPEAT_FIRST (ASSUME (filt_resolve_tac(EqI::intr_rls) 1))  | 
|
431  | 
||
432  | 
(** Tactics that instantiate CTT-rules.  | 
|
433  | 
Vars in the given terms will be incremented!  | 
|
434  | 
The (rtac EqE i) lets them apply to equality judgements. **)  | 
|
435  | 
||
436  | 
fun NE_tac (sp: string) i =  | 
|
437  | 
  TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] NE i
 | 
|
438  | 
||
439  | 
fun SumE_tac (sp: string) i =  | 
|
440  | 
  TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] SumE i
 | 
|
441  | 
||
442  | 
fun PlusE_tac (sp: string) i =  | 
|
443  | 
  TRY (rtac EqE i) THEN res_inst_tac [ ("p",sp) ] PlusE i
 | 
|
444  | 
||
445  | 
(** Predicate logic reasoning, WITH THINNING!! Procedures adapted from NJ. **)  | 
|
446  | 
||
447  | 
(*Finds f:Prod(A,B) and a:A in the assumptions, concludes there is z:B(a) *)  | 
|
448  | 
fun add_mp_tac i =  | 
|
449  | 
rtac subst_prodE i THEN assume_tac i THEN assume_tac i  | 
|
450  | 
||
451  | 
(*Finds P-->Q and P in the assumptions, replaces implication by Q *)  | 
|
452  | 
fun mp_tac i = etac subst_prodE i THEN assume_tac i  | 
|
453  | 
||
454  | 
(*"safe" when regarded as predicate calculus rules*)  | 
|
455  | 
val safe_brls = sort (make_ord lessb)  | 
|
456  | 
[ (true,FE), (true,asm_rl),  | 
|
457  | 
(false,ProdI), (true,SumE), (true,PlusE) ]  | 
|
458  | 
||
459  | 
val unsafe_brls =  | 
|
460  | 
[ (false,PlusI_inl), (false,PlusI_inr), (false,SumI),  | 
|
461  | 
(true,subst_prodE) ]  | 
|
462  | 
||
463  | 
(*0 subgoals vs 1 or more*)  | 
|
464  | 
val (safe0_brls, safep_brls) =  | 
|
465  | 
List.partition (curry (op =) 0 o subgoals_of_brl) safe_brls  | 
|
466  | 
||
467  | 
fun safestep_tac thms i =  | 
|
468  | 
form_tac ORELSE  | 
|
469  | 
resolve_tac thms i ORELSE  | 
|
470  | 
biresolve_tac safe0_brls i ORELSE mp_tac i ORELSE  | 
|
471  | 
DETERM (biresolve_tac safep_brls i)  | 
|
472  | 
||
473  | 
fun safe_tac thms i = DEPTH_SOLVE_1 (safestep_tac thms i)  | 
|
474  | 
||
475  | 
fun step_tac thms = safestep_tac thms ORELSE' biresolve_tac unsafe_brls  | 
|
476  | 
||
477  | 
(*Fails unless it solves the goal!*)  | 
|
478  | 
fun pc_tac thms = DEPTH_SOLVE_1 o (step_tac thms)  | 
|
479  | 
||
480  | 
end  | 
|
481  | 
*}  | 
|
482  | 
||
483  | 
use "rew.ML"  | 
|
484  | 
||
485  | 
||
486  | 
subsection {* The elimination rules for fst/snd *}
 | 
|
487  | 
||
488  | 
lemma SumE_fst: "p : Sum(A,B) ==> fst(p) : A"  | 
|
489  | 
apply (unfold basic_defs)  | 
|
490  | 
apply (erule SumE)  | 
|
491  | 
apply assumption  | 
|
492  | 
done  | 
|
493  | 
||
494  | 
(*The first premise must be p:Sum(A,B) !!*)  | 
|
495  | 
lemma SumE_snd:  | 
|
496  | 
assumes major: "p: Sum(A,B)"  | 
|
497  | 
and "A type"  | 
|
498  | 
and "!!x. x:A ==> B(x) type"  | 
|
499  | 
shows "snd(p) : B(fst(p))"  | 
|
500  | 
apply (unfold basic_defs)  | 
|
501  | 
apply (rule major [THEN SumE])  | 
|
502  | 
apply (rule SumC [THEN subst_eqtyparg, THEN replace_type])  | 
|
503  | 
  apply (tactic {* typechk_tac (thms "prems") *})
 | 
|
504  | 
done  | 
|
505  | 
||
506  | 
end  |