src/HOL/Conditionally_Complete_Lattices.thy
author hoelzl
Tue, 05 Nov 2013 09:44:58 +0100
changeset 54258 adfc759263ab
parent 54257 5c7a3b6b05a9
child 54259 71c701dc5bf9
permissions -rw-r--r--
use bdd_above and bdd_below for conditionally complete lattices
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
52265
bb907eba5902 tuned headers;
wenzelm
parents: 51775
diff changeset
     1
(*  Title:      HOL/Conditionally_Complete_Lattices.thy
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
     2
    Author:     Amine Chaieb and L C Paulson, University of Cambridge
51643
b6675f4549d8 fixed spelling
hoelzl
parents: 51518
diff changeset
     3
    Author:     Johannes Hölzl, TU München
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
     4
    Author:     Luke S. Serafin, Carnegie Mellon University
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
     5
*)
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
     6
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
     7
header {* Conditionally-complete Lattices *}
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
     8
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
     9
theory Conditionally_Complete_Lattices
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
    10
imports Main Lubs
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
    11
begin
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
    12
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    13
lemma Sup_fin_eq_Max: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup_fin X = Max X"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    14
  by (induct X rule: finite_ne_induct) (simp_all add: sup_max)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    15
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    16
lemma Inf_fin_eq_Min: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf_fin X = Min X"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    17
  by (induct X rule: finite_ne_induct) (simp_all add: inf_min)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
    18
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    19
context preorder
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    20
begin
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    21
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    22
definition "bdd_above A \<longleftrightarrow> (\<exists>M. \<forall>x \<in> A. x \<le> M)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    23
definition "bdd_below A \<longleftrightarrow> (\<exists>m. \<forall>x \<in> A. m \<le> x)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    24
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    25
lemma bdd_aboveI[intro]: "(\<And>x. x \<in> A \<Longrightarrow> x \<le> M) \<Longrightarrow> bdd_above A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    26
  by (auto simp: bdd_above_def)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    27
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    28
lemma bdd_belowI[intro]: "(\<And>x. x \<in> A \<Longrightarrow> m \<le> x) \<Longrightarrow> bdd_below A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    29
  by (auto simp: bdd_below_def)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    30
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    31
lemma bdd_above_empty [simp, intro]: "bdd_above {}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    32
  unfolding bdd_above_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    33
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    34
lemma bdd_below_empty [simp, intro]: "bdd_below {}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    35
  unfolding bdd_below_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    36
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    37
lemma bdd_above_mono: "bdd_above B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> bdd_above A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    38
  by (metis (full_types) bdd_above_def order_class.le_neq_trans psubsetD)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    39
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    40
lemma bdd_below_mono: "bdd_below B \<Longrightarrow> A \<subseteq> B \<Longrightarrow> bdd_below A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    41
  by (metis bdd_below_def order_class.le_neq_trans psubsetD)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    42
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    43
lemma bdd_above_Int1 [simp]: "bdd_above A \<Longrightarrow> bdd_above (A \<inter> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    44
  using bdd_above_mono by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    45
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    46
lemma bdd_above_Int2 [simp]: "bdd_above B \<Longrightarrow> bdd_above (A \<inter> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    47
  using bdd_above_mono by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    48
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    49
lemma bdd_below_Int1 [simp]: "bdd_below A \<Longrightarrow> bdd_below (A \<inter> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    50
  using bdd_below_mono by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    51
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    52
lemma bdd_below_Int2 [simp]: "bdd_below B \<Longrightarrow> bdd_below (A \<inter> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    53
  using bdd_below_mono by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    54
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    55
lemma bdd_above_Ioo [simp, intro]: "bdd_above {a <..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    56
  by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    57
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    58
lemma bdd_above_Ico [simp, intro]: "bdd_above {a ..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    59
  by (auto simp add: bdd_above_def intro!: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    60
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    61
lemma bdd_above_Iio [simp, intro]: "bdd_above {..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    62
  by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    63
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    64
lemma bdd_above_Ioc [simp, intro]: "bdd_above {a <.. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    65
  by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    66
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    67
lemma bdd_above_Icc [simp, intro]: "bdd_above {a .. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    68
  by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    69
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    70
lemma bdd_above_Iic [simp, intro]: "bdd_above {.. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    71
  by (auto simp add: bdd_above_def intro: exI[of _ b] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    72
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    73
lemma bdd_below_Ioo [simp, intro]: "bdd_below {a <..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    74
  by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    75
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    76
lemma bdd_below_Ioc [simp, intro]: "bdd_below {a <.. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    77
  by (auto simp add: bdd_below_def intro!: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    78
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    79
lemma bdd_below_Ioi [simp, intro]: "bdd_below {a <..}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    80
  by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    81
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    82
lemma bdd_below_Ico [simp, intro]: "bdd_below {a ..< b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    83
  by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    84
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    85
lemma bdd_below_Icc [simp, intro]: "bdd_below {a .. b}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    86
  by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    87
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    88
lemma bdd_below_Ici [simp, intro]: "bdd_below {a ..}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    89
  by (auto simp add: bdd_below_def intro: exI[of _ a] less_imp_le)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    90
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    91
end
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    92
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    93
context lattice
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    94
begin
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    95
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    96
lemma bdd_above_insert [simp]: "bdd_above (insert a A) = bdd_above A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    97
  by (auto simp: bdd_above_def intro: le_supI2 sup_ge1)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    98
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
    99
lemma bdd_below_insert [simp]: "bdd_below (insert a A) = bdd_below A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   100
  by (auto simp: bdd_below_def intro: le_infI2 inf_le1)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   101
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   102
lemma bdd_finite [simp]:
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   103
  assumes "finite A" shows bdd_above_finite: "bdd_above A" and bdd_below_finite: "bdd_below A"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   104
  using assms by (induct rule: finite_induct, auto)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   105
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   106
lemma bdd_above_Un [simp]: "bdd_above (A \<union> B) = (bdd_above A \<and> bdd_above B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   107
proof
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   108
  assume "bdd_above (A \<union> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   109
  thus "bdd_above A \<and> bdd_above B" unfolding bdd_above_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   110
next
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   111
  assume "bdd_above A \<and> bdd_above B"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   112
  then obtain a b where "\<forall>x\<in>A. x \<le> a" "\<forall>x\<in>B. x \<le> b" unfolding bdd_above_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   113
  hence "\<forall>x \<in> A \<union> B. x \<le> sup a b" by (auto intro: Un_iff le_supI1 le_supI2)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   114
  thus "bdd_above (A \<union> B)" unfolding bdd_above_def ..
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   115
qed
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   116
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   117
lemma bdd_below_Un [simp]: "bdd_below (A \<union> B) = (bdd_below A \<and> bdd_below B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   118
proof
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   119
  assume "bdd_below (A \<union> B)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   120
  thus "bdd_below A \<and> bdd_below B" unfolding bdd_below_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   121
next
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   122
  assume "bdd_below A \<and> bdd_below B"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   123
  then obtain a b where "\<forall>x\<in>A. a \<le> x" "\<forall>x\<in>B. b \<le> x" unfolding bdd_below_def by auto
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   124
  hence "\<forall>x \<in> A \<union> B. inf a b \<le> x" by (auto intro: Un_iff le_infI1 le_infI2)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   125
  thus "bdd_below (A \<union> B)" unfolding bdd_below_def ..
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   126
qed
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   127
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   128
end
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   129
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   130
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   131
text {*
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   132
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   133
To avoid name classes with the @{class complete_lattice}-class we prefix @{const Sup} and
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   134
@{const Inf} in theorem names with c.
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   135
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   136
*}
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   137
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   138
class conditionally_complete_lattice = lattice + Sup + Inf +
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   139
  assumes cInf_lower: "x \<in> X \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X \<le> x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   140
    and cInf_greatest: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> z \<le> Inf X"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   141
  assumes cSup_upper: "x \<in> X \<Longrightarrow> bdd_above X \<Longrightarrow> x \<le> Sup X"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   142
    and cSup_least: "X \<noteq> {} \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X \<le> z"
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   143
begin
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   144
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   145
lemma cSup_eq_maximum: "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> x \<le> z) \<Longrightarrow> Sup X = z"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   146
  by (intro antisym cSup_upper[of z X] cSup_least[of X z]) auto
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   147
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   148
lemma cInf_eq_minimum: "z \<in> X \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> z \<le> x) \<Longrightarrow> Inf X = z"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   149
  by (intro antisym cInf_lower[of z X] cInf_greatest[of X z]) auto
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   150
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   151
lemma cSup_le_iff: "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> Sup S \<le> a \<longleftrightarrow> (\<forall>x\<in>S. x \<le> a)"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   152
  by (metis order_trans cSup_upper cSup_least)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   153
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   154
lemma le_cInf_iff: "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> a \<le> Inf S \<longleftrightarrow> (\<forall>x\<in>S. a \<le> x)"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   155
  by (metis order_trans cInf_lower cInf_greatest)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   156
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   157
lemma cSup_singleton [simp]: "Sup {x} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   158
  by (intro cSup_eq_maximum) auto
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   159
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   160
lemma cInf_singleton [simp]: "Inf {x} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   161
  by (intro cInf_eq_minimum) auto
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   162
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   163
lemma cSup_upper2: "x \<in> X \<Longrightarrow> y \<le> x \<Longrightarrow> bdd_above X \<Longrightarrow> y \<le> Sup X"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   164
  by (metis cSup_upper order_trans)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   165
 
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   166
lemma cInf_lower2: "x \<in> X \<Longrightarrow> x \<le> y \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X \<le> y"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   167
  by (metis cInf_lower order_trans)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   168
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   169
lemma cSup_eq_non_empty:
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   170
  assumes 1: "X \<noteq> {}"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   171
  assumes 2: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   172
  assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   173
  shows "Sup X = a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   174
  by (intro 3 1 antisym cSup_least) (auto intro: 2 1 cSup_upper)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   175
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   176
lemma cInf_eq_non_empty:
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   177
  assumes 1: "X \<noteq> {}"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   178
  assumes 2: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   179
  assumes 3: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   180
  shows "Inf X = a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   181
  by (intro 3 1 antisym cInf_greatest) (auto intro: 2 1 cInf_lower)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   182
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   183
lemma cInf_cSup: "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> Inf S = Sup {x. \<forall>s\<in>S. x \<le> s}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   184
  by (rule cInf_eq_non_empty) (auto intro!: cSup_upper cSup_least simp: bdd_below_def)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   185
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   186
lemma cSup_cInf: "S \<noteq> {} \<Longrightarrow> bdd_above S \<Longrightarrow> Sup S = Inf {x. \<forall>s\<in>S. s \<le> x}"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   187
  by (rule cSup_eq_non_empty) (auto intro!: cInf_lower cInf_greatest simp: bdd_above_def)
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   188
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   189
lemma cSup_insert: "X \<noteq> {} \<Longrightarrow> bdd_above X \<Longrightarrow> Sup (insert a X) = sup a (Sup X)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   190
  by (intro cSup_eq_non_empty) (auto intro: le_supI2 cSup_upper cSup_least)
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   191
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   192
lemma cInf_insert: "X \<noteq> {} \<Longrightarrow> bdd_below X \<Longrightarrow> Inf (insert a X) = inf a (Inf X)"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   193
  by (intro cInf_eq_non_empty) (auto intro: le_infI2 cInf_lower cInf_greatest)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   194
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   195
lemma cSup_insert_If:  "bdd_above X \<Longrightarrow> Sup (insert a X) = (if X = {} then a else sup a (Sup X))"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   196
  using cSup_insert[of X] by simp
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   197
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   198
lemma cInf_insert_if: "bdd_below X \<Longrightarrow> Inf (insert a X) = (if X = {} then a else inf a (Inf X))"
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   199
  using cInf_insert[of X] by simp
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   200
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   201
lemma le_cSup_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> x \<le> Sup X"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   202
proof (induct X arbitrary: x rule: finite_induct)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   203
  case (insert x X y) then show ?case
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   204
    by (cases "X = {}") (auto simp: cSup_insert intro: le_supI2)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   205
qed simp
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   206
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   207
lemma cInf_le_finite: "finite X \<Longrightarrow> x \<in> X \<Longrightarrow> Inf X \<le> x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   208
proof (induct X arbitrary: x rule: finite_induct)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   209
  case (insert x X y) then show ?case
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   210
    by (cases "X = {}") (auto simp: cInf_insert intro: le_infI2)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   211
qed simp
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   212
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   213
lemma cSup_eq_Sup_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Sup_fin X"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   214
  by (induct X rule: finite_ne_induct) (simp_all add: cSup_insert)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   215
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   216
lemma cInf_eq_Inf_fin: "finite X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Inf_fin X"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   217
  by (induct X rule: finite_ne_induct) (simp_all add: cInf_insert)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   218
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   219
lemma cSup_atMost[simp]: "Sup {..x} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   220
  by (auto intro!: cSup_eq_maximum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   221
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   222
lemma cSup_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Sup {y<..x} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   223
  by (auto intro!: cSup_eq_maximum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   224
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   225
lemma cSup_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Sup {y..x} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   226
  by (auto intro!: cSup_eq_maximum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   227
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   228
lemma cInf_atLeast[simp]: "Inf {x..} = x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   229
  by (auto intro!: cInf_eq_minimum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   230
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   231
lemma cInf_atLeastLessThan[simp]: "y < x \<Longrightarrow> Inf {y..<x} = y"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   232
  by (auto intro!: cInf_eq_minimum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   233
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   234
lemma cInf_atLeastAtMost[simp]: "y \<le> x \<Longrightarrow> Inf {y..x} = y"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   235
  by (auto intro!: cInf_eq_minimum)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   236
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   237
end
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   238
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   239
instance complete_lattice \<subseteq> conditionally_complete_lattice
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   240
  by default (auto intro: Sup_upper Sup_least Inf_lower Inf_greatest)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   241
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   242
lemma isLub_cSup: 
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   243
  "(S::'a :: conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> (\<exists>b. S *<= b) \<Longrightarrow> isLub UNIV S (Sup S)"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   244
  by  (auto simp add: isLub_def setle_def leastP_def isUb_def
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   245
            intro!: setgeI cSup_upper cSup_least)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   246
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   247
lemma cSup_eq:
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   248
  fixes a :: "'a :: {conditionally_complete_lattice, no_bot}"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   249
  assumes upper: "\<And>x. x \<in> X \<Longrightarrow> x \<le> a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   250
  assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> x \<le> y) \<Longrightarrow> a \<le> y"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   251
  shows "Sup X = a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   252
proof cases
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   253
  assume "X = {}" with lt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   254
qed (intro cSup_eq_non_empty assms)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   255
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   256
lemma cInf_eq:
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   257
  fixes a :: "'a :: {conditionally_complete_lattice, no_top}"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   258
  assumes upper: "\<And>x. x \<in> X \<Longrightarrow> a \<le> x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   259
  assumes least: "\<And>y. (\<And>x. x \<in> X \<Longrightarrow> y \<le> x) \<Longrightarrow> y \<le> a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   260
  shows "Inf X = a"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   261
proof cases
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   262
  assume "X = {}" with gt_ex[of a] least show ?thesis by (auto simp: less_le_not_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   263
qed (intro cInf_eq_non_empty assms)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   264
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   265
lemma cSup_le: "(S::'a::conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> S *<= b \<Longrightarrow> Sup S \<le> b"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   266
  by (metis cSup_least setle_def)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   267
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   268
lemma cInf_ge: "(S::'a :: conditionally_complete_lattice set) \<noteq> {} \<Longrightarrow> b <=* S \<Longrightarrow> Inf S \<ge> b"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   269
  by (metis cInf_greatest setge_def)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   270
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   271
class conditionally_complete_linorder = conditionally_complete_lattice + linorder
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   272
begin
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   273
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   274
lemma less_cSup_iff : (*REAL_SUP_LE in HOL4*)
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   275
  "X \<noteq> {} \<Longrightarrow> bdd_above X \<Longrightarrow> y < Sup X \<longleftrightarrow> (\<exists>x\<in>X. y < x)"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   276
  by (rule iffI) (metis cSup_least not_less, metis cSup_upper less_le_trans)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   277
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   278
lemma cInf_less_iff: "X \<noteq> {} \<Longrightarrow> bdd_below X \<Longrightarrow> Inf X < y \<longleftrightarrow> (\<exists>x\<in>X. x < y)"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   279
  by (rule iffI) (metis cInf_greatest not_less, metis cInf_lower le_less_trans)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   280
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   281
lemma less_cSupE:
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   282
  assumes "y < Sup X" "X \<noteq> {}" obtains x where "x \<in> X" "y < x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   283
  by (metis cSup_least assms not_le that)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   284
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   285
lemma less_cSupD:
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   286
  "X \<noteq> {} \<Longrightarrow> z < Sup X \<Longrightarrow> \<exists>x\<in>X. z < x"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   287
  by (metis less_cSup_iff not_leE bdd_above_def)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   288
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   289
lemma cInf_lessD:
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   290
  "X \<noteq> {} \<Longrightarrow> Inf X < z \<Longrightarrow> \<exists>x\<in>X. x < z"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   291
  by (metis cInf_less_iff not_leE bdd_below_def)
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   292
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   293
lemma complete_interval:
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   294
  assumes "a < b" and "P a" and "\<not> P b"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   295
  shows "\<exists>c. a \<le> c \<and> c \<le> b \<and> (\<forall>x. a \<le> x \<and> x < c \<longrightarrow> P x) \<and>
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   296
             (\<forall>d. (\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x) \<longrightarrow> d \<le> c)"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   297
proof (rule exI [where x = "Sup {d. \<forall>x. a \<le> x & x < d --> P x}"], auto)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   298
  show "a \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   299
    by (rule cSup_upper, auto simp: bdd_above_def)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   300
       (metis `a < b` `\<not> P b` linear less_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   301
next
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   302
  show "Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c} \<le> b"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   303
    apply (rule cSup_least) 
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   304
    apply auto
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   305
    apply (metis less_le_not_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   306
    apply (metis `a<b` `~ P b` linear less_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   307
    done
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   308
next
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   309
  fix x
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   310
  assume x: "a \<le> x" and lt: "x < Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   311
  show "P x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   312
    apply (rule less_cSupE [OF lt], auto)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   313
    apply (metis less_le_not_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   314
    apply (metis x) 
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   315
    done
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   316
next
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   317
  fix d
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   318
    assume 0: "\<forall>x. a \<le> x \<and> x < d \<longrightarrow> P x"
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   319
    thus "d \<le> Sup {d. \<forall>c. a \<le> c \<and> c < d \<longrightarrow> P c}"
54258
adfc759263ab use bdd_above and bdd_below for conditionally complete lattices
hoelzl
parents: 54257
diff changeset
   320
      by (rule_tac cSup_upper, auto simp: bdd_above_def)
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   321
         (metis `a<b` `~ P b` linear less_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   322
qed
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   323
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   324
end
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   325
53216
ad2e09c30aa8 renamed inner_dense_linorder to dense_linorder
hoelzl
parents: 53215
diff changeset
   326
class linear_continuum = conditionally_complete_linorder + dense_linorder +
51775
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   327
  assumes UNIV_not_singleton: "\<exists>a b::'a. a \<noteq> b"
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   328
begin
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   329
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   330
lemma ex_gt_or_lt: "\<exists>b. a < b \<or> b < a"
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   331
  by (metis UNIV_not_singleton neq_iff)
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   332
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   333
end
408d937c9486 revert #916271d52466; add non-topological linear_continuum type class; show linear_continuum_topology is a perfect_space
hoelzl
parents: 51773
diff changeset
   334
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   335
lemma cSup_bounds:
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   336
  fixes S :: "'a :: conditionally_complete_lattice set"
51518
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   337
  assumes Se: "S \<noteq> {}" and l: "a <=* S" and u: "S *<= b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   338
  shows "a \<le> Sup S \<and> Sup S \<le> b"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   339
proof-
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   340
  from isLub_cSup[OF Se] u have lub: "isLub UNIV S (Sup S)" by blast
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   341
  hence b: "Sup S \<le> b" using u 
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   342
    by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def) 
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   343
  from Se obtain y where y: "y \<in> S" by blast
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   344
  from lub l have "a \<le> Sup S"
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   345
    by (auto simp add: isLub_def leastP_def setle_def setge_def isUb_def)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   346
       (metis le_iff_sup le_sup_iff y)
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   347
  with b show ?thesis by blast
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   348
qed
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   349
6a56b7088a6a separate SupInf into Conditional_Complete_Lattice, move instantiation of real to RealDef
hoelzl
parents: 51475
diff changeset
   350
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   351
lemma cSup_unique: "(S::'a :: {conditionally_complete_linorder, no_bot} set) *<= b \<Longrightarrow> (\<forall>b'<b. \<exists>x\<in>S. b' < x) \<Longrightarrow> Sup S = b"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   352
  by (rule cSup_eq) (auto simp: not_le[symmetric] setle_def)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   353
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   354
lemma cInf_unique: "b <=* (S::'a :: {conditionally_complete_linorder, no_top} set) \<Longrightarrow> (\<forall>b'>b. \<exists>x\<in>S. b' > x) \<Longrightarrow> Inf S = b"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   355
  by (rule cInf_eq) (auto simp: not_le[symmetric] setge_def)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   356
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   357
lemma cSup_eq_Max: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Sup X = Max X"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   358
  using cSup_eq_Sup_fin[of X] Sup_fin_eq_Max[of X] by simp
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   359
51773
9328c6681f3c spell conditional_ly_-complete lattices correct
hoelzl
parents: 51643
diff changeset
   360
lemma cInf_eq_Min: "finite (X::'a::conditionally_complete_linorder set) \<Longrightarrow> X \<noteq> {} \<Longrightarrow> Inf X = Min X"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   361
  using cInf_eq_Inf_fin[of X] Inf_fin_eq_Min[of X] by simp
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   362
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53216
diff changeset
   363
lemma cSup_lessThan[simp]: "Sup {..<x::'a::{conditionally_complete_linorder, no_bot, dense_linorder}} = x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   364
  by (auto intro!: cSup_eq_non_empty intro: dense_le)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   365
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53216
diff changeset
   366
lemma cSup_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Sup {y<..<x::'a::{conditionally_complete_linorder, no_bot, dense_linorder}} = x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   367
  by (auto intro!: cSup_eq intro: dense_le_bounded)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   368
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53216
diff changeset
   369
lemma cSup_atLeastLessThan[simp]: "y < x \<Longrightarrow> Sup {y..<x::'a::{conditionally_complete_linorder, no_bot, dense_linorder}} = x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   370
  by (auto intro!: cSup_eq intro: dense_le_bounded)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   371
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53216
diff changeset
   372
lemma cInf_greaterThan[simp]: "Inf {x::'a::{conditionally_complete_linorder, no_top, dense_linorder} <..} = x"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   373
  by (auto intro!: cInf_eq intro: dense_ge)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   374
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53216
diff changeset
   375
lemma cInf_greaterThanAtMost[simp]: "y < x \<Longrightarrow> Inf {y<..x::'a::{conditionally_complete_linorder, no_top, dense_linorder}} = y"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   376
  by (auto intro!: cInf_eq intro: dense_ge_bounded)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   377
54257
5c7a3b6b05a9 generalize SUP and INF to the syntactic type classes Sup and Inf
hoelzl
parents: 53216
diff changeset
   378
lemma cInf_greaterThanLessThan[simp]: "y < x \<Longrightarrow> Inf {y<..<x::'a::{conditionally_complete_linorder, no_top, dense_linorder}} = y"
51475
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   379
  by (auto intro!: cInf_eq intro: dense_ge_bounded)
ebf9d4fd00ba introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents: 46757
diff changeset
   380
33269
3b7e2dbbd684 New theory SupInf of the supremum and infimum operators for sets of reals.
paulson
parents:
diff changeset
   381
end