| author | blanchet | 
| Sun, 01 May 2011 18:37:24 +0200 | |
| changeset 42557 | ae0deb39a254 | 
| parent 42163 | 392fd6c4669c | 
| child 45607 | 16b4f5774621 | 
| permissions | -rw-r--r-- | 
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 1 | (* Title: HOL/Datatype.thy | 
| 20819 | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 11954 | 3 | Author: Stefan Berghofer and Markus Wenzel, TU Muenchen | 
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 4 | *) | 
| 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 5 | |
| 33968 
f94fb13ecbb3
modernized structures and tuned headers of datatype package modules; joined former datatype.ML and datatype_rep_proofs.ML
 haftmann parents: 
33963diff
changeset | 6 | header {* Datatype package: constructing datatypes from Cartesian Products and Disjoint Sums *}
 | 
| 11954 | 7 | |
| 15131 | 8 | theory Datatype | 
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 9 | imports Product_Type Sum_Type Nat | 
| 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 10 | uses | 
| 33963 
977b94b64905
renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
 haftmann parents: 
33959diff
changeset | 11 |   ("Tools/Datatype/datatype.ML")
 | 
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 12 |   ("Tools/inductive_realizer.ML")
 | 
| 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 13 |   ("Tools/Datatype/datatype_realizer.ML")
 | 
| 15131 | 14 | begin | 
| 11954 | 15 | |
| 40969 | 16 | subsection {* Prelude: lifting over function space *}
 | 
| 17 | ||
| 41505 
6d19301074cf
"enriched_type" replaces less specific "type_lifting"
 haftmann parents: 
41372diff
changeset | 18 | enriched_type map_fun: map_fun | 
| 40969 | 19 | by (simp_all add: fun_eq_iff) | 
| 20 | ||
| 21 | ||
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 22 | subsection {* The datatype universe *}
 | 
| 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 23 | |
| 20819 | 24 | typedef (Node) | 
| 25 |   ('a,'b) node = "{p. EX f x k. p = (f::nat=>'b+nat, x::'a+nat) & f k = Inr 0}"
 | |
| 26 |     --{*it is a subtype of @{text "(nat=>'b+nat) * ('a+nat)"}*}
 | |
| 27 | by auto | |
| 28 | ||
| 29 | text{*Datatypes will be represented by sets of type @{text node}*}
 | |
| 30 | ||
| 42163 
392fd6c4669c
renewing specifications in HOL: replacing types by type_synonym
 bulwahn parents: 
41505diff
changeset | 31 | type_synonym 'a item        = "('a, unit) node set"
 | 
| 
392fd6c4669c
renewing specifications in HOL: replacing types by type_synonym
 bulwahn parents: 
41505diff
changeset | 32 | type_synonym ('a, 'b) dtree = "('a, 'b) node set"
 | 
| 20819 | 33 | |
| 34 | consts | |
| 35 |   Push      :: "[('b + nat), nat => ('b + nat)] => (nat => ('b + nat))"
 | |
| 36 | ||
| 37 |   Push_Node :: "[('b + nat), ('a, 'b) node] => ('a, 'b) node"
 | |
| 38 |   ndepth    :: "('a, 'b) node => nat"
 | |
| 39 | ||
| 40 |   Atom      :: "('a + nat) => ('a, 'b) dtree"
 | |
| 41 |   Leaf      :: "'a => ('a, 'b) dtree"
 | |
| 42 |   Numb      :: "nat => ('a, 'b) dtree"
 | |
| 43 |   Scons     :: "[('a, 'b) dtree, ('a, 'b) dtree] => ('a, 'b) dtree"
 | |
| 44 |   In0       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 45 |   In1       :: "('a, 'b) dtree => ('a, 'b) dtree"
 | |
| 46 |   Lim       :: "('b => ('a, 'b) dtree) => ('a, 'b) dtree"
 | |
| 47 | ||
| 48 |   ntrunc    :: "[nat, ('a, 'b) dtree] => ('a, 'b) dtree"
 | |
| 49 | ||
| 50 |   uprod     :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | |
| 51 |   usum      :: "[('a, 'b) dtree set, ('a, 'b) dtree set]=> ('a, 'b) dtree set"
 | |
| 52 | ||
| 53 |   Split     :: "[[('a, 'b) dtree, ('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | |
| 54 |   Case      :: "[[('a, 'b) dtree]=>'c, [('a, 'b) dtree]=>'c, ('a, 'b) dtree] => 'c"
 | |
| 55 | ||
| 56 |   dprod     :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | |
| 57 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | |
| 58 |   dsum      :: "[(('a, 'b) dtree * ('a, 'b) dtree)set, (('a, 'b) dtree * ('a, 'b) dtree)set]
 | |
| 59 |                 => (('a, 'b) dtree * ('a, 'b) dtree)set"
 | |
| 60 | ||
| 61 | ||
| 62 | defs | |
| 63 | ||
| 64 | Push_Node_def: "Push_Node == (%n x. Abs_Node (apfst (Push n) (Rep_Node x)))" | |
| 65 | ||
| 66 | (*crude "lists" of nats -- needed for the constructions*) | |
| 67 | Push_def: "Push == (%b h. nat_case b h)" | |
| 68 | ||
| 69 | (** operations on S-expressions -- sets of nodes **) | |
| 70 | ||
| 71 | (*S-expression constructors*) | |
| 72 |   Atom_def:   "Atom == (%x. {Abs_Node((%k. Inr 0, x))})"
 | |
| 73 | Scons_def: "Scons M N == (Push_Node (Inr 1) ` M) Un (Push_Node (Inr (Suc 1)) ` N)" | |
| 74 | ||
| 75 | (*Leaf nodes, with arbitrary or nat labels*) | |
| 76 | Leaf_def: "Leaf == Atom o Inl" | |
| 77 | Numb_def: "Numb == Atom o Inr" | |
| 78 | ||
| 79 | (*Injections of the "disjoint sum"*) | |
| 80 | In0_def: "In0(M) == Scons (Numb 0) M" | |
| 81 | In1_def: "In1(M) == Scons (Numb 1) M" | |
| 82 | ||
| 83 | (*Function spaces*) | |
| 84 |   Lim_def: "Lim f == Union {z. ? x. z = Push_Node (Inl x) ` (f x)}"
 | |
| 85 | ||
| 86 | (*the set of nodes with depth less than k*) | |
| 87 | ndepth_def: "ndepth(n) == (%(f,x). LEAST k. f k = Inr 0) (Rep_Node n)" | |
| 88 |   ntrunc_def: "ntrunc k N == {n. n:N & ndepth(n)<k}"
 | |
| 89 | ||
| 90 | (*products and sums for the "universe"*) | |
| 91 |   uprod_def:  "uprod A B == UN x:A. UN y:B. { Scons x y }"
 | |
| 92 | usum_def: "usum A B == In0`A Un In1`B" | |
| 93 | ||
| 94 | (*the corresponding eliminators*) | |
| 95 | Split_def: "Split c M == THE u. EX x y. M = Scons x y & u = c x y" | |
| 96 | ||
| 97 | Case_def: "Case c d M == THE u. (EX x . M = In0(x) & u = c(x)) | |
| 98 | | (EX y . M = In1(y) & u = d(y))" | |
| 99 | ||
| 100 | ||
| 101 | (** equality for the "universe" **) | |
| 102 | ||
| 103 |   dprod_def:  "dprod r s == UN (x,x'):r. UN (y,y'):s. {(Scons x y, Scons x' y')}"
 | |
| 104 | ||
| 105 |   dsum_def:   "dsum r s == (UN (x,x'):r. {(In0(x),In0(x'))}) Un
 | |
| 106 |                           (UN (y,y'):s. {(In1(y),In1(y'))})"
 | |
| 107 | ||
| 108 | ||
| 109 | ||
| 110 | lemma apfst_convE: | |
| 111 | "[| q = apfst f p; !!x y. [| p = (x,y); q = (f(x),y) |] ==> R | |
| 112 | |] ==> R" | |
| 113 | by (force simp add: apfst_def) | |
| 114 | ||
| 115 | (** Push -- an injection, analogous to Cons on lists **) | |
| 116 | ||
| 117 | lemma Push_inject1: "Push i f = Push j g ==> i=j" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 118 | apply (simp add: Push_def fun_eq_iff) | 
| 20819 | 119 | apply (drule_tac x=0 in spec, simp) | 
| 120 | done | |
| 121 | ||
| 122 | lemma Push_inject2: "Push i f = Push j g ==> f=g" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 123 | apply (auto simp add: Push_def fun_eq_iff) | 
| 20819 | 124 | apply (drule_tac x="Suc x" in spec, simp) | 
| 125 | done | |
| 126 | ||
| 127 | lemma Push_inject: | |
| 128 | "[| Push i f =Push j g; [| i=j; f=g |] ==> P |] ==> P" | |
| 129 | by (blast dest: Push_inject1 Push_inject2) | |
| 130 | ||
| 131 | lemma Push_neq_K0: "Push (Inr (Suc k)) f = (%z. Inr 0) ==> P" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 132 | by (auto simp add: Push_def fun_eq_iff split: nat.split_asm) | 
| 20819 | 133 | |
| 134 | lemmas Abs_Node_inj = Abs_Node_inject [THEN [2] rev_iffD1, standard] | |
| 135 | ||
| 136 | ||
| 137 | (*** Introduction rules for Node ***) | |
| 138 | ||
| 139 | lemma Node_K0_I: "(%k. Inr 0, a) : Node" | |
| 140 | by (simp add: Node_def) | |
| 141 | ||
| 142 | lemma Node_Push_I: "p: Node ==> apfst (Push i) p : Node" | |
| 143 | apply (simp add: Node_def Push_def) | |
| 144 | apply (fast intro!: apfst_conv nat_case_Suc [THEN trans]) | |
| 145 | done | |
| 146 | ||
| 147 | ||
| 148 | subsection{*Freeness: Distinctness of Constructors*}
 | |
| 149 | ||
| 150 | (** Scons vs Atom **) | |
| 151 | ||
| 152 | lemma Scons_not_Atom [iff]: "Scons M N \<noteq> Atom(a)" | |
| 35216 | 153 | unfolding Atom_def Scons_def Push_Node_def One_nat_def | 
| 154 | by (blast intro: Node_K0_I Rep_Node [THEN Node_Push_I] | |
| 20819 | 155 | dest!: Abs_Node_inj | 
| 156 | elim!: apfst_convE sym [THEN Push_neq_K0]) | |
| 157 | ||
| 21407 | 158 | lemmas Atom_not_Scons [iff] = Scons_not_Atom [THEN not_sym, standard] | 
| 159 | ||
| 20819 | 160 | |
| 161 | (*** Injectiveness ***) | |
| 162 | ||
| 163 | (** Atomic nodes **) | |
| 164 | ||
| 165 | lemma inj_Atom: "inj(Atom)" | |
| 166 | apply (simp add: Atom_def) | |
| 167 | apply (blast intro!: inj_onI Node_K0_I dest!: Abs_Node_inj) | |
| 168 | done | |
| 169 | lemmas Atom_inject = inj_Atom [THEN injD, standard] | |
| 170 | ||
| 171 | lemma Atom_Atom_eq [iff]: "(Atom(a)=Atom(b)) = (a=b)" | |
| 172 | by (blast dest!: Atom_inject) | |
| 173 | ||
| 174 | lemma inj_Leaf: "inj(Leaf)" | |
| 175 | apply (simp add: Leaf_def o_def) | |
| 176 | apply (rule inj_onI) | |
| 177 | apply (erule Atom_inject [THEN Inl_inject]) | |
| 178 | done | |
| 179 | ||
| 21407 | 180 | lemmas Leaf_inject [dest!] = inj_Leaf [THEN injD, standard] | 
| 20819 | 181 | |
| 182 | lemma inj_Numb: "inj(Numb)" | |
| 183 | apply (simp add: Numb_def o_def) | |
| 184 | apply (rule inj_onI) | |
| 185 | apply (erule Atom_inject [THEN Inr_inject]) | |
| 186 | done | |
| 187 | ||
| 21407 | 188 | lemmas Numb_inject [dest!] = inj_Numb [THEN injD, standard] | 
| 20819 | 189 | |
| 190 | ||
| 191 | (** Injectiveness of Push_Node **) | |
| 192 | ||
| 193 | lemma Push_Node_inject: | |
| 194 | "[| Push_Node i m =Push_Node j n; [| i=j; m=n |] ==> P | |
| 195 | |] ==> P" | |
| 196 | apply (simp add: Push_Node_def) | |
| 197 | apply (erule Abs_Node_inj [THEN apfst_convE]) | |
| 198 | apply (rule Rep_Node [THEN Node_Push_I])+ | |
| 199 | apply (erule sym [THEN apfst_convE]) | |
| 200 | apply (blast intro: Rep_Node_inject [THEN iffD1] trans sym elim!: Push_inject) | |
| 201 | done | |
| 202 | ||
| 203 | ||
| 204 | (** Injectiveness of Scons **) | |
| 205 | ||
| 206 | lemma Scons_inject_lemma1: "Scons M N <= Scons M' N' ==> M<=M'" | |
| 35216 | 207 | unfolding Scons_def One_nat_def | 
| 208 | by (blast dest!: Push_Node_inject) | |
| 20819 | 209 | |
| 210 | lemma Scons_inject_lemma2: "Scons M N <= Scons M' N' ==> N<=N'" | |
| 35216 | 211 | unfolding Scons_def One_nat_def | 
| 212 | by (blast dest!: Push_Node_inject) | |
| 20819 | 213 | |
| 214 | lemma Scons_inject1: "Scons M N = Scons M' N' ==> M=M'" | |
| 215 | apply (erule equalityE) | |
| 216 | apply (iprover intro: equalityI Scons_inject_lemma1) | |
| 217 | done | |
| 218 | ||
| 219 | lemma Scons_inject2: "Scons M N = Scons M' N' ==> N=N'" | |
| 220 | apply (erule equalityE) | |
| 221 | apply (iprover intro: equalityI Scons_inject_lemma2) | |
| 222 | done | |
| 223 | ||
| 224 | lemma Scons_inject: | |
| 225 | "[| Scons M N = Scons M' N'; [| M=M'; N=N' |] ==> P |] ==> P" | |
| 226 | by (iprover dest: Scons_inject1 Scons_inject2) | |
| 227 | ||
| 228 | lemma Scons_Scons_eq [iff]: "(Scons M N = Scons M' N') = (M=M' & N=N')" | |
| 229 | by (blast elim!: Scons_inject) | |
| 230 | ||
| 231 | (*** Distinctness involving Leaf and Numb ***) | |
| 232 | ||
| 233 | (** Scons vs Leaf **) | |
| 234 | ||
| 235 | lemma Scons_not_Leaf [iff]: "Scons M N \<noteq> Leaf(a)" | |
| 35216 | 236 | unfolding Leaf_def o_def by (rule Scons_not_Atom) | 
| 20819 | 237 | |
| 21407 | 238 | lemmas Leaf_not_Scons [iff] = Scons_not_Leaf [THEN not_sym, standard] | 
| 20819 | 239 | |
| 240 | (** Scons vs Numb **) | |
| 241 | ||
| 242 | lemma Scons_not_Numb [iff]: "Scons M N \<noteq> Numb(k)" | |
| 35216 | 243 | unfolding Numb_def o_def by (rule Scons_not_Atom) | 
| 20819 | 244 | |
| 21407 | 245 | lemmas Numb_not_Scons [iff] = Scons_not_Numb [THEN not_sym, standard] | 
| 20819 | 246 | |
| 247 | ||
| 248 | (** Leaf vs Numb **) | |
| 249 | ||
| 250 | lemma Leaf_not_Numb [iff]: "Leaf(a) \<noteq> Numb(k)" | |
| 251 | by (simp add: Leaf_def Numb_def) | |
| 252 | ||
| 21407 | 253 | lemmas Numb_not_Leaf [iff] = Leaf_not_Numb [THEN not_sym, standard] | 
| 20819 | 254 | |
| 255 | ||
| 256 | (*** ndepth -- the depth of a node ***) | |
| 257 | ||
| 258 | lemma ndepth_K0: "ndepth (Abs_Node(%k. Inr 0, x)) = 0" | |
| 259 | by (simp add: ndepth_def Node_K0_I [THEN Abs_Node_inverse] Least_equality) | |
| 260 | ||
| 261 | lemma ndepth_Push_Node_aux: | |
| 262 | "nat_case (Inr (Suc i)) f k = Inr 0 --> Suc(LEAST x. f x = Inr 0) <= k" | |
| 263 | apply (induct_tac "k", auto) | |
| 264 | apply (erule Least_le) | |
| 265 | done | |
| 266 | ||
| 267 | lemma ndepth_Push_Node: | |
| 268 | "ndepth (Push_Node (Inr (Suc i)) n) = Suc(ndepth(n))" | |
| 269 | apply (insert Rep_Node [of n, unfolded Node_def]) | |
| 270 | apply (auto simp add: ndepth_def Push_Node_def | |
| 271 | Rep_Node [THEN Node_Push_I, THEN Abs_Node_inverse]) | |
| 272 | apply (rule Least_equality) | |
| 273 | apply (auto simp add: Push_def ndepth_Push_Node_aux) | |
| 274 | apply (erule LeastI) | |
| 275 | done | |
| 276 | ||
| 277 | ||
| 278 | (*** ntrunc applied to the various node sets ***) | |
| 279 | ||
| 280 | lemma ntrunc_0 [simp]: "ntrunc 0 M = {}"
 | |
| 281 | by (simp add: ntrunc_def) | |
| 282 | ||
| 283 | lemma ntrunc_Atom [simp]: "ntrunc (Suc k) (Atom a) = Atom(a)" | |
| 284 | by (auto simp add: Atom_def ntrunc_def ndepth_K0) | |
| 285 | ||
| 286 | lemma ntrunc_Leaf [simp]: "ntrunc (Suc k) (Leaf a) = Leaf(a)" | |
| 35216 | 287 | unfolding Leaf_def o_def by (rule ntrunc_Atom) | 
| 20819 | 288 | |
| 289 | lemma ntrunc_Numb [simp]: "ntrunc (Suc k) (Numb i) = Numb(i)" | |
| 35216 | 290 | unfolding Numb_def o_def by (rule ntrunc_Atom) | 
| 20819 | 291 | |
| 292 | lemma ntrunc_Scons [simp]: | |
| 293 | "ntrunc (Suc k) (Scons M N) = Scons (ntrunc k M) (ntrunc k N)" | |
| 35216 | 294 | unfolding Scons_def ntrunc_def One_nat_def | 
| 295 | by (auto simp add: ndepth_Push_Node) | |
| 20819 | 296 | |
| 297 | ||
| 298 | ||
| 299 | (** Injection nodes **) | |
| 300 | ||
| 301 | lemma ntrunc_one_In0 [simp]: "ntrunc (Suc 0) (In0 M) = {}"
 | |
| 302 | apply (simp add: In0_def) | |
| 303 | apply (simp add: Scons_def) | |
| 304 | done | |
| 305 | ||
| 306 | lemma ntrunc_In0 [simp]: "ntrunc (Suc(Suc k)) (In0 M) = In0 (ntrunc (Suc k) M)" | |
| 307 | by (simp add: In0_def) | |
| 308 | ||
| 309 | lemma ntrunc_one_In1 [simp]: "ntrunc (Suc 0) (In1 M) = {}"
 | |
| 310 | apply (simp add: In1_def) | |
| 311 | apply (simp add: Scons_def) | |
| 312 | done | |
| 313 | ||
| 314 | lemma ntrunc_In1 [simp]: "ntrunc (Suc(Suc k)) (In1 M) = In1 (ntrunc (Suc k) M)" | |
| 315 | by (simp add: In1_def) | |
| 316 | ||
| 317 | ||
| 318 | subsection{*Set Constructions*}
 | |
| 319 | ||
| 320 | ||
| 321 | (*** Cartesian Product ***) | |
| 322 | ||
| 323 | lemma uprodI [intro!]: "[| M:A; N:B |] ==> Scons M N : uprod A B" | |
| 324 | by (simp add: uprod_def) | |
| 325 | ||
| 326 | (*The general elimination rule*) | |
| 327 | lemma uprodE [elim!]: | |
| 328 | "[| c : uprod A B; | |
| 329 | !!x y. [| x:A; y:B; c = Scons x y |] ==> P | |
| 330 | |] ==> P" | |
| 331 | by (auto simp add: uprod_def) | |
| 332 | ||
| 333 | ||
| 334 | (*Elimination of a pair -- introduces no eigenvariables*) | |
| 335 | lemma uprodE2: "[| Scons M N : uprod A B; [| M:A; N:B |] ==> P |] ==> P" | |
| 336 | by (auto simp add: uprod_def) | |
| 337 | ||
| 338 | ||
| 339 | (*** Disjoint Sum ***) | |
| 340 | ||
| 341 | lemma usum_In0I [intro]: "M:A ==> In0(M) : usum A B" | |
| 342 | by (simp add: usum_def) | |
| 343 | ||
| 344 | lemma usum_In1I [intro]: "N:B ==> In1(N) : usum A B" | |
| 345 | by (simp add: usum_def) | |
| 346 | ||
| 347 | lemma usumE [elim!]: | |
| 348 | "[| u : usum A B; | |
| 349 | !!x. [| x:A; u=In0(x) |] ==> P; | |
| 350 | !!y. [| y:B; u=In1(y) |] ==> P | |
| 351 | |] ==> P" | |
| 352 | by (auto simp add: usum_def) | |
| 353 | ||
| 354 | ||
| 355 | (** Injection **) | |
| 356 | ||
| 357 | lemma In0_not_In1 [iff]: "In0(M) \<noteq> In1(N)" | |
| 35216 | 358 | unfolding In0_def In1_def One_nat_def by auto | 
| 20819 | 359 | |
| 21407 | 360 | lemmas In1_not_In0 [iff] = In0_not_In1 [THEN not_sym, standard] | 
| 20819 | 361 | |
| 362 | lemma In0_inject: "In0(M) = In0(N) ==> M=N" | |
| 363 | by (simp add: In0_def) | |
| 364 | ||
| 365 | lemma In1_inject: "In1(M) = In1(N) ==> M=N" | |
| 366 | by (simp add: In1_def) | |
| 367 | ||
| 368 | lemma In0_eq [iff]: "(In0 M = In0 N) = (M=N)" | |
| 369 | by (blast dest!: In0_inject) | |
| 370 | ||
| 371 | lemma In1_eq [iff]: "(In1 M = In1 N) = (M=N)" | |
| 372 | by (blast dest!: In1_inject) | |
| 373 | ||
| 374 | lemma inj_In0: "inj In0" | |
| 375 | by (blast intro!: inj_onI) | |
| 376 | ||
| 377 | lemma inj_In1: "inj In1" | |
| 378 | by (blast intro!: inj_onI) | |
| 379 | ||
| 380 | ||
| 381 | (*** Function spaces ***) | |
| 382 | ||
| 383 | lemma Lim_inject: "Lim f = Lim g ==> f = g" | |
| 384 | apply (simp add: Lim_def) | |
| 385 | apply (rule ext) | |
| 386 | apply (blast elim!: Push_Node_inject) | |
| 387 | done | |
| 388 | ||
| 389 | ||
| 390 | (*** proving equality of sets and functions using ntrunc ***) | |
| 391 | ||
| 392 | lemma ntrunc_subsetI: "ntrunc k M <= M" | |
| 393 | by (auto simp add: ntrunc_def) | |
| 394 | ||
| 395 | lemma ntrunc_subsetD: "(!!k. ntrunc k M <= N) ==> M<=N" | |
| 396 | by (auto simp add: ntrunc_def) | |
| 397 | ||
| 398 | (*A generalized form of the take-lemma*) | |
| 399 | lemma ntrunc_equality: "(!!k. ntrunc k M = ntrunc k N) ==> M=N" | |
| 400 | apply (rule equalityI) | |
| 401 | apply (rule_tac [!] ntrunc_subsetD) | |
| 402 | apply (rule_tac [!] ntrunc_subsetI [THEN [2] subset_trans], auto) | |
| 403 | done | |
| 404 | ||
| 405 | lemma ntrunc_o_equality: | |
| 406 | "[| !!k. (ntrunc(k) o h1) = (ntrunc(k) o h2) |] ==> h1=h2" | |
| 407 | apply (rule ntrunc_equality [THEN ext]) | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 408 | apply (simp add: fun_eq_iff) | 
| 20819 | 409 | done | 
| 410 | ||
| 411 | ||
| 412 | (*** Monotonicity ***) | |
| 413 | ||
| 414 | lemma uprod_mono: "[| A<=A'; B<=B' |] ==> uprod A B <= uprod A' B'" | |
| 415 | by (simp add: uprod_def, blast) | |
| 416 | ||
| 417 | lemma usum_mono: "[| A<=A'; B<=B' |] ==> usum A B <= usum A' B'" | |
| 418 | by (simp add: usum_def, blast) | |
| 419 | ||
| 420 | lemma Scons_mono: "[| M<=M'; N<=N' |] ==> Scons M N <= Scons M' N'" | |
| 421 | by (simp add: Scons_def, blast) | |
| 422 | ||
| 423 | lemma In0_mono: "M<=N ==> In0(M) <= In0(N)" | |
| 35216 | 424 | by (simp add: In0_def Scons_mono) | 
| 20819 | 425 | |
| 426 | lemma In1_mono: "M<=N ==> In1(M) <= In1(N)" | |
| 35216 | 427 | by (simp add: In1_def Scons_mono) | 
| 20819 | 428 | |
| 429 | ||
| 430 | (*** Split and Case ***) | |
| 431 | ||
| 432 | lemma Split [simp]: "Split c (Scons M N) = c M N" | |
| 433 | by (simp add: Split_def) | |
| 434 | ||
| 435 | lemma Case_In0 [simp]: "Case c d (In0 M) = c(M)" | |
| 436 | by (simp add: Case_def) | |
| 437 | ||
| 438 | lemma Case_In1 [simp]: "Case c d (In1 N) = d(N)" | |
| 439 | by (simp add: Case_def) | |
| 440 | ||
| 441 | ||
| 442 | ||
| 443 | (**** UN x. B(x) rules ****) | |
| 444 | ||
| 445 | lemma ntrunc_UN1: "ntrunc k (UN x. f(x)) = (UN x. ntrunc k (f x))" | |
| 446 | by (simp add: ntrunc_def, blast) | |
| 447 | ||
| 448 | lemma Scons_UN1_x: "Scons (UN x. f x) M = (UN x. Scons (f x) M)" | |
| 449 | by (simp add: Scons_def, blast) | |
| 450 | ||
| 451 | lemma Scons_UN1_y: "Scons M (UN x. f x) = (UN x. Scons M (f x))" | |
| 452 | by (simp add: Scons_def, blast) | |
| 453 | ||
| 454 | lemma In0_UN1: "In0(UN x. f(x)) = (UN x. In0(f(x)))" | |
| 455 | by (simp add: In0_def Scons_UN1_y) | |
| 456 | ||
| 457 | lemma In1_UN1: "In1(UN x. f(x)) = (UN x. In1(f(x)))" | |
| 458 | by (simp add: In1_def Scons_UN1_y) | |
| 459 | ||
| 460 | ||
| 461 | (*** Equality for Cartesian Product ***) | |
| 462 | ||
| 463 | lemma dprodI [intro!]: | |
| 464 | "[| (M,M'):r; (N,N'):s |] ==> (Scons M N, Scons M' N') : dprod r s" | |
| 465 | by (auto simp add: dprod_def) | |
| 466 | ||
| 467 | (*The general elimination rule*) | |
| 468 | lemma dprodE [elim!]: | |
| 469 | "[| c : dprod r s; | |
| 470 | !!x y x' y'. [| (x,x') : r; (y,y') : s; | |
| 471 | c = (Scons x y, Scons x' y') |] ==> P | |
| 472 | |] ==> P" | |
| 473 | by (auto simp add: dprod_def) | |
| 474 | ||
| 475 | ||
| 476 | (*** Equality for Disjoint Sum ***) | |
| 477 | ||
| 478 | lemma dsum_In0I [intro]: "(M,M'):r ==> (In0(M), In0(M')) : dsum r s" | |
| 479 | by (auto simp add: dsum_def) | |
| 480 | ||
| 481 | lemma dsum_In1I [intro]: "(N,N'):s ==> (In1(N), In1(N')) : dsum r s" | |
| 482 | by (auto simp add: dsum_def) | |
| 483 | ||
| 484 | lemma dsumE [elim!]: | |
| 485 | "[| w : dsum r s; | |
| 486 | !!x x'. [| (x,x') : r; w = (In0(x), In0(x')) |] ==> P; | |
| 487 | !!y y'. [| (y,y') : s; w = (In1(y), In1(y')) |] ==> P | |
| 488 | |] ==> P" | |
| 489 | by (auto simp add: dsum_def) | |
| 490 | ||
| 491 | ||
| 492 | (*** Monotonicity ***) | |
| 493 | ||
| 494 | lemma dprod_mono: "[| r<=r'; s<=s' |] ==> dprod r s <= dprod r' s'" | |
| 495 | by blast | |
| 496 | ||
| 497 | lemma dsum_mono: "[| r<=r'; s<=s' |] ==> dsum r s <= dsum r' s'" | |
| 498 | by blast | |
| 499 | ||
| 500 | ||
| 501 | (*** Bounding theorems ***) | |
| 502 | ||
| 503 | lemma dprod_Sigma: "(dprod (A <*> B) (C <*> D)) <= (uprod A C) <*> (uprod B D)" | |
| 504 | by blast | |
| 505 | ||
| 506 | lemmas dprod_subset_Sigma = subset_trans [OF dprod_mono dprod_Sigma, standard] | |
| 507 | ||
| 508 | (*Dependent version*) | |
| 509 | lemma dprod_subset_Sigma2: | |
| 510 | "(dprod (Sigma A B) (Sigma C D)) <= | |
| 511 | Sigma (uprod A C) (Split (%x y. uprod (B x) (D y)))" | |
| 512 | by auto | |
| 513 | ||
| 514 | lemma dsum_Sigma: "(dsum (A <*> B) (C <*> D)) <= (usum A C) <*> (usum B D)" | |
| 515 | by blast | |
| 516 | ||
| 517 | lemmas dsum_subset_Sigma = subset_trans [OF dsum_mono dsum_Sigma, standard] | |
| 518 | ||
| 519 | ||
| 24162 
8dfd5dd65d82
split off theory Option for benefit of code generator
 haftmann parents: 
22886diff
changeset | 520 | text {* hides popular names *}
 | 
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35216diff
changeset | 521 | hide_type (open) node item | 
| 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35216diff
changeset | 522 | hide_const (open) Push Node Atom Leaf Numb Lim Split Case | 
| 20819 | 523 | |
| 33963 
977b94b64905
renamed former datatype.ML to datatype_data.ML; datatype.ML provides uniform view on datatype.ML and datatype_rep_proofs.ML
 haftmann parents: 
33959diff
changeset | 524 | use "Tools/Datatype/datatype.ML" | 
| 12918 | 525 | |
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 526 | use "Tools/inductive_realizer.ML" | 
| 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 527 | setup InductiveRealizer.setup | 
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 528 | |
| 33959 
2afc55e8ed27
bootstrap datatype_rep_proofs in Datatype.thy (avoids unchecked dynamic name references)
 haftmann parents: 
33633diff
changeset | 529 | use "Tools/Datatype/datatype_realizer.ML" | 
| 33968 
f94fb13ecbb3
modernized structures and tuned headers of datatype package modules; joined former datatype.ML and datatype_rep_proofs.ML
 haftmann parents: 
33963diff
changeset | 530 | setup Datatype_Realizer.setup | 
| 13635 
c41e88151b54
Added functions Suml and Sumr which are useful for constructing
 berghofe parents: 
12918diff
changeset | 531 | |
| 5181 
4ba3787d9709
New theory Datatype. Needed as an ancestor when defining datatypes.
 berghofe parents: diff
changeset | 532 | end |