| author | desharna | 
| Tue, 29 Mar 2022 17:12:44 +0200 | |
| changeset 75368 | b269a3c84b99 | 
| parent 73794 | e75635a0bafd | 
| child 75464 | 84e6f9b542e2 | 
| permissions | -rw-r--r-- | 
| 28685 | 1 | (* Title: HOL/Orderings.thy | 
| 15524 | 2 | Author: Tobias Nipkow, Markus Wenzel, and Larry Paulson | 
| 3 | *) | |
| 4 | ||
| 60758 | 5 | section \<open>Abstract orderings\<close> | 
| 15524 | 6 | |
| 7 | theory Orderings | |
| 35301 
90e42f9ba4d1
distributed theory Algebras to theories Groups and Lattices
 haftmann parents: 
35115diff
changeset | 8 | imports HOL | 
| 46950 
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
 wenzelm parents: 
46884diff
changeset | 9 | keywords "print_orders" :: diag | 
| 15524 | 10 | begin | 
| 11 | ||
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 12 | ML_file \<open>~~/src/Provers/order_procedure.ML\<close> | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 13 | ML_file \<open>~~/src/Provers/order_tac.ML\<close> | 
| 48891 | 14 | |
| 60758 | 15 | subsection \<open>Abstract ordering\<close> | 
| 51487 | 16 | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 17 | locale partial_preordering = | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 18 | fixes less_eq :: \<open>'a \<Rightarrow> 'a \<Rightarrow> bool\<close> (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 19 | assumes refl: \<open>a \<^bold>\<le> a\<close> \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 20 | and trans: \<open>a \<^bold>\<le> b \<Longrightarrow> b \<^bold>\<le> c \<Longrightarrow> a \<^bold>\<le> c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 21 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 22 | locale preordering = partial_preordering + | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 23 | fixes less :: \<open>'a \<Rightarrow> 'a \<Rightarrow> bool\<close> (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 24 | assumes strict_iff_not: \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> \<not> b \<^bold>\<le> a\<close> | 
| 51487 | 25 | begin | 
| 26 | ||
| 27 | lemma strict_implies_order: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 28 | \<open>a \<^bold>< b \<Longrightarrow> a \<^bold>\<le> b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 29 | by (simp add: strict_iff_not) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 30 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 31 | lemma irrefl: \<comment> \<open>not \<open>iff\<close>: makes problems due to multiple (dual) interpretations\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 32 | \<open>\<not> a \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 33 | by (simp add: strict_iff_not) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 34 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 35 | lemma asym: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 36 | \<open>a \<^bold>< b \<Longrightarrow> b \<^bold>< a \<Longrightarrow> False\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 37 | by (auto simp add: strict_iff_not) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 38 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 39 | lemma strict_trans1: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 40 | \<open>a \<^bold>\<le> b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 41 | by (auto simp add: strict_iff_not intro: trans) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 42 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 43 | lemma strict_trans2: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 44 | \<open>a \<^bold>< b \<Longrightarrow> b \<^bold>\<le> c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 45 | by (auto simp add: strict_iff_not intro: trans) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 46 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 47 | lemma strict_trans: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 48 | \<open>a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 49 | by (auto intro: strict_trans1 strict_implies_order) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 50 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 51 | end | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 52 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 53 | lemma preordering_strictI: \<comment> \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 54 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 55 | and less (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 56 | assumes less_eq_less: \<open>\<And>a b. a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 57 | assumes asym: \<open>\<And>a b. a \<^bold>< b \<Longrightarrow> \<not> b \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 58 | assumes irrefl: \<open>\<And>a. \<not> a \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 59 | assumes trans: \<open>\<And>a b c. a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 60 | shows \<open>preordering (\<^bold>\<le>) (\<^bold><)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 61 | proof | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 62 | fix a b | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 63 | show \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> \<not> b \<^bold>\<le> a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 64 | by (auto simp add: less_eq_less asym irrefl) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 65 | next | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 66 | fix a | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 67 | show \<open>a \<^bold>\<le> a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 68 | by (auto simp add: less_eq_less) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 69 | next | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 70 | fix a b c | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 71 | assume \<open>a \<^bold>\<le> b\<close> and \<open>b \<^bold>\<le> c\<close> then show \<open>a \<^bold>\<le> c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 72 | by (auto simp add: less_eq_less intro: trans) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 73 | qed | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 74 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 75 | lemma preordering_dualI: | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 76 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 77 | and less (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 78 | assumes \<open>preordering (\<lambda>a b. b \<^bold>\<le> a) (\<lambda>a b. b \<^bold>< a)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 79 | shows \<open>preordering (\<^bold>\<le>) (\<^bold><)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 80 | proof - | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 81 | from assms interpret preordering \<open>\<lambda>a b. b \<^bold>\<le> a\<close> \<open>\<lambda>a b. b \<^bold>< a\<close> . | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 82 | show ?thesis | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 83 | by standard (auto simp: strict_iff_not refl intro: trans) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 84 | qed | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 85 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 86 | locale ordering = partial_preordering + | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 87 | fixes less :: \<open>'a \<Rightarrow> 'a \<Rightarrow> bool\<close> (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 88 | assumes strict_iff_order: \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<noteq> b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 89 | assumes antisym: \<open>a \<^bold>\<le> b \<Longrightarrow> b \<^bold>\<le> a \<Longrightarrow> a = b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 90 | begin | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 91 | |
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 92 | sublocale preordering \<open>(\<^bold>\<le>)\<close> \<open>(\<^bold><)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 93 | proof | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 94 | show \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> \<not> b \<^bold>\<le> a\<close> for a b | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 95 | by (auto simp add: strict_iff_order intro: antisym) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 96 | qed | 
| 51487 | 97 | |
| 98 | lemma strict_implies_not_eq: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 99 | \<open>a \<^bold>< b \<Longrightarrow> a \<noteq> b\<close> | 
| 51487 | 100 | by (simp add: strict_iff_order) | 
| 101 | ||
| 102 | lemma not_eq_order_implies_strict: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 103 | \<open>a \<noteq> b \<Longrightarrow> a \<^bold>\<le> b \<Longrightarrow> a \<^bold>< b\<close> | 
| 51487 | 104 | by (simp add: strict_iff_order) | 
| 105 | ||
| 106 | lemma order_iff_strict: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 107 | \<open>a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b\<close> | 
| 51487 | 108 | by (auto simp add: strict_iff_order refl) | 
| 109 | ||
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 110 | lemma eq_iff: \<open>a = b \<longleftrightarrow> a \<^bold>\<le> b \<and> b \<^bold>\<le> a\<close> | 
| 71851 | 111 | by (auto simp add: refl intro: antisym) | 
| 112 | ||
| 51487 | 113 | end | 
| 114 | ||
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 115 | lemma ordering_strictI: \<comment> \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 116 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 117 | and less (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 118 | assumes less_eq_less: \<open>\<And>a b. a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 119 | assumes asym: \<open>\<And>a b. a \<^bold>< b \<Longrightarrow> \<not> b \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 120 | assumes irrefl: \<open>\<And>a. \<not> a \<^bold>< a\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 121 | assumes trans: \<open>\<And>a b c. a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 122 | shows \<open>ordering (\<^bold>\<le>) (\<^bold><)\<close> | 
| 63819 | 123 | proof | 
| 124 | fix a b | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 125 | show \<open>a \<^bold>< b \<longleftrightarrow> a \<^bold>\<le> b \<and> a \<noteq> b\<close> | 
| 63819 | 126 | by (auto simp add: less_eq_less asym irrefl) | 
| 127 | next | |
| 128 | fix a | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 129 | show \<open>a \<^bold>\<le> a\<close> | 
| 63819 | 130 | by (auto simp add: less_eq_less) | 
| 131 | next | |
| 132 | fix a b c | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 133 | assume \<open>a \<^bold>\<le> b\<close> and \<open>b \<^bold>\<le> c\<close> then show \<open>a \<^bold>\<le> c\<close> | 
| 63819 | 134 | by (auto simp add: less_eq_less intro: trans) | 
| 135 | next | |
| 136 | fix a b | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 137 | assume \<open>a \<^bold>\<le> b\<close> and \<open>b \<^bold>\<le> a\<close> then show \<open>a = b\<close> | 
| 63819 | 138 | by (auto simp add: less_eq_less asym) | 
| 139 | qed | |
| 140 | ||
| 141 | lemma ordering_dualI: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 142 | fixes less_eq (infix \<open>\<^bold>\<le>\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 143 | and less (infix \<open>\<^bold><\<close> 50) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 144 | assumes \<open>ordering (\<lambda>a b. b \<^bold>\<le> a) (\<lambda>a b. b \<^bold>< a)\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 145 | shows \<open>ordering (\<^bold>\<le>) (\<^bold><)\<close> | 
| 63819 | 146 | proof - | 
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 147 | from assms interpret ordering \<open>\<lambda>a b. b \<^bold>\<le> a\<close> \<open>\<lambda>a b. b \<^bold>< a\<close> . | 
| 63819 | 148 | show ?thesis | 
| 149 | by standard (auto simp: strict_iff_order refl intro: antisym trans) | |
| 150 | qed | |
| 151 | ||
| 51487 | 152 | locale ordering_top = ordering + | 
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 153 | fixes top :: \<open>'a\<close> (\<open>\<^bold>\<top>\<close>) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 154 | assumes extremum [simp]: \<open>a \<^bold>\<le> \<^bold>\<top>\<close> | 
| 51487 | 155 | begin | 
| 156 | ||
| 157 | lemma extremum_uniqueI: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 158 | \<open>\<^bold>\<top> \<^bold>\<le> a \<Longrightarrow> a = \<^bold>\<top>\<close> | 
| 51487 | 159 | by (rule antisym) auto | 
| 160 | ||
| 161 | lemma extremum_unique: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 162 | \<open>\<^bold>\<top> \<^bold>\<le> a \<longleftrightarrow> a = \<^bold>\<top>\<close> | 
| 51487 | 163 | by (auto intro: antisym) | 
| 164 | ||
| 165 | lemma extremum_strict [simp]: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 166 | \<open>\<not> (\<^bold>\<top> \<^bold>< a)\<close> | 
| 51487 | 167 | using extremum [of a] by (auto simp add: order_iff_strict intro: asym irrefl) | 
| 168 | ||
| 169 | lemma not_eq_extremum: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 170 | \<open>a \<noteq> \<^bold>\<top> \<longleftrightarrow> a \<^bold>< \<^bold>\<top>\<close> | 
| 51487 | 171 | by (auto simp add: order_iff_strict intro: not_eq_order_implies_strict extremum) | 
| 172 | ||
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 173 | end | 
| 51487 | 174 | |
| 175 | ||
| 60758 | 176 | subsection \<open>Syntactic orders\<close> | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 177 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 178 | class ord = | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 179 | fixes less_eq :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 180 | and less :: "'a \<Rightarrow> 'a \<Rightarrow> bool" | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 181 | begin | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 182 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 183 | notation | 
| 67403 | 184 |   less_eq  ("'(\<le>')") and
 | 
| 185 |   less_eq  ("(_/ \<le> _)"  [51, 51] 50) and
 | |
| 186 |   less  ("'(<')") and
 | |
| 187 |   less  ("(_/ < _)"  [51, 51] 50)
 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 188 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 189 | abbreviation (input) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 190 | greater_eq (infix "\<ge>" 50) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 191 | where "x \<ge> y \<equiv> y \<le> x" | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 192 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 193 | abbreviation (input) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 194 | greater (infix ">" 50) | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 195 | where "x > y \<equiv> y < x" | 
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 196 | |
| 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 197 | notation (ASCII) | 
| 67403 | 198 |   less_eq  ("'(<=')") and
 | 
| 199 |   less_eq  ("(_/ <= _)" [51, 51] 50)
 | |
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 200 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 201 | notation (input) | 
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 202 | greater_eq (infix ">=" 50) | 
| 35092 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 203 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 204 | end | 
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 205 | |
| 
cfe605c54e50
moved less_eq, less to Orderings.thy; moved abs, sgn to Groups.thy
 haftmann parents: 
35028diff
changeset | 206 | |
| 60758 | 207 | subsection \<open>Quasi orders\<close> | 
| 15524 | 208 | |
| 27682 | 209 | class preorder = ord + | 
| 210 | assumes less_le_not_le: "x < y \<longleftrightarrow> x \<le> y \<and> \<not> (y \<le> x)" | |
| 25062 | 211 | and order_refl [iff]: "x \<le> x" | 
| 212 | and order_trans: "x \<le> y \<Longrightarrow> y \<le> z \<Longrightarrow> x \<le> z" | |
| 21248 | 213 | begin | 
| 214 | ||
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 215 | sublocale order: preordering less_eq less + dual_order: preordering greater_eq greater | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 216 | proof - | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 217 | interpret preordering less_eq less | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 218 | by standard (auto intro: order_trans simp add: less_le_not_le) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 219 | show \<open>preordering less_eq less\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 220 | by (fact preordering_axioms) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 221 | then show \<open>preordering greater_eq greater\<close> | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 222 | by (rule preordering_dualI) | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 223 | qed | 
| 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 224 | |
| 60758 | 225 | text \<open>Reflexivity.\<close> | 
| 15524 | 226 | |
| 25062 | 227 | lemma eq_refl: "x = y \<Longrightarrow> x \<le> y" | 
| 61799 | 228 | \<comment> \<open>This form is useful with the classical reasoner.\<close> | 
| 23212 | 229 | by (erule ssubst) (rule order_refl) | 
| 15524 | 230 | |
| 25062 | 231 | lemma less_irrefl [iff]: "\<not> x < x" | 
| 27682 | 232 | by (simp add: less_le_not_le) | 
| 233 | ||
| 234 | lemma less_imp_le: "x < y \<Longrightarrow> x \<le> y" | |
| 63172 | 235 | by (simp add: less_le_not_le) | 
| 27682 | 236 | |
| 237 | ||
| 60758 | 238 | text \<open>Asymmetry.\<close> | 
| 27682 | 239 | |
| 240 | lemma less_not_sym: "x < y \<Longrightarrow> \<not> (y < x)" | |
| 241 | by (simp add: less_le_not_le) | |
| 242 | ||
| 243 | lemma less_asym: "x < y \<Longrightarrow> (\<not> P \<Longrightarrow> y < x) \<Longrightarrow> P" | |
| 244 | by (drule less_not_sym, erule contrapos_np) simp | |
| 245 | ||
| 246 | ||
| 60758 | 247 | text \<open>Transitivity.\<close> | 
| 27682 | 248 | |
| 249 | lemma less_trans: "x < y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 250 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 251 | |
| 252 | lemma le_less_trans: "x \<le> y \<Longrightarrow> y < z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 253 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 254 | |
| 255 | lemma less_le_trans: "x < y \<Longrightarrow> y \<le> z \<Longrightarrow> x < z" | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 256 | by (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 257 | |
| 258 | ||
| 60758 | 259 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 27682 | 260 | |
| 261 | lemma less_imp_not_less: "x < y \<Longrightarrow> (\<not> y < x) \<longleftrightarrow> True" | |
| 262 | by (blast elim: less_asym) | |
| 263 | ||
| 264 | lemma less_imp_triv: "x < y \<Longrightarrow> (y < x \<longrightarrow> P) \<longleftrightarrow> True" | |
| 265 | by (blast elim: less_asym) | |
| 266 | ||
| 267 | ||
| 60758 | 268 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 27682 | 269 | |
| 270 | lemma less_asym': "a < b \<Longrightarrow> b < a \<Longrightarrow> P" | |
| 271 | by (rule less_asym) | |
| 272 | ||
| 273 | ||
| 60758 | 274 | text \<open>Dual order\<close> | 
| 27682 | 275 | |
| 276 | lemma dual_preorder: | |
| 73271 
05a873f90655
dedicated locale for preorder and abstract bdd operation
 haftmann parents: 
71851diff
changeset | 277 | \<open>class.preorder (\<ge>) (>)\<close> | 
| 63819 | 278 | by standard (auto simp add: less_le_not_le intro: order_trans) | 
| 27682 | 279 | |
| 280 | end | |
| 281 | ||
| 73794 | 282 | lemma preordering_preorderI: | 
| 283 | \<open>class.preorder (\<^bold>\<le>) (\<^bold><)\<close> if \<open>preordering (\<^bold>\<le>) (\<^bold><)\<close> | |
| 284 | for less_eq (infix \<open>\<^bold>\<le>\<close> 50) and less (infix \<open>\<^bold><\<close> 50) | |
| 285 | proof - | |
| 286 | from that interpret preordering \<open>(\<^bold>\<le>)\<close> \<open>(\<^bold><)\<close> . | |
| 287 | show ?thesis | |
| 288 | by standard (auto simp add: strict_iff_not refl intro: trans) | |
| 289 | qed | |
| 290 | ||
| 291 | ||
| 27682 | 292 | |
| 60758 | 293 | subsection \<open>Partial orders\<close> | 
| 27682 | 294 | |
| 295 | class order = preorder + | |
| 73411 | 296 | assumes order_antisym: "x \<le> y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | 
| 27682 | 297 | begin | 
| 298 | ||
| 51487 | 299 | lemma less_le: "x < y \<longleftrightarrow> x \<le> y \<and> x \<noteq> y" | 
| 73411 | 300 | by (auto simp add: less_le_not_le intro: order_antisym) | 
| 51487 | 301 | |
| 63819 | 302 | sublocale order: ordering less_eq less + dual_order: ordering greater_eq greater | 
| 303 | proof - | |
| 304 | interpret ordering less_eq less | |
| 73411 | 305 | by standard (auto intro: order_antisym order_trans simp add: less_le) | 
| 63819 | 306 | show "ordering less_eq less" | 
| 307 | by (fact ordering_axioms) | |
| 308 | then show "ordering greater_eq greater" | |
| 309 | by (rule ordering_dualI) | |
| 310 | qed | |
| 51487 | 311 | |
| 73411 | 312 | print_theorems | 
| 313 | ||
| 60758 | 314 | text \<open>Reflexivity.\<close> | 
| 15524 | 315 | |
| 25062 | 316 | lemma le_less: "x \<le> y \<longleftrightarrow> x < y \<or> x = y" | 
| 61799 | 317 | \<comment> \<open>NOT suitable for iff, since it can cause PROOF FAILED.\<close> | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 318 | by (fact order.order_iff_strict) | 
| 15524 | 319 | |
| 25062 | 320 | lemma le_imp_less_or_eq: "x \<le> y \<Longrightarrow> x < y \<or> x = y" | 
| 63172 | 321 | by (simp add: less_le) | 
| 15524 | 322 | |
| 21329 | 323 | |
| 60758 | 324 | text \<open>Useful for simplification, but too risky to include by default.\<close> | 
| 21329 | 325 | |
| 25062 | 326 | lemma less_imp_not_eq: "x < y \<Longrightarrow> (x = y) \<longleftrightarrow> False" | 
| 23212 | 327 | by auto | 
| 21329 | 328 | |
| 25062 | 329 | lemma less_imp_not_eq2: "x < y \<Longrightarrow> (y = x) \<longleftrightarrow> False" | 
| 23212 | 330 | by auto | 
| 21329 | 331 | |
| 332 | ||
| 60758 | 333 | text \<open>Transitivity rules for calculational reasoning\<close> | 
| 21329 | 334 | |
| 25062 | 335 | lemma neq_le_trans: "a \<noteq> b \<Longrightarrow> a \<le> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 336 | by (fact order.not_eq_order_implies_strict) | 
| 21329 | 337 | |
| 25062 | 338 | lemma le_neq_trans: "a \<le> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a < b" | 
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 339 | by (rule order.not_eq_order_implies_strict) | 
| 21329 | 340 | |
| 15524 | 341 | |
| 60758 | 342 | text \<open>Asymmetry.\<close> | 
| 15524 | 343 | |
| 73411 | 344 | lemma order_eq_iff: "x = y \<longleftrightarrow> x \<le> y \<and> y \<le> x" | 
| 71851 | 345 | by (fact order.eq_iff) | 
| 15524 | 346 | |
| 25062 | 347 | lemma antisym_conv: "y \<le> x \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 73411 | 348 | by (simp add: order.eq_iff) | 
| 15524 | 349 | |
| 25062 | 350 | lemma less_imp_neq: "x < y \<Longrightarrow> x \<noteq> y" | 
| 71851 | 351 | by (fact order.strict_implies_not_eq) | 
| 21248 | 352 | |
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 353 | lemma antisym_conv1: "\<not> x < y \<Longrightarrow> x \<le> y \<longleftrightarrow> x = y" | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 354 | by (simp add: local.le_less) | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 355 | |
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 356 | lemma antisym_conv2: "x \<le> y \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 357 | by (simp add: local.less_le) | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 358 | |
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 359 | lemma leD: "y \<le> x \<Longrightarrow> \<not> x < y" | 
| 73411 | 360 | by (auto simp: less_le order.antisym) | 
| 21083 | 361 | |
| 60758 | 362 | text \<open>Least value operator\<close> | 
| 27107 | 363 | |
| 27299 | 364 | definition (in ord) | 
| 27107 | 365 |   Least :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "LEAST " 10) where
 | 
| 366 | "Least P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y))" | |
| 367 | ||
| 368 | lemma Least_equality: | |
| 369 | assumes "P x" | |
| 370 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 371 | shows "Least P = x" | |
| 372 | unfolding Least_def by (rule the_equality) | |
| 73411 | 373 | (blast intro: assms order.antisym)+ | 
| 27107 | 374 | |
| 375 | lemma LeastI2_order: | |
| 376 | assumes "P x" | |
| 377 | and "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 378 | and "\<And>x. P x \<Longrightarrow> \<forall>y. P y \<longrightarrow> x \<le> y \<Longrightarrow> Q x" | |
| 379 | shows "Q (Least P)" | |
| 380 | unfolding Least_def by (rule theI2) | |
| 73411 | 381 | (blast intro: assms order.antisym)+ | 
| 27107 | 382 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 383 | lemma Least_ex1: | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 384 | assumes "\<exists>!x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<le> y)" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 385 | shows Least1I: "P (Least P)" and Least1_le: "P z \<Longrightarrow> Least P \<le> z" | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 386 | using theI'[OF assms] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 387 | unfolding Least_def | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 388 | by auto | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69605diff
changeset | 389 | |
| 65963 | 390 | text \<open>Greatest value operator\<close> | 
| 391 | ||
| 392 | definition Greatest :: "('a \<Rightarrow> bool) \<Rightarrow> 'a" (binder "GREATEST " 10) where
 | |
| 393 | "Greatest P = (THE x. P x \<and> (\<forall>y. P y \<longrightarrow> x \<ge> y))" | |
| 394 | ||
| 395 | lemma GreatestI2_order: | |
| 396 | "\<lbrakk> P x; | |
| 397 | \<And>y. P y \<Longrightarrow> x \<ge> y; | |
| 398 | \<And>x. \<lbrakk> P x; \<forall>y. P y \<longrightarrow> x \<ge> y \<rbrakk> \<Longrightarrow> Q x \<rbrakk> | |
| 399 | \<Longrightarrow> Q (Greatest P)" | |
| 400 | unfolding Greatest_def | |
| 73411 | 401 | by (rule theI2) (blast intro: order.antisym)+ | 
| 65963 | 402 | |
| 403 | lemma Greatest_equality: | |
| 404 | "\<lbrakk> P x; \<And>y. P y \<Longrightarrow> x \<ge> y \<rbrakk> \<Longrightarrow> Greatest P = x" | |
| 405 | unfolding Greatest_def | |
| 73411 | 406 | by (rule the_equality) (blast intro: order.antisym)+ | 
| 65963 | 407 | |
| 21248 | 408 | end | 
| 15524 | 409 | |
| 63819 | 410 | lemma ordering_orderI: | 
| 411 | fixes less_eq (infix "\<^bold>\<le>" 50) | |
| 412 | and less (infix "\<^bold><" 50) | |
| 413 | assumes "ordering less_eq less" | |
| 414 | shows "class.order less_eq less" | |
| 415 | proof - | |
| 416 | from assms interpret ordering less_eq less . | |
| 417 | show ?thesis | |
| 418 | by standard (auto intro: antisym trans simp add: refl strict_iff_order) | |
| 419 | qed | |
| 56545 | 420 | |
| 421 | lemma order_strictI: | |
| 73794 | 422 | fixes less (infix "\<^bold><" 50) | 
| 423 | and less_eq (infix "\<^bold>\<le>" 50) | |
| 424 | assumes "\<And>a b. a \<^bold>\<le> b \<longleftrightarrow> a \<^bold>< b \<or> a = b" | |
| 425 | assumes "\<And>a b. a \<^bold>< b \<Longrightarrow> \<not> b \<^bold>< a" | |
| 426 | assumes "\<And>a. \<not> a \<^bold>< a" | |
| 427 | assumes "\<And>a b c. a \<^bold>< b \<Longrightarrow> b \<^bold>< c \<Longrightarrow> a \<^bold>< c" | |
| 56545 | 428 | shows "class.order less_eq less" | 
| 63819 | 429 | by (rule ordering_orderI) (rule ordering_strictI, (fact assms)+) | 
| 430 | ||
| 431 | context order | |
| 432 | begin | |
| 433 | ||
| 434 | text \<open>Dual order\<close> | |
| 435 | ||
| 436 | lemma dual_order: | |
| 67398 | 437 | "class.order (\<ge>) (>)" | 
| 63819 | 438 | using dual_order.ordering_axioms by (rule ordering_orderI) | 
| 439 | ||
| 440 | end | |
| 56545 | 441 | |
| 442 | ||
| 60758 | 443 | subsection \<open>Linear (total) orders\<close> | 
| 21329 | 444 | |
| 22316 | 445 | class linorder = order + | 
| 25207 | 446 | assumes linear: "x \<le> y \<or> y \<le> x" | 
| 21248 | 447 | begin | 
| 448 | ||
| 25062 | 449 | lemma less_linear: "x < y \<or> x = y \<or> y < x" | 
| 23212 | 450 | unfolding less_le using less_le linear by blast | 
| 21248 | 451 | |
| 25062 | 452 | lemma le_less_linear: "x \<le> y \<or> y < x" | 
| 23212 | 453 | by (simp add: le_less less_linear) | 
| 21248 | 454 | |
| 455 | lemma le_cases [case_names le ge]: | |
| 25062 | 456 | "(x \<le> y \<Longrightarrow> P) \<Longrightarrow> (y \<le> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 457 | using linear by blast | 
| 21248 | 458 | |
| 61762 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 459 | lemma (in linorder) le_cases3: | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 460 | "\<lbrakk>\<lbrakk>x \<le> y; y \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> x; x \<le> z\<rbrakk> \<Longrightarrow> P; \<lbrakk>x \<le> z; z \<le> y\<rbrakk> \<Longrightarrow> P; | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 461 | \<lbrakk>z \<le> y; y \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>y \<le> z; z \<le> x\<rbrakk> \<Longrightarrow> P; \<lbrakk>z \<le> x; x \<le> y\<rbrakk> \<Longrightarrow> P\<rbrakk> \<Longrightarrow> P" | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 462 | by (blast intro: le_cases) | 
| 
d50b993b4fb9
Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
 paulson <lp15@cam.ac.uk> parents: 
61699diff
changeset | 463 | |
| 22384 
33a46e6c7f04
prefix of class interpretation not mandatory any longer
 haftmann parents: 
22377diff
changeset | 464 | lemma linorder_cases [case_names less equal greater]: | 
| 25062 | 465 | "(x < y \<Longrightarrow> P) \<Longrightarrow> (x = y \<Longrightarrow> P) \<Longrightarrow> (y < x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 23212 | 466 | using less_linear by blast | 
| 21248 | 467 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 468 | lemma linorder_wlog[case_names le sym]: | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 469 | "(\<And>a b. a \<le> b \<Longrightarrow> P a b) \<Longrightarrow> (\<And>a b. P b a \<Longrightarrow> P a b) \<Longrightarrow> P a b" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 470 | by (cases rule: le_cases[of a b]) blast+ | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
56545diff
changeset | 471 | |
| 25062 | 472 | lemma not_less: "\<not> x < y \<longleftrightarrow> y \<le> x" | 
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 473 | unfolding less_le | 
| 73411 | 474 | using linear by (blast intro: order.antisym) | 
| 23212 | 475 | |
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 476 | lemma not_less_iff_gr_or_eq: "\<not>(x < y) \<longleftrightarrow> (x > y \<or> x = y)" | 
| 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 477 | by (auto simp add:not_less le_less) | 
| 15524 | 478 | |
| 25062 | 479 | lemma not_le: "\<not> x \<le> y \<longleftrightarrow> y < x" | 
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 480 | unfolding less_le | 
| 73411 | 481 | using linear by (blast intro: order.antisym) | 
| 15524 | 482 | |
| 25062 | 483 | lemma neq_iff: "x \<noteq> y \<longleftrightarrow> x < y \<or> y < x" | 
| 23212 | 484 | by (cut_tac x = x and y = y in less_linear, auto) | 
| 15524 | 485 | |
| 25062 | 486 | lemma neqE: "x \<noteq> y \<Longrightarrow> (x < y \<Longrightarrow> R) \<Longrightarrow> (y < x \<Longrightarrow> R) \<Longrightarrow> R" | 
| 23212 | 487 | by (simp add: neq_iff) blast | 
| 15524 | 488 | |
| 25062 | 489 | lemma antisym_conv3: "\<not> y < x \<Longrightarrow> \<not> x < y \<longleftrightarrow> x = y" | 
| 73411 | 490 | by (blast intro: order.antisym dest: not_less [THEN iffD1]) | 
| 15524 | 491 | |
| 25062 | 492 | lemma leI: "\<not> x < y \<Longrightarrow> y \<le> x" | 
| 23212 | 493 | unfolding not_less . | 
| 16796 | 494 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 495 | lemma not_le_imp_less: "\<not> y \<le> x \<Longrightarrow> x < y" | 
| 23212 | 496 | unfolding not_le . | 
| 21248 | 497 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 498 | lemma linorder_less_wlog[case_names less refl sym]: | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 499 | "\<lbrakk>\<And>a b. a < b \<Longrightarrow> P a b; \<And>a. P a a; \<And>a b. P b a \<Longrightarrow> P a b\<rbrakk> \<Longrightarrow> P a b" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 500 | using antisym_conv3 by blast | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64287diff
changeset | 501 | |
| 60758 | 502 | text \<open>Dual order\<close> | 
| 22916 | 503 | |
| 26014 | 504 | lemma dual_linorder: | 
| 67398 | 505 | "class.linorder (\<ge>) (>)" | 
| 36635 
080b755377c0
locale predicates of classes carry a mandatory "class" prefix
 haftmann parents: 
35828diff
changeset | 506 | by (rule class.linorder.intro, rule dual_order) (unfold_locales, rule linear) | 
| 22916 | 507 | |
| 21248 | 508 | end | 
| 509 | ||
| 23948 | 510 | |
| 60758 | 511 | text \<open>Alternative introduction rule with bias towards strict order\<close> | 
| 56545 | 512 | |
| 513 | lemma linorder_strictI: | |
| 63819 | 514 | fixes less_eq (infix "\<^bold>\<le>" 50) | 
| 515 | and less (infix "\<^bold><" 50) | |
| 56545 | 516 | assumes "class.order less_eq less" | 
| 63819 | 517 | assumes trichotomy: "\<And>a b. a \<^bold>< b \<or> a = b \<or> b \<^bold>< a" | 
| 56545 | 518 | shows "class.linorder less_eq less" | 
| 519 | proof - | |
| 520 | interpret order less_eq less | |
| 60758 | 521 | by (fact \<open>class.order less_eq less\<close>) | 
| 56545 | 522 | show ?thesis | 
| 523 | proof | |
| 524 | fix a b | |
| 63819 | 525 | show "a \<^bold>\<le> b \<or> b \<^bold>\<le> a" | 
| 56545 | 526 | using trichotomy by (auto simp add: le_less) | 
| 527 | qed | |
| 528 | qed | |
| 529 | ||
| 530 | ||
| 60758 | 531 | subsection \<open>Reasoning tools setup\<close> | 
| 21083 | 532 | |
| 60758 | 533 | ML \<open> | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 534 | structure Logic_Signature : LOGIC_SIGNATURE = struct | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 535 | val mk_Trueprop = HOLogic.mk_Trueprop | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 536 | val dest_Trueprop = HOLogic.dest_Trueprop | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 537 | val Trueprop_conv = HOLogic.Trueprop_conv | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 538 | val Not = HOLogic.Not | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 539 | val conj = HOLogic.conj | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 540 | val disj = HOLogic.disj | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 541 | |
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 542 |   val notI = @{thm notI}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 543 |   val ccontr = @{thm ccontr}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 544 |   val conjI = @{thm conjI}  
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 545 |   val conjE = @{thm conjE}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 546 |   val disjE = @{thm disjE}
 | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 547 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 548 |   val not_not_conv = Conv.rewr_conv @{thm eq_reflection[OF not_not]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 549 |   val de_Morgan_conj_conv = Conv.rewr_conv @{thm eq_reflection[OF de_Morgan_conj]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 550 |   val de_Morgan_disj_conv = Conv.rewr_conv @{thm eq_reflection[OF de_Morgan_disj]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 551 |   val conj_disj_distribL_conv = Conv.rewr_conv @{thm eq_reflection[OF conj_disj_distribL]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 552 |   val conj_disj_distribR_conv = Conv.rewr_conv @{thm eq_reflection[OF conj_disj_distribR]}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 553 | end | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 554 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 555 | structure HOL_Base_Order_Tac = Base_Order_Tac( | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 556 | structure Logic_Sig = Logic_Signature; | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 557 | (* Exclude types with specialised solvers. *) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 558 | val excluded_types = [HOLogic.natT, HOLogic.intT, HOLogic.realT] | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 559 | ) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 560 | |
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 561 | structure HOL_Order_Tac = Order_Tac(structure Base_Tac = HOL_Base_Order_Tac) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 562 | |
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 563 | fun print_orders ctxt0 = | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 564 | let | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 565 | val ctxt = Config.put show_sorts true ctxt0 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 566 | val orders = HOL_Order_Tac.Data.get (Context.Proof ctxt) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 567 | fun pretty_term t = Pretty.block | 
| 24920 | 568 | [Pretty.quote (Syntax.pretty_term ctxt t), Pretty.brk 1, | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 569 | Pretty.str "::", Pretty.brk 1, | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 570 | Pretty.quote (Syntax.pretty_typ ctxt (type_of t)), Pretty.brk 1] | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 571 |     fun pretty_order ({kind = kind, ops = ops, ...}, _) =
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 572 |       Pretty.block ([Pretty.str (@{make_string} kind), Pretty.str ":", Pretty.brk 1]
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 573 | @ map pretty_term ops) | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 574 | in | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 575 | Pretty.writeln (Pretty.big_list "order structures:" (map pretty_order orders)) | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 576 | end | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 577 | |
| 56508 | 578 | val _ = | 
| 69593 | 579 | Outer_Syntax.command \<^command_keyword>\<open>print_orders\<close> | 
| 56508 | 580 | "print order structures available to transitivity reasoner" | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 581 | (Scan.succeed (Toplevel.keep (print_orders o Toplevel.context_of))) | 
| 56508 | 582 | |
| 60758 | 583 | \<close> | 
| 21091 | 584 | |
| 60758 | 585 | method_setup order = \<open> | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 586 | Scan.succeed (fn ctxt => SIMPLE_METHOD' (HOL_Order_Tac.tac [] ctxt)) | 
| 60758 | 587 | \<close> "transitivity reasoner" | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 588 | |
| 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 589 | |
| 60758 | 590 | text \<open>Declarations to set up transitivity reasoner of partial and linear orders.\<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 591 | |
| 25076 | 592 | context order | 
| 593 | begin | |
| 594 | ||
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 595 | lemma nless_le: "(\<not> a < b) \<longleftrightarrow> (\<not> a \<le> b) \<or> a = b" | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 596 | using local.dual_order.order_iff_strict by blast | 
| 27689 | 597 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 598 | local_setup \<open> | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 599 |   HOL_Order_Tac.declare_order {
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 600 |     ops = {eq = @{term \<open>(=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool\<close>}, le = @{term \<open>(\<le>)\<close>}, lt = @{term \<open>(<)\<close>}},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 601 |     thms = {trans = @{thm order_trans}, refl = @{thm order_refl}, eqD1 = @{thm eq_refl},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 602 |             eqD2 = @{thm eq_refl[OF sym]}, antisym = @{thm order_antisym}, contr = @{thm notE}},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 603 |     conv_thms = {less_le = @{thm eq_reflection[OF less_le]},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 604 |                  nless_le = @{thm eq_reflection[OF nless_le]}}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 605 | } | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 606 | \<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 607 | |
| 25076 | 608 | end | 
| 609 | ||
| 610 | context linorder | |
| 611 | begin | |
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 612 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 613 | lemma nle_le: "(\<not> a \<le> b) \<longleftrightarrow> b \<le> a \<and> b \<noteq> a" | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 614 | using not_le less_le by simp | 
| 25076 | 615 | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 616 | local_setup \<open> | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 617 |   HOL_Order_Tac.declare_linorder {
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 618 |     ops = {eq = @{term \<open>(=) :: 'a \<Rightarrow> 'a \<Rightarrow> bool\<close>}, le = @{term \<open>(\<le>)\<close>}, lt = @{term \<open>(<)\<close>}},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 619 |     thms = {trans = @{thm order_trans}, refl = @{thm order_refl}, eqD1 = @{thm eq_refl},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 620 |             eqD2 = @{thm eq_refl[OF sym]}, antisym = @{thm order_antisym}, contr = @{thm notE}},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 621 |     conv_thms = {less_le = @{thm eq_reflection[OF less_le]},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 622 |                  nless_le = @{thm eq_reflection[OF not_less]},
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 623 |                  nle_le = @{thm eq_reflection[OF nle_le]}}
 | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 624 | } | 
| 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 625 | \<close> | 
| 24641 
448edc627ee4
Transitivity reasoner set up for locales order and linorder.
 ballarin parents: 
24422diff
changeset | 626 | |
| 25076 | 627 | end | 
| 628 | ||
| 60758 | 629 | setup \<open> | 
| 56509 | 630 | map_theory_simpset (fn ctxt0 => ctxt0 addSolver | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 631 | mk_solver "Transitivity" (fn ctxt => HOL_Order_Tac.tac (Simplifier.prems_of ctxt) ctxt)) | 
| 60758 | 632 | \<close> | 
| 15524 | 633 | |
| 60758 | 634 | ML \<open> | 
| 56509 | 635 | local | 
| 636 | fun prp t thm = Thm.prop_of thm = t; (* FIXME proper aconv!? *) | |
| 637 | in | |
| 15524 | 638 | |
| 56509 | 639 | fun antisym_le_simproc ctxt ct = | 
| 59582 | 640 | (case Thm.term_of ct of | 
| 56509 | 641 | (le as Const (_, T)) $ r $ s => | 
| 642 | (let | |
| 643 | val prems = Simplifier.prems_of ctxt; | |
| 69593 | 644 | val less = Const (\<^const_name>\<open>less\<close>, T); | 
| 56509 | 645 | val t = HOLogic.mk_Trueprop(le $ s $ r); | 
| 646 | in | |
| 647 | (case find_first (prp t) prems of | |
| 648 | NONE => | |
| 649 | let val t = HOLogic.mk_Trueprop(HOLogic.Not $ (less $ r $ s)) in | |
| 650 | (case find_first (prp t) prems of | |
| 651 | NONE => NONE | |
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 652 |               | SOME thm => SOME(mk_meta_eq(thm RS @{thm antisym_conv1})))
 | 
| 56509 | 653 | end | 
| 654 |          | SOME thm => SOME (mk_meta_eq (thm RS @{thm order_class.antisym_conv})))
 | |
| 655 | end handle THM _ => NONE) | |
| 656 | | _ => NONE); | |
| 15524 | 657 | |
| 56509 | 658 | fun antisym_less_simproc ctxt ct = | 
| 59582 | 659 | (case Thm.term_of ct of | 
| 56509 | 660 | NotC $ ((less as Const(_,T)) $ r $ s) => | 
| 661 | (let | |
| 662 | val prems = Simplifier.prems_of ctxt; | |
| 69593 | 663 | val le = Const (\<^const_name>\<open>less_eq\<close>, T); | 
| 56509 | 664 | val t = HOLogic.mk_Trueprop(le $ r $ s); | 
| 665 | in | |
| 666 | (case find_first (prp t) prems of | |
| 667 | NONE => | |
| 668 | let val t = HOLogic.mk_Trueprop (NotC $ (less $ s $ r)) in | |
| 669 | (case find_first (prp t) prems of | |
| 670 | NONE => NONE | |
| 671 |               | SOME thm => SOME (mk_meta_eq(thm RS @{thm linorder_class.antisym_conv3})))
 | |
| 672 | end | |
| 70749 
5d06b7bb9d22
More type class generalisations. Note that linorder_antisym_conv1 and linorder_antisym_conv2 no longer exist.
 paulson <lp15@cam.ac.uk> parents: 
69815diff
changeset | 673 |         | SOME thm => SOME (mk_meta_eq (thm RS @{thm antisym_conv2})))
 | 
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 674 | end handle THM _ => NONE) | 
| 56509 | 675 | | _ => NONE); | 
| 21083 | 676 | |
| 56509 | 677 | end; | 
| 60758 | 678 | \<close> | 
| 15524 | 679 | |
| 56509 | 680 | simproc_setup antisym_le ("(x::'a::order) \<le> y") = "K antisym_le_simproc"
 | 
| 681 | simproc_setup antisym_less ("\<not> (x::'a::linorder) < y") = "K antisym_less_simproc"
 | |
| 682 | ||
| 15524 | 683 | |
| 60758 | 684 | subsection \<open>Bounded quantifiers\<close> | 
| 21083 | 685 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 686 | syntax (ASCII) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 687 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3ALL _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 688 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3EX _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 689 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 690 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _<=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 691 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 692 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3ALL _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 693 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3EX _>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 694 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3ALL _>=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 695 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3EX _>=_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 696 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 697 |   "_All_neq" :: "[idt, 'a, bool] => bool"    ("(3ALL _~=_./ _)"  [0, 0, 10] 10)
 | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 698 |   "_Ex_neq" :: "[idt, 'a, bool] => bool"    ("(3EX _~=_./ _)"  [0, 0, 10] 10)
 | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 699 | |
| 61955 
e96292f32c3c
former "xsymbols" syntax is used by default, and ASCII replacement syntax with print mode "ASCII";
 wenzelm parents: 
61824diff
changeset | 700 | syntax | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 701 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 702 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 703 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 704 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<le>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 705 | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 706 |   "_All_greater" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 707 |   "_Ex_greater" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_>_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 708 |   "_All_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 709 |   "_Ex_greater_eq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<ge>_./ _)" [0, 0, 10] 10)
 | 
| 21083 | 710 | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 711 |   "_All_neq" :: "[idt, 'a, bool] => bool"    ("(3\<forall>_\<noteq>_./ _)"  [0, 0, 10] 10)
 | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 712 |   "_Ex_neq" :: "[idt, 'a, bool] => bool"    ("(3\<exists>_\<noteq>_./ _)"  [0, 0, 10] 10)
 | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 713 | |
| 62521 | 714 | syntax (input) | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 715 |   "_All_less" :: "[idt, 'a, bool] => bool"    ("(3! _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 716 |   "_Ex_less" :: "[idt, 'a, bool] => bool"    ("(3? _<_./ _)"  [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 717 |   "_All_less_eq" :: "[idt, 'a, bool] => bool"    ("(3! _<=_./ _)" [0, 0, 10] 10)
 | 
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 718 |   "_Ex_less_eq" :: "[idt, 'a, bool] => bool"    ("(3? _<=_./ _)" [0, 0, 10] 10)
 | 
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 719 |   "_All_neq" :: "[idt, 'a, bool] => bool"    ("(3! _~=_./ _)"  [0, 0, 10] 10)
 | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 720 |   "_Ex_neq" :: "[idt, 'a, bool] => bool"    ("(3? _~=_./ _)"  [0, 0, 10] 10)
 | 
| 21083 | 721 | |
| 722 | translations | |
| 67091 | 723 | "\<forall>x<y. P" \<rightharpoonup> "\<forall>x. x < y \<longrightarrow> P" | 
| 724 | "\<exists>x<y. P" \<rightharpoonup> "\<exists>x. x < y \<and> P" | |
| 725 | "\<forall>x\<le>y. P" \<rightharpoonup> "\<forall>x. x \<le> y \<longrightarrow> P" | |
| 726 | "\<exists>x\<le>y. P" \<rightharpoonup> "\<exists>x. x \<le> y \<and> P" | |
| 727 | "\<forall>x>y. P" \<rightharpoonup> "\<forall>x. x > y \<longrightarrow> P" | |
| 728 | "\<exists>x>y. P" \<rightharpoonup> "\<exists>x. x > y \<and> P" | |
| 729 | "\<forall>x\<ge>y. P" \<rightharpoonup> "\<forall>x. x \<ge> y \<longrightarrow> P" | |
| 730 | "\<exists>x\<ge>y. P" \<rightharpoonup> "\<exists>x. x \<ge> y \<and> P" | |
| 67673 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 731 | "\<forall>x\<noteq>y. P" \<rightharpoonup> "\<forall>x. x \<noteq> y \<longrightarrow> P" | 
| 
c8caefb20564
lots of new material, ultimately related to measure theory
 paulson <lp15@cam.ac.uk> parents: 
67452diff
changeset | 732 | "\<exists>x\<noteq>y. P" \<rightharpoonup> "\<exists>x. x \<noteq> y \<and> P" | 
| 21083 | 733 | |
| 60758 | 734 | print_translation \<open> | 
| 21083 | 735 | let | 
| 69593 | 736 | val All_binder = Mixfix.binder_name \<^const_syntax>\<open>All\<close>; | 
| 737 | val Ex_binder = Mixfix.binder_name \<^const_syntax>\<open>Ex\<close>; | |
| 738 | val impl = \<^const_syntax>\<open>HOL.implies\<close>; | |
| 739 | val conj = \<^const_syntax>\<open>HOL.conj\<close>; | |
| 740 | val less = \<^const_syntax>\<open>less\<close>; | |
| 741 | val less_eq = \<^const_syntax>\<open>less_eq\<close>; | |
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 742 | |
| 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 743 | val trans = | 
| 35115 | 744 | [((All_binder, impl, less), | 
| 69593 | 745 | (\<^syntax_const>\<open>_All_less\<close>, \<^syntax_const>\<open>_All_greater\<close>)), | 
| 35115 | 746 | ((All_binder, impl, less_eq), | 
| 69593 | 747 | (\<^syntax_const>\<open>_All_less_eq\<close>, \<^syntax_const>\<open>_All_greater_eq\<close>)), | 
| 35115 | 748 | ((Ex_binder, conj, less), | 
| 69593 | 749 | (\<^syntax_const>\<open>_Ex_less\<close>, \<^syntax_const>\<open>_Ex_greater\<close>)), | 
| 35115 | 750 | ((Ex_binder, conj, less_eq), | 
| 69593 | 751 | (\<^syntax_const>\<open>_Ex_less_eq\<close>, \<^syntax_const>\<open>_Ex_greater_eq\<close>))]; | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 752 | |
| 35115 | 753 | fun matches_bound v t = | 
| 754 | (case t of | |
| 69593 | 755 | Const (\<^syntax_const>\<open>_bound\<close>, _) $ Free (v', _) => v = v' | 
| 35115 | 756 | | _ => false); | 
| 757 | fun contains_var v = Term.exists_subterm (fn Free (x, _) => x = v | _ => false); | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 758 | fun mk x c n P = Syntax.const c $ Syntax_Trans.mark_bound_body x $ n $ P; | 
| 21180 
f27f12bcafb8
fixed print_translation for ALL/EX and <, <=, etc.; tuned syntax names;
 wenzelm parents: 
21091diff
changeset | 759 | |
| 52143 | 760 | fun tr' q = (q, fn _ => | 
| 69593 | 761 | (fn [Const (\<^syntax_const>\<open>_bound\<close>, _) $ Free (v, T), | 
| 35364 | 762 | Const (c, _) $ (Const (d, _) $ t $ u) $ P] => | 
| 67398 | 763 | (case AList.lookup (=) trans (q, c, d) of | 
| 35115 | 764 | NONE => raise Match | 
| 765 | | SOME (l, g) => | |
| 49660 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 766 | if matches_bound v t andalso not (contains_var v u) then mk (v, T) l u P | 
| 
de49d9b4d7bc
more explicit Syntax_Trans.mark_bound_abs/mark_bound_body: preserve type information for show_markup;
 wenzelm parents: 
48891diff
changeset | 767 | else if matches_bound v u andalso not (contains_var v t) then mk (v, T) g t P | 
| 35115 | 768 | else raise Match) | 
| 52143 | 769 | | _ => raise Match)); | 
| 21524 | 770 | in [tr' All_binder, tr' Ex_binder] end | 
| 60758 | 771 | \<close> | 
| 21083 | 772 | |
| 773 | ||
| 60758 | 774 | subsection \<open>Transitivity reasoning\<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 775 | |
| 25193 | 776 | context ord | 
| 777 | begin | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 778 | |
| 25193 | 779 | lemma ord_le_eq_trans: "a \<le> b \<Longrightarrow> b = c \<Longrightarrow> a \<le> c" | 
| 780 | by (rule subst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 781 | |
| 25193 | 782 | lemma ord_eq_le_trans: "a = b \<Longrightarrow> b \<le> c \<Longrightarrow> a \<le> c" | 
| 783 | by (rule ssubst) | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 784 | |
| 25193 | 785 | lemma ord_less_eq_trans: "a < b \<Longrightarrow> b = c \<Longrightarrow> a < c" | 
| 786 | by (rule subst) | |
| 787 | ||
| 788 | lemma ord_eq_less_trans: "a = b \<Longrightarrow> b < c \<Longrightarrow> a < c" | |
| 789 | by (rule ssubst) | |
| 790 | ||
| 791 | end | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 792 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 793 | lemma order_less_subst2: "(a::'a::order) < b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 794 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 795 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 796 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 797 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 798 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 799 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 800 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 801 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 802 | lemma order_less_subst1: "(a::'a::order) < f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 803 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 804 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 805 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 806 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 807 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 808 | finally (less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 809 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 810 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 811 | lemma order_le_less_subst2: "(a::'a::order) <= b ==> f b < (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 812 | (!!x y. x <= y ==> f x <= f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 813 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 814 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 815 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 816 | also assume "f b < c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 817 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 818 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 819 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 820 | lemma order_le_less_subst1: "(a::'a::order) <= f b ==> (b::'b::order) < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 821 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 822 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 823 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 824 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 825 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 826 | finally (le_less_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 827 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 828 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 829 | lemma order_less_le_subst2: "(a::'a::order) < b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 830 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 831 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 832 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 833 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 834 | also assume "f b <= c" | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 835 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 836 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 837 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 838 | lemma order_less_le_subst1: "(a::'a::order) < f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 839 | (!!x y. x <= y ==> f x <= f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 840 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 841 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 842 | assume "a < f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 843 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 844 | finally (less_le_trans) show ?thesis . | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 845 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 846 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 847 | lemma order_subst1: "(a::'a::order) <= f b ==> (b::'b::order) <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 848 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 849 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 850 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 851 | assume "a <= f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 852 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 853 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 854 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 855 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 856 | lemma order_subst2: "(a::'a::order) <= b ==> f b <= (c::'c::order) ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 857 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 858 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 859 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 860 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 861 | also assume "f b <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 862 | finally (order_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 863 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 864 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 865 | lemma ord_le_eq_subst: "a <= b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 866 | (!!x y. x <= y ==> f x <= f y) ==> f a <= c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 867 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 868 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 869 | assume "a <= b" hence "f a <= f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 870 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 871 | finally (ord_le_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 872 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 873 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 874 | lemma ord_eq_le_subst: "a = f b ==> b <= c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 875 | (!!x y. x <= y ==> f x <= f y) ==> a <= f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 876 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 877 | assume r: "!!x y. x <= y ==> f x <= f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 878 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 879 | also assume "b <= c" hence "f b <= f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 880 | finally (ord_eq_le_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 881 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 882 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 883 | lemma ord_less_eq_subst: "a < b ==> f b = c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 884 | (!!x y. x < y ==> f x < f y) ==> f a < c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 885 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 886 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 887 | assume "a < b" hence "f a < f b" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 888 | also assume "f b = c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 889 | finally (ord_less_eq_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 890 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 891 | |
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 892 | lemma ord_eq_less_subst: "a = f b ==> b < c ==> | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 893 | (!!x y. x < y ==> f x < f y) ==> a < f c" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 894 | proof - | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 895 | assume r: "!!x y. x < y ==> f x < f y" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 896 | assume "a = f b" | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 897 | also assume "b < c" hence "f b < f c" by (rule r) | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 898 | finally (ord_eq_less_trans) show ?thesis . | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 899 | qed | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 900 | |
| 60758 | 901 | text \<open> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 902 | Note that this list of rules is in reverse order of priorities. | 
| 60758 | 903 | \<close> | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 904 | |
| 27682 | 905 | lemmas [trans] = | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 906 | order_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 907 | order_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 908 | order_le_less_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 909 | order_le_less_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 910 | order_less_le_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 911 | order_less_le_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 912 | order_subst2 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 913 | order_subst1 | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 914 | ord_le_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 915 | ord_eq_le_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 916 | ord_less_eq_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 917 | ord_eq_less_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 918 | forw_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 919 | back_subst | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 920 | rev_mp | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 921 | mp | 
| 27682 | 922 | |
| 923 | lemmas (in order) [trans] = | |
| 924 | neq_le_trans | |
| 925 | le_neq_trans | |
| 926 | ||
| 927 | lemmas (in preorder) [trans] = | |
| 928 | less_trans | |
| 929 | less_asym' | |
| 930 | le_less_trans | |
| 931 | less_le_trans | |
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 932 | order_trans | 
| 27682 | 933 | |
| 934 | lemmas (in order) [trans] = | |
| 73411 | 935 | order.antisym | 
| 27682 | 936 | |
| 937 | lemmas (in ord) [trans] = | |
| 938 | ord_le_eq_trans | |
| 939 | ord_eq_le_trans | |
| 940 | ord_less_eq_trans | |
| 941 | ord_eq_less_trans | |
| 942 | ||
| 943 | lemmas [trans] = | |
| 944 | trans | |
| 945 | ||
| 946 | lemmas order_trans_rules = | |
| 947 | order_less_subst2 | |
| 948 | order_less_subst1 | |
| 949 | order_le_less_subst2 | |
| 950 | order_le_less_subst1 | |
| 951 | order_less_le_subst2 | |
| 952 | order_less_le_subst1 | |
| 953 | order_subst2 | |
| 954 | order_subst1 | |
| 955 | ord_le_eq_subst | |
| 956 | ord_eq_le_subst | |
| 957 | ord_less_eq_subst | |
| 958 | ord_eq_less_subst | |
| 959 | forw_subst | |
| 960 | back_subst | |
| 961 | rev_mp | |
| 962 | mp | |
| 963 | neq_le_trans | |
| 964 | le_neq_trans | |
| 965 | less_trans | |
| 966 | less_asym' | |
| 967 | le_less_trans | |
| 968 | less_le_trans | |
| 969 | order_trans | |
| 73411 | 970 | order.antisym | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 971 | ord_le_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 972 | ord_eq_le_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 973 | ord_less_eq_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 974 | ord_eq_less_trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 975 | trans | 
| 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 976 | |
| 60758 | 977 | text \<open>These support proving chains of decreasing inequalities | 
| 978 | a >= b >= c ... in Isar proofs.\<close> | |
| 21083 | 979 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 980 | lemma xt1 [no_atp]: | 
| 67091 | 981 | "a = b \<Longrightarrow> b > c \<Longrightarrow> a > c" | 
| 982 | "a > b \<Longrightarrow> b = c \<Longrightarrow> a > c" | |
| 983 | "a = b \<Longrightarrow> b \<ge> c \<Longrightarrow> a \<ge> c" | |
| 984 | "a \<ge> b \<Longrightarrow> b = c \<Longrightarrow> a \<ge> c" | |
| 985 | "(x::'a::order) \<ge> y \<Longrightarrow> y \<ge> x \<Longrightarrow> x = y" | |
| 986 | "(x::'a::order) \<ge> y \<Longrightarrow> y \<ge> z \<Longrightarrow> x \<ge> z" | |
| 987 | "(x::'a::order) > y \<Longrightarrow> y \<ge> z \<Longrightarrow> x > z" | |
| 988 | "(x::'a::order) \<ge> y \<Longrightarrow> y > z \<Longrightarrow> x > z" | |
| 989 | "(a::'a::order) > b \<Longrightarrow> b > a \<Longrightarrow> P" | |
| 990 | "(x::'a::order) > y \<Longrightarrow> y > z \<Longrightarrow> x > z" | |
| 991 | "(a::'a::order) \<ge> b \<Longrightarrow> a \<noteq> b \<Longrightarrow> a > b" | |
| 992 | "(a::'a::order) \<noteq> b \<Longrightarrow> a \<ge> b \<Longrightarrow> a > b" | |
| 993 | "a = f b \<Longrightarrow> b > c \<Longrightarrow> (\<And>x y. x > y \<Longrightarrow> f x > f y) \<Longrightarrow> a > f c" | |
| 994 | "a > b \<Longrightarrow> f b = c \<Longrightarrow> (\<And>x y. x > y \<Longrightarrow> f x > f y) \<Longrightarrow> f a > c" | |
| 995 | "a = f b \<Longrightarrow> b \<ge> c \<Longrightarrow> (\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> a \<ge> f c" | |
| 996 | "a \<ge> b \<Longrightarrow> f b = c \<Longrightarrow> (\<And>x y. x \<ge> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> f a \<ge> c" | |
| 25076 | 997 | by auto | 
| 21083 | 998 | |
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 999 | lemma xt2 [no_atp]: | 
| 21083 | 1000 | "(a::'a::order) >= f b ==> b >= c ==> (!!x y. x >= y ==> f x >= f y) ==> a >= f c" | 
| 1001 | by (subgoal_tac "f b >= f c", force, force) | |
| 1002 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1003 | lemma xt3 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) >= c ==> | 
| 21083 | 1004 | (!!x y. x >= y ==> f x >= f y) ==> f a >= c" | 
| 1005 | by (subgoal_tac "f a >= f b", force, force) | |
| 1006 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1007 | lemma xt4 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) >= c ==> | 
| 21083 | 1008 | (!!x y. x >= y ==> f x >= f y) ==> a > f c" | 
| 1009 | by (subgoal_tac "f b >= f c", force, force) | |
| 1010 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1011 | lemma xt5 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) >= c==> | 
| 21083 | 1012 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 1013 | by (subgoal_tac "f a > f b", force, force) | |
| 1014 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1015 | lemma xt6 [no_atp]: "(a::'a::order) >= f b ==> b > c ==> | 
| 21083 | 1016 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 1017 | by (subgoal_tac "f b > f c", force, force) | |
| 1018 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1019 | lemma xt7 [no_atp]: "(a::'a::order) >= b ==> (f b::'b::order) > c ==> | 
| 21083 | 1020 | (!!x y. x >= y ==> f x >= f y) ==> f a > c" | 
| 1021 | by (subgoal_tac "f a >= f b", force, force) | |
| 1022 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1023 | lemma xt8 [no_atp]: "(a::'a::order) > f b ==> (b::'b::order) > c ==> | 
| 21083 | 1024 | (!!x y. x > y ==> f x > f y) ==> a > f c" | 
| 1025 | by (subgoal_tac "f b > f c", force, force) | |
| 1026 | ||
| 45221 
3eadb9b6a055
mark "xt..." rules as "no_atp", since they are easy consequences of other better named properties
 blanchet parents: 
44921diff
changeset | 1027 | lemma xt9 [no_atp]: "(a::'a::order) > b ==> (f b::'b::order) > c ==> | 
| 21083 | 1028 | (!!x y. x > y ==> f x > f y) ==> f a > c" | 
| 1029 | by (subgoal_tac "f a > f b", force, force) | |
| 1030 | ||
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53216diff
changeset | 1031 | lemmas xtrans = xt1 xt2 xt3 xt4 xt5 xt6 xt7 xt8 xt9 | 
| 21083 | 1032 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1033 | (* | 
| 21083 | 1034 | Since "a >= b" abbreviates "b <= a", the abbreviation "..." stands | 
| 1035 | for the wrong thing in an Isar proof. | |
| 1036 | ||
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1037 | The extra transitivity rules can be used as follows: | 
| 21083 | 1038 | |
| 1039 | lemma "(a::'a::order) > z" | |
| 1040 | proof - | |
| 1041 | have "a >= b" (is "_ >= ?rhs") | |
| 1042 | sorry | |
| 1043 | also have "?rhs >= c" (is "_ >= ?rhs") | |
| 1044 | sorry | |
| 1045 | also (xtrans) have "?rhs = d" (is "_ = ?rhs") | |
| 1046 | sorry | |
| 1047 | also (xtrans) have "?rhs >= e" (is "_ >= ?rhs") | |
| 1048 | sorry | |
| 1049 | also (xtrans) have "?rhs > f" (is "_ > ?rhs") | |
| 1050 | sorry | |
| 1051 | also (xtrans) have "?rhs > z" | |
| 1052 | sorry | |
| 1053 | finally (xtrans) show ?thesis . | |
| 1054 | qed | |
| 1055 | ||
| 1056 | Alternatively, one can use "declare xtrans [trans]" and then | |
| 1057 | leave out the "(xtrans)" above. | |
| 1058 | *) | |
| 1059 | ||
| 23881 | 1060 | |
| 60758 | 1061 | subsection \<open>Monotonicity\<close> | 
| 21083 | 1062 | |
| 25076 | 1063 | context order | 
| 1064 | begin | |
| 1065 | ||
| 61076 | 1066 | definition mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 25076 | 1067 | "mono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<le> f y)" | 
| 1068 | ||
| 1069 | lemma monoI [intro?]: | |
| 61076 | 1070 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 25076 | 1071 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y) \<Longrightarrow> mono f" | 
| 1072 | unfolding mono_def by iprover | |
| 21216 
1c8580913738
made locale partial_order compatible with axclass order; changed import order; consecutive changes
 haftmann parents: 
21204diff
changeset | 1073 | |
| 25076 | 1074 | lemma monoD [dest?]: | 
| 61076 | 1075 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 25076 | 1076 | shows "mono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<le> f y" | 
| 1077 | unfolding mono_def by iprover | |
| 1078 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1079 | lemma monoE: | 
| 61076 | 1080 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1081 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1082 | assumes "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1083 | obtains "f x \<le> f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1084 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1085 | from assms show "f x \<le> f y" by (simp add: mono_def) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1086 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1087 | |
| 61076 | 1088 | definition antimono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1089 | "antimono f \<longleftrightarrow> (\<forall>x y. x \<le> y \<longrightarrow> f x \<ge> f y)" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1090 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1091 | lemma antimonoI [intro?]: | 
| 61076 | 1092 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1093 | shows "(\<And>x y. x \<le> y \<Longrightarrow> f x \<ge> f y) \<Longrightarrow> antimono f" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1094 | unfolding antimono_def by iprover | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1095 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1096 | lemma antimonoD [dest?]: | 
| 61076 | 1097 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1098 | shows "antimono f \<Longrightarrow> x \<le> y \<Longrightarrow> f x \<ge> f y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1099 | unfolding antimono_def by iprover | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1100 | |
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1101 | lemma antimonoE: | 
| 61076 | 1102 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1103 | assumes "antimono f" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1104 | assumes "x \<le> y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1105 | obtains "f x \<ge> f y" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1106 | proof | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1107 | from assms show "f x \<ge> f y" by (simp add: antimono_def) | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1108 | qed | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
54868diff
changeset | 1109 | |
| 61076 | 1110 | definition strict_mono :: "('a \<Rightarrow> 'b::order) \<Rightarrow> bool" where
 | 
| 30298 | 1111 | "strict_mono f \<longleftrightarrow> (\<forall>x y. x < y \<longrightarrow> f x < f y)" | 
| 1112 | ||
| 1113 | lemma strict_monoI [intro?]: | |
| 1114 | assumes "\<And>x y. x < y \<Longrightarrow> f x < f y" | |
| 1115 | shows "strict_mono f" | |
| 1116 | using assms unfolding strict_mono_def by auto | |
| 1117 | ||
| 1118 | lemma strict_monoD [dest?]: | |
| 1119 | "strict_mono f \<Longrightarrow> x < y \<Longrightarrow> f x < f y" | |
| 1120 | unfolding strict_mono_def by auto | |
| 1121 | ||
| 1122 | lemma strict_mono_mono [dest?]: | |
| 1123 | assumes "strict_mono f" | |
| 1124 | shows "mono f" | |
| 1125 | proof (rule monoI) | |
| 1126 | fix x y | |
| 1127 | assume "x \<le> y" | |
| 1128 | show "f x \<le> f y" | |
| 1129 | proof (cases "x = y") | |
| 1130 | case True then show ?thesis by simp | |
| 1131 | next | |
| 60758 | 1132 | case False with \<open>x \<le> y\<close> have "x < y" by simp | 
| 30298 | 1133 | with assms strict_monoD have "f x < f y" by auto | 
| 1134 | then show ?thesis by simp | |
| 73526 
a3cc9fa1295d
new automatic order prover: stateless, complete, verified
 nipkow parents: 
73411diff
changeset | 1135 | |
| 30298 | 1136 | qed | 
| 1137 | qed | |
| 1138 | ||
| 25076 | 1139 | end | 
| 1140 | ||
| 1141 | context linorder | |
| 1142 | begin | |
| 1143 | ||
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1144 | lemma mono_invE: | 
| 61076 | 1145 | fixes f :: "'a \<Rightarrow> 'b::order" | 
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1146 | assumes "mono f" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1147 | assumes "f x < f y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1148 | obtains "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1149 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1150 | show "x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1151 | proof (rule ccontr) | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1152 | assume "\<not> x \<le> y" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1153 | then have "y \<le> x" by simp | 
| 60758 | 1154 | with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE) | 
| 1155 | with \<open>f x < f y\<close> show False by simp | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1156 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1157 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
49769diff
changeset | 1158 | |
| 66936 | 1159 | lemma mono_strict_invE: | 
| 1160 | fixes f :: "'a \<Rightarrow> 'b::order" | |
| 1161 | assumes "mono f" | |
| 1162 | assumes "f x < f y" | |
| 1163 | obtains "x < y" | |
| 1164 | proof | |
| 1165 | show "x < y" | |
| 1166 | proof (rule ccontr) | |
| 1167 | assume "\<not> x < y" | |
| 1168 | then have "y \<le> x" by simp | |
| 1169 | with \<open>mono f\<close> obtain "f y \<le> f x" by (rule monoE) | |
| 1170 | with \<open>f x < f y\<close> show False by simp | |
| 1171 | qed | |
| 1172 | qed | |
| 1173 | ||
| 30298 | 1174 | lemma strict_mono_eq: | 
| 1175 | assumes "strict_mono f" | |
| 1176 | shows "f x = f y \<longleftrightarrow> x = y" | |
| 1177 | proof | |
| 1178 | assume "f x = f y" | |
| 1179 | show "x = y" proof (cases x y rule: linorder_cases) | |
| 1180 | case less with assms strict_monoD have "f x < f y" by auto | |
| 60758 | 1181 | with \<open>f x = f y\<close> show ?thesis by simp | 
| 30298 | 1182 | next | 
| 1183 | case equal then show ?thesis . | |
| 1184 | next | |
| 1185 | case greater with assms strict_monoD have "f y < f x" by auto | |
| 60758 | 1186 | with \<open>f x = f y\<close> show ?thesis by simp | 
| 30298 | 1187 | qed | 
| 1188 | qed simp | |
| 1189 | ||
| 1190 | lemma strict_mono_less_eq: | |
| 1191 | assumes "strict_mono f" | |
| 1192 | shows "f x \<le> f y \<longleftrightarrow> x \<le> y" | |
| 1193 | proof | |
| 1194 | assume "x \<le> y" | |
| 1195 | with assms strict_mono_mono monoD show "f x \<le> f y" by auto | |
| 1196 | next | |
| 1197 | assume "f x \<le> f y" | |
| 1198 | show "x \<le> y" proof (rule ccontr) | |
| 1199 | assume "\<not> x \<le> y" then have "y < x" by simp | |
| 1200 | with assms strict_monoD have "f y < f x" by auto | |
| 60758 | 1201 | with \<open>f x \<le> f y\<close> show False by simp | 
| 30298 | 1202 | qed | 
| 1203 | qed | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1204 | |
| 30298 | 1205 | lemma strict_mono_less: | 
| 1206 | assumes "strict_mono f" | |
| 1207 | shows "f x < f y \<longleftrightarrow> x < y" | |
| 1208 | using assms | |
| 1209 | by (auto simp add: less_le Orderings.less_le strict_mono_eq strict_mono_less_eq) | |
| 1210 | ||
| 54860 | 1211 | end | 
| 1212 | ||
| 1213 | ||
| 60758 | 1214 | subsection \<open>min and max -- fundamental\<close> | 
| 54860 | 1215 | |
| 1216 | definition (in ord) min :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1217 | "min a b = (if a \<le> b then a else b)" | |
| 1218 | ||
| 1219 | definition (in ord) max :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" where | |
| 1220 | "max a b = (if a \<le> b then b else a)" | |
| 1221 | ||
| 45931 | 1222 | lemma min_absorb1: "x \<le> y \<Longrightarrow> min x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1223 | by (simp add: min_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1224 | |
| 54857 | 1225 | lemma max_absorb2: "x \<le> y \<Longrightarrow> max x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1226 | by (simp add: max_def) | 
| 21383 
17e6275e13f5
added transitivity rules, reworking of min/max lemmas
 haftmann parents: 
21329diff
changeset | 1227 | |
| 61076 | 1228 | lemma min_absorb2: "(y::'a::order) \<le> x \<Longrightarrow> min x y = y" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1229 | by (simp add:min_def) | 
| 45893 | 1230 | |
| 61076 | 1231 | lemma max_absorb1: "(y::'a::order) \<le> x \<Longrightarrow> max x y = x" | 
| 54861 
00d551179872
postponed min/max lemmas until abstract lattice is available
 haftmann parents: 
54860diff
changeset | 1232 | by (simp add: max_def) | 
| 45893 | 1233 | |
| 61630 | 1234 | lemma max_min_same [simp]: | 
| 1235 | fixes x y :: "'a :: linorder" | |
| 1236 | shows "max x (min x y) = x" "max (min x y) x = x" "max (min x y) y = y" "max y (min x y) = y" | |
| 1237 | by(auto simp add: max_def min_def) | |
| 45893 | 1238 | |
| 66936 | 1239 | |
| 60758 | 1240 | subsection \<open>(Unique) top and bottom elements\<close> | 
| 28685 | 1241 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1242 | class bot = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1243 |   fixes bot :: 'a ("\<bottom>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1244 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1245 | class order_bot = order + bot + | 
| 51487 | 1246 | assumes bot_least: "\<bottom> \<le> a" | 
| 54868 | 1247 | begin | 
| 51487 | 1248 | |
| 61605 | 1249 | sublocale bot: ordering_top greater_eq greater bot | 
| 61169 | 1250 | by standard (fact bot_least) | 
| 51487 | 1251 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1252 | lemma le_bot: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1253 | "a \<le> \<bottom> \<Longrightarrow> a = \<bottom>" | 
| 51487 | 1254 | by (fact bot.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1255 | |
| 43816 | 1256 | lemma bot_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1257 | "a \<le> \<bottom> \<longleftrightarrow> a = \<bottom>" | 
| 51487 | 1258 | by (fact bot.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1259 | |
| 51487 | 1260 | lemma not_less_bot: | 
| 1261 | "\<not> a < \<bottom>" | |
| 1262 | by (fact bot.extremum_strict) | |
| 43816 | 1263 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1264 | lemma bot_less: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1265 | "a \<noteq> \<bottom> \<longleftrightarrow> \<bottom> < a" | 
| 51487 | 1266 | by (fact bot.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1267 | |
| 67452 | 1268 | lemma max_bot[simp]: "max bot x = x" | 
| 1269 | by(simp add: max_def bot_unique) | |
| 1270 | ||
| 1271 | lemma max_bot2[simp]: "max x bot = x" | |
| 1272 | by(simp add: max_def bot_unique) | |
| 1273 | ||
| 1274 | lemma min_bot[simp]: "min bot x = bot" | |
| 1275 | by(simp add: min_def bot_unique) | |
| 1276 | ||
| 1277 | lemma min_bot2[simp]: "min x bot = bot" | |
| 1278 | by(simp add: min_def bot_unique) | |
| 1279 | ||
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1280 | end | 
| 41082 | 1281 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1282 | class top = | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1283 |   fixes top :: 'a ("\<top>")
 | 
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1284 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1285 | class order_top = order + top + | 
| 51487 | 1286 | assumes top_greatest: "a \<le> \<top>" | 
| 54868 | 1287 | begin | 
| 51487 | 1288 | |
| 61605 | 1289 | sublocale top: ordering_top less_eq less top | 
| 61169 | 1290 | by standard (fact top_greatest) | 
| 51487 | 1291 | |
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1292 | lemma top_le: | 
| 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1293 | "\<top> \<le> a \<Longrightarrow> a = \<top>" | 
| 51487 | 1294 | by (fact top.extremum_uniqueI) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1295 | |
| 43816 | 1296 | lemma top_unique: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1297 | "\<top> \<le> a \<longleftrightarrow> a = \<top>" | 
| 51487 | 1298 | by (fact top.extremum_unique) | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1299 | |
| 51487 | 1300 | lemma not_top_less: | 
| 1301 | "\<not> \<top> < a" | |
| 1302 | by (fact top.extremum_strict) | |
| 43816 | 1303 | |
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1304 | lemma less_top: | 
| 43853 
020ddc6a9508
consolidated bot and top classes, tuned notation
 haftmann parents: 
43816diff
changeset | 1305 | "a \<noteq> \<top> \<longleftrightarrow> a < \<top>" | 
| 51487 | 1306 | by (fact top.not_eq_extremum) | 
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1307 | |
| 67452 | 1308 | lemma max_top[simp]: "max top x = top" | 
| 1309 | by(simp add: max_def top_unique) | |
| 1310 | ||
| 1311 | lemma max_top2[simp]: "max x top = top" | |
| 1312 | by(simp add: max_def top_unique) | |
| 1313 | ||
| 1314 | lemma min_top[simp]: "min top x = x" | |
| 1315 | by(simp add: min_def top_unique) | |
| 1316 | ||
| 1317 | lemma min_top2[simp]: "min x top = x" | |
| 1318 | by(simp add: min_def top_unique) | |
| 1319 | ||
| 43814 
58791b75cf1f
moved lemmas bot_less and less_top to classes bot and top respectively
 haftmann parents: 
43813diff
changeset | 1320 | end | 
| 28685 | 1321 | |
| 1322 | ||
| 60758 | 1323 | subsection \<open>Dense orders\<close> | 
| 27823 | 1324 | |
| 53216 | 1325 | class dense_order = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1326 | assumes dense: "x < y \<Longrightarrow> (\<exists>z. x < z \<and> z < y)" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1327 | |
| 53216 | 1328 | class dense_linorder = linorder + dense_order | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1329 | begin | 
| 27823 | 1330 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1331 | lemma dense_le: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1332 | fixes y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1333 | assumes "\<And>x. x < y \<Longrightarrow> x \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1334 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1335 | proof (rule ccontr) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1336 | assume "\<not> ?thesis" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1337 | hence "z < y" by simp | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1338 | from dense[OF this] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1339 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1340 | moreover have "x \<le> z" using assms[OF \<open>x < y\<close>] . | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1341 | ultimately show False by auto | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1342 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1343 | |
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1344 | lemma dense_le_bounded: | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1345 | fixes x y z :: 'a | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1346 | assumes "x < y" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1347 | assumes *: "\<And>w. \<lbrakk> x < w ; w < y \<rbrakk> \<Longrightarrow> w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1348 | shows "y \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1349 | proof (rule dense_le) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1350 | fix w assume "w < y" | 
| 60758 | 1351 | from dense[OF \<open>x < y\<close>] obtain u where "x < u" "u < y" by safe | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1352 | from linear[of u w] | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1353 | show "w \<le> z" | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1354 | proof (rule disjE) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1355 | assume "u \<le> w" | 
| 60758 | 1356 | from less_le_trans[OF \<open>x < u\<close> \<open>u \<le> w\<close>] \<open>w < y\<close> | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1357 | show "w \<le> z" by (rule *) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1358 | next | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1359 | assume "w \<le> u" | 
| 60758 | 1360 | from \<open>w \<le> u\<close> *[OF \<open>x < u\<close> \<open>u < y\<close>] | 
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1361 | show "w \<le> z" by (rule order_trans) | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1362 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1363 | qed | 
| 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1364 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1365 | lemma dense_ge: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1366 | fixes y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1367 | assumes "\<And>x. z < x \<Longrightarrow> y \<le> x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1368 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1369 | proof (rule ccontr) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1370 | assume "\<not> ?thesis" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1371 | hence "z < y" by simp | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1372 | from dense[OF this] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1373 | obtain x where "x < y" and "z < x" by safe | 
| 60758 | 1374 | moreover have "y \<le> x" using assms[OF \<open>z < x\<close>] . | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1375 | ultimately show False by auto | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1376 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1377 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1378 | lemma dense_ge_bounded: | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1379 | fixes x y z :: 'a | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1380 | assumes "z < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1381 | assumes *: "\<And>w. \<lbrakk> z < w ; w < x \<rbrakk> \<Longrightarrow> y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1382 | shows "y \<le> z" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1383 | proof (rule dense_ge) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1384 | fix w assume "z < w" | 
| 60758 | 1385 | from dense[OF \<open>z < x\<close>] obtain u where "z < u" "u < x" by safe | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1386 | from linear[of u w] | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1387 | show "y \<le> w" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1388 | proof (rule disjE) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1389 | assume "w \<le> u" | 
| 60758 | 1390 | from \<open>z < w\<close> le_less_trans[OF \<open>w \<le> u\<close> \<open>u < x\<close>] | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1391 | show "y \<le> w" by (rule *) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1392 | next | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1393 | assume "u \<le> w" | 
| 60758 | 1394 | from *[OF \<open>z < u\<close> \<open>u < x\<close>] \<open>u \<le> w\<close> | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1395 | show "y \<le> w" by (rule order_trans) | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1396 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1397 | qed | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1398 | |
| 35579 
cc9a5a0ab5ea
Add dense_le, dense_le_bounded, field_le_mult_one_interval.
 hoelzl parents: 
35364diff
changeset | 1399 | end | 
| 27823 | 1400 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1401 | class no_top = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1402 | assumes gt_ex: "\<exists>y. x < y" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1403 | |
| 61824 
dcbe9f756ae0
not_leE -> not_le_imp_less and other tidying
 paulson <lp15@cam.ac.uk> parents: 
61799diff
changeset | 1404 | class no_bot = order + | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1405 | assumes lt_ex: "\<exists>y. y < x" | 
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1406 | |
| 53216 | 1407 | class unbounded_dense_linorder = dense_linorder + no_top + no_bot | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 1408 | |
| 51546 
2e26df807dc7
more uniform style for interpretation and sublocale declarations
 haftmann parents: 
51487diff
changeset | 1409 | |
| 60758 | 1410 | subsection \<open>Wellorders\<close> | 
| 27823 | 1411 | |
| 1412 | class wellorder = linorder + | |
| 1413 | assumes less_induct [case_names less]: "(\<And>x. (\<And>y. y < x \<Longrightarrow> P y) \<Longrightarrow> P x) \<Longrightarrow> P a" | |
| 1414 | begin | |
| 1415 | ||
| 1416 | lemma wellorder_Least_lemma: | |
| 1417 | fixes k :: 'a | |
| 1418 | assumes "P k" | |
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1419 | shows LeastI: "P (LEAST x. P x)" and Least_le: "(LEAST x. P x) \<le> k" | 
| 27823 | 1420 | proof - | 
| 1421 | have "P (LEAST x. P x) \<and> (LEAST x. P x) \<le> k" | |
| 1422 | using assms proof (induct k rule: less_induct) | |
| 1423 | case (less x) then have "P x" by simp | |
| 1424 | show ?case proof (rule classical) | |
| 1425 | assume assm: "\<not> (P (LEAST a. P a) \<and> (LEAST a. P a) \<le> x)" | |
| 1426 | have "\<And>y. P y \<Longrightarrow> x \<le> y" | |
| 1427 | proof (rule classical) | |
| 1428 | fix y | |
| 38705 | 1429 | assume "P y" and "\<not> x \<le> y" | 
| 27823 | 1430 | with less have "P (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | 
| 1431 | by (auto simp add: not_le) | |
| 1432 | with assm have "x < (LEAST a. P a)" and "(LEAST a. P a) \<le> y" | |
| 1433 | by auto | |
| 1434 | then show "x \<le> y" by auto | |
| 1435 | qed | |
| 60758 | 1436 | with \<open>P x\<close> have Least: "(LEAST a. P a) = x" | 
| 27823 | 1437 | by (rule Least_equality) | 
| 60758 | 1438 | with \<open>P x\<close> show ?thesis by simp | 
| 27823 | 1439 | qed | 
| 1440 | qed | |
| 1441 | then show "P (LEAST x. P x)" and "(LEAST x. P x) \<le> k" by auto | |
| 1442 | qed | |
| 1443 | ||
| 67443 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 wenzelm parents: 
67405diff
changeset | 1444 | \<comment> \<open>The following 3 lemmas are due to Brian Huffman\<close> | 
| 27823 | 1445 | lemma LeastI_ex: "\<exists>x. P x \<Longrightarrow> P (Least P)" | 
| 1446 | by (erule exE) (erule LeastI) | |
| 1447 | ||
| 1448 | lemma LeastI2: | |
| 1449 | "P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1450 | by (blast intro: LeastI) | |
| 1451 | ||
| 1452 | lemma LeastI2_ex: | |
| 1453 | "\<exists>a. P a \<Longrightarrow> (\<And>x. P x \<Longrightarrow> Q x) \<Longrightarrow> Q (Least P)" | |
| 1454 | by (blast intro: LeastI_ex) | |
| 1455 | ||
| 38705 | 1456 | lemma LeastI2_wellorder: | 
| 1457 | assumes "P a" | |
| 1458 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | |
| 1459 | shows "Q (Least P)" | |
| 1460 | proof (rule LeastI2_order) | |
| 60758 | 1461 | show "P (Least P)" using \<open>P a\<close> by (rule LeastI) | 
| 38705 | 1462 | next | 
| 1463 | fix y assume "P y" thus "Least P \<le> y" by (rule Least_le) | |
| 1464 | next | |
| 1465 | fix x assume "P x" "\<forall>y. P y \<longrightarrow> x \<le> y" thus "Q x" by (rule assms(2)) | |
| 1466 | qed | |
| 1467 | ||
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1468 | lemma LeastI2_wellorder_ex: | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1469 | assumes "\<exists>x. P x" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1470 | and "\<And>a. \<lbrakk> P a; \<forall>b. P b \<longrightarrow> a \<le> b \<rbrakk> \<Longrightarrow> Q a" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1471 | shows "Q (Least P)" | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1472 | using assms by clarify (blast intro!: LeastI2_wellorder) | 
| 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1473 | |
| 27823 | 1474 | lemma not_less_Least: "k < (LEAST x. P x) \<Longrightarrow> \<not> P k" | 
| 61699 
a81dc5c4d6a9
New theorems mostly from Peter Gammie
 paulson <lp15@cam.ac.uk> parents: 
61630diff
changeset | 1475 | apply (simp add: not_le [symmetric]) | 
| 27823 | 1476 | apply (erule contrapos_nn) | 
| 1477 | apply (erule Least_le) | |
| 1478 | done | |
| 1479 | ||
| 64287 | 1480 | lemma exists_least_iff: "(\<exists>n. P n) \<longleftrightarrow> (\<exists>n. P n \<and> (\<forall>m < n. \<not> P m))" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 1481 | proof | |
| 1482 | assume ?rhs thus ?lhs by blast | |
| 1483 | next | |
| 1484 | assume H: ?lhs then obtain n where n: "P n" by blast | |
| 1485 | let ?x = "Least P" | |
| 1486 |   { fix m assume m: "m < ?x"
 | |
| 1487 | from not_less_Least[OF m] have "\<not> P m" . } | |
| 1488 | with LeastI_ex[OF H] show ?rhs by blast | |
| 1489 | qed | |
| 1490 | ||
| 38705 | 1491 | end | 
| 27823 | 1492 | |
| 28685 | 1493 | |
| 69593 | 1494 | subsection \<open>Order on \<^typ>\<open>bool\<close>\<close> | 
| 28685 | 1495 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1496 | instantiation bool :: "{order_bot, order_top, linorder}"
 | 
| 28685 | 1497 | begin | 
| 1498 | ||
| 1499 | definition | |
| 41080 | 1500 | le_bool_def [simp]: "P \<le> Q \<longleftrightarrow> P \<longrightarrow> Q" | 
| 28685 | 1501 | |
| 1502 | definition | |
| 61076 | 1503 | [simp]: "(P::bool) < Q \<longleftrightarrow> \<not> P \<and> Q" | 
| 28685 | 1504 | |
| 1505 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1506 | [simp]: "\<bottom> \<longleftrightarrow> False" | 
| 28685 | 1507 | |
| 1508 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1509 | [simp]: "\<top> \<longleftrightarrow> True" | 
| 28685 | 1510 | |
| 1511 | instance proof | |
| 41080 | 1512 | qed auto | 
| 28685 | 1513 | |
| 15524 | 1514 | end | 
| 28685 | 1515 | |
| 1516 | lemma le_boolI: "(P \<Longrightarrow> Q) \<Longrightarrow> P \<le> Q" | |
| 41080 | 1517 | by simp | 
| 28685 | 1518 | |
| 1519 | lemma le_boolI': "P \<longrightarrow> Q \<Longrightarrow> P \<le> Q" | |
| 41080 | 1520 | by simp | 
| 28685 | 1521 | |
| 1522 | lemma le_boolE: "P \<le> Q \<Longrightarrow> P \<Longrightarrow> (Q \<Longrightarrow> R) \<Longrightarrow> R" | |
| 41080 | 1523 | by simp | 
| 28685 | 1524 | |
| 1525 | lemma le_boolD: "P \<le> Q \<Longrightarrow> P \<longrightarrow> Q" | |
| 41080 | 1526 | by simp | 
| 32899 | 1527 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1528 | lemma bot_boolE: "\<bottom> \<Longrightarrow> P" | 
| 41080 | 1529 | by simp | 
| 32899 | 1530 | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1531 | lemma top_boolI: \<top> | 
| 41080 | 1532 | by simp | 
| 28685 | 1533 | |
| 1534 | lemma [code]: | |
| 1535 | "False \<le> b \<longleftrightarrow> True" | |
| 1536 | "True \<le> b \<longleftrightarrow> b" | |
| 1537 | "False < b \<longleftrightarrow> b" | |
| 1538 | "True < b \<longleftrightarrow> False" | |
| 41080 | 1539 | by simp_all | 
| 28685 | 1540 | |
| 1541 | ||
| 69593 | 1542 | subsection \<open>Order on \<^typ>\<open>_ \<Rightarrow> _\<close>\<close> | 
| 28685 | 1543 | |
| 1544 | instantiation "fun" :: (type, ord) ord | |
| 1545 | begin | |
| 1546 | ||
| 1547 | definition | |
| 37767 | 1548 | le_fun_def: "f \<le> g \<longleftrightarrow> (\<forall>x. f x \<le> g x)" | 
| 28685 | 1549 | |
| 1550 | definition | |
| 61076 | 1551 | "(f::'a \<Rightarrow> 'b) < g \<longleftrightarrow> f \<le> g \<and> \<not> (g \<le> f)" | 
| 28685 | 1552 | |
| 1553 | instance .. | |
| 1554 | ||
| 1555 | end | |
| 1556 | ||
| 1557 | instance "fun" :: (type, preorder) preorder proof | |
| 1558 | qed (auto simp add: le_fun_def less_fun_def | |
| 73411 | 1559 | intro: order_trans order.antisym) | 
| 28685 | 1560 | |
| 1561 | instance "fun" :: (type, order) order proof | |
| 73411 | 1562 | qed (auto simp add: le_fun_def intro: order.antisym) | 
| 28685 | 1563 | |
| 41082 | 1564 | instantiation "fun" :: (type, bot) bot | 
| 1565 | begin | |
| 1566 | ||
| 1567 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1568 | "\<bottom> = (\<lambda>x. \<bottom>)" | 
| 41082 | 1569 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1570 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1571 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1572 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1573 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1574 | instantiation "fun" :: (type, order_bot) order_bot | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1575 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1576 | |
| 49769 | 1577 | lemma bot_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1578 | "\<bottom> x = \<bottom>" | 
| 41082 | 1579 | by (simp add: bot_fun_def) | 
| 1580 | ||
| 1581 | instance proof | |
| 46884 | 1582 | qed (simp add: le_fun_def) | 
| 41082 | 1583 | |
| 1584 | end | |
| 1585 | ||
| 28685 | 1586 | instantiation "fun" :: (type, top) top | 
| 1587 | begin | |
| 1588 | ||
| 1589 | definition | |
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1590 | [no_atp]: "\<top> = (\<lambda>x. \<top>)" | 
| 28685 | 1591 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1592 | instance .. | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1593 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1594 | end | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1595 | |
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1596 | instantiation "fun" :: (type, order_top) order_top | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1597 | begin | 
| 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52143diff
changeset | 1598 | |
| 49769 | 1599 | lemma top_apply [simp, code]: | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1600 | "\<top> x = \<top>" | 
| 41080 | 1601 | by (simp add: top_fun_def) | 
| 1602 | ||
| 28685 | 1603 | instance proof | 
| 46884 | 1604 | qed (simp add: le_fun_def) | 
| 28685 | 1605 | |
| 1606 | end | |
| 1607 | ||
| 1608 | lemma le_funI: "(\<And>x. f x \<le> g x) \<Longrightarrow> f \<le> g" | |
| 1609 | unfolding le_fun_def by simp | |
| 1610 | ||
| 1611 | lemma le_funE: "f \<le> g \<Longrightarrow> (f x \<le> g x \<Longrightarrow> P) \<Longrightarrow> P" | |
| 1612 | unfolding le_fun_def by simp | |
| 1613 | ||
| 1614 | lemma le_funD: "f \<le> g \<Longrightarrow> f x \<le> g x" | |
| 54860 | 1615 | by (rule le_funE) | 
| 28685 | 1616 | |
| 59000 | 1617 | lemma mono_compose: "mono Q \<Longrightarrow> mono (\<lambda>i x. Q i (f x))" | 
| 1618 | unfolding mono_def le_fun_def by auto | |
| 1619 | ||
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1620 | |
| 60758 | 1621 | subsection \<open>Order on unary and binary predicates\<close> | 
| 46631 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1622 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1623 | lemma predicate1I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1624 | assumes PQ: "\<And>x. P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1625 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1626 | apply (rule le_funI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1627 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1628 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1629 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1630 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1631 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1632 | lemma predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1633 | "P \<le> Q \<Longrightarrow> P x \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1634 | apply (erule le_funE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1635 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1636 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1637 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1638 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1639 | lemma rev_predicate1D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1640 | "P x \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1641 | by (rule predicate1D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1642 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1643 | lemma predicate2I: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1644 | assumes PQ: "\<And>x y. P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1645 | shows "P \<le> Q" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1646 | apply (rule le_funI)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1647 | apply (rule le_boolI) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1648 | apply (rule PQ) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1649 | apply assumption | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1650 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1651 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1652 | lemma predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1653 | "P \<le> Q \<Longrightarrow> P x y \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1654 | apply (erule le_funE)+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1655 | apply (erule le_boolE) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1656 | apply assumption+ | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1657 | done | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1658 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1659 | lemma rev_predicate2D: | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1660 | "P x y \<Longrightarrow> P \<le> Q \<Longrightarrow> Q x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1661 | by (rule predicate2D) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1662 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1663 | lemma bot1E [no_atp]: "\<bottom> x \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1664 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1665 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1666 | lemma bot2E: "\<bottom> x y \<Longrightarrow> P" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1667 | by (simp add: bot_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1668 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1669 | lemma top1I: "\<top> x" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1670 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1671 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1672 | lemma top2I: "\<top> x y" | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1673 | by (simp add: top_fun_def) | 
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1674 | |
| 
2c5c003cee35
moved lemmas for orderings and lattices on predicates to corresponding theories, retaining declaration order of classical rules; tuned headings; tuned syntax
 haftmann parents: 
46557diff
changeset | 1675 | |
| 60758 | 1676 | subsection \<open>Name duplicates\<close> | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1677 | |
| 73411 | 1678 | lemmas antisym = order.antisym | 
| 1679 | lemmas eq_iff = order.eq_iff | |
| 1680 | ||
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1681 | lemmas order_eq_refl = preorder_class.eq_refl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1682 | lemmas order_less_irrefl = preorder_class.less_irrefl | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1683 | lemmas order_less_imp_le = preorder_class.less_imp_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1684 | lemmas order_less_not_sym = preorder_class.less_not_sym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1685 | lemmas order_less_asym = preorder_class.less_asym | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1686 | lemmas order_less_trans = preorder_class.less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1687 | lemmas order_le_less_trans = preorder_class.le_less_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1688 | lemmas order_less_le_trans = preorder_class.less_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1689 | lemmas order_less_imp_not_less = preorder_class.less_imp_not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1690 | lemmas order_less_imp_triv = preorder_class.less_imp_triv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1691 | lemmas order_less_asym' = preorder_class.less_asym' | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1692 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1693 | lemmas order_less_le = order_class.less_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1694 | lemmas order_le_less = order_class.le_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1695 | lemmas order_le_imp_less_or_eq = order_class.le_imp_less_or_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1696 | lemmas order_less_imp_not_eq = order_class.less_imp_not_eq | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1697 | lemmas order_less_imp_not_eq2 = order_class.less_imp_not_eq2 | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1698 | lemmas order_neq_le_trans = order_class.neq_le_trans | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1699 | lemmas order_le_neq_trans = order_class.le_neq_trans | 
| 73411 | 1700 | lemmas order_eq_iff = order_class.order.eq_iff | 
| 34250 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1701 | lemmas order_antisym_conv = order_class.antisym_conv | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1702 | |
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1703 | lemmas linorder_linear = linorder_class.linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1704 | lemmas linorder_less_linear = linorder_class.less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1705 | lemmas linorder_le_less_linear = linorder_class.le_less_linear | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1706 | lemmas linorder_le_cases = linorder_class.le_cases | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1707 | lemmas linorder_not_less = linorder_class.not_less | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1708 | lemmas linorder_not_le = linorder_class.not_le | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1709 | lemmas linorder_neq_iff = linorder_class.neq_iff | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1710 | lemmas linorder_neqE = linorder_class.neqE | 
| 
3b619abaa67a
moved name duplicates to end of theory; reduced warning noise
 haftmann parents: 
34065diff
changeset | 1711 | |
| 28685 | 1712 | end |