| author | wenzelm | 
| Mon, 13 Jul 2020 22:07:18 +0200 | |
| changeset 72031 | b7cec26e41d1 | 
| parent 71852 | 76784f47c60f | 
| child 73411 | 1f1366966296 | 
| permissions | -rw-r--r-- | 
| 923 | 1 | (* Title: HOL/Nat.thy | 
| 63588 | 2 | Author: Tobias Nipkow | 
| 3 | Author: Lawrence C Paulson | |
| 4 | Author: Markus Wenzel | |
| 923 | 5 | *) | 
| 6 | ||
| 60758 | 7 | section \<open>Natural numbers\<close> | 
| 13449 | 8 | |
| 15131 | 9 | theory Nat | 
| 64447 | 10 | imports Inductive Typedef Fun Rings | 
| 15131 | 11 | begin | 
| 13449 | 12 | |
| 61799 | 13 | subsection \<open>Type \<open>ind\<close>\<close> | 
| 13449 | 14 | |
| 15 | typedecl ind | |
| 16 | ||
| 63110 | 17 | axiomatization Zero_Rep :: ind and Suc_Rep :: "ind \<Rightarrow> ind" | 
| 18 | \<comment> \<open>The axiom of infinity in 2 parts:\<close> | |
| 63588 | 19 | where Suc_Rep_inject: "Suc_Rep x = Suc_Rep y \<Longrightarrow> x = y" | 
| 20 | and Suc_Rep_not_Zero_Rep: "Suc_Rep x \<noteq> Zero_Rep" | |
| 21 | ||
| 19573 | 22 | |
| 60758 | 23 | subsection \<open>Type nat\<close> | 
| 24 | ||
| 25 | text \<open>Type definition\<close> | |
| 13449 | 26 | |
| 63588 | 27 | inductive Nat :: "ind \<Rightarrow> bool" | 
| 28 | where | |
| 29 | Zero_RepI: "Nat Zero_Rep" | |
| 30 | | Suc_RepI: "Nat i \<Longrightarrow> Nat (Suc_Rep i)" | |
| 13449 | 31 | |
| 49834 | 32 | typedef nat = "{n. Nat n}"
 | 
| 45696 | 33 | morphisms Rep_Nat Abs_Nat | 
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 34 | using Nat.Zero_RepI by auto | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 35 | |
| 63588 | 36 | lemma Nat_Rep_Nat: "Nat (Rep_Nat n)" | 
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 37 | using Rep_Nat by simp | 
| 13449 | 38 | |
| 63588 | 39 | lemma Nat_Abs_Nat_inverse: "Nat n \<Longrightarrow> Rep_Nat (Abs_Nat n) = n" | 
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 40 | using Abs_Nat_inverse by simp | 
| 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 41 | |
| 63588 | 42 | lemma Nat_Abs_Nat_inject: "Nat n \<Longrightarrow> Nat m \<Longrightarrow> Abs_Nat n = Abs_Nat m \<longleftrightarrow> n = m" | 
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 43 | using Abs_Nat_inject by simp | 
| 13449 | 44 | |
| 25510 | 45 | instantiation nat :: zero | 
| 46 | begin | |
| 47 | ||
| 63588 | 48 | definition Zero_nat_def: "0 = Abs_Nat Zero_Rep" | 
| 25510 | 49 | |
| 50 | instance .. | |
| 51 | ||
| 52 | end | |
| 24995 | 53 | |
| 63588 | 54 | definition Suc :: "nat \<Rightarrow> nat" | 
| 55 | where "Suc n = Abs_Nat (Suc_Rep (Rep_Nat n))" | |
| 44278 
1220ecb81e8f
observe distinction between sets and predicates more properly
 haftmann parents: 
43595diff
changeset | 56 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 57 | lemma Suc_not_Zero: "Suc m \<noteq> 0" | 
| 63588 | 58 | by (simp add: Zero_nat_def Suc_def Suc_RepI Zero_RepI | 
| 59 | Nat_Abs_Nat_inject Suc_Rep_not_Zero_Rep Nat_Rep_Nat) | |
| 13449 | 60 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 61 | lemma Zero_not_Suc: "0 \<noteq> Suc m" | 
| 63588 | 62 | by (rule not_sym) (rule Suc_not_Zero) | 
| 13449 | 63 | |
| 34208 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 64 | lemma Suc_Rep_inject': "Suc_Rep x = Suc_Rep y \<longleftrightarrow> x = y" | 
| 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 65 | by (rule iffI, rule Suc_Rep_inject) simp_all | 
| 
a7acd6c68d9b
more regular axiom of infinity, with no (indirect) reference to overloaded constants
 krauss parents: 
33657diff
changeset | 66 | |
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 67 | lemma nat_induct0: | 
| 71585 | 68 | assumes "P 0" and "\<And>n. P n \<Longrightarrow> P (Suc n)" | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 69 | shows "P n" | 
| 71585 | 70 | proof - | 
| 71 | have "P (Abs_Nat (Rep_Nat n))" | |
| 72 | using assms unfolding Zero_nat_def Suc_def | |
| 73 | by (iprover intro: Nat_Rep_Nat [THEN Nat.induct] elim: Nat_Abs_Nat_inverse [THEN subst]) | |
| 74 | then show ?thesis | |
| 75 | by (simp add: Rep_Nat_inverse) | |
| 76 | qed | |
| 63588 | 77 | |
| 78 | free_constructors case_nat for "0 :: nat" | Suc pred | |
| 79 | where "pred (0 :: nat) = (0 :: nat)" | |
| 58189 
9d714be4f028
added 'plugins' option to control which hooks are enabled
 blanchet parents: 
57983diff
changeset | 80 | apply atomize_elim | 
| 
9d714be4f028
added 'plugins' option to control which hooks are enabled
 blanchet parents: 
57983diff
changeset | 81 | apply (rename_tac n, induct_tac n rule: nat_induct0, auto) | 
| 63588 | 82 | apply (simp add: Suc_def Nat_Abs_Nat_inject Nat_Rep_Nat Suc_RepI Suc_Rep_inject' Rep_Nat_inject) | 
| 58189 
9d714be4f028
added 'plugins' option to control which hooks are enabled
 blanchet parents: 
57983diff
changeset | 83 | apply (simp only: Suc_not_Zero) | 
| 
9d714be4f028
added 'plugins' option to control which hooks are enabled
 blanchet parents: 
57983diff
changeset | 84 | done | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 85 | |
| 61799 | 86 | \<comment> \<open>Avoid name clashes by prefixing the output of \<open>old_rep_datatype\<close> with \<open>old\<close>.\<close> | 
| 60758 | 87 | setup \<open>Sign.mandatory_path "old"\<close> | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 88 | |
| 61076 | 89 | old_rep_datatype "0 :: nat" Suc | 
| 71585 | 90 | by (erule nat_induct0) auto | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 91 | |
| 60758 | 92 | setup \<open>Sign.parent_path\<close> | 
| 93 | ||
| 61799 | 94 | \<comment> \<open>But erase the prefix for properties that are not generated by \<open>free_constructors\<close>.\<close> | 
| 60758 | 95 | setup \<open>Sign.mandatory_path "nat"\<close> | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 96 | |
| 63588 | 97 | declare old.nat.inject[iff del] | 
| 98 | and old.nat.distinct(1)[simp del, induct_simp del] | |
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 99 | |
| 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 100 | lemmas induct = old.nat.induct | 
| 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 101 | lemmas inducts = old.nat.inducts | 
| 55642 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55575diff
changeset | 102 | lemmas rec = old.nat.rec | 
| 
63beb38e9258
adapted to renaming of datatype 'cases' and 'recs' to 'case' and 'rec'
 blanchet parents: 
55575diff
changeset | 103 | lemmas simps = nat.inject nat.distinct nat.case nat.rec | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 104 | |
| 60758 | 105 | setup \<open>Sign.parent_path\<close> | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 106 | |
| 63110 | 107 | abbreviation rec_nat :: "'a \<Rightarrow> (nat \<Rightarrow> 'a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a" | 
| 108 | where "rec_nat \<equiv> old.rec_nat" | |
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 109 | |
| 55424 
9ab4129a76a3
remove hidden fact about hidden constant from code generator setup
 blanchet parents: 
55423diff
changeset | 110 | declare nat.sel[code del] | 
| 
9ab4129a76a3
remove hidden fact about hidden constant from code generator setup
 blanchet parents: 
55423diff
changeset | 111 | |
| 61799 | 112 | hide_const (open) Nat.pred \<comment> \<open>hide everything related to the selector\<close> | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 113 | hide_fact | 
| 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 114 | nat.case_eq_if | 
| 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 115 | nat.collapse | 
| 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 116 | nat.expand | 
| 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 117 | nat.sel | 
| 57983 
6edc3529bb4e
reordered some (co)datatype property names for more consistency
 blanchet parents: 
57952diff
changeset | 118 | nat.exhaust_sel | 
| 
6edc3529bb4e
reordered some (co)datatype property names for more consistency
 blanchet parents: 
57952diff
changeset | 119 | nat.split_sel | 
| 
6edc3529bb4e
reordered some (co)datatype property names for more consistency
 blanchet parents: 
57952diff
changeset | 120 | nat.split_sel_asm | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 121 | |
| 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 122 | lemma nat_exhaust [case_names 0 Suc, cases type: nat]: | 
| 63588 | 123 | "(y = 0 \<Longrightarrow> P) \<Longrightarrow> (\<And>nat. y = Suc nat \<Longrightarrow> P) \<Longrightarrow> P" | 
| 61799 | 124 | \<comment> \<open>for backward compatibility -- names of variables differ\<close> | 
| 63588 | 125 | by (rule old.nat.exhaust) | 
| 13449 | 126 | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 127 | lemma nat_induct [case_names 0 Suc, induct type: nat]: | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 128 | fixes n | 
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 129 | assumes "P 0" and "\<And>n. P n \<Longrightarrow> P (Suc n)" | 
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 130 | shows "P n" | 
| 63588 | 131 | \<comment> \<open>for backward compatibility -- names of variables differ\<close> | 
| 132 | using assms by (rule nat.induct) | |
| 13449 | 133 | |
| 55417 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 134 | hide_fact | 
| 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 135 | nat_exhaust | 
| 
01fbfb60c33e
adapted to 'xxx_{case,rec}' renaming, to new theorem names, and to new variable names in theorems
 blanchet parents: 
55415diff
changeset | 136 | nat_induct0 | 
| 24995 | 137 | |
| 60758 | 138 | ML \<open> | 
| 58389 | 139 | val nat_basic_lfp_sugar = | 
| 140 | let | |
| 69593 | 141 | val ctr_sugar = the (Ctr_Sugar.ctr_sugar_of_global \<^theory> \<^type_name>\<open>nat\<close>); | 
| 142 | val recx = Logic.varify_types_global \<^term>\<open>rec_nat\<close>; | |
| 58389 | 143 | val C = body_type (fastype_of recx); | 
| 144 | in | |
| 145 |     {T = HOLogic.natT, fp_res_index = 0, C = C, fun_arg_Tsss = [[], [[HOLogic.natT, C]]],
 | |
| 146 |      ctr_sugar = ctr_sugar, recx = recx, rec_thms = @{thms nat.rec}}
 | |
| 147 | end; | |
| 60758 | 148 | \<close> | 
| 149 | ||
| 150 | setup \<open> | |
| 58389 | 151 | let | 
| 69593 | 152 | fun basic_lfp_sugars_of _ [\<^typ>\<open>nat\<close>] _ _ ctxt = | 
| 62326 
3cf7a067599c
allow predicator instead of map function in 'primrec'
 blanchet parents: 
62217diff
changeset | 153 | ([], [0], [nat_basic_lfp_sugar], [], [], [], TrueI (*dummy*), [], false, ctxt) | 
| 58389 | 154 | | basic_lfp_sugars_of bs arg_Ts callers callssss ctxt = | 
| 155 | BNF_LFP_Rec_Sugar.default_basic_lfp_sugars_of bs arg_Ts callers callssss ctxt; | |
| 156 | in | |
| 157 | BNF_LFP_Rec_Sugar.register_lfp_rec_extension | |
| 66290 | 158 |     {nested_simps = [], special_endgame_tac = K (K (K (K no_tac))), is_new_datatype = K (K true),
 | 
| 159 | basic_lfp_sugars_of = basic_lfp_sugars_of, rewrite_nested_rec_call = NONE} | |
| 58389 | 160 | end | 
| 60758 | 161 | \<close> | 
| 162 | ||
| 163 | text \<open>Injectiveness and distinctness lemmas\<close> | |
| 24995 | 164 | |
| 66936 | 165 | lemma inj_Suc [simp]: | 
| 166 | "inj_on Suc N" | |
| 27104 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 167 | by (simp add: inj_on_def) | 
| 
791607529f6d
rep_datatype command now takes list of constructors as input arguments
 haftmann parents: 
26748diff
changeset | 168 | |
| 66936 | 169 | lemma bij_betw_Suc [simp]: | 
| 170 | "bij_betw Suc M N \<longleftrightarrow> Suc ` M = N" | |
| 171 | by (simp add: bij_betw_def) | |
| 172 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 173 | lemma Suc_neq_Zero: "Suc m = 0 \<Longrightarrow> R" | 
| 63588 | 174 | by (rule notE) (rule Suc_not_Zero) | 
| 24995 | 175 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 176 | lemma Zero_neq_Suc: "0 = Suc m \<Longrightarrow> R" | 
| 63588 | 177 | by (rule Suc_neq_Zero) (erule sym) | 
| 24995 | 178 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 179 | lemma Suc_inject: "Suc x = Suc y \<Longrightarrow> x = y" | 
| 63588 | 180 | by (rule inj_Suc [THEN injD]) | 
| 24995 | 181 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 182 | lemma n_not_Suc_n: "n \<noteq> Suc n" | 
| 63588 | 183 | by (induct n) simp_all | 
| 13449 | 184 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 185 | lemma Suc_n_not_n: "Suc n \<noteq> n" | 
| 63588 | 186 | by (rule not_sym) (rule n_not_Suc_n) | 
| 187 | ||
| 69593 | 188 | text \<open>A special form of induction for reasoning about \<^term>\<open>m < n\<close> and \<^term>\<open>m - n\<close>.\<close> | 
| 63110 | 189 | lemma diff_induct: | 
| 190 | assumes "\<And>x. P x 0" | |
| 191 | and "\<And>y. P 0 (Suc y)" | |
| 192 | and "\<And>x y. P x y \<Longrightarrow> P (Suc x) (Suc y)" | |
| 193 | shows "P m n" | |
| 63588 | 194 | proof (induct n arbitrary: m) | 
| 195 | case 0 | |
| 196 | show ?case by (rule assms(1)) | |
| 197 | next | |
| 198 | case (Suc n) | |
| 199 | show ?case | |
| 200 | proof (induct m) | |
| 201 | case 0 | |
| 202 | show ?case by (rule assms(2)) | |
| 203 | next | |
| 204 | case (Suc m) | |
| 205 | from \<open>P m n\<close> show ?case by (rule assms(3)) | |
| 206 | qed | |
| 207 | qed | |
| 13449 | 208 | |
| 24995 | 209 | |
| 60758 | 210 | subsection \<open>Arithmetic operators\<close> | 
| 24995 | 211 | |
| 49388 | 212 | instantiation nat :: comm_monoid_diff | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 213 | begin | 
| 24995 | 214 | |
| 63588 | 215 | primrec plus_nat | 
| 216 | where | |
| 217 | add_0: "0 + n = (n::nat)" | |
| 218 | | add_Suc: "Suc m + n = Suc (m + n)" | |
| 219 | ||
| 220 | lemma add_0_right [simp]: "m + 0 = m" | |
| 221 | for m :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 222 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 223 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 224 | lemma add_Suc_right [simp]: "m + Suc n = Suc (m + n)" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 225 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 226 | |
| 28514 | 227 | declare add_0 [code] | 
| 228 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 229 | lemma add_Suc_shift [code]: "Suc m + n = m + Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 230 | by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 231 | |
| 63588 | 232 | primrec minus_nat | 
| 233 | where | |
| 234 | diff_0 [code]: "m - 0 = (m::nat)" | |
| 235 | | diff_Suc: "m - Suc n = (case m - n of 0 \<Rightarrow> 0 | Suc k \<Rightarrow> k)" | |
| 24995 | 236 | |
| 28514 | 237 | declare diff_Suc [simp del] | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 238 | |
| 63588 | 239 | lemma diff_0_eq_0 [simp, code]: "0 - n = 0" | 
| 240 | for n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 241 | by (induct n) (simp_all add: diff_Suc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 242 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 243 | lemma diff_Suc_Suc [simp, code]: "Suc m - Suc n = m - n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 244 | by (induct n) (simp_all add: diff_Suc) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 245 | |
| 63110 | 246 | instance | 
| 247 | proof | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 248 | fix n m q :: nat | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 249 | show "(n + m) + q = n + (m + q)" by (induct n) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 250 | show "n + m = m + n" by (induct n) simp_all | 
| 59815 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59582diff
changeset | 251 | show "m + n - m = n" by (induct m) simp_all | 
| 
cce82e360c2f
explicit commutative additive inverse operation;
 haftmann parents: 
59582diff
changeset | 252 | show "n - m - q = n - (m + q)" by (induct q) (simp_all add: diff_Suc) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 253 | show "0 + n = n" by simp | 
| 49388 | 254 | show "0 - n = 0" by simp | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 255 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 256 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 257 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 258 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 259 | hide_fact (open) add_0 add_0_right diff_0 | 
| 35047 
1b2bae06c796
hide fact Nat.add_0_right; make add_0_right from Groups priority
 haftmann parents: 
35028diff
changeset | 260 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 261 | instantiation nat :: comm_semiring_1_cancel | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 262 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 263 | |
| 63588 | 264 | definition One_nat_def [simp]: "1 = Suc 0" | 
| 265 | ||
| 266 | primrec times_nat | |
| 267 | where | |
| 268 | mult_0: "0 * n = (0::nat)" | |
| 269 | | mult_Suc: "Suc m * n = n + (m * n)" | |
| 270 | ||
| 271 | lemma mult_0_right [simp]: "m * 0 = 0" | |
| 272 | for m :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 273 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 274 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 275 | lemma mult_Suc_right [simp]: "m * Suc n = m + (m * n)" | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57492diff
changeset | 276 | by (induct m) (simp_all add: add.left_commute) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 277 | |
| 63588 | 278 | lemma add_mult_distrib: "(m + n) * k = (m * k) + (n * k)" | 
| 279 | for m n k :: nat | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57492diff
changeset | 280 | by (induct m) (simp_all add: add.assoc) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 281 | |
| 63110 | 282 | instance | 
| 283 | proof | |
| 284 | fix k n m q :: nat | |
| 63588 | 285 | show "0 \<noteq> (1::nat)" | 
| 286 | by simp | |
| 287 | show "1 * n = n" | |
| 288 | by simp | |
| 289 | show "n * m = m * n" | |
| 290 | by (induct n) simp_all | |
| 291 | show "(n * m) * q = n * (m * q)" | |
| 292 | by (induct n) (simp_all add: add_mult_distrib) | |
| 293 | show "(n + m) * q = n * q + m * q" | |
| 294 | by (rule add_mult_distrib) | |
| 63110 | 295 | show "k * (m - n) = (k * m) - (k * n)" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 296 | by (induct m n rule: diff_induct) simp_all | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 297 | qed | 
| 25571 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 298 | |
| 
c9e39eafc7a0
instantiation target rather than legacy instance
 haftmann parents: 
25563diff
changeset | 299 | end | 
| 24995 | 300 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 301 | |
| 60758 | 302 | subsubsection \<open>Addition\<close> | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 303 | |
| 61799 | 304 | text \<open>Reasoning about \<open>m + 0 = 0\<close>, etc.\<close> | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 305 | |
| 63588 | 306 | lemma add_is_0 [iff]: "m + n = 0 \<longleftrightarrow> m = 0 \<and> n = 0" | 
| 307 | for m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 308 | by (cases m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 309 | |
| 67091 | 310 | lemma add_is_1: "m + n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = 0 \<or> m = 0 \<and> n = Suc 0" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 311 | by (cases m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 312 | |
| 67091 | 313 | lemma one_is_add: "Suc 0 = m + n \<longleftrightarrow> m = Suc 0 \<and> n = 0 \<or> m = 0 \<and> n = Suc 0" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 314 | by (rule trans, rule eq_commute, rule add_is_1) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 315 | |
| 63588 | 316 | lemma add_eq_self_zero: "m + n = m \<Longrightarrow> n = 0" | 
| 317 | for m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 318 | by (induct m) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 319 | |
| 66936 | 320 | lemma plus_1_eq_Suc: | 
| 321 | "plus 1 = Suc" | |
| 322 | by (simp add: fun_eq_iff) | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 323 | |
| 47208 | 324 | lemma Suc_eq_plus1: "Suc n = n + 1" | 
| 63588 | 325 | by simp | 
| 47208 | 326 | |
| 327 | lemma Suc_eq_plus1_left: "Suc n = 1 + n" | |
| 63588 | 328 | by simp | 
| 47208 | 329 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 330 | |
| 60758 | 331 | subsubsection \<open>Difference\<close> | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 332 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 333 | lemma Suc_diff_diff [simp]: "(Suc m - n) - Suc k = m - n - k" | 
| 62365 | 334 | by (simp add: diff_diff_add) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 335 | |
| 30093 | 336 | lemma diff_Suc_1 [simp]: "Suc n - 1 = n" | 
| 63588 | 337 | by simp | 
| 338 | ||
| 30093 | 339 | |
| 60758 | 340 | subsubsection \<open>Multiplication\<close> | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 341 | |
| 63110 | 342 | lemma mult_is_0 [simp]: "m * n = 0 \<longleftrightarrow> m = 0 \<or> n = 0" for m n :: nat | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 343 | by (induct m) auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 344 | |
| 63110 | 345 | lemma mult_eq_1_iff [simp]: "m * n = Suc 0 \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0" | 
| 63588 | 346 | proof (induct m) | 
| 347 | case 0 | |
| 348 | then show ?case by simp | |
| 349 | next | |
| 350 | case (Suc m) | |
| 351 | then show ?case by (induct n) auto | |
| 352 | qed | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 353 | |
| 63110 | 354 | lemma one_eq_mult_iff [simp]: "Suc 0 = m * n \<longleftrightarrow> m = Suc 0 \<and> n = Suc 0" | 
| 71585 | 355 | by (simp add: eq_commute flip: mult_eq_1_iff) | 
| 356 | ||
| 357 | lemma nat_mult_eq_1_iff [simp]: "m * n = 1 \<longleftrightarrow> m = 1 \<and> n = 1" | |
| 358 | and nat_1_eq_mult_iff [simp]: "1 = m * n \<longleftrightarrow> m = 1 \<and> n = 1" for m n :: nat | |
| 359 | by auto | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 360 | |
| 63588 | 361 | lemma mult_cancel1 [simp]: "k * m = k * n \<longleftrightarrow> m = n \<or> k = 0" | 
| 362 | for k m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 363 | proof - | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 364 | have "k \<noteq> 0 \<Longrightarrow> k * m = k * n \<Longrightarrow> m = n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 365 | proof (induct n arbitrary: m) | 
| 63110 | 366 | case 0 | 
| 367 | then show "m = 0" by simp | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 368 | next | 
| 63110 | 369 | case (Suc n) | 
| 370 | then show "m = Suc n" | |
| 371 | by (cases m) (simp_all add: eq_commute [of 0]) | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 372 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 373 | then show ?thesis by auto | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 374 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 375 | |
| 63588 | 376 | lemma mult_cancel2 [simp]: "m * k = n * k \<longleftrightarrow> m = n \<or> k = 0" | 
| 377 | for k m n :: nat | |
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57492diff
changeset | 378 | by (simp add: mult.commute) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 379 | |
| 63110 | 380 | lemma Suc_mult_cancel1: "Suc k * m = Suc k * n \<longleftrightarrow> m = n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 381 | by (subst mult_cancel1) simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 382 | |
| 24995 | 383 | |
| 69593 | 384 | subsection \<open>Orders on \<^typ>\<open>nat\<close>\<close> | 
| 60758 | 385 | |
| 386 | subsubsection \<open>Operation definition\<close> | |
| 24995 | 387 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 388 | instantiation nat :: linorder | 
| 25510 | 389 | begin | 
| 390 | ||
| 63588 | 391 | primrec less_eq_nat | 
| 392 | where | |
| 393 | "(0::nat) \<le> n \<longleftrightarrow> True" | |
| 394 | | "Suc m \<le> n \<longleftrightarrow> (case n of 0 \<Rightarrow> False | Suc n \<Rightarrow> m \<le> n)" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 395 | |
| 28514 | 396 | declare less_eq_nat.simps [simp del] | 
| 63110 | 397 | |
| 63588 | 398 | lemma le0 [iff]: "0 \<le> n" for | 
| 399 | n :: nat | |
| 63110 | 400 | by (simp add: less_eq_nat.simps) | 
| 401 | ||
| 63588 | 402 | lemma [code]: "0 \<le> n \<longleftrightarrow> True" | 
| 403 | for n :: nat | |
| 63110 | 404 | by simp | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 405 | |
| 63588 | 406 | definition less_nat | 
| 407 | where less_eq_Suc_le: "n < m \<longleftrightarrow> Suc n \<le> m" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 408 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 409 | lemma Suc_le_mono [iff]: "Suc n \<le> Suc m \<longleftrightarrow> n \<le> m" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 410 | by (simp add: less_eq_nat.simps(2)) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 411 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 412 | lemma Suc_le_eq [code]: "Suc m \<le> n \<longleftrightarrow> m < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 413 | unfolding less_eq_Suc_le .. | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 414 | |
| 63588 | 415 | lemma le_0_eq [iff]: "n \<le> 0 \<longleftrightarrow> n = 0" | 
| 416 | for n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 417 | by (induct n) (simp_all add: less_eq_nat.simps(2)) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 418 | |
| 63588 | 419 | lemma not_less0 [iff]: "\<not> n < 0" | 
| 420 | for n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 421 | by (simp add: less_eq_Suc_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 422 | |
| 63588 | 423 | lemma less_nat_zero_code [code]: "n < 0 \<longleftrightarrow> False" | 
| 424 | for n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 425 | by simp | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 426 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 427 | lemma Suc_less_eq [iff]: "Suc m < Suc n \<longleftrightarrow> m < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 428 | by (simp add: less_eq_Suc_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 429 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 430 | lemma less_Suc_eq_le [code]: "m < Suc n \<longleftrightarrow> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 431 | by (simp add: less_eq_Suc_le) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 432 | |
| 56194 | 433 | lemma Suc_less_eq2: "Suc n < m \<longleftrightarrow> (\<exists>m'. m = Suc m' \<and> n < m')" | 
| 434 | by (cases m) auto | |
| 435 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 436 | lemma le_SucI: "m \<le> n \<Longrightarrow> m \<le> Suc n" | 
| 63110 | 437 | by (induct m arbitrary: n) (simp_all add: less_eq_nat.simps(2) split: nat.splits) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 438 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 439 | lemma Suc_leD: "Suc m \<le> n \<Longrightarrow> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 440 | by (cases n) (auto intro: le_SucI) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 441 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 442 | lemma less_SucI: "m < n \<Longrightarrow> m < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 443 | by (simp add: less_eq_Suc_le) (erule Suc_leD) | 
| 24995 | 444 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 445 | lemma Suc_lessD: "Suc m < n \<Longrightarrow> m < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 446 | by (simp add: less_eq_Suc_le) (erule Suc_leD) | 
| 25510 | 447 | |
| 26315 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 448 | instance | 
| 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 449 | proof | 
| 63110 | 450 | fix n m q :: nat | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 451 | show "n < m \<longleftrightarrow> n \<le> m \<and> \<not> m \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 452 | proof (induct n arbitrary: m) | 
| 63110 | 453 | case 0 | 
| 63588 | 454 | then show ?case | 
| 455 | by (cases m) (simp_all add: less_eq_Suc_le) | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 456 | next | 
| 63110 | 457 | case (Suc n) | 
| 63588 | 458 | then show ?case | 
| 459 | by (cases m) (simp_all add: less_eq_Suc_le) | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 460 | qed | 
| 63588 | 461 | show "n \<le> n" | 
| 462 | by (induct n) simp_all | |
| 63110 | 463 | then show "n = m" if "n \<le> m" and "m \<le> n" | 
| 464 | using that by (induct n arbitrary: m) | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 465 | (simp_all add: less_eq_nat.simps(2) split: nat.splits) | 
| 63110 | 466 | show "n \<le> q" if "n \<le> m" and "m \<le> q" | 
| 467 | using that | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 468 | proof (induct n arbitrary: m q) | 
| 63110 | 469 | case 0 | 
| 470 | show ?case by simp | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 471 | next | 
| 63110 | 472 | case (Suc n) | 
| 473 | then show ?case | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 474 | by (simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 475 | simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits, clarify, | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 476 | simp_all (no_asm_use) add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 477 | qed | 
| 63110 | 478 | show "n \<le> m \<or> m \<le> n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 479 | by (induct n arbitrary: m) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 480 | (simp_all add: less_eq_nat.simps(2) split: nat.splits) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 481 | qed | 
| 25510 | 482 | |
| 483 | end | |
| 13449 | 484 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52435diff
changeset | 485 | instantiation nat :: order_bot | 
| 29652 | 486 | begin | 
| 487 | ||
| 63588 | 488 | definition bot_nat :: nat | 
| 489 | where "bot_nat = 0" | |
| 490 | ||
| 491 | instance | |
| 492 | by standard (simp add: bot_nat_def) | |
| 29652 | 493 | |
| 494 | end | |
| 495 | ||
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 496 | instance nat :: no_top | 
| 61169 | 497 | by standard (auto intro: less_Suc_eq_le [THEN iffD2]) | 
| 52289 | 498 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51263diff
changeset | 499 | |
| 60758 | 500 | subsubsection \<open>Introduction properties\<close> | 
| 13449 | 501 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 502 | lemma lessI [iff]: "n < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 503 | by (simp add: less_Suc_eq_le) | 
| 13449 | 504 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 505 | lemma zero_less_Suc [iff]: "0 < Suc n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 506 | by (simp add: less_Suc_eq_le) | 
| 13449 | 507 | |
| 508 | ||
| 60758 | 509 | subsubsection \<open>Elimination properties\<close> | 
| 13449 | 510 | |
| 63588 | 511 | lemma less_not_refl: "\<not> n < n" | 
| 512 | for n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 513 | by (rule order_less_irrefl) | 
| 13449 | 514 | |
| 63588 | 515 | lemma less_not_refl2: "n < m \<Longrightarrow> m \<noteq> n" | 
| 516 | for m n :: nat | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 517 | by (rule not_sym) (rule less_imp_neq) | 
| 13449 | 518 | |
| 63588 | 519 | lemma less_not_refl3: "s < t \<Longrightarrow> s \<noteq> t" | 
| 520 | for s t :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 521 | by (rule less_imp_neq) | 
| 13449 | 522 | |
| 63588 | 523 | lemma less_irrefl_nat: "n < n \<Longrightarrow> R" | 
| 524 | for n :: nat | |
| 26335 
961bbcc9d85b
removed redundant Nat.less_not_sym, Nat.less_asym;
 wenzelm parents: 
26315diff
changeset | 525 | by (rule notE, rule less_not_refl) | 
| 13449 | 526 | |
| 63588 | 527 | lemma less_zeroE: "n < 0 \<Longrightarrow> R" | 
| 528 | for n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 529 | by (rule notE) (rule not_less0) | 
| 13449 | 530 | |
| 63110 | 531 | lemma less_Suc_eq: "m < Suc n \<longleftrightarrow> m < n \<or> m = n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 532 | unfolding less_Suc_eq_le le_less .. | 
| 13449 | 533 | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 534 | lemma less_Suc0 [iff]: "(n < Suc 0) = (n = 0)" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 535 | by (simp add: less_Suc_eq) | 
| 13449 | 536 | |
| 63588 | 537 | lemma less_one [iff]: "n < 1 \<longleftrightarrow> n = 0" | 
| 538 | for n :: nat | |
| 30079 
293b896b9c25
make proofs work whether or not One_nat_def is a simp rule; replace 1 with Suc 0 in the rhs of some simp rules
 huffman parents: 
30056diff
changeset | 539 | unfolding One_nat_def by (rule less_Suc0) | 
| 13449 | 540 | |
| 63110 | 541 | lemma Suc_mono: "m < n \<Longrightarrow> Suc m < Suc n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 542 | by simp | 
| 13449 | 543 | |
| 63588 | 544 | text \<open>"Less than" is antisymmetric, sort of.\<close> | 
| 545 | lemma less_antisym: "\<not> n < m \<Longrightarrow> n < Suc m \<Longrightarrow> m = n" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 546 | unfolding not_less less_Suc_eq_le by (rule antisym) | 
| 14302 | 547 | |
| 63588 | 548 | lemma nat_neq_iff: "m \<noteq> n \<longleftrightarrow> m < n \<or> n < m" | 
| 549 | for m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 550 | by (rule linorder_neq_iff) | 
| 13449 | 551 | |
| 552 | ||
| 60758 | 553 | subsubsection \<open>Inductive (?) properties\<close> | 
| 13449 | 554 | |
| 63110 | 555 | lemma Suc_lessI: "m < n \<Longrightarrow> Suc m \<noteq> n \<Longrightarrow> Suc m < n" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 556 | unfolding less_eq_Suc_le [of m] le_less by simp | 
| 13449 | 557 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 558 | lemma lessE: | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 559 | assumes major: "i < k" | 
| 63110 | 560 | and 1: "k = Suc i \<Longrightarrow> P" | 
| 561 | and 2: "\<And>j. i < j \<Longrightarrow> k = Suc j \<Longrightarrow> P" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 562 | shows P | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 563 | proof - | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 564 | from major have "\<exists>j. i \<le> j \<and> k = Suc j" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 565 | unfolding less_eq_Suc_le by (induct k) simp_all | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 566 | then have "(\<exists>j. i < j \<and> k = Suc j) \<or> k = Suc i" | 
| 63110 | 567 | by (auto simp add: less_le) | 
| 568 | with 1 2 show P by auto | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 569 | qed | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 570 | |
| 63110 | 571 | lemma less_SucE: | 
| 572 | assumes major: "m < Suc n" | |
| 573 | and less: "m < n \<Longrightarrow> P" | |
| 574 | and eq: "m = n \<Longrightarrow> P" | |
| 575 | shows P | |
| 71585 | 576 | proof (rule major [THEN lessE]) | 
| 577 | show "Suc n = Suc m \<Longrightarrow> P" | |
| 578 | using eq by blast | |
| 579 | show "\<And>j. \<lbrakk>m < j; Suc n = Suc j\<rbrakk> \<Longrightarrow> P" | |
| 580 | by (blast intro: less) | |
| 581 | qed | |
| 13449 | 582 | |
| 63110 | 583 | lemma Suc_lessE: | 
| 584 | assumes major: "Suc i < k" | |
| 585 | and minor: "\<And>j. i < j \<Longrightarrow> k = Suc j \<Longrightarrow> P" | |
| 586 | shows P | |
| 71585 | 587 | proof (rule major [THEN lessE]) | 
| 588 | show "k = Suc (Suc i) \<Longrightarrow> P" | |
| 589 | using lessI minor by iprover | |
| 590 | show "\<And>j. \<lbrakk>Suc i < j; k = Suc j\<rbrakk> \<Longrightarrow> P" | |
| 591 | using Suc_lessD minor by iprover | |
| 592 | qed | |
| 13449 | 593 | |
| 63110 | 594 | lemma Suc_less_SucD: "Suc m < Suc n \<Longrightarrow> m < n" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 595 | by simp | 
| 13449 | 596 | |
| 597 | lemma less_trans_Suc: | |
| 63110 | 598 | assumes le: "i < j" | 
| 599 | shows "j < k \<Longrightarrow> Suc i < k" | |
| 63588 | 600 | proof (induct k) | 
| 601 | case 0 | |
| 602 | then show ?case by simp | |
| 603 | next | |
| 604 | case (Suc k) | |
| 605 | with le show ?case | |
| 606 | by simp (auto simp add: less_Suc_eq dest: Suc_lessD) | |
| 607 | qed | |
| 608 | ||
| 69593 | 609 | text \<open>Can be used with \<open>less_Suc_eq\<close> to get \<^prop>\<open>n = m \<or> n < m\<close>.\<close> | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 610 | lemma not_less_eq: "\<not> m < n \<longleftrightarrow> n < Suc m" | 
| 63588 | 611 | by (simp only: not_less less_Suc_eq_le) | 
| 13449 | 612 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 613 | lemma not_less_eq_eq: "\<not> m \<le> n \<longleftrightarrow> Suc n \<le> m" | 
| 63588 | 614 | by (simp only: not_le Suc_le_eq) | 
| 615 | ||
| 616 | text \<open>Properties of "less than or equal".\<close> | |
| 13449 | 617 | |
| 63110 | 618 | lemma le_imp_less_Suc: "m \<le> n \<Longrightarrow> m < Suc n" | 
| 63588 | 619 | by (simp only: less_Suc_eq_le) | 
| 13449 | 620 | |
| 63110 | 621 | lemma Suc_n_not_le_n: "\<not> Suc n \<le> n" | 
| 63588 | 622 | by (simp add: not_le less_Suc_eq_le) | 
| 623 | ||
| 624 | lemma le_Suc_eq: "m \<le> Suc n \<longleftrightarrow> m \<le> n \<or> m = Suc n" | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 625 | by (simp add: less_Suc_eq_le [symmetric] less_Suc_eq) | 
| 13449 | 626 | |
| 63110 | 627 | lemma le_SucE: "m \<le> Suc n \<Longrightarrow> (m \<le> n \<Longrightarrow> R) \<Longrightarrow> (m = Suc n \<Longrightarrow> R) \<Longrightarrow> R" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 628 | by (drule le_Suc_eq [THEN iffD1], iprover+) | 
| 13449 | 629 | |
| 63588 | 630 | lemma Suc_leI: "m < n \<Longrightarrow> Suc m \<le> n" | 
| 631 | by (simp only: Suc_le_eq) | |
| 632 | ||
| 633 | text \<open>Stronger version of \<open>Suc_leD\<close>.\<close> | |
| 63110 | 634 | lemma Suc_le_lessD: "Suc m \<le> n \<Longrightarrow> m < n" | 
| 63588 | 635 | by (simp only: Suc_le_eq) | 
| 13449 | 636 | |
| 63110 | 637 | lemma less_imp_le_nat: "m < n \<Longrightarrow> m \<le> n" for m n :: nat | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 638 | unfolding less_eq_Suc_le by (rule Suc_leD) | 
| 13449 | 639 | |
| 61799 | 640 | text \<open>For instance, \<open>(Suc m < Suc n) = (Suc m \<le> n) = (m < n)\<close>\<close> | 
| 26315 
cb3badaa192e
removed redundant less_trans, less_linear, le_imp_less_or_eq, le_less_trans, less_le_trans (cf. Orderings.thy);
 wenzelm parents: 
26300diff
changeset | 641 | lemmas le_simps = less_imp_le_nat less_Suc_eq_le Suc_le_eq | 
| 13449 | 642 | |
| 643 | ||
| 63110 | 644 | text \<open>Equivalence of \<open>m \<le> n\<close> and \<open>m < n \<or> m = n\<close>\<close> | 
| 645 | ||
| 63588 | 646 | lemma less_or_eq_imp_le: "m < n \<or> m = n \<Longrightarrow> m \<le> n" | 
| 647 | for m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 648 | unfolding le_less . | 
| 13449 | 649 | |
| 63588 | 650 | lemma le_eq_less_or_eq: "m \<le> n \<longleftrightarrow> m < n \<or> m = n" | 
| 651 | for m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 652 | by (rule le_less) | 
| 13449 | 653 | |
| 61799 | 654 | text \<open>Useful with \<open>blast\<close>.\<close> | 
| 63588 | 655 | lemma eq_imp_le: "m = n \<Longrightarrow> m \<le> n" | 
| 656 | for m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 657 | by auto | 
| 13449 | 658 | |
| 63588 | 659 | lemma le_refl: "n \<le> n" | 
| 660 | for n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 661 | by simp | 
| 13449 | 662 | |
| 63588 | 663 | lemma le_trans: "i \<le> j \<Longrightarrow> j \<le> k \<Longrightarrow> i \<le> k" | 
| 664 | for i j k :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 665 | by (rule order_trans) | 
| 13449 | 666 | |
| 63588 | 667 | lemma le_antisym: "m \<le> n \<Longrightarrow> n \<le> m \<Longrightarrow> m = n" | 
| 668 | for m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 669 | by (rule antisym) | 
| 13449 | 670 | |
| 63588 | 671 | lemma nat_less_le: "m < n \<longleftrightarrow> m \<le> n \<and> m \<noteq> n" | 
| 672 | for m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 673 | by (rule less_le) | 
| 13449 | 674 | |
| 63588 | 675 | lemma le_neq_implies_less: "m \<le> n \<Longrightarrow> m \<noteq> n \<Longrightarrow> m < n" | 
| 676 | for m n :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 677 | unfolding less_le .. | 
| 13449 | 678 | |
| 67091 | 679 | lemma nat_le_linear: "m \<le> n \<or> n \<le> m" | 
| 63588 | 680 | for m n :: nat | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 681 | by (rule linear) | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 682 | |
| 22718 | 683 | lemmas linorder_neqE_nat = linorder_neqE [where 'a = nat] | 
| 15921 | 684 | |
| 63110 | 685 | lemma le_less_Suc_eq: "m \<le> n \<Longrightarrow> n < Suc m \<longleftrightarrow> n = m" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 686 | unfolding less_Suc_eq_le by auto | 
| 13449 | 687 | |
| 63110 | 688 | lemma not_less_less_Suc_eq: "\<not> n < m \<Longrightarrow> n < Suc m \<longleftrightarrow> n = m" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 689 | unfolding not_less by (rule le_less_Suc_eq) | 
| 13449 | 690 | |
| 691 | lemmas not_less_simps = not_less_less_Suc_eq le_less_Suc_eq | |
| 692 | ||
| 63110 | 693 | lemma not0_implies_Suc: "n \<noteq> 0 \<Longrightarrow> \<exists>m. n = Suc m" | 
| 694 | by (cases n) simp_all | |
| 695 | ||
| 696 | lemma gr0_implies_Suc: "n > 0 \<Longrightarrow> \<exists>m. n = Suc m" | |
| 697 | by (cases n) simp_all | |
| 698 | ||
| 63588 | 699 | lemma gr_implies_not0: "m < n \<Longrightarrow> n \<noteq> 0" | 
| 700 | for m n :: nat | |
| 63110 | 701 | by (cases n) simp_all | 
| 702 | ||
| 63588 | 703 | lemma neq0_conv[iff]: "n \<noteq> 0 \<longleftrightarrow> 0 < n" | 
| 704 | for n :: nat | |
| 63110 | 705 | by (cases n) simp_all | 
| 25140 | 706 | |
| 61799 | 707 | text \<open>This theorem is useful with \<open>blast\<close>\<close> | 
| 63588 | 708 | lemma gr0I: "(n = 0 \<Longrightarrow> False) \<Longrightarrow> 0 < n" | 
| 709 | for n :: nat | |
| 710 | by (rule neq0_conv[THEN iffD1]) iprover | |
| 63110 | 711 | |
| 712 | lemma gr0_conv_Suc: "0 < n \<longleftrightarrow> (\<exists>m. n = Suc m)" | |
| 713 | by (fast intro: not0_implies_Suc) | |
| 714 | ||
| 63588 | 715 | lemma not_gr0 [iff]: "\<not> 0 < n \<longleftrightarrow> n = 0" | 
| 716 | for n :: nat | |
| 63110 | 717 | using neq0_conv by blast | 
| 718 | ||
| 719 | lemma Suc_le_D: "Suc n \<le> m' \<Longrightarrow> \<exists>m. m' = Suc m" | |
| 720 | by (induct m') simp_all | |
| 13449 | 721 | |
| 60758 | 722 | text \<open>Useful in certain inductive arguments\<close> | 
| 63110 | 723 | lemma less_Suc_eq_0_disj: "m < Suc n \<longleftrightarrow> m = 0 \<or> (\<exists>j. m = Suc j \<and> j < n)" | 
| 724 | by (cases m) simp_all | |
| 13449 | 725 | |
| 64447 | 726 | lemma All_less_Suc: "(\<forall>i < Suc n. P i) = (P n \<and> (\<forall>i < n. P i))" | 
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 727 | by (auto simp: less_Suc_eq) | 
| 13449 | 728 | |
| 66386 | 729 | lemma All_less_Suc2: "(\<forall>i < Suc n. P i) = (P 0 \<and> (\<forall>i < n. P(Suc i)))" | 
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 730 | by (auto simp: less_Suc_eq_0_disj) | 
| 66386 | 731 | |
| 732 | lemma Ex_less_Suc: "(\<exists>i < Suc n. P i) = (P n \<or> (\<exists>i < n. P i))" | |
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 733 | by (auto simp: less_Suc_eq) | 
| 66386 | 734 | |
| 735 | lemma Ex_less_Suc2: "(\<exists>i < Suc n. P i) = (P 0 \<or> (\<exists>i < n. P(Suc i)))" | |
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 736 | by (auto simp: less_Suc_eq_0_disj) | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 737 | |
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 738 | text \<open>@{term mono} (non-strict) doesn't imply increasing, as the function could be constant\<close>
 | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 739 | lemma strict_mono_imp_increasing: | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 740 | fixes n::nat | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 741 | assumes "strict_mono f" shows "f n \<ge> n" | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 742 | proof (induction n) | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 743 | case 0 | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 744 | then show ?case | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 745 | by auto | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 746 | next | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 747 | case (Suc n) | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 748 | then show ?case | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 749 | unfolding not_less_eq_eq [symmetric] | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 750 | using Suc_n_not_le_n assms order_trans strict_mono_less_eq by blast | 
| 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 751 | qed | 
| 66386 | 752 | |
| 60758 | 753 | subsubsection \<open>Monotonicity of Addition\<close> | 
| 13449 | 754 | |
| 63110 | 755 | lemma Suc_pred [simp]: "n > 0 \<Longrightarrow> Suc (n - Suc 0) = n" | 
| 756 | by (simp add: diff_Suc split: nat.split) | |
| 757 | ||
| 758 | lemma Suc_diff_1 [simp]: "0 < n \<Longrightarrow> Suc (n - 1) = n" | |
| 759 | unfolding One_nat_def by (rule Suc_pred) | |
| 760 | ||
| 63588 | 761 | lemma nat_add_left_cancel_le [simp]: "k + m \<le> k + n \<longleftrightarrow> m \<le> n" | 
| 762 | for k m n :: nat | |
| 63110 | 763 | by (induct k) simp_all | 
| 764 | ||
| 63588 | 765 | lemma nat_add_left_cancel_less [simp]: "k + m < k + n \<longleftrightarrow> m < n" | 
| 766 | for k m n :: nat | |
| 63110 | 767 | by (induct k) simp_all | 
| 768 | ||
| 63588 | 769 | lemma add_gr_0 [iff]: "m + n > 0 \<longleftrightarrow> m > 0 \<or> n > 0" | 
| 770 | for m n :: nat | |
| 63110 | 771 | by (auto dest: gr0_implies_Suc) | 
| 13449 | 772 | |
| 60758 | 773 | text \<open>strict, in 1st argument\<close> | 
| 63588 | 774 | lemma add_less_mono1: "i < j \<Longrightarrow> i + k < j + k" | 
| 775 | for i j k :: nat | |
| 63110 | 776 | by (induct k) simp_all | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 777 | |
| 60758 | 778 | text \<open>strict, in both arguments\<close> | 
| 71585 | 779 | lemma add_less_mono: | 
| 780 | fixes i j k l :: nat | |
| 781 | assumes "i < j" "k < l" shows "i + k < j + l" | |
| 782 | proof - | |
| 783 | have "i + k < j + k" | |
| 784 | by (simp add: add_less_mono1 assms) | |
| 785 | also have "... < j + l" | |
| 786 | using \<open>i < j\<close> by (induction j) (auto simp: assms) | |
| 787 | finally show ?thesis . | |
| 788 | qed | |
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 789 | |
| 63110 | 790 | lemma less_imp_Suc_add: "m < n \<Longrightarrow> \<exists>k. n = Suc (m + k)" | 
| 63588 | 791 | proof (induct n) | 
| 792 | case 0 | |
| 793 | then show ?case by simp | |
| 794 | next | |
| 795 | case Suc | |
| 796 | then show ?case | |
| 797 | by (simp add: order_le_less) | |
| 798 | (blast elim!: less_SucE intro!: Nat.add_0_right [symmetric] add_Suc_right [symmetric]) | |
| 799 | qed | |
| 800 | ||
| 801 | lemma le_Suc_ex: "k \<le> l \<Longrightarrow> (\<exists>n. l = k + n)" | |
| 802 | for k l :: nat | |
| 56194 | 803 | by (auto simp: less_Suc_eq_le[symmetric] dest: less_imp_Suc_add) | 
| 804 | ||
| 71425 
f2da99316b86
more rules for natural deduction from inequalities
 haftmann parents: 
71407diff
changeset | 805 | lemma less_natE: | 
| 
f2da99316b86
more rules for natural deduction from inequalities
 haftmann parents: 
71407diff
changeset | 806 | assumes \<open>m < n\<close> | 
| 
f2da99316b86
more rules for natural deduction from inequalities
 haftmann parents: 
71407diff
changeset | 807 | obtains q where \<open>n = Suc (m + q)\<close> | 
| 
f2da99316b86
more rules for natural deduction from inequalities
 haftmann parents: 
71407diff
changeset | 808 | using assms by (auto dest: less_imp_Suc_add intro: that) | 
| 
f2da99316b86
more rules for natural deduction from inequalities
 haftmann parents: 
71407diff
changeset | 809 | |
| 61799 | 810 | text \<open>strict, in 1st argument; proof is by induction on \<open>k > 0\<close>\<close> | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 811 | lemma mult_less_mono2: | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 812 | fixes i j :: nat | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 813 | assumes "i < j" and "0 < k" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 814 | shows "k * i < k * j" | 
| 63110 | 815 | using \<open>0 < k\<close> | 
| 816 | proof (induct k) | |
| 817 | case 0 | |
| 818 | then show ?case by simp | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 819 | next | 
| 63110 | 820 | case (Suc k) | 
| 821 | with \<open>i < j\<close> show ?case | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 822 | by (cases k) (simp_all add: add_less_mono) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 823 | qed | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 824 | |
| 60758 | 825 | text \<open>Addition is the inverse of subtraction: | 
| 69593 | 826 | if \<^term>\<open>n \<le> m\<close> then \<^term>\<open>n + (m - n) = m\<close>.\<close> | 
| 63588 | 827 | lemma add_diff_inverse_nat: "\<not> m < n \<Longrightarrow> n + (m - n) = m" | 
| 828 | for m n :: nat | |
| 63110 | 829 | by (induct m n rule: diff_induct) simp_all | 
| 830 | ||
| 63588 | 831 | lemma nat_le_iff_add: "m \<le> n \<longleftrightarrow> (\<exists>k. n = m + k)" | 
| 832 | for m n :: nat | |
| 63110 | 833 | using nat_add_left_cancel_le[of m 0] by (auto dest: le_Suc_ex) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62365diff
changeset | 834 | |
| 63588 | 835 | text \<open>The naturals form an ordered \<open>semidom\<close> and a \<open>dioid\<close>.\<close> | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62365diff
changeset | 836 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 837 | instance nat :: linordered_semidom | 
| 14341 
a09441bd4f1e
Ring_and_Field now requires axiom add_left_imp_eq for semirings.
 paulson parents: 
14331diff
changeset | 838 | proof | 
| 63110 | 839 | fix m n q :: nat | 
| 63588 | 840 | show "0 < (1::nat)" | 
| 841 | by simp | |
| 842 | show "m \<le> n \<Longrightarrow> q + m \<le> q + n" | |
| 843 | by simp | |
| 844 | show "m < n \<Longrightarrow> 0 < q \<Longrightarrow> q * m < q * n" | |
| 845 | by (simp add: mult_less_mono2) | |
| 846 | show "m \<noteq> 0 \<Longrightarrow> n \<noteq> 0 \<Longrightarrow> m * n \<noteq> 0" | |
| 847 | by simp | |
| 63110 | 848 | show "n \<le> m \<Longrightarrow> (m - n) + n = m" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 849 | by (simp add: add_diff_inverse_nat add.commute linorder_not_less) | 
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62365diff
changeset | 850 | qed | 
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62365diff
changeset | 851 | |
| 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62365diff
changeset | 852 | instance nat :: dioid | 
| 63110 | 853 | by standard (rule nat_le_iff_add) | 
| 63588 | 854 | |
| 63145 | 855 | declare le0[simp del] \<comment> \<open>This is now @{thm zero_le}\<close>
 | 
| 856 | declare le_0_eq[simp del] \<comment> \<open>This is now @{thm le_zero_eq}\<close>
 | |
| 857 | declare not_less0[simp del] \<comment> \<open>This is now @{thm not_less_zero}\<close>
 | |
| 858 | declare not_gr0[simp del] \<comment> \<open>This is now @{thm not_gr_zero}\<close>
 | |
| 62376 
85f38d5f8807
Rename ordered_comm_monoid_add to ordered_cancel_comm_monoid_add. Introduce ordreed_comm_monoid_add, canonically_ordered_comm_monoid and dioid. Setup nat, entat and ennreal as dioids.
 hoelzl parents: 
62365diff
changeset | 859 | |
| 63110 | 860 | instance nat :: ordered_cancel_comm_monoid_add .. | 
| 861 | instance nat :: ordered_cancel_comm_monoid_diff .. | |
| 862 | ||
| 44817 | 863 | |
| 69593 | 864 | subsubsection \<open>\<^term>\<open>min\<close> and \<^term>\<open>max\<close>\<close> | 
| 44817 | 865 | |
| 71851 | 866 | global_interpretation bot_nat_0: ordering_top \<open>(\<ge>)\<close> \<open>(>)\<close> \<open>0::nat\<close> | 
| 867 | by standard simp | |
| 868 | ||
| 869 | global_interpretation max_nat: semilattice_neutr_order max \<open>0::nat\<close> \<open>(\<ge>)\<close> \<open>(>)\<close> | |
| 870 | by standard (simp add: max_def) | |
| 871 | ||
| 44817 | 872 | lemma mono_Suc: "mono Suc" | 
| 63110 | 873 | by (rule monoI) simp | 
| 874 | ||
| 63588 | 875 | lemma min_0L [simp]: "min 0 n = 0" | 
| 876 | for n :: nat | |
| 63110 | 877 | by (rule min_absorb1) simp | 
| 878 | ||
| 63588 | 879 | lemma min_0R [simp]: "min n 0 = 0" | 
| 880 | for n :: nat | |
| 63110 | 881 | by (rule min_absorb2) simp | 
| 44817 | 882 | |
| 883 | lemma min_Suc_Suc [simp]: "min (Suc m) (Suc n) = Suc (min m n)" | |
| 63110 | 884 | by (simp add: mono_Suc min_of_mono) | 
| 885 | ||
| 886 | lemma min_Suc1: "min (Suc n) m = (case m of 0 \<Rightarrow> 0 | Suc m' \<Rightarrow> Suc(min n m'))" | |
| 887 | by (simp split: nat.split) | |
| 888 | ||
| 889 | lemma min_Suc2: "min m (Suc n) = (case m of 0 \<Rightarrow> 0 | Suc m' \<Rightarrow> Suc(min m' n))" | |
| 890 | by (simp split: nat.split) | |
| 891 | ||
| 63588 | 892 | lemma max_0L [simp]: "max 0 n = n" | 
| 893 | for n :: nat | |
| 71851 | 894 | by (fact max_nat.left_neutral) | 
| 63110 | 895 | |
| 63588 | 896 | lemma max_0R [simp]: "max n 0 = n" | 
| 897 | for n :: nat | |
| 71851 | 898 | by (fact max_nat.right_neutral) | 
| 63110 | 899 | |
| 900 | lemma max_Suc_Suc [simp]: "max (Suc m) (Suc n) = Suc (max m n)" | |
| 901 | by (simp add: mono_Suc max_of_mono) | |
| 902 | ||
| 903 | lemma max_Suc1: "max (Suc n) m = (case m of 0 \<Rightarrow> Suc n | Suc m' \<Rightarrow> Suc (max n m'))" | |
| 904 | by (simp split: nat.split) | |
| 905 | ||
| 906 | lemma max_Suc2: "max m (Suc n) = (case m of 0 \<Rightarrow> Suc n | Suc m' \<Rightarrow> Suc (max m' n))" | |
| 907 | by (simp split: nat.split) | |
| 908 | ||
| 63588 | 909 | lemma nat_mult_min_left: "min m n * q = min (m * q) (n * q)" | 
| 910 | for m n q :: nat | |
| 63110 | 911 | by (simp add: min_def not_le) | 
| 912 | (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans) | |
| 913 | ||
| 63588 | 914 | lemma nat_mult_min_right: "m * min n q = min (m * n) (m * q)" | 
| 915 | for m n q :: nat | |
| 63110 | 916 | by (simp add: min_def not_le) | 
| 917 | (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans) | |
| 918 | ||
| 63588 | 919 | lemma nat_add_max_left: "max m n + q = max (m + q) (n + q)" | 
| 920 | for m n q :: nat | |
| 44817 | 921 | by (simp add: max_def) | 
| 922 | ||
| 63588 | 923 | lemma nat_add_max_right: "m + max n q = max (m + n) (m + q)" | 
| 924 | for m n q :: nat | |
| 44817 | 925 | by (simp add: max_def) | 
| 926 | ||
| 63588 | 927 | lemma nat_mult_max_left: "max m n * q = max (m * q) (n * q)" | 
| 928 | for m n q :: nat | |
| 63110 | 929 | by (simp add: max_def not_le) | 
| 930 | (auto dest: mult_right_le_imp_le mult_right_less_imp_less le_less_trans) | |
| 931 | ||
| 63588 | 932 | lemma nat_mult_max_right: "m * max n q = max (m * n) (m * q)" | 
| 933 | for m n q :: nat | |
| 63110 | 934 | by (simp add: max_def not_le) | 
| 935 | (auto dest: mult_left_le_imp_le mult_left_less_imp_less le_less_trans) | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 936 | |
| 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 937 | |
| 69593 | 938 | subsubsection \<open>Additional theorems about \<^term>\<open>(\<le>)\<close>\<close> | 
| 60758 | 939 | |
| 940 | text \<open>Complete induction, aka course-of-values induction\<close> | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 941 | |
| 63110 | 942 | instance nat :: wellorder | 
| 943 | proof | |
| 27823 | 944 | fix P and n :: nat | 
| 63110 | 945 | assume step: "(\<And>m. m < n \<Longrightarrow> P m) \<Longrightarrow> P n" for n :: nat | 
| 27823 | 946 | have "\<And>q. q \<le> n \<Longrightarrow> P q" | 
| 947 | proof (induct n) | |
| 948 | case (0 n) | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 949 | have "P 0" by (rule step) auto | 
| 63588 | 950 | with 0 show ?case by auto | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 951 | next | 
| 27823 | 952 | case (Suc m n) | 
| 63588 | 953 | then have "n \<le> m \<or> n = Suc m" | 
| 954 | by (simp add: le_Suc_eq) | |
| 63110 | 955 | then show ?case | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 956 | proof | 
| 63110 | 957 | assume "n \<le> m" | 
| 958 | then show "P n" by (rule Suc(1)) | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 959 | next | 
| 27823 | 960 | assume n: "n = Suc m" | 
| 63110 | 961 | show "P n" by (rule step) (rule Suc(1), simp add: n le_simps) | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 962 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 963 | qed | 
| 27823 | 964 | then show "P n" by auto | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 965 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 966 | |
| 57015 | 967 | |
| 63588 | 968 | lemma Least_eq_0[simp]: "P 0 \<Longrightarrow> Least P = 0" | 
| 969 | for P :: "nat \<Rightarrow> bool" | |
| 63110 | 970 | by (rule Least_equality[OF _ le0]) | 
| 971 | ||
| 71585 | 972 | lemma Least_Suc: | 
| 973 | assumes "P n" "\<not> P 0" | |
| 974 | shows "(LEAST n. P n) = Suc (LEAST m. P (Suc m))" | |
| 975 | proof (cases n) | |
| 976 | case (Suc m) | |
| 977 | show ?thesis | |
| 978 | proof (rule antisym) | |
| 979 | show "(LEAST x. P x) \<le> Suc (LEAST x. P (Suc x))" | |
| 980 | using assms Suc by (force intro: LeastI Least_le) | |
| 981 | have \<section>: "P (LEAST x. P x)" | |
| 982 | by (blast intro: LeastI assms) | |
| 983 | show "Suc (LEAST m. P (Suc m)) \<le> (LEAST n. P n)" | |
| 984 | proof (cases "(LEAST n. P n)") | |
| 985 | case 0 | |
| 986 | then show ?thesis | |
| 987 | using \<section> by (simp add: assms) | |
| 988 | next | |
| 989 | case Suc | |
| 990 | with \<section> show ?thesis | |
| 991 | by (auto simp: Least_le) | |
| 992 | qed | |
| 993 | qed | |
| 994 | qed (use assms in auto) | |
| 27823 | 995 | |
| 63110 | 996 | lemma Least_Suc2: "P n \<Longrightarrow> Q m \<Longrightarrow> \<not> P 0 \<Longrightarrow> \<forall>k. P (Suc k) = Q k \<Longrightarrow> Least P = Suc (Least Q)" | 
| 63588 | 997 | by (erule (1) Least_Suc [THEN ssubst]) simp | 
| 998 | ||
| 71585 | 999 | lemma ex_least_nat_le: | 
| 1000 | fixes P :: "nat \<Rightarrow> bool" | |
| 1001 | assumes "P n" "\<not> P 0" | |
| 1002 | shows "\<exists>k\<le>n. (\<forall>i<k. \<not> P i) \<and> P k" | |
| 1003 | proof (cases n) | |
| 1004 | case (Suc m) | |
| 1005 | with assms show ?thesis | |
| 1006 | by (blast intro: Least_le LeastI_ex dest: not_less_Least) | |
| 1007 | qed (use assms in auto) | |
| 1008 | ||
| 1009 | lemma ex_least_nat_less: | |
| 1010 | fixes P :: "nat \<Rightarrow> bool" | |
| 1011 | assumes "P n" "\<not> P 0" | |
| 1012 | shows "\<exists>k<n. (\<forall>i\<le>k. \<not> P i) \<and> P (Suc k)" | |
| 1013 | proof (cases n) | |
| 1014 | case (Suc m) | |
| 1015 | then obtain k where k: "k \<le> n" "\<forall>i<k. \<not> P i" "P k" | |
| 1016 | using ex_least_nat_le [OF assms] by blast | |
| 1017 | show ?thesis | |
| 1018 | by (cases k) (use assms k less_eq_Suc_le in auto) | |
| 1019 | qed (use assms in auto) | |
| 1020 | ||
| 27823 | 1021 | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1022 | lemma nat_less_induct: | 
| 63110 | 1023 | fixes P :: "nat \<Rightarrow> bool" | 
| 1024 | assumes "\<And>n. \<forall>m. m < n \<longrightarrow> P m \<Longrightarrow> P n" | |
| 1025 | shows "P n" | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1026 | using assms less_induct by blast | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1027 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1028 | lemma measure_induct_rule [case_names less]: | 
| 64876 | 1029 | fixes f :: "'a \<Rightarrow> 'b::wellorder" | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1030 | assumes step: "\<And>x. (\<And>y. f y < f x \<Longrightarrow> P y) \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1031 | shows "P a" | 
| 63110 | 1032 | by (induct m \<equiv> "f a" arbitrary: a rule: less_induct) (auto intro: step) | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1033 | |
| 60758 | 1034 | text \<open>old style induction rules:\<close> | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1035 | lemma measure_induct: | 
| 64876 | 1036 | fixes f :: "'a \<Rightarrow> 'b::wellorder" | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1037 | shows "(\<And>x. \<forall>y. f y < f x \<longrightarrow> P y \<Longrightarrow> P x) \<Longrightarrow> P a" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1038 | by (rule measure_induct_rule [of f P a]) iprover | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1039 | |
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1040 | lemma full_nat_induct: | 
| 63110 | 1041 | assumes step: "\<And>n. (\<forall>m. Suc m \<le> n \<longrightarrow> P m) \<Longrightarrow> P n" | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1042 | shows "P n" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1043 | by (rule less_induct) (auto intro: step simp:le_simps) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1044 | |
| 63110 | 1045 | text\<open>An induction rule for establishing binary relations\<close> | 
| 62683 | 1046 | lemma less_Suc_induct [consumes 1]: | 
| 63110 | 1047 | assumes less: "i < j" | 
| 1048 | and step: "\<And>i. P i (Suc i)" | |
| 1049 | and trans: "\<And>i j k. i < j \<Longrightarrow> j < k \<Longrightarrow> P i j \<Longrightarrow> P j k \<Longrightarrow> P i k" | |
| 19870 | 1050 | shows "P i j" | 
| 1051 | proof - | |
| 63110 | 1052 | from less obtain k where j: "j = Suc (i + k)" | 
| 1053 | by (auto dest: less_imp_Suc_add) | |
| 22718 | 1054 | have "P i (Suc (i + k))" | 
| 19870 | 1055 | proof (induct k) | 
| 22718 | 1056 | case 0 | 
| 1057 | show ?case by (simp add: step) | |
| 19870 | 1058 | next | 
| 1059 | case (Suc k) | |
| 31714 | 1060 | have "0 + i < Suc k + i" by (rule add_less_mono1) simp | 
| 63110 | 1061 | then have "i < Suc (i + k)" by (simp add: add.commute) | 
| 31714 | 1062 | from trans[OF this lessI Suc step] | 
| 1063 | show ?case by simp | |
| 19870 | 1064 | qed | 
| 63110 | 1065 | then show "P i j" by (simp add: j) | 
| 19870 | 1066 | qed | 
| 1067 | ||
| 63111 | 1068 | text \<open> | 
| 1069 | The method of infinite descent, frequently used in number theory. | |
| 1070 | Provided by Roelof Oosterhuis. | |
| 1071 | \<open>P n\<close> is true for all natural numbers if | |
| 1072 | \<^item> case ``0'': given \<open>n = 0\<close> prove \<open>P n\<close> | |
| 1073 | \<^item> case ``smaller'': given \<open>n > 0\<close> and \<open>\<not> P n\<close> prove there exists | |
| 1074 | a smaller natural number \<open>m\<close> such that \<open>\<not> P m\<close>. | |
| 1075 | \<close> | |
| 1076 | ||
| 63110 | 1077 | lemma infinite_descent: "(\<And>n. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m) \<Longrightarrow> P n" for P :: "nat \<Rightarrow> bool" | 
| 63111 | 1078 | \<comment> \<open>compact version without explicit base case\<close> | 
| 63110 | 1079 | by (induct n rule: less_induct) auto | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1080 | |
| 63111 | 1081 | lemma infinite_descent0 [case_names 0 smaller]: | 
| 63110 | 1082 | fixes P :: "nat \<Rightarrow> bool" | 
| 63111 | 1083 | assumes "P 0" | 
| 1084 | and "\<And>n. n > 0 \<Longrightarrow> \<not> P n \<Longrightarrow> \<exists>m. m < n \<and> \<not> P m" | |
| 63110 | 1085 | shows "P n" | 
| 71585 | 1086 | proof (rule infinite_descent) | 
| 1087 | show "\<And>n. \<not> P n \<Longrightarrow> \<exists>m<n. \<not> P m" | |
| 1088 | using assms by (case_tac "n > 0") auto | |
| 1089 | qed | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1090 | |
| 60758 | 1091 | text \<open> | 
| 63111 | 1092 | Infinite descent using a mapping to \<open>nat\<close>: | 
| 1093 | \<open>P x\<close> is true for all \<open>x \<in> D\<close> if there exists a \<open>V \<in> D \<Rightarrow> nat\<close> and | |
| 1094 | \<^item> case ``0'': given \<open>V x = 0\<close> prove \<open>P x\<close> | |
| 1095 | \<^item> ``smaller'': given \<open>V x > 0\<close> and \<open>\<not> P x\<close> prove | |
| 1096 | there exists a \<open>y \<in> D\<close> such that \<open>V y < V x\<close> and \<open>\<not> P y\<close>. | |
| 1097 | \<close> | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1098 | corollary infinite_descent0_measure [case_names 0 smaller]: | 
| 63110 | 1099 | fixes V :: "'a \<Rightarrow> nat" | 
| 1100 | assumes 1: "\<And>x. V x = 0 \<Longrightarrow> P x" | |
| 1101 | and 2: "\<And>x. V x > 0 \<Longrightarrow> \<not> P x \<Longrightarrow> \<exists>y. V y < V x \<and> \<not> P y" | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1102 | shows "P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1103 | proof - | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1104 | obtain n where "n = V x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1105 | moreover have "\<And>x. V x = n \<Longrightarrow> P x" | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1106 | proof (induct n rule: infinite_descent0) | 
| 63110 | 1107 | case 0 | 
| 1108 | with 1 show "P x" by auto | |
| 1109 | next | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1110 | case (smaller n) | 
| 63110 | 1111 | then obtain x where *: "V x = n " and "V x > 0 \<and> \<not> P x" by auto | 
| 1112 | with 2 obtain y where "V y < V x \<and> \<not> P y" by auto | |
| 63111 | 1113 | with * obtain m where "m = V y \<and> m < n \<and> \<not> P y" by auto | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1114 | then show ?case by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1115 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1116 | ultimately show "P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1117 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1118 | |
| 63588 | 1119 | text \<open>Again, without explicit base case:\<close> | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1120 | lemma infinite_descent_measure: | 
| 63110 | 1121 | fixes V :: "'a \<Rightarrow> nat" | 
| 1122 | assumes "\<And>x. \<not> P x \<Longrightarrow> \<exists>y. V y < V x \<and> \<not> P y" | |
| 1123 | shows "P x" | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1124 | proof - | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1125 | from assms obtain n where "n = V x" by auto | 
| 63110 | 1126 | moreover have "\<And>x. V x = n \<Longrightarrow> P x" | 
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1127 | proof (induct n rule: infinite_descent, auto) | 
| 63111 | 1128 | show "\<exists>m < V x. \<exists>y. V y = m \<and> \<not> P y" if "\<not> P x" for x | 
| 1129 | using assms and that by auto | |
| 26748 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1130 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1131 | ultimately show "P x" by auto | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1132 | qed | 
| 
4d51ddd6aa5c
Merged theories about wellfoundedness into one: Wellfounded.thy
 krauss parents: 
26335diff
changeset | 1133 | |
| 63111 | 1134 | text \<open>A (clumsy) way of lifting \<open><\<close> monotonicity to \<open>\<le>\<close> monotonicity\<close> | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1135 | lemma less_mono_imp_le_mono: | 
| 63110 | 1136 | fixes f :: "nat \<Rightarrow> nat" | 
| 1137 | and i j :: nat | |
| 1138 | assumes "\<And>i j::nat. i < j \<Longrightarrow> f i < f j" | |
| 1139 | and "i \<le> j" | |
| 1140 | shows "f i \<le> f j" | |
| 1141 | using assms by (auto simp add: order_le_less) | |
| 24438 | 1142 | |
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1143 | |
| 60758 | 1144 | text \<open>non-strict, in 1st argument\<close> | 
| 63588 | 1145 | lemma add_le_mono1: "i \<le> j \<Longrightarrow> i + k \<le> j + k" | 
| 1146 | for i j k :: nat | |
| 63110 | 1147 | by (rule add_right_mono) | 
| 14267 
b963e9cee2a0
More refinements to Ring_and_Field and numerics. Conversion of Divides_lemmas
 paulson parents: 
14266diff
changeset | 1148 | |
| 60758 | 1149 | text \<open>non-strict, in both arguments\<close> | 
| 63588 | 1150 | lemma add_le_mono: "i \<le> j \<Longrightarrow> k \<le> l \<Longrightarrow> i + k \<le> j + l" | 
| 1151 | for i j k l :: nat | |
| 63110 | 1152 | by (rule add_mono) | 
| 1153 | ||
| 63588 | 1154 | lemma le_add2: "n \<le> m + n" | 
| 1155 | for m n :: nat | |
| 62608 | 1156 | by simp | 
| 13449 | 1157 | |
| 63588 | 1158 | lemma le_add1: "n \<le> n + m" | 
| 1159 | for m n :: nat | |
| 62608 | 1160 | by simp | 
| 13449 | 1161 | |
| 1162 | lemma less_add_Suc1: "i < Suc (i + m)" | |
| 63110 | 1163 | by (rule le_less_trans, rule le_add1, rule lessI) | 
| 13449 | 1164 | |
| 1165 | lemma less_add_Suc2: "i < Suc (m + i)" | |
| 63110 | 1166 | by (rule le_less_trans, rule le_add2, rule lessI) | 
| 1167 | ||
| 1168 | lemma less_iff_Suc_add: "m < n \<longleftrightarrow> (\<exists>k. n = Suc (m + k))" | |
| 1169 | by (iprover intro!: less_add_Suc1 less_imp_Suc_add) | |
| 1170 | ||
| 63588 | 1171 | lemma trans_le_add1: "i \<le> j \<Longrightarrow> i \<le> j + m" | 
| 1172 | for i j m :: nat | |
| 63110 | 1173 | by (rule le_trans, assumption, rule le_add1) | 
| 1174 | ||
| 63588 | 1175 | lemma trans_le_add2: "i \<le> j \<Longrightarrow> i \<le> m + j" | 
| 1176 | for i j m :: nat | |
| 63110 | 1177 | by (rule le_trans, assumption, rule le_add2) | 
| 1178 | ||
| 63588 | 1179 | lemma trans_less_add1: "i < j \<Longrightarrow> i < j + m" | 
| 1180 | for i j m :: nat | |
| 63110 | 1181 | by (rule less_le_trans, assumption, rule le_add1) | 
| 1182 | ||
| 63588 | 1183 | lemma trans_less_add2: "i < j \<Longrightarrow> i < m + j" | 
| 1184 | for i j m :: nat | |
| 63110 | 1185 | by (rule less_le_trans, assumption, rule le_add2) | 
| 1186 | ||
| 63588 | 1187 | lemma add_lessD1: "i + j < k \<Longrightarrow> i < k" | 
| 1188 | for i j k :: nat | |
| 63110 | 1189 | by (rule le_less_trans [of _ "i+j"]) (simp_all add: le_add1) | 
| 1190 | ||
| 63588 | 1191 | lemma not_add_less1 [iff]: "\<not> i + j < i" | 
| 1192 | for i j :: nat | |
| 71585 | 1193 | by simp | 
| 63110 | 1194 | |
| 63588 | 1195 | lemma not_add_less2 [iff]: "\<not> j + i < i" | 
| 1196 | for i j :: nat | |
| 71585 | 1197 | by simp | 
| 63110 | 1198 | |
| 63588 | 1199 | lemma add_leD1: "m + k \<le> n \<Longrightarrow> m \<le> n" | 
| 1200 | for k m n :: nat | |
| 1201 | by (rule order_trans [of _ "m + k"]) (simp_all add: le_add1) | |
| 1202 | ||
| 1203 | lemma add_leD2: "m + k \<le> n \<Longrightarrow> k \<le> n" | |
| 1204 | for k m n :: nat | |
| 71585 | 1205 | by (force simp add: add.commute dest: add_leD1) | 
| 63110 | 1206 | |
| 63588 | 1207 | lemma add_leE: "m + k \<le> n \<Longrightarrow> (m \<le> n \<Longrightarrow> k \<le> n \<Longrightarrow> R) \<Longrightarrow> R" | 
| 1208 | for k m n :: nat | |
| 63110 | 1209 | by (blast dest: add_leD1 add_leD2) | 
| 1210 | ||
| 1211 | text \<open>needs \<open>\<And>k\<close> for \<open>ac_simps\<close> to work\<close> | |
| 63588 | 1212 | lemma less_add_eq_less: "\<And>k. k < l \<Longrightarrow> m + l = k + n \<Longrightarrow> m < n" | 
| 1213 | for l m n :: nat | |
| 63110 | 1214 | by (force simp del: add_Suc_right simp add: less_iff_Suc_add add_Suc_right [symmetric] ac_simps) | 
| 13449 | 1215 | |
| 1216 | ||
| 60758 | 1217 | subsubsection \<open>More results about difference\<close> | 
| 13449 | 1218 | |
| 63110 | 1219 | lemma Suc_diff_le: "n \<le> m \<Longrightarrow> Suc m - n = Suc (m - n)" | 
| 1220 | by (induct m n rule: diff_induct) simp_all | |
| 13449 | 1221 | |
| 1222 | lemma diff_less_Suc: "m - n < Suc m" | |
| 71585 | 1223 | by (induct m n rule: diff_induct) (auto simp: less_Suc_eq) | 
| 63588 | 1224 | |
| 1225 | lemma diff_le_self [simp]: "m - n \<le> m" | |
| 1226 | for m n :: nat | |
| 63110 | 1227 | by (induct m n rule: diff_induct) (simp_all add: le_SucI) | 
| 1228 | ||
| 63588 | 1229 | lemma less_imp_diff_less: "j < k \<Longrightarrow> j - n < k" | 
| 1230 | for j k n :: nat | |
| 63110 | 1231 | by (rule le_less_trans, rule diff_le_self) | 
| 1232 | ||
| 1233 | lemma diff_Suc_less [simp]: "0 < n \<Longrightarrow> n - Suc i < n" | |
| 1234 | by (cases n) (auto simp add: le_simps) | |
| 1235 | ||
| 63588 | 1236 | lemma diff_add_assoc: "k \<le> j \<Longrightarrow> (i + j) - k = i + (j - k)" | 
| 1237 | for i j k :: nat | |
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 1238 | by (fact ordered_cancel_comm_monoid_diff_class.diff_add_assoc) | 
| 63110 | 1239 | |
| 63588 | 1240 | lemma add_diff_assoc [simp]: "k \<le> j \<Longrightarrow> i + (j - k) = i + j - k" | 
| 1241 | for i j k :: nat | |
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 1242 | by (fact ordered_cancel_comm_monoid_diff_class.add_diff_assoc) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 1243 | |
| 63588 | 1244 | lemma diff_add_assoc2: "k \<le> j \<Longrightarrow> (j + i) - k = (j - k) + i" | 
| 1245 | for i j k :: nat | |
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 1246 | by (fact ordered_cancel_comm_monoid_diff_class.diff_add_assoc2) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 1247 | |
| 63588 | 1248 | lemma add_diff_assoc2 [simp]: "k \<le> j \<Longrightarrow> j - k + i = j + i - k" | 
| 1249 | for i j k :: nat | |
| 71404 
f2b783abfbe7
A few lemmas connected with orderings
 paulson <lp15@cam.ac.uk> parents: 
70490diff
changeset | 1250 | by (fact ordered_cancel_comm_monoid_diff_class.add_diff_assoc2) | 
| 13449 | 1251 | |
| 63588 | 1252 | lemma le_imp_diff_is_add: "i \<le> j \<Longrightarrow> (j - i = k) = (j = k + i)" | 
| 1253 | for i j k :: nat | |
| 63110 | 1254 | by auto | 
| 1255 | ||
| 63588 | 1256 | lemma diff_is_0_eq [simp]: "m - n = 0 \<longleftrightarrow> m \<le> n" | 
| 1257 | for m n :: nat | |
| 63110 | 1258 | by (induct m n rule: diff_induct) simp_all | 
| 1259 | ||
| 63588 | 1260 | lemma diff_is_0_eq' [simp]: "m \<le> n \<Longrightarrow> m - n = 0" | 
| 1261 | for m n :: nat | |
| 63110 | 1262 | by (rule iffD2, rule diff_is_0_eq) | 
| 1263 | ||
| 63588 | 1264 | lemma zero_less_diff [simp]: "0 < n - m \<longleftrightarrow> m < n" | 
| 1265 | for m n :: nat | |
| 63110 | 1266 | by (induct m n rule: diff_induct) simp_all | 
| 13449 | 1267 | |
| 22718 | 1268 | lemma less_imp_add_positive: | 
| 1269 | assumes "i < j" | |
| 63110 | 1270 | shows "\<exists>k::nat. 0 < k \<and> i + k = j" | 
| 22718 | 1271 | proof | 
| 63110 | 1272 | from assms show "0 < j - i \<and> i + (j - i) = j" | 
| 23476 | 1273 | by (simp add: order_less_imp_le) | 
| 22718 | 1274 | qed | 
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 1275 | |
| 60758 | 1276 | text \<open>a nice rewrite for bounded subtraction\<close> | 
| 63588 | 1277 | lemma nat_minus_add_max: "n - m + m = max n m" | 
| 1278 | for m n :: nat | |
| 1279 | by (simp add: max_def not_le order_less_imp_le) | |
| 13449 | 1280 | |
| 63110 | 1281 | lemma nat_diff_split: "P (a - b) \<longleftrightarrow> (a < b \<longrightarrow> P 0) \<and> (\<forall>d. a = b + d \<longrightarrow> P d)" | 
| 1282 | for a b :: nat | |
| 63588 | 1283 | \<comment> \<open>elimination of \<open>-\<close> on \<open>nat\<close>\<close> | 
| 1284 | by (cases "a < b") (auto simp add: not_less le_less dest!: add_eq_self_zero [OF sym]) | |
| 13449 | 1285 | |
| 63110 | 1286 | lemma nat_diff_split_asm: "P (a - b) \<longleftrightarrow> \<not> (a < b \<and> \<not> P 0 \<or> (\<exists>d. a = b + d \<and> \<not> P d))" | 
| 1287 | for a b :: nat | |
| 63588 | 1288 | \<comment> \<open>elimination of \<open>-\<close> on \<open>nat\<close> in assumptions\<close> | 
| 62365 | 1289 | by (auto split: nat_diff_split) | 
| 13449 | 1290 | |
| 63110 | 1291 | lemma Suc_pred': "0 < n \<Longrightarrow> n = Suc(n - 1)" | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47208diff
changeset | 1292 | by simp | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47208diff
changeset | 1293 | |
| 63110 | 1294 | lemma add_eq_if: "m + n = (if m = 0 then n else Suc ((m - 1) + n))" | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47208diff
changeset | 1295 | unfolding One_nat_def by (cases m) simp_all | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47208diff
changeset | 1296 | |
| 63588 | 1297 | lemma mult_eq_if: "m * n = (if m = 0 then 0 else n + ((m - 1) * n))" | 
| 1298 | for m n :: nat | |
| 1299 | by (cases m) simp_all | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47208diff
changeset | 1300 | |
| 63110 | 1301 | lemma Suc_diff_eq_diff_pred: "0 < n \<Longrightarrow> Suc m - n = m - (n - 1)" | 
| 63588 | 1302 | by (cases n) simp_all | 
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47208diff
changeset | 1303 | |
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47208diff
changeset | 1304 | lemma diff_Suc_eq_diff_pred: "m - Suc n = (m - 1) - n" | 
| 63588 | 1305 | by (cases m) simp_all | 
| 1306 | ||
| 1307 | lemma Let_Suc [simp]: "Let (Suc n) f \<equiv> f (Suc n)" | |
| 47255 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47208diff
changeset | 1308 | by (fact Let_def) | 
| 
30a1692557b0
removed Nat_Numeral.thy, moving all theorems elsewhere
 huffman parents: 
47208diff
changeset | 1309 | |
| 13449 | 1310 | |
| 60758 | 1311 | subsubsection \<open>Monotonicity of multiplication\<close> | 
| 13449 | 1312 | |
| 63588 | 1313 | lemma mult_le_mono1: "i \<le> j \<Longrightarrow> i * k \<le> j * k" | 
| 1314 | for i j k :: nat | |
| 63110 | 1315 | by (simp add: mult_right_mono) | 
| 1316 | ||
| 63588 | 1317 | lemma mult_le_mono2: "i \<le> j \<Longrightarrow> k * i \<le> k * j" | 
| 1318 | for i j k :: nat | |
| 63110 | 1319 | by (simp add: mult_left_mono) | 
| 13449 | 1320 | |
| 61799 | 1321 | text \<open>\<open>\<le>\<close> monotonicity, BOTH arguments\<close> | 
| 63588 | 1322 | lemma mult_le_mono: "i \<le> j \<Longrightarrow> k \<le> l \<Longrightarrow> i * k \<le> j * l" | 
| 1323 | for i j k l :: nat | |
| 63110 | 1324 | by (simp add: mult_mono) | 
| 1325 | ||
| 63588 | 1326 | lemma mult_less_mono1: "i < j \<Longrightarrow> 0 < k \<Longrightarrow> i * k < j * k" | 
| 1327 | for i j k :: nat | |
| 63110 | 1328 | by (simp add: mult_strict_right_mono) | 
| 13449 | 1329 | |
| 63588 | 1330 | text \<open>Differs from the standard \<open>zero_less_mult_iff\<close> in that there are no negative numbers.\<close> | 
| 1331 | lemma nat_0_less_mult_iff [simp]: "0 < m * n \<longleftrightarrow> 0 < m \<and> 0 < n" | |
| 1332 | for m n :: nat | |
| 1333 | proof (induct m) | |
| 1334 | case 0 | |
| 1335 | then show ?case by simp | |
| 1336 | next | |
| 1337 | case (Suc m) | |
| 1338 | then show ?case by (cases n) simp_all | |
| 1339 | qed | |
| 13449 | 1340 | |
| 63110 | 1341 | lemma one_le_mult_iff [simp]: "Suc 0 \<le> m * n \<longleftrightarrow> Suc 0 \<le> m \<and> Suc 0 \<le> n" | 
| 63588 | 1342 | proof (induct m) | 
| 1343 | case 0 | |
| 1344 | then show ?case by simp | |
| 1345 | next | |
| 1346 | case (Suc m) | |
| 1347 | then show ?case by (cases n) simp_all | |
| 1348 | qed | |
| 1349 | ||
| 1350 | lemma mult_less_cancel2 [simp]: "m * k < n * k \<longleftrightarrow> 0 < k \<and> m < n" | |
| 1351 | for k m n :: nat | |
| 71585 | 1352 | proof (intro iffI conjI) | 
| 1353 | assume m: "m * k < n * k" | |
| 1354 | then show "0 < k" | |
| 1355 | by (cases k) auto | |
| 1356 | show "m < n" | |
| 1357 | proof (cases k) | |
| 1358 | case 0 | |
| 1359 | then show ?thesis | |
| 1360 | using m by auto | |
| 1361 | next | |
| 1362 | case (Suc k') | |
| 1363 | then show ?thesis | |
| 1364 | using m | |
| 1365 | by (simp flip: linorder_not_le) (blast intro: add_mono mult_le_mono1) | |
| 1366 | qed | |
| 1367 | next | |
| 1368 | assume "0 < k \<and> m < n" | |
| 1369 | then show "m * k < n * k" | |
| 1370 | by (blast intro: mult_less_mono1) | |
| 1371 | qed | |
| 13449 | 1372 | |
| 63588 | 1373 | lemma mult_less_cancel1 [simp]: "k * m < k * n \<longleftrightarrow> 0 < k \<and> m < n" | 
| 1374 | for k m n :: nat | |
| 63110 | 1375 | by (simp add: mult.commute [of k]) | 
| 1376 | ||
| 63588 | 1377 | lemma mult_le_cancel1 [simp]: "k * m \<le> k * n \<longleftrightarrow> (0 < k \<longrightarrow> m \<le> n)" | 
| 1378 | for k m n :: nat | |
| 63110 | 1379 | by (simp add: linorder_not_less [symmetric], auto) | 
| 1380 | ||
| 63588 | 1381 | lemma mult_le_cancel2 [simp]: "m * k \<le> n * k \<longleftrightarrow> (0 < k \<longrightarrow> m \<le> n)" | 
| 1382 | for k m n :: nat | |
| 63110 | 1383 | by (simp add: linorder_not_less [symmetric], auto) | 
| 1384 | ||
| 1385 | lemma Suc_mult_less_cancel1: "Suc k * m < Suc k * n \<longleftrightarrow> m < n" | |
| 1386 | by (subst mult_less_cancel1) simp | |
| 1387 | ||
| 1388 | lemma Suc_mult_le_cancel1: "Suc k * m \<le> Suc k * n \<longleftrightarrow> m \<le> n" | |
| 1389 | by (subst mult_le_cancel1) simp | |
| 1390 | ||
| 63588 | 1391 | lemma le_square: "m \<le> m * m" | 
| 1392 | for m :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1393 | by (cases m) (auto intro: le_add1) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1394 | |
| 63588 | 1395 | lemma le_cube: "m \<le> m * (m * m)" | 
| 1396 | for m :: nat | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1397 | by (cases m) (auto intro: le_add1) | 
| 13449 | 1398 | |
| 61799 | 1399 | text \<open>Lemma for \<open>gcd\<close>\<close> | 
| 71585 | 1400 | lemma mult_eq_self_implies_10: | 
| 1401 | fixes m n :: nat | |
| 1402 | assumes "m = m * n" shows "n = 1 \<or> m = 0" | |
| 1403 | proof (rule disjCI) | |
| 1404 | assume "m \<noteq> 0" | |
| 1405 | show "n = 1" | |
| 1406 | proof (cases n "1::nat" rule: linorder_cases) | |
| 1407 | case greater | |
| 1408 | show ?thesis | |
| 1409 | using assms mult_less_mono2 [OF greater, of m] \<open>m \<noteq> 0\<close> by auto | |
| 1410 | qed (use assms \<open>m \<noteq> 0\<close> in auto) | |
| 1411 | qed | |
| 9436 
62bb04ab4b01
rearranged setup of arithmetic procedures, avoiding global reference values;
 wenzelm parents: 
7702diff
changeset | 1412 | |
| 51263 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1413 | lemma mono_times_nat: | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1414 | fixes n :: nat | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1415 | assumes "n > 0" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1416 | shows "mono (times n)" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1417 | proof | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1418 | fix m q :: nat | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1419 | assume "m \<le> q" | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1420 | with assms show "n * m \<le> n * q" by simp | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1421 | qed | 
| 
31e786e0e6a7
turned example into library for comparing growth of functions
 haftmann parents: 
51173diff
changeset | 1422 | |
| 69593 | 1423 | text \<open>The lattice order on \<^typ>\<open>nat\<close>.\<close> | 
| 24995 | 1424 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1425 | instantiation nat :: distrib_lattice | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1426 | begin | 
| 24995 | 1427 | |
| 63110 | 1428 | definition "(inf :: nat \<Rightarrow> nat \<Rightarrow> nat) = min" | 
| 1429 | ||
| 1430 | definition "(sup :: nat \<Rightarrow> nat \<Rightarrow> nat) = max" | |
| 1431 | ||
| 1432 | instance | |
| 1433 | by intro_classes | |
| 1434 | (auto simp add: inf_nat_def sup_nat_def max_def not_le min_def | |
| 1435 | intro: order_less_imp_le antisym elim!: order_trans order_less_trans) | |
| 24995 | 1436 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1437 | end | 
| 24995 | 1438 | |
| 1439 | ||
| 60758 | 1440 | subsection \<open>Natural operation of natural numbers on functions\<close> | 
| 1441 | ||
| 1442 | text \<open> | |
| 30971 | 1443 | We use the same logical constant for the power operations on | 
| 1444 | functions and relations, in order to share the same syntax. | |
| 60758 | 1445 | \<close> | 
| 30971 | 1446 | |
| 45965 
2af982715e5c
generalized type signature to permit overloading on `set`
 haftmann parents: 
45933diff
changeset | 1447 | consts compow :: "nat \<Rightarrow> 'a \<Rightarrow> 'a" | 
| 30971 | 1448 | |
| 63110 | 1449 | abbreviation compower :: "'a \<Rightarrow> nat \<Rightarrow> 'a" (infixr "^^" 80) | 
| 1450 | where "f ^^ n \<equiv> compow n f" | |
| 30971 | 1451 | |
| 1452 | notation (latex output) | |
| 1453 |   compower ("(_\<^bsup>_\<^esup>)" [1000] 1000)
 | |
| 1454 | ||
| 63588 | 1455 | text \<open>\<open>f ^^ n = f \<circ> \<dots> \<circ> f\<close>, the \<open>n\<close>-fold composition of \<open>f\<close>\<close> | 
| 30971 | 1456 | |
| 1457 | overloading | |
| 63110 | 1458 |   funpow \<equiv> "compow :: nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> ('a \<Rightarrow> 'a)"
 | 
| 30971 | 1459 | begin | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1460 | |
| 63588 | 1461 | primrec funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
 | 
| 1462 | where | |
| 1463 | "funpow 0 f = id" | |
| 1464 | | "funpow (Suc n) f = f \<circ> funpow n f" | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1465 | |
| 30971 | 1466 | end | 
| 1467 | ||
| 62217 | 1468 | lemma funpow_0 [simp]: "(f ^^ 0) x = x" | 
| 1469 | by simp | |
| 1470 | ||
| 63110 | 1471 | lemma funpow_Suc_right: "f ^^ Suc n = f ^^ n \<circ> f" | 
| 49723 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1472 | proof (induct n) | 
| 63110 | 1473 | case 0 | 
| 1474 | then show ?case by simp | |
| 49723 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1475 | next | 
| 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1476 | fix n | 
| 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1477 | assume "f ^^ Suc n = f ^^ n \<circ> f" | 
| 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1478 | then show "f ^^ Suc (Suc n) = f ^^ Suc n \<circ> f" | 
| 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1479 | by (simp add: o_assoc) | 
| 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1480 | qed | 
| 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1481 | |
| 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1482 | lemmas funpow_simps_right = funpow.simps(1) funpow_Suc_right | 
| 
bbc2942ba09f
alternative simplification of ^^ to the righthand side;
 haftmann parents: 
49388diff
changeset | 1483 | |
| 63588 | 1484 | text \<open>For code generation.\<close> | 
| 30971 | 1485 | |
| 63110 | 1486 | definition funpow :: "nat \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
 | 
| 1487 | where funpow_code_def [code_abbrev]: "funpow = compow" | |
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1488 | |
| 30971 | 1489 | lemma [code]: | 
| 63110 | 1490 | "funpow (Suc n) f = f \<circ> funpow n f" | 
| 30971 | 1491 | "funpow 0 f = id" | 
| 37430 | 1492 | by (simp_all add: funpow_code_def) | 
| 30971 | 1493 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 1494 | hide_const (open) funpow | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1495 | |
| 63110 | 1496 | lemma funpow_add: "f ^^ (m + n) = f ^^ m \<circ> f ^^ n" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1497 | by (induct m) simp_all | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1498 | |
| 63588 | 1499 | lemma funpow_mult: "(f ^^ m) ^^ n = f ^^ (m * n)" | 
| 1500 | for f :: "'a \<Rightarrow> 'a" | |
| 37430 | 1501 | by (induct n) (simp_all add: funpow_add) | 
| 1502 | ||
| 63110 | 1503 | lemma funpow_swap1: "f ((f ^^ n) x) = (f ^^ n) (f x)" | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1504 | proof - | 
| 30971 | 1505 | have "f ((f ^^ n) x) = (f ^^ (n + 1)) x" by simp | 
| 63588 | 1506 | also have "\<dots> = (f ^^ n \<circ> f ^^ 1) x" by (simp only: funpow_add) | 
| 30971 | 1507 | also have "\<dots> = (f ^^ n) (f x)" by simp | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1508 | finally show ?thesis . | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1509 | qed | 
| 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1510 | |
| 63588 | 1511 | lemma comp_funpow: "comp f ^^ n = comp (f ^^ n)" | 
| 1512 | for f :: "'a \<Rightarrow> 'a" | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1513 | by (induct n) simp_all | 
| 30954 
cf50e67bc1d1
power operation on functions in theory Nat; power operation on relations in theory Transitive_Closure
 haftmann parents: 
30686diff
changeset | 1514 | |
| 67399 | 1515 | lemma Suc_funpow[simp]: "Suc ^^ n = ((+) n)" | 
| 54496 
178922b63b58
add lemmas Suc_funpow and id_funpow to simpset; add lemma map_add_upt
 hoelzl parents: 
54411diff
changeset | 1516 | by (induct n) simp_all | 
| 
178922b63b58
add lemmas Suc_funpow and id_funpow to simpset; add lemma map_add_upt
 hoelzl parents: 
54411diff
changeset | 1517 | |
| 
178922b63b58
add lemmas Suc_funpow and id_funpow to simpset; add lemma map_add_upt
 hoelzl parents: 
54411diff
changeset | 1518 | lemma id_funpow[simp]: "id ^^ n = id" | 
| 
178922b63b58
add lemmas Suc_funpow and id_funpow to simpset; add lemma map_add_upt
 hoelzl parents: 
54411diff
changeset | 1519 | by (induct n) simp_all | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1520 | |
| 63110 | 1521 | lemma funpow_mono: "mono f \<Longrightarrow> A \<le> B \<Longrightarrow> (f ^^ n) A \<le> (f ^^ n) B" | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1522 |   for f :: "'a \<Rightarrow> ('a::order)"
 | 
| 59000 | 1523 | by (induct n arbitrary: A B) | 
| 1524 | (auto simp del: funpow.simps(2) simp add: funpow_Suc_right mono_def) | |
| 1525 | ||
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1526 | lemma funpow_mono2: | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1527 | assumes "mono f" | 
| 63588 | 1528 | and "i \<le> j" | 
| 1529 | and "x \<le> y" | |
| 1530 | and "x \<le> f x" | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1531 | shows "(f ^^ i) x \<le> (f ^^ j) y" | 
| 63588 | 1532 | using assms(2,3) | 
| 1533 | proof (induct j arbitrary: y) | |
| 1534 | case 0 | |
| 1535 | then show ?case by simp | |
| 1536 | next | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1537 | case (Suc j) | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1538 | show ?case | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1539 | proof(cases "i = Suc j") | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1540 | case True | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1541 | with assms(1) Suc show ?thesis | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1542 | by (simp del: funpow.simps add: funpow_simps_right monoD funpow_mono) | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1543 | next | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1544 | case False | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1545 | with assms(1,4) Suc show ?thesis | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1546 | by (simp del: funpow.simps add: funpow_simps_right le_eq_less_or_eq less_Suc_eq_le) | 
| 63588 | 1547 | (simp add: Suc.hyps monoD order_subst1) | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1548 | qed | 
| 63588 | 1549 | qed | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1550 | |
| 68610 | 1551 | lemma inj_fn[simp]: | 
| 1552 | fixes f::"'a \<Rightarrow> 'a" | |
| 1553 | assumes "inj f" | |
| 1554 | shows "inj (f^^n)" | |
| 1555 | proof (induction n) | |
| 69700 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69661diff
changeset | 1556 | case Suc thus ?case using inj_compose[OF assms Suc.IH] by (simp del: comp_apply) | 
| 68610 | 1557 | qed simp | 
| 1558 | ||
| 1559 | lemma surj_fn[simp]: | |
| 1560 | fixes f::"'a \<Rightarrow> 'a" | |
| 1561 | assumes "surj f" | |
| 1562 | shows "surj (f^^n)" | |
| 1563 | proof (induction n) | |
| 1564 | case Suc thus ?case by (simp add: comp_surj[OF Suc.IH assms] del: comp_apply) | |
| 1565 | qed simp | |
| 1566 | ||
| 1567 | lemma bij_fn[simp]: | |
| 1568 | fixes f::"'a \<Rightarrow> 'a" | |
| 1569 | assumes "bij f" | |
| 1570 | shows "bij (f^^n)" | |
| 1571 | by (rule bijI[OF inj_fn[OF bij_is_inj[OF assms]] surj_fn[OF bij_is_surj[OF assms]]]) | |
| 1572 | ||
| 63110 | 1573 | |
| 60758 | 1574 | subsection \<open>Kleene iteration\<close> | 
| 45833 | 1575 | |
| 52729 
412c9e0381a1
factored syntactic type classes for bot and top (by Alessandro Coglio)
 haftmann parents: 
52435diff
changeset | 1576 | lemma Kleene_iter_lpfp: | 
| 63588 | 1577 | fixes f :: "'a::order_bot \<Rightarrow> 'a" | 
| 63110 | 1578 | assumes "mono f" | 
| 1579 | and "f p \<le> p" | |
| 63588 | 1580 | shows "(f ^^ k) bot \<le> p" | 
| 1581 | proof (induct k) | |
| 63110 | 1582 | case 0 | 
| 1583 | show ?case by simp | |
| 45833 | 1584 | next | 
| 1585 | case Suc | |
| 63588 | 1586 | show ?case | 
| 1587 | using monoD[OF assms(1) Suc] assms(2) by simp | |
| 45833 | 1588 | qed | 
| 1589 | ||
| 63110 | 1590 | lemma lfp_Kleene_iter: | 
| 1591 | assumes "mono f" | |
| 63588 | 1592 | and "(f ^^ Suc k) bot = (f ^^ k) bot" | 
| 1593 | shows "lfp f = (f ^^ k) bot" | |
| 63110 | 1594 | proof (rule antisym) | 
| 63588 | 1595 | show "lfp f \<le> (f ^^ k) bot" | 
| 63110 | 1596 | proof (rule lfp_lowerbound) | 
| 63588 | 1597 | show "f ((f ^^ k) bot) \<le> (f ^^ k) bot" | 
| 63110 | 1598 | using assms(2) by simp | 
| 45833 | 1599 | qed | 
| 63588 | 1600 | show "(f ^^ k) bot \<le> lfp f" | 
| 45833 | 1601 | using Kleene_iter_lpfp[OF assms(1)] lfp_unfold[OF assms(1)] by simp | 
| 1602 | qed | |
| 1603 | ||
| 63588 | 1604 | lemma mono_pow: "mono f \<Longrightarrow> mono (f ^^ n)" | 
| 1605 | for f :: "'a \<Rightarrow> 'a::complete_lattice" | |
| 63110 | 1606 | by (induct n) (auto simp: mono_def) | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1607 | |
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1608 | lemma lfp_funpow: | 
| 63110 | 1609 | assumes f: "mono f" | 
| 1610 | shows "lfp (f ^^ Suc n) = lfp f" | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1611 | proof (rule antisym) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1612 | show "lfp f \<le> lfp (f ^^ Suc n)" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1613 | proof (rule lfp_lowerbound) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1614 | have "f (lfp (f ^^ Suc n)) = lfp (\<lambda>x. f ((f ^^ n) x))" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1615 | unfolding funpow_Suc_right by (simp add: lfp_rolling f mono_pow comp_def) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1616 | then show "f (lfp (f ^^ Suc n)) \<le> lfp (f ^^ Suc n)" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1617 | by (simp add: comp_def) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1618 | qed | 
| 63588 | 1619 | have "(f ^^ n) (lfp f) = lfp f" for n | 
| 63979 | 1620 | by (induct n) (auto intro: f lfp_fixpoint) | 
| 63588 | 1621 | then show "lfp (f ^^ Suc n) \<le> lfp f" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1622 | by (intro lfp_lowerbound) (simp del: funpow.simps) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1623 | qed | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1624 | |
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1625 | lemma gfp_funpow: | 
| 63110 | 1626 | assumes f: "mono f" | 
| 1627 | shows "gfp (f ^^ Suc n) = gfp f" | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1628 | proof (rule antisym) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1629 | show "gfp f \<ge> gfp (f ^^ Suc n)" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1630 | proof (rule gfp_upperbound) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1631 | have "f (gfp (f ^^ Suc n)) = gfp (\<lambda>x. f ((f ^^ n) x))" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1632 | unfolding funpow_Suc_right by (simp add: gfp_rolling f mono_pow comp_def) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1633 | then show "f (gfp (f ^^ Suc n)) \<ge> gfp (f ^^ Suc n)" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1634 | by (simp add: comp_def) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1635 | qed | 
| 63588 | 1636 | have "(f ^^ n) (gfp f) = gfp f" for n | 
| 63979 | 1637 | by (induct n) (auto intro: f gfp_fixpoint) | 
| 63588 | 1638 | then show "gfp (f ^^ Suc n) \<ge> gfp f" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1639 | by (intro gfp_upperbound) (simp del: funpow.simps) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60562diff
changeset | 1640 | qed | 
| 45833 | 1641 | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1642 | lemma Kleene_iter_gpfp: | 
| 63588 | 1643 | fixes f :: "'a::order_top \<Rightarrow> 'a" | 
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1644 | assumes "mono f" | 
| 63588 | 1645 | and "p \<le> f p" | 
| 1646 | shows "p \<le> (f ^^ k) top" | |
| 1647 | proof (induct k) | |
| 1648 | case 0 | |
| 1649 | show ?case by simp | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1650 | next | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1651 | case Suc | 
| 63588 | 1652 | show ?case | 
| 1653 | using monoD[OF assms(1) Suc] assms(2) by simp | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1654 | qed | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1655 | |
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1656 | lemma gfp_Kleene_iter: | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1657 | assumes "mono f" | 
| 63588 | 1658 | and "(f ^^ Suc k) top = (f ^^ k) top" | 
| 1659 | shows "gfp f = (f ^^ k) top" | |
| 1660 | (is "?lhs = ?rhs") | |
| 1661 | proof (rule antisym) | |
| 1662 | have "?rhs \<le> f ?rhs" | |
| 1663 | using assms(2) by simp | |
| 1664 | then show "?rhs \<le> ?lhs" | |
| 1665 | by (rule gfp_upperbound) | |
| 63561 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1666 | show "?lhs \<le> ?rhs" | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1667 | using Kleene_iter_gpfp[OF assms(1)] gfp_unfold[OF assms(1)] by simp | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1668 | qed | 
| 
fba08009ff3e
add lemmas contributed by Peter Gammie
 Andreas Lochbihler parents: 
63197diff
changeset | 1669 | |
| 63110 | 1670 | |
| 69593 | 1671 | subsection \<open>Embedding of the naturals into any \<open>semiring_1\<close>: \<^term>\<open>of_nat\<close>\<close> | 
| 24196 | 1672 | |
| 1673 | context semiring_1 | |
| 1674 | begin | |
| 1675 | ||
| 63110 | 1676 | definition of_nat :: "nat \<Rightarrow> 'a" | 
| 1677 | where "of_nat n = (plus 1 ^^ n) 0" | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1678 | |
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1679 | lemma of_nat_simps [simp]: | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1680 | shows of_nat_0: "of_nat 0 = 0" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1681 | and of_nat_Suc: "of_nat (Suc m) = 1 + of_nat m" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1682 | by (simp_all add: of_nat_def) | 
| 25193 | 1683 | |
| 1684 | lemma of_nat_1 [simp]: "of_nat 1 = 1" | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1685 | by (simp add: of_nat_def) | 
| 25193 | 1686 | |
| 1687 | lemma of_nat_add [simp]: "of_nat (m + n) = of_nat m + of_nat n" | |
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1688 | by (induct m) (simp_all add: ac_simps) | 
| 25193 | 1689 | |
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61531diff
changeset | 1690 | lemma of_nat_mult [simp]: "of_nat (m * n) = of_nat m * of_nat n" | 
| 57514 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 haftmann parents: 
57512diff
changeset | 1691 | by (induct m) (simp_all add: ac_simps distrib_right) | 
| 25193 | 1692 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 1693 | lemma mult_of_nat_commute: "of_nat x * y = y * of_nat x" | 
| 63110 | 1694 | by (induct x) (simp_all add: algebra_simps) | 
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61378diff
changeset | 1695 | |
| 63588 | 1696 | primrec of_nat_aux :: "('a \<Rightarrow> 'a) \<Rightarrow> nat \<Rightarrow> 'a \<Rightarrow> 'a"
 | 
| 1697 | where | |
| 1698 | "of_nat_aux inc 0 i = i" | |
| 1699 | | "of_nat_aux inc (Suc n) i = of_nat_aux inc n (inc i)" \<comment> \<open>tail recursive\<close> | |
| 25928 | 1700 | |
| 63110 | 1701 | lemma of_nat_code: "of_nat n = of_nat_aux (\<lambda>i. i + 1) n 0" | 
| 28514 | 1702 | proof (induct n) | 
| 63110 | 1703 | case 0 | 
| 1704 | then show ?case by simp | |
| 28514 | 1705 | next | 
| 1706 | case (Suc n) | |
| 1707 | have "\<And>i. of_nat_aux (\<lambda>i. i + 1) n (i + 1) = of_nat_aux (\<lambda>i. i + 1) n i + 1" | |
| 1708 | by (induct n) simp_all | |
| 1709 | from this [of 0] have "of_nat_aux (\<lambda>i. i + 1) n 1 = of_nat_aux (\<lambda>i. i + 1) n 0 + 1" | |
| 1710 | by simp | |
| 63588 | 1711 | with Suc show ?case | 
| 1712 | by (simp add: add.commute) | |
| 28514 | 1713 | qed | 
| 30966 | 1714 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 1715 | lemma of_nat_of_bool [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 1716 | "of_nat (of_bool P) = of_bool P" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 1717 | by auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 1718 | |
| 24196 | 1719 | end | 
| 1720 | ||
| 45231 
d85a2fdc586c
replacing code_inline by code_unfold, removing obsolete code_unfold, code_inline del now that the ancient code generator is removed
 bulwahn parents: 
44890diff
changeset | 1721 | declare of_nat_code [code] | 
| 30966 | 1722 | |
| 71407 | 1723 | context semiring_1_cancel | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 1724 | begin | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 1725 | |
| 71407 | 1726 | lemma of_nat_diff: | 
| 1727 | \<open>of_nat (m - n) = of_nat m - of_nat n\<close> if \<open>n \<le> m\<close> | |
| 1728 | proof - | |
| 1729 | from that obtain q where \<open>m = n + q\<close> | |
| 1730 | by (blast dest: le_Suc_ex) | |
| 1731 | then show ?thesis | |
| 1732 | by simp | |
| 1733 | qed | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 1734 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 1735 | end | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 1736 | |
| 63110 | 1737 | text \<open>Class for unital semirings with characteristic zero. | 
| 60758 | 1738 | Includes non-ordered rings like the complex numbers.\<close> | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1739 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1740 | class semiring_char_0 = semiring_1 + | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1741 | assumes inj_of_nat: "inj of_nat" | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1742 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1743 | |
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1744 | lemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n" | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1745 | by (auto intro: inj_of_nat injD) | 
| 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1746 | |
| 63110 | 1747 | text \<open>Special cases where either operand is zero\<close> | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1748 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53986diff
changeset | 1749 | lemma of_nat_0_eq_iff [simp]: "0 = of_nat n \<longleftrightarrow> 0 = n" | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1750 | by (fact of_nat_eq_iff [of 0 n, unfolded of_nat_0]) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1751 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53986diff
changeset | 1752 | lemma of_nat_eq_0_iff [simp]: "of_nat m = 0 \<longleftrightarrow> m = 0" | 
| 38621 
d6cb7e625d75
more concise characterization of of_nat operation and class semiring_char_0
 haftmann parents: 
37767diff
changeset | 1753 | by (fact of_nat_eq_iff [of m 0, unfolded of_nat_0]) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1754 | |
| 65583 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
64876diff
changeset | 1755 | lemma of_nat_1_eq_iff [simp]: "1 = of_nat n \<longleftrightarrow> n=1" | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
64876diff
changeset | 1756 | using of_nat_eq_iff by fastforce | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
64876diff
changeset | 1757 | |
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
64876diff
changeset | 1758 | lemma of_nat_eq_1_iff [simp]: "of_nat n = 1 \<longleftrightarrow> n=1" | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
64876diff
changeset | 1759 | using of_nat_eq_iff by fastforce | 
| 
8d53b3bebab4
Further new material. The simprule status of some exp and ln identities was reverted.
 paulson <lp15@cam.ac.uk> parents: 
64876diff
changeset | 1760 | |
| 63588 | 1761 | lemma of_nat_neq_0 [simp]: "of_nat (Suc n) \<noteq> 0" | 
| 60353 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60175diff
changeset | 1762 | unfolding of_nat_eq_0_iff by simp | 
| 
838025c6e278
implicit partial divison operation in integral domains
 haftmann parents: 
60175diff
changeset | 1763 | |
| 63588 | 1764 | lemma of_nat_0_neq [simp]: "0 \<noteq> of_nat (Suc n)" | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 1765 | unfolding of_nat_0_eq_iff by simp | 
| 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 1766 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1767 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1768 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 1769 | class ring_char_0 = ring_1 + semiring_char_0 | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 1770 | |
| 67691 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1771 | context linordered_nonzero_semiring | 
| 25193 | 1772 | begin | 
| 1773 | ||
| 47489 | 1774 | lemma of_nat_0_le_iff [simp]: "0 \<le> of_nat n" | 
| 1775 | by (induct n) simp_all | |
| 25193 | 1776 | |
| 47489 | 1777 | lemma of_nat_less_0_iff [simp]: "\<not> of_nat m < 0" | 
| 1778 | by (simp add: not_less) | |
| 25193 | 1779 | |
| 67691 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1780 | lemma of_nat_mono[simp]: "i \<le> j \<Longrightarrow> of_nat i \<le> of_nat j" | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1781 | by (auto simp: le_iff_add intro!: add_increasing2) | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1782 | |
| 25193 | 1783 | lemma of_nat_less_iff [simp]: "of_nat m < of_nat n \<longleftrightarrow> m < n" | 
| 67691 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1784 | proof(induct m n rule: diff_induct) | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1785 | case (1 m) then show ?case | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1786 | by auto | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1787 | next | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1788 | case (2 n) then show ?case | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1789 | by (simp add: add_pos_nonneg) | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1790 | next | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1791 | case (3 m n) | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1792 | then show ?case | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1793 | by (auto simp: add_commute [of 1] add_mono1 not_less add_right_mono leD) | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1794 | qed | 
| 25193 | 1795 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1796 | lemma of_nat_le_iff [simp]: "of_nat m \<le> of_nat n \<longleftrightarrow> m \<le> n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1797 | by (simp add: not_less [symmetric] linorder_not_less [symmetric]) | 
| 25193 | 1798 | |
| 47489 | 1799 | lemma less_imp_of_nat_less: "m < n \<Longrightarrow> of_nat m < of_nat n" | 
| 1800 | by simp | |
| 1801 | ||
| 1802 | lemma of_nat_less_imp_less: "of_nat m < of_nat n \<Longrightarrow> m < n" | |
| 1803 | by simp | |
| 1804 | ||
| 67691 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1805 | text \<open>Every \<open>linordered_nonzero_semiring\<close> has characteristic zero.\<close> | 
| 63110 | 1806 | |
| 1807 | subclass semiring_char_0 | |
| 1808 | by standard (auto intro!: injI simp add: eq_iff) | |
| 1809 | ||
| 1810 | text \<open>Special cases where either operand is zero\<close> | |
| 25193 | 1811 | |
| 54147 
97a8ff4e4ac9
killed most "no_atp", to make Sledgehammer more complete
 blanchet parents: 
53986diff
changeset | 1812 | lemma of_nat_le_0_iff [simp]: "of_nat m \<le> 0 \<longleftrightarrow> m = 0" | 
| 25193 | 1813 | by (rule of_nat_le_iff [of _ 0, simplified]) | 
| 1814 | ||
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1815 | lemma of_nat_0_less_iff [simp]: "0 < of_nat n \<longleftrightarrow> 0 < n" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1816 | by (rule of_nat_less_iff [of 0, simplified]) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1817 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1818 | end | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1819 | |
| 70356 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1820 | context linordered_nonzero_semiring | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1821 | begin | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1822 | |
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1823 | lemma of_nat_max: "of_nat (max x y) = max (of_nat x) (of_nat y)" | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1824 | by (auto simp: max_def ord_class.max_def) | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1825 | |
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1826 | lemma of_nat_min: "of_nat (min x y) = min (of_nat x) (of_nat y)" | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1827 | by (auto simp: min_def ord_class.min_def) | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1828 | |
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1829 | end | 
| 67691 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1830 | |
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1831 | context linordered_semidom | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1832 | begin | 
| 70356 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1833 | |
| 67691 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1834 | subclass linordered_nonzero_semiring .. | 
| 70356 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1835 | |
| 67691 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1836 | subclass semiring_char_0 .. | 
| 70356 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1837 | |
| 67691 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1838 | end | 
| 
db202a00a29c
fixing ennreal using add_mono1; shifting results from linordered_semidom to linordered_nonzero_semiring
 paulson <lp15@cam.ac.uk> parents: 
67673diff
changeset | 1839 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34208diff
changeset | 1840 | context linordered_idom | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1841 | begin | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1842 | |
| 70356 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1843 | lemma abs_of_nat [simp]: | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1844 | "\<bar>of_nat n\<bar> = of_nat n" | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
69700diff
changeset | 1845 | by (simp add: abs_if) | 
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1846 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 1847 | lemma sgn_of_nat [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 1848 | "sgn (of_nat n) = of_bool (n > 0)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 1849 | by simp | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66810diff
changeset | 1850 | |
| 25193 | 1851 | end | 
| 1852 | ||
| 1853 | lemma of_nat_id [simp]: "of_nat n = n" | |
| 35216 | 1854 | by (induct n) simp_all | 
| 25193 | 1855 | |
| 1856 | lemma of_nat_eq_id [simp]: "of_nat = id" | |
| 39302 
d7728f65b353
renamed lemmas: ext_iff -> fun_eq_iff, set_ext_iff -> set_eq_iff, set_ext -> set_eqI
 nipkow parents: 
39198diff
changeset | 1857 | by (auto simp add: fun_eq_iff) | 
| 25193 | 1858 | |
| 1859 | ||
| 60758 | 1860 | subsection \<open>The set of natural numbers\<close> | 
| 25193 | 1861 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1862 | context semiring_1 | 
| 25193 | 1863 | begin | 
| 1864 | ||
| 61070 | 1865 | definition Nats :: "'a set"  ("\<nat>")
 | 
| 1866 | where "\<nat> = range of_nat" | |
| 25193 | 1867 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1868 | lemma of_nat_in_Nats [simp]: "of_nat n \<in> \<nat>" | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1869 | by (simp add: Nats_def) | 
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1870 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1871 | lemma Nats_0 [simp]: "0 \<in> \<nat>" | 
| 71585 | 1872 | using of_nat_0 [symmetric] unfolding Nats_def | 
| 1873 | by (rule range_eqI) | |
| 25193 | 1874 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1875 | lemma Nats_1 [simp]: "1 \<in> \<nat>" | 
| 71585 | 1876 | using of_nat_1 [symmetric] unfolding Nats_def | 
| 1877 | by (rule range_eqI) | |
| 25193 | 1878 | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1879 | lemma Nats_add [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a + b \<in> \<nat>" | 
| 71585 | 1880 | unfolding Nats_def using of_nat_add [symmetric] | 
| 1881 | by (blast intro: range_eqI) | |
| 26072 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1882 | |
| 
f65a7fa2da6c
<= and < on nat no longer depend on wellfounded relations
 haftmann parents: 
25928diff
changeset | 1883 | lemma Nats_mult [simp]: "a \<in> \<nat> \<Longrightarrow> b \<in> \<nat> \<Longrightarrow> a * b \<in> \<nat>" | 
| 71585 | 1884 | unfolding Nats_def using of_nat_mult [symmetric] | 
| 1885 | by (blast intro: range_eqI) | |
| 25193 | 1886 | |
| 35633 | 1887 | lemma Nats_cases [cases set: Nats]: | 
| 1888 | assumes "x \<in> \<nat>" | |
| 1889 | obtains (of_nat) n where "x = of_nat n" | |
| 1890 | unfolding Nats_def | |
| 1891 | proof - | |
| 60758 | 1892 | from \<open>x \<in> \<nat>\<close> have "x \<in> range of_nat" unfolding Nats_def . | 
| 35633 | 1893 | then obtain n where "x = of_nat n" .. | 
| 1894 | then show thesis .. | |
| 1895 | qed | |
| 1896 | ||
| 63588 | 1897 | lemma Nats_induct [case_names of_nat, induct set: Nats]: "x \<in> \<nat> \<Longrightarrow> (\<And>n. P (of_nat n)) \<Longrightarrow> P x" | 
| 35633 | 1898 | by (rule Nats_cases) auto | 
| 1899 | ||
| 25193 | 1900 | end | 
| 1901 | ||
| 70365 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1902 | lemma Nats_diff [simp]: | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1903 | fixes a:: "'a::linordered_idom" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1904 | assumes "a \<in> \<nat>" "b \<in> \<nat>" "b \<le> a" shows "a - b \<in> \<nat>" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1905 | proof - | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1906 | obtain i where i: "a = of_nat i" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1907 | using Nats_cases assms by blast | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1908 | obtain j where j: "b = of_nat j" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1909 | using Nats_cases assms by blast | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1910 | have "j \<le> i" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1911 | using \<open>b \<le> a\<close> i j of_nat_le_iff by blast | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1912 | then have *: "of_nat i - of_nat j = (of_nat (i-j) :: 'a)" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1913 | by (simp add: of_nat_diff) | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1914 | then show ?thesis | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1915 | by (simp add: * i j) | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1916 | qed | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1917 | |
| 25193 | 1918 | |
| 60758 | 1919 | subsection \<open>Further arithmetic facts concerning the natural numbers\<close> | 
| 21243 | 1920 | |
| 22845 | 1921 | lemma subst_equals: | 
| 63110 | 1922 | assumes "t = s" and "u = t" | 
| 22845 | 1923 | shows "u = s" | 
| 63110 | 1924 | using assms(2,1) by (rule trans) | 
| 22845 | 1925 | |
| 70490 | 1926 | locale nat_arith | 
| 1927 | begin | |
| 1928 | ||
| 1929 | lemma add1: "(A::'a::comm_monoid_add) \<equiv> k + a \<Longrightarrow> A + b \<equiv> k + (a + b)" | |
| 1930 | by (simp only: ac_simps) | |
| 1931 | ||
| 1932 | lemma add2: "(B::'a::comm_monoid_add) \<equiv> k + b \<Longrightarrow> a + B \<equiv> k + (a + b)" | |
| 1933 | by (simp only: ac_simps) | |
| 1934 | ||
| 1935 | lemma suc1: "A == k + a \<Longrightarrow> Suc A \<equiv> k + Suc a" | |
| 1936 | by (simp only: add_Suc_right) | |
| 1937 | ||
| 1938 | lemma rule0: "(a::'a::comm_monoid_add) \<equiv> a + 0" | |
| 1939 | by (simp only: add_0_right) | |
| 1940 | ||
| 1941 | end | |
| 1942 | ||
| 69605 | 1943 | ML_file \<open>Tools/nat_arith.ML\<close> | 
| 48559 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1944 | |
| 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1945 | simproc_setup nateq_cancel_sums | 
| 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1946 |   ("(l::nat) + m = n" | "(l::nat) = m + n" | "Suc m = n" | "m = Suc n") =
 | 
| 60758 | 1947 | \<open>fn phi => try o Nat_Arith.cancel_eq_conv\<close> | 
| 48559 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1948 | |
| 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1949 | simproc_setup natless_cancel_sums | 
| 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1950 |   ("(l::nat) + m < n" | "(l::nat) < m + n" | "Suc m < n" | "m < Suc n") =
 | 
| 60758 | 1951 | \<open>fn phi => try o Nat_Arith.cancel_less_conv\<close> | 
| 48559 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1952 | |
| 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1953 | simproc_setup natle_cancel_sums | 
| 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1954 |   ("(l::nat) + m \<le> n" | "(l::nat) \<le> m + n" | "Suc m \<le> n" | "m \<le> Suc n") =
 | 
| 60758 | 1955 | \<open>fn phi => try o Nat_Arith.cancel_le_conv\<close> | 
| 48559 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1956 | |
| 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1957 | simproc_setup natdiff_cancel_sums | 
| 
686cc7c47589
give Nat_Arith simprocs proper name bindings by using simproc_setup
 huffman parents: 
47988diff
changeset | 1958 |   ("(l::nat) + m - n" | "(l::nat) - (m + n)" | "Suc m - n" | "m - Suc n") =
 | 
| 60758 | 1959 | \<open>fn phi => try o Nat_Arith.cancel_diff_conv\<close> | 
| 24091 | 1960 | |
| 27625 | 1961 | context order | 
| 1962 | begin | |
| 1963 | ||
| 1964 | lemma lift_Suc_mono_le: | |
| 63588 | 1965 | assumes mono: "\<And>n. f n \<le> f (Suc n)" | 
| 1966 | and "n \<le> n'" | |
| 27627 | 1967 | shows "f n \<le> f n'" | 
| 1968 | proof (cases "n < n'") | |
| 1969 | case True | |
| 53986 | 1970 | then show ?thesis | 
| 62683 | 1971 | by (induct n n' rule: less_Suc_induct) (auto intro: mono) | 
| 63110 | 1972 | next | 
| 1973 | case False | |
| 1974 | with \<open>n \<le> n'\<close> show ?thesis by auto | |
| 1975 | qed | |
| 27625 | 1976 | |
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55642diff
changeset | 1977 | lemma lift_Suc_antimono_le: | 
| 63588 | 1978 | assumes mono: "\<And>n. f n \<ge> f (Suc n)" | 
| 1979 | and "n \<le> n'" | |
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55642diff
changeset | 1980 | shows "f n \<ge> f n'" | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55642diff
changeset | 1981 | proof (cases "n < n'") | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55642diff
changeset | 1982 | case True | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55642diff
changeset | 1983 | then show ?thesis | 
| 62683 | 1984 | by (induct n n' rule: less_Suc_induct) (auto intro: mono) | 
| 63110 | 1985 | next | 
| 1986 | case False | |
| 1987 | with \<open>n \<le> n'\<close> show ?thesis by auto | |
| 1988 | qed | |
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55642diff
changeset | 1989 | |
| 27625 | 1990 | lemma lift_Suc_mono_less: | 
| 63588 | 1991 | assumes mono: "\<And>n. f n < f (Suc n)" | 
| 1992 | and "n < n'" | |
| 27627 | 1993 | shows "f n < f n'" | 
| 63110 | 1994 | using \<open>n < n'\<close> by (induct n n' rule: less_Suc_induct) (auto intro: mono) | 
| 1995 | ||
| 1996 | lemma lift_Suc_mono_less_iff: "(\<And>n. f n < f (Suc n)) \<Longrightarrow> f n < f m \<longleftrightarrow> n < m" | |
| 53986 | 1997 | by (blast intro: less_asym' lift_Suc_mono_less [of f] | 
| 1998 | dest: linorder_not_less[THEN iffD1] le_eq_less_or_eq [THEN iffD1]) | |
| 27789 | 1999 | |
| 27625 | 2000 | end | 
| 2001 | ||
| 63110 | 2002 | lemma mono_iff_le_Suc: "mono f \<longleftrightarrow> (\<forall>n. f n \<le> f (Suc n))" | 
| 37387 
3581483cca6c
qualified types "+" and nat; qualified constants Ball, Bex, Suc, curry; modernized some specifications
 haftmann parents: 
36977diff
changeset | 2003 | unfolding mono_def by (auto intro: lift_Suc_mono_le [of f]) | 
| 27625 | 2004 | |
| 63110 | 2005 | lemma antimono_iff_le_Suc: "antimono f \<longleftrightarrow> (\<forall>n. f (Suc n) \<le> f n)" | 
| 56020 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55642diff
changeset | 2006 | unfolding antimono_def by (auto intro: lift_Suc_antimono_le [of f]) | 
| 
f92479477c52
introduced antimono; incseq, decseq are now abbreviations for mono and antimono; renamed Library/Continuity to Library/Order_Continuity; removed up_cont; renamed down_cont to down_continuity and generalized to complete_lattices
 hoelzl parents: 
55642diff
changeset | 2007 | |
| 27789 | 2008 | lemma mono_nat_linear_lb: | 
| 53986 | 2009 | fixes f :: "nat \<Rightarrow> nat" | 
| 2010 | assumes "\<And>m n. m < n \<Longrightarrow> f m < f n" | |
| 2011 | shows "f m + k \<le> f (m + k)" | |
| 2012 | proof (induct k) | |
| 63110 | 2013 | case 0 | 
| 2014 | then show ?case by simp | |
| 53986 | 2015 | next | 
| 2016 | case (Suc k) | |
| 2017 | then have "Suc (f m + k) \<le> Suc (f (m + k))" by simp | |
| 2018 | also from assms [of "m + k" "Suc (m + k)"] have "Suc (f (m + k)) \<le> f (Suc (m + k))" | |
| 2019 | by (simp add: Suc_le_eq) | |
| 2020 | finally show ?case by simp | |
| 2021 | qed | |
| 27789 | 2022 | |
| 2023 | ||
| 63110 | 2024 | text \<open>Subtraction laws, mostly by Clemens Ballarin\<close> | 
| 21243 | 2025 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2026 | lemma diff_less_mono: | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2027 | fixes a b c :: nat | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2028 | assumes "a < b" and "c \<le> a" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2029 | shows "a - c < b - c" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2030 | proof - | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2031 | from assms obtain d e where "b = c + (d + e)" and "a = c + e" and "d > 0" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2032 | by (auto dest!: le_Suc_ex less_imp_Suc_add simp add: ac_simps) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2033 | then show ?thesis by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2034 | qed | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2035 | |
| 63588 | 2036 | lemma less_diff_conv: "i < j - k \<longleftrightarrow> i + k < j" | 
| 2037 | for i j k :: nat | |
| 63110 | 2038 | by (cases "k \<le> j") (auto simp add: not_le dest: less_imp_Suc_add le_Suc_ex) | 
| 2039 | ||
| 63588 | 2040 | lemma less_diff_conv2: "k \<le> j \<Longrightarrow> j - k < i \<longleftrightarrow> j < i + k" | 
| 2041 | for j k i :: nat | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2042 | by (auto dest: le_Suc_ex) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2043 | |
| 63588 | 2044 | lemma le_diff_conv: "j - k \<le> i \<longleftrightarrow> j \<le> i + k" | 
| 2045 | for j k i :: nat | |
| 63110 | 2046 | by (cases "k \<le> j") (auto simp add: not_le dest!: less_imp_Suc_add le_Suc_ex) | 
| 2047 | ||
| 63588 | 2048 | lemma diff_diff_cancel [simp]: "i \<le> n \<Longrightarrow> n - (n - i) = i" | 
| 2049 | for i n :: nat | |
| 63110 | 2050 | by (auto dest: le_Suc_ex) | 
| 2051 | ||
| 63588 | 2052 | lemma diff_less [simp]: "0 < n \<Longrightarrow> 0 < m \<Longrightarrow> m - n < m" | 
| 2053 | for i n :: nat | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2054 | by (auto dest: less_imp_Suc_add) | 
| 21243 | 2055 | |
| 60758 | 2056 | text \<open>Simplification of relational expressions involving subtraction\<close> | 
| 21243 | 2057 | |
| 63588 | 2058 | lemma diff_diff_eq: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k - (n - k) = m - n" | 
| 2059 | for m n k :: nat | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2060 | by (auto dest!: le_Suc_ex) | 
| 21243 | 2061 | |
| 36176 
3fe7e97ccca8
replaced generic 'hide' command by more conventional 'hide_class', 'hide_type', 'hide_const', 'hide_fact' -- frees some popular keywords;
 wenzelm parents: 
35828diff
changeset | 2062 | hide_fact (open) diff_diff_eq | 
| 35064 
1bdef0c013d3
hide fact names clashing with fact names from Group.thy
 haftmann parents: 
35047diff
changeset | 2063 | |
| 63588 | 2064 | lemma eq_diff_iff: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k = n - k \<longleftrightarrow> m = n" | 
| 2065 | for m n k :: nat | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2066 | by (auto dest: le_Suc_ex) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2067 | |
| 63588 | 2068 | lemma less_diff_iff: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k < n - k \<longleftrightarrow> m < n" | 
| 2069 | for m n k :: nat | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2070 | by (auto dest!: le_Suc_ex) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2071 | |
| 63588 | 2072 | lemma le_diff_iff: "k \<le> m \<Longrightarrow> k \<le> n \<Longrightarrow> m - k \<le> n - k \<longleftrightarrow> m \<le> n" | 
| 2073 | for m n k :: nat | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2074 | by (auto dest!: le_Suc_ex) | 
| 21243 | 2075 | |
| 63588 | 2076 | lemma le_diff_iff': "a \<le> c \<Longrightarrow> b \<le> c \<Longrightarrow> c - a \<le> c - b \<longleftrightarrow> b \<le> a" | 
| 2077 | for a b c :: nat | |
| 63099 
af0e964aad7b
Moved material from AFP/Randomised_Social_Choice to distribution
 eberlm parents: 
63040diff
changeset | 2078 | by (force dest: le_Suc_ex) | 
| 63110 | 2079 | |
| 2080 | ||
| 2081 | text \<open>(Anti)Monotonicity of subtraction -- by Stephan Merz\<close> | |
| 2082 | ||
| 63588 | 2083 | lemma diff_le_mono: "m \<le> n \<Longrightarrow> m - l \<le> n - l" | 
| 2084 | for m n l :: nat | |
| 63648 | 2085 | by (auto dest: less_imp_le less_imp_Suc_add split: nat_diff_split) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2086 | |
| 63588 | 2087 | lemma diff_le_mono2: "m \<le> n \<Longrightarrow> l - n \<le> l - m" | 
| 2088 | for m n l :: nat | |
| 63648 | 2089 | by (auto dest: less_imp_le le_Suc_ex less_imp_Suc_add less_le_trans split: nat_diff_split) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2090 | |
| 63588 | 2091 | lemma diff_less_mono2: "m < n \<Longrightarrow> m < l \<Longrightarrow> l - n < l - m" | 
| 2092 | for m n l :: nat | |
| 63648 | 2093 | by (auto dest: less_imp_Suc_add split: nat_diff_split) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2094 | |
| 63588 | 2095 | lemma diffs0_imp_equal: "m - n = 0 \<Longrightarrow> n - m = 0 \<Longrightarrow> m = n" | 
| 2096 | for m n :: nat | |
| 63648 | 2097 | by (simp split: nat_diff_split) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2098 | |
| 63588 | 2099 | lemma min_diff: "min (m - i) (n - i) = min m n - i" | 
| 2100 | for m n i :: nat | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2101 | by (cases m n rule: le_cases) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2102 | (auto simp add: not_le min.absorb1 min.absorb2 min.absorb_iff1 [symmetric] diff_le_mono) | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 2103 | |
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 2104 | lemma inj_on_diff_nat: | 
| 63110 | 2105 | fixes k :: nat | 
| 68618 
3db8520941a4
de-applying (mostly Set_Interval)
 paulson <lp15@cam.ac.uk> parents: 
68610diff
changeset | 2106 | assumes "\<And>n. n \<in> N \<Longrightarrow> k \<le> n" | 
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 2107 | shows "inj_on (\<lambda>n. n - k) N" | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 2108 | proof (rule inj_onI) | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 2109 | fix x y | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 2110 | assume a: "x \<in> N" "y \<in> N" "x - k = y - k" | 
| 63110 | 2111 | with assms have "x - k + k = y - k + k" by auto | 
| 2112 | with a assms show "x = y" by (auto simp add: eq_diff_iff) | |
| 26143 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 2113 | qed | 
| 
314c0bcb7df7
Added useful general lemmas from the work with the HeapMonad
 bulwahn parents: 
26101diff
changeset | 2114 | |
| 63110 | 2115 | text \<open>Rewriting to pull differences out\<close> | 
| 2116 | ||
| 63588 | 2117 | lemma diff_diff_right [simp]: "k \<le> j \<Longrightarrow> i - (j - k) = i + k - j" | 
| 2118 | for i j k :: nat | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2119 | by (fact diff_diff_right) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2120 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2121 | lemma diff_Suc_diff_eq1 [simp]: | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2122 | assumes "k \<le> j" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2123 | shows "i - Suc (j - k) = i + k - Suc j" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2124 | proof - | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2125 | from assms have *: "Suc (j - k) = Suc j - k" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2126 | by (simp add: Suc_diff_le) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2127 | from assms have "k \<le> Suc j" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2128 | by (rule order_trans) simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2129 | with diff_diff_right [of k "Suc j" i] * show ?thesis | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2130 | by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2131 | qed | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2132 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2133 | lemma diff_Suc_diff_eq2 [simp]: | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2134 | assumes "k \<le> j" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2135 | shows "Suc (j - k) - i = Suc j - (k + i)" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2136 | proof - | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2137 | from assms obtain n where "j = k + n" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2138 | by (auto dest: le_Suc_ex) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2139 | moreover have "Suc n - i = (k + Suc n) - (k + i)" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2140 | using add_diff_cancel_left [of k "Suc n" i] by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2141 | ultimately show ?thesis by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2142 | qed | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2143 | |
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2144 | lemma Suc_diff_Suc: | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2145 | assumes "n < m" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2146 | shows "Suc (m - Suc n) = m - n" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2147 | proof - | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2148 | from assms obtain q where "m = n + Suc q" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2149 | by (auto dest: less_imp_Suc_add) | 
| 63040 | 2150 | moreover define r where "r = Suc q" | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2151 | ultimately have "Suc (m - Suc n) = r" and "m = n + r" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2152 | by simp_all | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2153 | then show ?thesis by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2154 | qed | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2155 | |
| 63110 | 2156 | lemma one_less_mult: "Suc 0 < n \<Longrightarrow> Suc 0 < m \<Longrightarrow> Suc 0 < m * n" | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2157 | using less_1_mult [of n m] by (simp add: ac_simps) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2158 | |
| 63110 | 2159 | lemma n_less_m_mult_n: "0 < n \<Longrightarrow> Suc 0 < m \<Longrightarrow> n < m * n" | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2160 | using mult_strict_right_mono [of 1 m n] by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2161 | |
| 63110 | 2162 | lemma n_less_n_mult_m: "0 < n \<Longrightarrow> Suc 0 < m \<Longrightarrow> n < n * m" | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2163 | using mult_strict_left_mono [of 1 m n] by simp | 
| 21243 | 2164 | |
| 63110 | 2165 | |
| 67050 | 2166 | text \<open>Induction starting beyond zero\<close> | 
| 2167 | ||
| 2168 | lemma nat_induct_at_least [consumes 1, case_names base Suc]: | |
| 2169 | "P n" if "n \<ge> m" "P m" "\<And>n. n \<ge> m \<Longrightarrow> P n \<Longrightarrow> P (Suc n)" | |
| 2170 | proof - | |
| 2171 | define q where "q = n - m" | |
| 2172 | with \<open>n \<ge> m\<close> have "n = m + q" | |
| 2173 | by simp | |
| 2174 | moreover have "P (m + q)" | |
| 2175 | by (induction q) (use that in simp_all) | |
| 2176 | ultimately show "P n" | |
| 2177 | by simp | |
| 2178 | qed | |
| 2179 | ||
| 2180 | lemma nat_induct_non_zero [consumes 1, case_names 1 Suc]: | |
| 2181 | "P n" if "n > 0" "P 1" "\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc n)" | |
| 2182 | proof - | |
| 2183 | from \<open>n > 0\<close> have "n \<ge> 1" | |
| 2184 | by (cases n) simp_all | |
| 2185 | moreover note \<open>P 1\<close> | |
| 2186 | moreover have "\<And>n. n \<ge> 1 \<Longrightarrow> P n \<Longrightarrow> P (Suc n)" | |
| 2187 | using \<open>\<And>n. n > 0 \<Longrightarrow> P n \<Longrightarrow> P (Suc n)\<close> | |
| 2188 | by (simp add: Suc_le_eq) | |
| 2189 | ultimately show "P n" | |
| 2190 | by (rule nat_induct_at_least) | |
| 2191 | qed | |
| 2192 | ||
| 2193 | ||
| 60758 | 2194 | text \<open>Specialized induction principles that work "backwards":\<close> | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2195 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2196 | lemma inc_induct [consumes 1, case_names base step]: | 
| 54411 | 2197 | assumes less: "i \<le> j" | 
| 63110 | 2198 | and base: "P j" | 
| 2199 | and step: "\<And>n. i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P (Suc n) \<Longrightarrow> P n" | |
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2200 | shows "P i" | 
| 54411 | 2201 | using less step | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2202 | proof (induct "j - i" arbitrary: i) | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2203 | case (0 i) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2204 | then have "i = j" by simp | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2205 | with base show ?case by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2206 | next | 
| 54411 | 2207 | case (Suc d n) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2208 | from Suc.hyps have "n \<noteq> j" by auto | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2209 | with Suc have "n < j" by (simp add: less_le) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2210 | from \<open>Suc d = j - n\<close> have "d + 1 = j - n" by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2211 | then have "d + 1 - 1 = j - n - 1" by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2212 | then have "d = j - n - 1" by simp | 
| 63588 | 2213 | then have "d = j - (n + 1)" by (simp add: diff_diff_eq) | 
| 2214 | then have "d = j - Suc n" by simp | |
| 2215 | moreover from \<open>n < j\<close> have "Suc n \<le> j" by (simp add: Suc_le_eq) | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2216 | ultimately have "P (Suc n)" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2217 | proof (rule Suc.hyps) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2218 | fix q | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2219 | assume "Suc n \<le> q" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2220 | then have "n \<le> q" by (simp add: Suc_le_eq less_imp_le) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2221 | moreover assume "q < j" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2222 | moreover assume "P (Suc q)" | 
| 63588 | 2223 | ultimately show "P q" by (rule Suc.prems) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2224 | qed | 
| 63588 | 2225 | with order_refl \<open>n < j\<close> show "P n" by (rule Suc.prems) | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2226 | qed | 
| 63110 | 2227 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2228 | lemma strict_inc_induct [consumes 1, case_names base step]: | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2229 | assumes less: "i < j" | 
| 63110 | 2230 | and base: "\<And>i. j = Suc i \<Longrightarrow> P i" | 
| 2231 | and step: "\<And>i. i < j \<Longrightarrow> P (Suc i) \<Longrightarrow> P i" | |
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2232 | shows "P i" | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2233 | using less proof (induct "j - i - 1" arbitrary: i) | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2234 | case (0 i) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2235 | from \<open>i < j\<close> obtain n where "j = i + n" and "n > 0" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2236 | by (auto dest!: less_imp_Suc_add) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2237 | with 0 have "j = Suc i" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2238 | by (auto intro: order_antisym simp add: Suc_le_eq) | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2239 | with base show ?case by simp | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2240 | next | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2241 | case (Suc d i) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2242 | from \<open>Suc d = j - i - 1\<close> have *: "Suc d = j - Suc i" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2243 | by (simp add: diff_diff_add) | 
| 63588 | 2244 | then have "Suc d - 1 = j - Suc i - 1" by simp | 
| 2245 | then have "d = j - Suc i - 1" by simp | |
| 2246 | moreover from * have "j - Suc i \<noteq> 0" by auto | |
| 2247 | then have "Suc i < j" by (simp add: not_le) | |
| 2248 | ultimately have "P (Suc i)" by (rule Suc.hyps) | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2249 | with \<open>i < j\<close> show "P i" by (rule step) | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2250 | qed | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2251 | |
| 63110 | 2252 | lemma zero_induct_lemma: "P k \<Longrightarrow> (\<And>n. P (Suc n) \<Longrightarrow> P n) \<Longrightarrow> P (k - i)" | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2253 | using inc_induct[of "k - i" k P, simplified] by blast | 
| 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2254 | |
| 63110 | 2255 | lemma zero_induct: "P k \<Longrightarrow> (\<And>n. P (Suc n) \<Longrightarrow> P n) \<Longrightarrow> P 0" | 
| 23001 
3608f0362a91
added induction principles for induction "backwards": P (Suc n) ==> P n
 krauss parents: 
22920diff
changeset | 2256 | using inc_induct[of 0 k P] by blast | 
| 21243 | 2257 | |
| 63588 | 2258 | text \<open>Further induction rule similar to @{thm inc_induct}.\<close>
 | 
| 27625 | 2259 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2260 | lemma dec_induct [consumes 1, case_names base step]: | 
| 54411 | 2261 | "i \<le> j \<Longrightarrow> P i \<Longrightarrow> (\<And>n. i \<le> n \<Longrightarrow> n < j \<Longrightarrow> P n \<Longrightarrow> P (Suc n)) \<Longrightarrow> P j" | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2262 | proof (induct j arbitrary: i) | 
| 63110 | 2263 | case 0 | 
| 2264 | then show ?case by simp | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2265 | next | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2266 | case (Suc j) | 
| 63110 | 2267 | from Suc.prems consider "i \<le> j" | "i = Suc j" | 
| 2268 | by (auto simp add: le_Suc_eq) | |
| 2269 | then show ?case | |
| 2270 | proof cases | |
| 2271 | case 1 | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2272 | moreover have "j < Suc j" by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2273 | moreover have "P j" using \<open>i \<le> j\<close> \<open>P i\<close> | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2274 | proof (rule Suc.hyps) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2275 | fix q | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2276 | assume "i \<le> q" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2277 | moreover assume "q < j" then have "q < Suc j" | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2278 | by (simp add: less_Suc_eq) | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2279 | moreover assume "P q" | 
| 63588 | 2280 | ultimately show "P (Suc q)" by (rule Suc.prems) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2281 | qed | 
| 63588 | 2282 | ultimately show "P (Suc j)" by (rule Suc.prems) | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2283 | next | 
| 63110 | 2284 | case 2 | 
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2285 | with \<open>P i\<close> show "P (Suc j)" by simp | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2286 | qed | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2287 | qed | 
| 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2288 | |
| 66295 
1ec601d9c829
moved transitive_stepwise_le into Nat, where it belongs
 paulson <lp15@cam.ac.uk> parents: 
66290diff
changeset | 2289 | lemma transitive_stepwise_le: | 
| 
1ec601d9c829
moved transitive_stepwise_le into Nat, where it belongs
 paulson <lp15@cam.ac.uk> parents: 
66290diff
changeset | 2290 | assumes "m \<le> n" "\<And>x. R x x" "\<And>x y z. R x y \<Longrightarrow> R y z \<Longrightarrow> R x z" and "\<And>n. R n (Suc n)" | 
| 
1ec601d9c829
moved transitive_stepwise_le into Nat, where it belongs
 paulson <lp15@cam.ac.uk> parents: 
66290diff
changeset | 2291 | shows "R m n" | 
| 
1ec601d9c829
moved transitive_stepwise_le into Nat, where it belongs
 paulson <lp15@cam.ac.uk> parents: 
66290diff
changeset | 2292 | using \<open>m \<le> n\<close> | 
| 
1ec601d9c829
moved transitive_stepwise_le into Nat, where it belongs
 paulson <lp15@cam.ac.uk> parents: 
66290diff
changeset | 2293 | by (induction rule: dec_induct) (use assms in blast)+ | 
| 
1ec601d9c829
moved transitive_stepwise_le into Nat, where it belongs
 paulson <lp15@cam.ac.uk> parents: 
66290diff
changeset | 2294 | |
| 59000 | 2295 | |
| 65963 | 2296 | subsubsection \<open>Greatest operator\<close> | 
| 2297 | ||
| 2298 | lemma ex_has_greatest_nat: | |
| 2299 | "P (k::nat) \<Longrightarrow> \<forall>y. P y \<longrightarrow> y \<le> b \<Longrightarrow> \<exists>x. P x \<and> (\<forall>y. P y \<longrightarrow> y \<le> x)" | |
| 2300 | proof (induction "b-k" arbitrary: b k rule: less_induct) | |
| 2301 | case less | |
| 2302 | show ?case | |
| 2303 | proof cases | |
| 2304 | assume "\<exists>n>k. P n" | |
| 2305 | then obtain n where "n>k" "P n" by blast | |
| 2306 | have "n \<le> b" using \<open>P n\<close> less.prems(2) by auto | |
| 2307 | hence "b-n < b-k" | |
| 2308 | by(rule diff_less_mono2[OF \<open>k<n\<close> less_le_trans[OF \<open>k<n\<close>]]) | |
| 2309 | from less.hyps[OF this \<open>P n\<close> less.prems(2)] | |
| 2310 | show ?thesis . | |
| 2311 | next | |
| 2312 | assume "\<not> (\<exists>n>k. P n)" | |
| 2313 | hence "\<forall>y. P y \<longrightarrow> y \<le> k" by (auto simp: not_less) | |
| 2314 | thus ?thesis using less.prems(1) by auto | |
| 2315 | qed | |
| 2316 | qed | |
| 2317 | ||
| 71585 | 2318 | lemma | 
| 2319 | fixes k::nat | |
| 2320 | assumes "P k" and minor: "\<And>y. P y \<Longrightarrow> y \<le> b" | |
| 2321 | shows GreatestI_nat: "P (Greatest P)" | |
| 2322 | and Greatest_le_nat: "k \<le> Greatest P" | |
| 2323 | proof - | |
| 2324 | obtain x where "P x" "\<And>y. P y \<Longrightarrow> y \<le> x" | |
| 2325 | using assms ex_has_greatest_nat by blast | |
| 2326 | with \<open>P k\<close> show "P (Greatest P)" "k \<le> Greatest P" | |
| 2327 | using GreatestI2_order by blast+ | |
| 2328 | qed | |
| 65963 | 2329 | |
| 65965 | 2330 | lemma GreatestI_ex_nat: | 
| 71585 | 2331 | "\<lbrakk> \<exists>k::nat. P k; \<And>y. P y \<Longrightarrow> y \<le> b \<rbrakk> \<Longrightarrow> P (Greatest P)" | 
| 2332 | by (blast intro: GreatestI_nat) | |
| 65963 | 2333 | |
| 2334 | ||
| 63110 | 2335 | subsection \<open>Monotonicity of \<open>funpow\<close>\<close> | 
| 59000 | 2336 | |
| 63588 | 2337 | lemma funpow_increasing: "m \<le> n \<Longrightarrow> mono f \<Longrightarrow> (f ^^ n) \<top> \<le> (f ^^ m) \<top>" | 
| 2338 |   for f :: "'a::{lattice,order_top} \<Rightarrow> 'a"
 | |
| 59000 | 2339 | by (induct rule: inc_induct) | 
| 63588 | 2340 | (auto simp del: funpow.simps(2) simp add: funpow_Suc_right | 
| 2341 | intro: order_trans[OF _ funpow_mono]) | |
| 2342 | ||
| 2343 | lemma funpow_decreasing: "m \<le> n \<Longrightarrow> mono f \<Longrightarrow> (f ^^ m) \<bottom> \<le> (f ^^ n) \<bottom>" | |
| 2344 |   for f :: "'a::{lattice,order_bot} \<Rightarrow> 'a"
 | |
| 59000 | 2345 | by (induct rule: dec_induct) | 
| 63588 | 2346 | (auto simp del: funpow.simps(2) simp add: funpow_Suc_right | 
| 2347 | intro: order_trans[OF _ funpow_mono]) | |
| 2348 | ||
| 2349 | lemma mono_funpow: "mono Q \<Longrightarrow> mono (\<lambda>i. (Q ^^ i) \<bottom>)" | |
| 2350 |   for Q :: "'a::{lattice,order_bot} \<Rightarrow> 'a"
 | |
| 59000 | 2351 | by (auto intro!: funpow_decreasing simp: mono_def) | 
| 58377 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2352 | |
| 63588 | 2353 | lemma antimono_funpow: "mono Q \<Longrightarrow> antimono (\<lambda>i. (Q ^^ i) \<top>)" | 
| 2354 |   for Q :: "'a::{lattice,order_top} \<Rightarrow> 'a"
 | |
| 60175 | 2355 | by (auto intro!: funpow_increasing simp: antimono_def) | 
| 2356 | ||
| 63110 | 2357 | |
| 69593 | 2358 | subsection \<open>The divides relation on \<^typ>\<open>nat\<close>\<close> | 
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 2359 | |
| 63110 | 2360 | lemma dvd_1_left [iff]: "Suc 0 dvd k" | 
| 62365 | 2361 | by (simp add: dvd_def) | 
| 2362 | ||
| 63110 | 2363 | lemma dvd_1_iff_1 [simp]: "m dvd Suc 0 \<longleftrightarrow> m = Suc 0" | 
| 62365 | 2364 | by (simp add: dvd_def) | 
| 2365 | ||
| 63588 | 2366 | lemma nat_dvd_1_iff_1 [simp]: "m dvd 1 \<longleftrightarrow> m = 1" | 
| 2367 | for m :: nat | |
| 62365 | 2368 | by (simp add: dvd_def) | 
| 2369 | ||
| 63588 | 2370 | lemma dvd_antisym: "m dvd n \<Longrightarrow> n dvd m \<Longrightarrow> m = n" | 
| 2371 | for m n :: nat | |
| 63110 | 2372 | unfolding dvd_def by (force dest: mult_eq_self_implies_10 simp add: mult.assoc) | 
| 2373 | ||
| 63588 | 2374 | lemma dvd_diff_nat [simp]: "k dvd m \<Longrightarrow> k dvd n \<Longrightarrow> k dvd (m - n)" | 
| 2375 | for k m n :: nat | |
| 63110 | 2376 | unfolding dvd_def by (blast intro: right_diff_distrib' [symmetric]) | 
| 2377 | ||
| 71585 | 2378 | lemma dvd_diffD: | 
| 2379 | fixes k m n :: nat | |
| 2380 | assumes "k dvd m - n" "k dvd n" "n \<le> m" | |
| 2381 | shows "k dvd m" | |
| 2382 | proof - | |
| 2383 | have "k dvd n + (m - n)" | |
| 2384 | using assms by (blast intro: dvd_add) | |
| 2385 | with assms show ?thesis | |
| 2386 | by simp | |
| 2387 | qed | |
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 2388 | |
| 63588 | 2389 | lemma dvd_diffD1: "k dvd m - n \<Longrightarrow> k dvd m \<Longrightarrow> n \<le> m \<Longrightarrow> k dvd n" | 
| 2390 | for k m n :: nat | |
| 62365 | 2391 | by (drule_tac m = m in dvd_diff_nat) auto | 
| 2392 | ||
| 2393 | lemma dvd_mult_cancel: | |
| 2394 | fixes m n k :: nat | |
| 2395 | assumes "k * m dvd k * n" and "0 < k" | |
| 2396 | shows "m dvd n" | |
| 2397 | proof - | |
| 2398 | from assms(1) obtain q where "k * n = (k * m) * q" .. | |
| 2399 | then have "k * n = k * (m * q)" by (simp add: ac_simps) | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2400 | with \<open>0 < k\<close> have "n = m * q" by (auto simp add: mult_left_cancel) | 
| 62365 | 2401 | then show ?thesis .. | 
| 2402 | qed | |
| 63110 | 2403 | |
| 71585 | 2404 | lemma dvd_mult_cancel1: | 
| 2405 | fixes m n :: nat | |
| 2406 | assumes "0 < m" | |
| 2407 | shows "m * n dvd m \<longleftrightarrow> n = 1" | |
| 2408 | proof | |
| 2409 | assume "m * n dvd m" | |
| 2410 | then have "m * n dvd m * 1" | |
| 2411 | by simp | |
| 2412 | then have "n dvd 1" | |
| 2413 | by (iprover intro: assms dvd_mult_cancel) | |
| 2414 | then show "n = 1" | |
| 2415 | by auto | |
| 2416 | qed auto | |
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 2417 | |
| 63588 | 2418 | lemma dvd_mult_cancel2: "0 < m \<Longrightarrow> n * m dvd m \<longleftrightarrow> n = 1" | 
| 2419 | for m n :: nat | |
| 62365 | 2420 | using dvd_mult_cancel1 [of m n] by (simp add: ac_simps) | 
| 2421 | ||
| 63588 | 2422 | lemma dvd_imp_le: "k dvd n \<Longrightarrow> 0 < n \<Longrightarrow> k \<le> n" | 
| 2423 | for k n :: nat | |
| 62365 | 2424 | by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc) | 
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 2425 | |
| 63588 | 2426 | lemma nat_dvd_not_less: "0 < m \<Longrightarrow> m < n \<Longrightarrow> \<not> n dvd m" | 
| 2427 | for m n :: nat | |
| 62365 | 2428 | by (auto elim!: dvdE) (auto simp add: gr0_conv_Suc) | 
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 2429 | |
| 54222 | 2430 | lemma less_eq_dvd_minus: | 
| 51173 | 2431 | fixes m n :: nat | 
| 54222 | 2432 | assumes "m \<le> n" | 
| 2433 | shows "m dvd n \<longleftrightarrow> m dvd n - m" | |
| 51173 | 2434 | proof - | 
| 54222 | 2435 | from assms have "n = m + (n - m)" by simp | 
| 51173 | 2436 | then obtain q where "n = m + q" .. | 
| 58647 | 2437 | then show ?thesis by (simp add: add.commute [of m]) | 
| 51173 | 2438 | qed | 
| 2439 | ||
| 63588 | 2440 | lemma dvd_minus_self: "m dvd n - m \<longleftrightarrow> n < m \<or> m dvd n" | 
| 2441 | for m n :: nat | |
| 62481 
b5d8e57826df
tuned bootstrap order to provide type classes in a more sensible order
 haftmann parents: 
62378diff
changeset | 2442 | by (cases "n < m") (auto elim!: dvdE simp add: not_less le_imp_diff_is_add dest: less_imp_le) | 
| 51173 | 2443 | |
| 2444 | lemma dvd_minus_add: | |
| 2445 | fixes m n q r :: nat | |
| 2446 | assumes "q \<le> n" "q \<le> r * m" | |
| 2447 | shows "m dvd n - q \<longleftrightarrow> m dvd n + (r * m - q)" | |
| 2448 | proof - | |
| 2449 | have "m dvd n - q \<longleftrightarrow> m dvd r * m + (n - q)" | |
| 58649 
a62065b5e1e2
generalized and consolidated some theorems concerning divisibility
 haftmann parents: 
58647diff
changeset | 2450 | using dvd_add_times_triv_left_iff [of m r] by simp | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52729diff
changeset | 2451 | also from assms have "\<dots> \<longleftrightarrow> m dvd r * m + n - q" by simp | 
| 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
52729diff
changeset | 2452 | also from assms have "\<dots> \<longleftrightarrow> m dvd (r * m - q) + n" by simp | 
| 57512 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 haftmann parents: 
57492diff
changeset | 2453 | also have "\<dots> \<longleftrightarrow> m dvd n + (r * m - q)" by (simp add: add.commute) | 
| 51173 | 2454 | finally show ?thesis . | 
| 2455 | qed | |
| 2456 | ||
| 33274 
b6ff7db522b5
moved lemmas for dvd on nat to theories Nat and Power
 haftmann parents: 
32772diff
changeset | 2457 | |
| 62365 | 2458 | subsection \<open>Aliasses\<close> | 
| 44817 | 2459 | |
| 63588 | 2460 | lemma nat_mult_1: "1 * n = n" | 
| 2461 | for n :: nat | |
| 58647 | 2462 | by (fact mult_1_left) | 
| 60562 
24af00b010cf
Amalgamation of the class comm_semiring_1_diff_distrib into comm_semiring_1_cancel. Moving axiom le_add_diff_inverse2 from semiring_numeral_div to linordered_semidom.
 paulson <lp15@cam.ac.uk> parents: 
60427diff
changeset | 2463 | |
| 63588 | 2464 | lemma nat_mult_1_right: "n * 1 = n" | 
| 2465 | for n :: nat | |
| 58647 | 2466 | by (fact mult_1_right) | 
| 71588 
f3fe59e61f3d
put back Nat.le_diff_conv2 because AUTO2 doesn't work with Groups.le_diff_conv2
 paulson <lp15@cam.ac.uk> parents: 
71585diff
changeset | 2467 | |
| 63588 | 2468 | lemma diff_mult_distrib: "(m - n) * k = (m * k) - (n * k)" | 
| 2469 | for k m n :: nat | |
| 62365 | 2470 | by (fact left_diff_distrib') | 
| 2471 | ||
| 63588 | 2472 | lemma diff_mult_distrib2: "k * (m - n) = (k * m) - (k * n)" | 
| 2473 | for k m n :: nat | |
| 62365 | 2474 | by (fact right_diff_distrib') | 
| 2475 | ||
| 71588 
f3fe59e61f3d
put back Nat.le_diff_conv2 because AUTO2 doesn't work with Groups.le_diff_conv2
 paulson <lp15@cam.ac.uk> parents: 
71585diff
changeset | 2476 | (*Used in AUTO2 and Groups.le_diff_conv2 (with variables renamed) doesn't work for some reason*) | 
| 
f3fe59e61f3d
put back Nat.le_diff_conv2 because AUTO2 doesn't work with Groups.le_diff_conv2
 paulson <lp15@cam.ac.uk> parents: 
71585diff
changeset | 2477 | lemma le_diff_conv2: "k \<le> j \<Longrightarrow> (i \<le> j - k) = (i + k \<le> j)" | 
| 
f3fe59e61f3d
put back Nat.le_diff_conv2 because AUTO2 doesn't work with Groups.le_diff_conv2
 paulson <lp15@cam.ac.uk> parents: 
71585diff
changeset | 2478 | for i j k :: nat | 
| 
f3fe59e61f3d
put back Nat.le_diff_conv2 because AUTO2 doesn't work with Groups.le_diff_conv2
 paulson <lp15@cam.ac.uk> parents: 
71585diff
changeset | 2479 | by (fact le_diff_conv2) | 
| 
f3fe59e61f3d
put back Nat.le_diff_conv2 because AUTO2 doesn't work with Groups.le_diff_conv2
 paulson <lp15@cam.ac.uk> parents: 
71585diff
changeset | 2480 | |
| 63588 | 2481 | lemma diff_self_eq_0 [simp]: "m - m = 0" | 
| 2482 | for m :: nat | |
| 62365 | 2483 | by (fact diff_cancel) | 
| 2484 | ||
| 63588 | 2485 | lemma diff_diff_left [simp]: "i - j - k = i - (j + k)" | 
| 2486 | for i j k :: nat | |
| 62365 | 2487 | by (fact diff_diff_add) | 
| 2488 | ||
| 63588 | 2489 | lemma diff_commute: "i - j - k = i - k - j" | 
| 2490 | for i j k :: nat | |
| 62365 | 2491 | by (fact diff_right_commute) | 
| 2492 | ||
| 63588 | 2493 | lemma diff_add_inverse: "(n + m) - n = m" | 
| 2494 | for m n :: nat | |
| 62365 | 2495 | by (fact add_diff_cancel_left') | 
| 2496 | ||
| 63588 | 2497 | lemma diff_add_inverse2: "(m + n) - n = m" | 
| 2498 | for m n :: nat | |
| 62365 | 2499 | by (fact add_diff_cancel_right') | 
| 2500 | ||
| 63588 | 2501 | lemma diff_cancel: "(k + m) - (k + n) = m - n" | 
| 2502 | for k m n :: nat | |
| 62365 | 2503 | by (fact add_diff_cancel_left) | 
| 2504 | ||
| 63588 | 2505 | lemma diff_cancel2: "(m + k) - (n + k) = m - n" | 
| 2506 | for k m n :: nat | |
| 62365 | 2507 | by (fact add_diff_cancel_right) | 
| 2508 | ||
| 63588 | 2509 | lemma diff_add_0: "n - (n + m) = 0" | 
| 2510 | for m n :: nat | |
| 62365 | 2511 | by (fact diff_add_zero) | 
| 2512 | ||
| 63588 | 2513 | lemma add_mult_distrib2: "k * (m + n) = (k * m) + (k * n)" | 
| 2514 | for k m n :: nat | |
| 62365 | 2515 | by (fact distrib_left) | 
| 2516 | ||
| 2517 | lemmas nat_distrib = | |
| 2518 | add_mult_distrib distrib_left diff_mult_distrib diff_mult_distrib2 | |
| 2519 | ||
| 44817 | 2520 | |
| 60758 | 2521 | subsection \<open>Size of a datatype value\<close> | 
| 25193 | 2522 | |
| 29608 | 2523 | class size = | 
| 61799 | 2524 | fixes size :: "'a \<Rightarrow> nat" \<comment> \<open>see further theory \<open>Wellfounded\<close>\<close> | 
| 23852 | 2525 | |
| 58377 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2526 | instantiation nat :: size | 
| 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2527 | begin | 
| 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2528 | |
| 63110 | 2529 | definition size_nat where [simp, code]: "size (n::nat) = n" | 
| 58377 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2530 | |
| 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2531 | instance .. | 
| 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2532 | |
| 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2533 | end | 
| 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2534 | |
| 67332 | 2535 | lemmas size_nat = size_nat_def | 
| 2536 | ||
| 71836 
c095d3143047
New HOL simproc 'datatype_no_proper_subterm'
 Manuel Eberl <eberlm@in.tum.de> parents: 
71588diff
changeset | 2537 | lemma size_neq_size_imp_neq: "size x \<noteq> size y \<Longrightarrow> x \<noteq> y" | 
| 
c095d3143047
New HOL simproc 'datatype_no_proper_subterm'
 Manuel Eberl <eberlm@in.tum.de> parents: 
71588diff
changeset | 2538 | by (erule contrapos_nn) (rule arg_cong) | 
| 
c095d3143047
New HOL simproc 'datatype_no_proper_subterm'
 Manuel Eberl <eberlm@in.tum.de> parents: 
71588diff
changeset | 2539 | |
| 58377 
c6f93b8d2d8e
moved old 'size' generator together with 'old_datatype'
 blanchet parents: 
58306diff
changeset | 2540 | |
| 60758 | 2541 | subsection \<open>Code module namespace\<close> | 
| 33364 | 2542 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52289diff
changeset | 2543 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
52289diff
changeset | 2544 | code_module Nat \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 33364 | 2545 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46351diff
changeset | 2546 | hide_const (open) of_nat_aux | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46351diff
changeset | 2547 | |
| 25193 | 2548 | end |