author | haftmann |
Sat, 05 Jul 2014 11:01:53 +0200 | |
changeset 57514 | bdc2c6b40bf2 |
parent 57512 | cc97b347b301 |
child 58877 | 262572d90bc6 |
permissions | -rw-r--r-- |
44133 | 1 |
(* Title: HOL/Multivariate_Analysis/Linear_Algebra.thy |
2 |
Author: Amine Chaieb, University of Cambridge |
|
3 |
*) |
|
4 |
||
5 |
header {* Elementary linear algebra on Euclidean spaces *} |
|
6 |
||
7 |
theory Linear_Algebra |
|
8 |
imports |
|
9 |
Euclidean_Space |
|
10 |
"~~/src/HOL/Library/Infinite_Set" |
|
11 |
begin |
|
12 |
||
13 |
lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)" |
|
14 |
by auto |
|
15 |
||
16 |
notation inner (infix "\<bullet>" 70) |
|
17 |
||
53716 | 18 |
lemma square_bound_lemma: |
19 |
fixes x :: real |
|
20 |
shows "x < (1 + x) * (1 + x)" |
|
49522 | 21 |
proof - |
53406 | 22 |
have "(x + 1/2)\<^sup>2 + 3/4 > 0" |
23 |
using zero_le_power2[of "x+1/2"] by arith |
|
24 |
then show ?thesis |
|
25 |
by (simp add: field_simps power2_eq_square) |
|
44133 | 26 |
qed |
27 |
||
53406 | 28 |
lemma square_continuous: |
29 |
fixes e :: real |
|
56444 | 30 |
shows "e > 0 \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> \<bar>y * y - x * x\<bar> < e)" |
51478
270b21f3ae0a
move continuous and continuous_on to the HOL image; isCont is an abbreviation for continuous (at x) (isCont is now restricted to a T2 space)
hoelzl
parents:
51475
diff
changeset
|
31 |
using isCont_power[OF isCont_ident, of x, unfolded isCont_def LIM_eq, rule_format, of e 2] |
49522 | 32 |
apply (auto simp add: power2_eq_square) |
44133 | 33 |
apply (rule_tac x="s" in exI) |
34 |
apply auto |
|
35 |
apply (erule_tac x=y in allE) |
|
36 |
apply auto |
|
37 |
done |
|
38 |
||
39 |
text{* Hence derive more interesting properties of the norm. *} |
|
40 |
||
53406 | 41 |
lemma norm_eq_0_dot: "norm x = 0 \<longleftrightarrow> x \<bullet> x = (0::real)" |
44666 | 42 |
by simp (* TODO: delete *) |
44133 | 43 |
|
44 |
lemma norm_triangle_sub: |
|
45 |
fixes x y :: "'a::real_normed_vector" |
|
53406 | 46 |
shows "norm x \<le> norm y + norm (x - y)" |
44133 | 47 |
using norm_triangle_ineq[of "y" "x - y"] by (simp add: field_simps) |
48 |
||
53406 | 49 |
lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> x \<bullet> x \<le> y \<bullet> y" |
44133 | 50 |
by (simp add: norm_eq_sqrt_inner) |
44666 | 51 |
|
53406 | 52 |
lemma norm_lt: "norm x < norm y \<longleftrightarrow> x \<bullet> x < y \<bullet> y" |
53 |
by (simp add: norm_eq_sqrt_inner) |
|
54 |
||
55 |
lemma norm_eq: "norm x = norm y \<longleftrightarrow> x \<bullet> x = y \<bullet> y" |
|
49522 | 56 |
apply (subst order_eq_iff) |
57 |
apply (auto simp: norm_le) |
|
58 |
done |
|
44666 | 59 |
|
53406 | 60 |
lemma norm_eq_1: "norm x = 1 \<longleftrightarrow> x \<bullet> x = 1" |
44666 | 61 |
by (simp add: norm_eq_sqrt_inner) |
44133 | 62 |
|
63 |
text{* Squaring equations and inequalities involving norms. *} |
|
64 |
||
53077 | 65 |
lemma dot_square_norm: "x \<bullet> x = (norm x)\<^sup>2" |
44666 | 66 |
by (simp only: power2_norm_eq_inner) (* TODO: move? *) |
44133 | 67 |
|
53406 | 68 |
lemma norm_eq_square: "norm x = a \<longleftrightarrow> 0 \<le> a \<and> x \<bullet> x = a\<^sup>2" |
44133 | 69 |
by (auto simp add: norm_eq_sqrt_inner) |
70 |
||
53077 | 71 |
lemma real_abs_le_square_iff: "\<bar>x\<bar> \<le> \<bar>y\<bar> \<longleftrightarrow> (x::real)\<^sup>2 \<le> y\<^sup>2" |
44133 | 72 |
proof |
73 |
assume "\<bar>x\<bar> \<le> \<bar>y\<bar>" |
|
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51478
diff
changeset
|
74 |
then have "\<bar>x\<bar>\<^sup>2 \<le> \<bar>y\<bar>\<^sup>2" by (rule power_mono, simp) |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51478
diff
changeset
|
75 |
then show "x\<^sup>2 \<le> y\<^sup>2" by simp |
44133 | 76 |
next |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51478
diff
changeset
|
77 |
assume "x\<^sup>2 \<le> y\<^sup>2" |
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51478
diff
changeset
|
78 |
then have "sqrt (x\<^sup>2) \<le> sqrt (y\<^sup>2)" by (rule real_sqrt_le_mono) |
44133 | 79 |
then show "\<bar>x\<bar> \<le> \<bar>y\<bar>" by simp |
80 |
qed |
|
81 |
||
53406 | 82 |
lemma norm_le_square: "norm x \<le> a \<longleftrightarrow> 0 \<le> a \<and> x \<bullet> x \<le> a\<^sup>2" |
44133 | 83 |
apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric]) |
84 |
using norm_ge_zero[of x] |
|
85 |
apply arith |
|
86 |
done |
|
87 |
||
53406 | 88 |
lemma norm_ge_square: "norm x \<ge> a \<longleftrightarrow> a \<le> 0 \<or> x \<bullet> x \<ge> a\<^sup>2" |
44133 | 89 |
apply (simp add: dot_square_norm real_abs_le_square_iff[symmetric]) |
90 |
using norm_ge_zero[of x] |
|
91 |
apply arith |
|
92 |
done |
|
93 |
||
53716 | 94 |
lemma norm_lt_square: "norm x < a \<longleftrightarrow> 0 < a \<and> x \<bullet> x < a\<^sup>2" |
44133 | 95 |
by (metis not_le norm_ge_square) |
53406 | 96 |
|
53716 | 97 |
lemma norm_gt_square: "norm x > a \<longleftrightarrow> a < 0 \<or> x \<bullet> x > a\<^sup>2" |
44133 | 98 |
by (metis norm_le_square not_less) |
99 |
||
100 |
text{* Dot product in terms of the norm rather than conversely. *} |
|
101 |
||
53406 | 102 |
lemmas inner_simps = inner_add_left inner_add_right inner_diff_right inner_diff_left |
49522 | 103 |
inner_scaleR_left inner_scaleR_right |
44133 | 104 |
|
53077 | 105 |
lemma dot_norm: "x \<bullet> y = ((norm (x + y))\<^sup>2 - (norm x)\<^sup>2 - (norm y)\<^sup>2) / 2" |
53406 | 106 |
unfolding power2_norm_eq_inner inner_simps inner_commute by auto |
44133 | 107 |
|
53077 | 108 |
lemma dot_norm_neg: "x \<bullet> y = (((norm x)\<^sup>2 + (norm y)\<^sup>2) - (norm (x - y))\<^sup>2) / 2" |
49525 | 109 |
unfolding power2_norm_eq_inner inner_simps inner_commute |
110 |
by (auto simp add: algebra_simps) |
|
44133 | 111 |
|
112 |
text{* Equality of vectors in terms of @{term "op \<bullet>"} products. *} |
|
113 |
||
53406 | 114 |
lemma vector_eq: "x = y \<longleftrightarrow> x \<bullet> x = x \<bullet> y \<and> y \<bullet> y = x \<bullet> x" |
115 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
44133 | 116 |
proof |
49652 | 117 |
assume ?lhs |
118 |
then show ?rhs by simp |
|
44133 | 119 |
next |
120 |
assume ?rhs |
|
53406 | 121 |
then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0" |
122 |
by simp |
|
123 |
then have "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0" |
|
124 |
by (simp add: inner_diff inner_commute) |
|
125 |
then have "(x - y) \<bullet> (x - y) = 0" |
|
126 |
by (simp add: field_simps inner_diff inner_commute) |
|
127 |
then show "x = y" by simp |
|
44133 | 128 |
qed |
129 |
||
130 |
lemma norm_triangle_half_r: |
|
53406 | 131 |
"norm (y - x1) < e / 2 \<Longrightarrow> norm (y - x2) < e / 2 \<Longrightarrow> norm (x1 - x2) < e" |
132 |
using dist_triangle_half_r unfolding dist_norm[symmetric] by auto |
|
44133 | 133 |
|
49522 | 134 |
lemma norm_triangle_half_l: |
53406 | 135 |
assumes "norm (x - y) < e / 2" |
53842 | 136 |
and "norm (x' - y) < e / 2" |
44133 | 137 |
shows "norm (x - x') < e" |
53406 | 138 |
using dist_triangle_half_l[OF assms[unfolded dist_norm[symmetric]]] |
139 |
unfolding dist_norm[symmetric] . |
|
140 |
||
141 |
lemma norm_triangle_le: "norm x + norm y \<le> e \<Longrightarrow> norm (x + y) \<le> e" |
|
44666 | 142 |
by (rule norm_triangle_ineq [THEN order_trans]) |
44133 | 143 |
|
53406 | 144 |
lemma norm_triangle_lt: "norm x + norm y < e \<Longrightarrow> norm (x + y) < e" |
44666 | 145 |
by (rule norm_triangle_ineq [THEN le_less_trans]) |
44133 | 146 |
|
147 |
lemma setsum_clauses: |
|
148 |
shows "setsum f {} = 0" |
|
49525 | 149 |
and "finite S \<Longrightarrow> setsum f (insert x S) = (if x \<in> S then setsum f S else f x + setsum f S)" |
44133 | 150 |
by (auto simp add: insert_absorb) |
151 |
||
152 |
lemma setsum_norm_le: |
|
153 |
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" |
|
44176
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents:
44170
diff
changeset
|
154 |
assumes fg: "\<forall>x \<in> S. norm (f x) \<le> g x" |
44133 | 155 |
shows "norm (setsum f S) \<le> setsum g S" |
49522 | 156 |
by (rule order_trans [OF norm_setsum setsum_mono]) (simp add: fg) |
44133 | 157 |
|
158 |
lemma setsum_norm_bound: |
|
159 |
fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" |
|
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
160 |
assumes K: "\<forall>x \<in> S. norm (f x) \<le> K" |
44133 | 161 |
shows "norm (setsum f S) \<le> of_nat (card S) * K" |
44176
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents:
44170
diff
changeset
|
162 |
using setsum_norm_le[OF K] setsum_constant[symmetric] |
44133 | 163 |
by simp |
164 |
||
165 |
lemma setsum_group: |
|
166 |
assumes fS: "finite S" and fT: "finite T" and fST: "f ` S \<subseteq> T" |
|
53939 | 167 |
shows "setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) T = setsum g S" |
44133 | 168 |
apply (subst setsum_image_gen[OF fS, of g f]) |
57418 | 169 |
apply (rule setsum.mono_neutral_right[OF fT fST]) |
170 |
apply (auto intro: setsum.neutral) |
|
49522 | 171 |
done |
44133 | 172 |
|
173 |
lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = z" |
|
174 |
proof |
|
175 |
assume "\<forall>x. x \<bullet> y = x \<bullet> z" |
|
53406 | 176 |
then have "\<forall>x. x \<bullet> (y - z) = 0" |
177 |
by (simp add: inner_diff) |
|
49522 | 178 |
then have "(y - z) \<bullet> (y - z) = 0" .. |
49652 | 179 |
then show "y = z" by simp |
44133 | 180 |
qed simp |
181 |
||
182 |
lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = y" |
|
183 |
proof |
|
184 |
assume "\<forall>z. x \<bullet> z = y \<bullet> z" |
|
53406 | 185 |
then have "\<forall>z. (x - y) \<bullet> z = 0" |
186 |
by (simp add: inner_diff) |
|
49522 | 187 |
then have "(x - y) \<bullet> (x - y) = 0" .. |
49652 | 188 |
then show "x = y" by simp |
44133 | 189 |
qed simp |
190 |
||
49522 | 191 |
|
192 |
subsection {* Orthogonality. *} |
|
44133 | 193 |
|
194 |
context real_inner |
|
195 |
begin |
|
196 |
||
53842 | 197 |
definition "orthogonal x y \<longleftrightarrow> x \<bullet> y = 0" |
44133 | 198 |
|
199 |
lemma orthogonal_clauses: |
|
200 |
"orthogonal a 0" |
|
201 |
"orthogonal a x \<Longrightarrow> orthogonal a (c *\<^sub>R x)" |
|
53842 | 202 |
"orthogonal a x \<Longrightarrow> orthogonal a (- x)" |
44133 | 203 |
"orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x + y)" |
204 |
"orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x - y)" |
|
205 |
"orthogonal 0 a" |
|
206 |
"orthogonal x a \<Longrightarrow> orthogonal (c *\<^sub>R x) a" |
|
53842 | 207 |
"orthogonal x a \<Longrightarrow> orthogonal (- x) a" |
44133 | 208 |
"orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x + y) a" |
209 |
"orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x - y) a" |
|
44666 | 210 |
unfolding orthogonal_def inner_add inner_diff by auto |
211 |
||
44133 | 212 |
end |
213 |
||
214 |
lemma orthogonal_commute: "orthogonal x y \<longleftrightarrow> orthogonal y x" |
|
215 |
by (simp add: orthogonal_def inner_commute) |
|
216 |
||
49522 | 217 |
|
218 |
subsection {* Linear functions. *} |
|
219 |
||
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
220 |
lemma linear_iff: |
53716 | 221 |
"linear f \<longleftrightarrow> (\<forall>x y. f (x + y) = f x + f y) \<and> (\<forall>c x. f (c *\<^sub>R x) = c *\<^sub>R f x)" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
222 |
(is "linear f \<longleftrightarrow> ?rhs") |
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
223 |
proof |
56444 | 224 |
assume "linear f" |
225 |
then interpret f: linear f . |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
226 |
show "?rhs" by (simp add: f.add f.scaleR) |
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
227 |
next |
56444 | 228 |
assume "?rhs" |
229 |
then show "linear f" by unfold_locales simp_all |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
230 |
qed |
44133 | 231 |
|
53406 | 232 |
lemma linear_compose_cmul: "linear f \<Longrightarrow> linear (\<lambda>x. c *\<^sub>R f x)" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
233 |
by (simp add: linear_iff algebra_simps) |
44133 | 234 |
|
53406 | 235 |
lemma linear_compose_neg: "linear f \<Longrightarrow> linear (\<lambda>x. - f x)" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
236 |
by (simp add: linear_iff) |
44133 | 237 |
|
53406 | 238 |
lemma linear_compose_add: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (\<lambda>x. f x + g x)" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
239 |
by (simp add: linear_iff algebra_simps) |
44133 | 240 |
|
53406 | 241 |
lemma linear_compose_sub: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (\<lambda>x. f x - g x)" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
242 |
by (simp add: linear_iff algebra_simps) |
44133 | 243 |
|
53406 | 244 |
lemma linear_compose: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (g \<circ> f)" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
245 |
by (simp add: linear_iff) |
44133 | 246 |
|
53406 | 247 |
lemma linear_id: "linear id" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
248 |
by (simp add: linear_iff id_def) |
53406 | 249 |
|
250 |
lemma linear_zero: "linear (\<lambda>x. 0)" |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
251 |
by (simp add: linear_iff) |
44133 | 252 |
|
253 |
lemma linear_compose_setsum: |
|
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
254 |
assumes lS: "\<forall>a \<in> S. linear (f a)" |
53716 | 255 |
shows "linear (\<lambda>x. setsum (\<lambda>a. f a x) S)" |
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
256 |
proof (cases "finite S") |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
257 |
case True |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
258 |
then show ?thesis |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
259 |
using lS by induct (simp_all add: linear_zero linear_compose_add) |
56444 | 260 |
next |
261 |
case False |
|
262 |
then show ?thesis |
|
263 |
by (simp add: linear_zero) |
|
264 |
qed |
|
44133 | 265 |
|
266 |
lemma linear_0: "linear f \<Longrightarrow> f 0 = 0" |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
267 |
unfolding linear_iff |
44133 | 268 |
apply clarsimp |
269 |
apply (erule allE[where x="0::'a"]) |
|
270 |
apply simp |
|
271 |
done |
|
272 |
||
53406 | 273 |
lemma linear_cmul: "linear f \<Longrightarrow> f (c *\<^sub>R x) = c *\<^sub>R f x" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
274 |
by (simp add: linear_iff) |
44133 | 275 |
|
53406 | 276 |
lemma linear_neg: "linear f \<Longrightarrow> f (- x) = - f x" |
44133 | 277 |
using linear_cmul [where c="-1"] by simp |
278 |
||
53716 | 279 |
lemma linear_add: "linear f \<Longrightarrow> f (x + y) = f x + f y" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
280 |
by (metis linear_iff) |
44133 | 281 |
|
53716 | 282 |
lemma linear_sub: "linear f \<Longrightarrow> f (x - y) = f x - f y" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53939
diff
changeset
|
283 |
using linear_add [of f x "- y"] by (simp add: linear_neg) |
44133 | 284 |
|
285 |
lemma linear_setsum: |
|
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
286 |
assumes f: "linear f" |
53406 | 287 |
shows "f (setsum g S) = setsum (f \<circ> g) S" |
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
288 |
proof (cases "finite S") |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
289 |
case True |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
290 |
then show ?thesis |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
291 |
by induct (simp_all add: linear_0 [OF f] linear_add [OF f]) |
56444 | 292 |
next |
293 |
case False |
|
294 |
then show ?thesis |
|
295 |
by (simp add: linear_0 [OF f]) |
|
296 |
qed |
|
44133 | 297 |
|
298 |
lemma linear_setsum_mul: |
|
53406 | 299 |
assumes lin: "linear f" |
44133 | 300 |
shows "f (setsum (\<lambda>i. c i *\<^sub>R v i) S) = setsum (\<lambda>i. c i *\<^sub>R f (v i)) S" |
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
301 |
using linear_setsum[OF lin, of "\<lambda>i. c i *\<^sub>R v i" , unfolded o_def] linear_cmul[OF lin] |
49522 | 302 |
by simp |
44133 | 303 |
|
304 |
lemma linear_injective_0: |
|
53406 | 305 |
assumes lin: "linear f" |
44133 | 306 |
shows "inj f \<longleftrightarrow> (\<forall>x. f x = 0 \<longrightarrow> x = 0)" |
49663 | 307 |
proof - |
53406 | 308 |
have "inj f \<longleftrightarrow> (\<forall> x y. f x = f y \<longrightarrow> x = y)" |
309 |
by (simp add: inj_on_def) |
|
310 |
also have "\<dots> \<longleftrightarrow> (\<forall> x y. f x - f y = 0 \<longrightarrow> x - y = 0)" |
|
311 |
by simp |
|
44133 | 312 |
also have "\<dots> \<longleftrightarrow> (\<forall> x y. f (x - y) = 0 \<longrightarrow> x - y = 0)" |
53406 | 313 |
by (simp add: linear_sub[OF lin]) |
314 |
also have "\<dots> \<longleftrightarrow> (\<forall> x. f x = 0 \<longrightarrow> x = 0)" |
|
315 |
by auto |
|
44133 | 316 |
finally show ?thesis . |
317 |
qed |
|
318 |
||
49522 | 319 |
|
320 |
subsection {* Bilinear functions. *} |
|
44133 | 321 |
|
53406 | 322 |
definition "bilinear f \<longleftrightarrow> (\<forall>x. linear (\<lambda>y. f x y)) \<and> (\<forall>y. linear (\<lambda>x. f x y))" |
323 |
||
324 |
lemma bilinear_ladd: "bilinear h \<Longrightarrow> h (x + y) z = h x z + h y z" |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
325 |
by (simp add: bilinear_def linear_iff) |
49663 | 326 |
|
53406 | 327 |
lemma bilinear_radd: "bilinear h \<Longrightarrow> h x (y + z) = h x y + h x z" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
328 |
by (simp add: bilinear_def linear_iff) |
44133 | 329 |
|
53406 | 330 |
lemma bilinear_lmul: "bilinear h \<Longrightarrow> h (c *\<^sub>R x) y = c *\<^sub>R h x y" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
331 |
by (simp add: bilinear_def linear_iff) |
44133 | 332 |
|
53406 | 333 |
lemma bilinear_rmul: "bilinear h \<Longrightarrow> h x (c *\<^sub>R y) = c *\<^sub>R h x y" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
334 |
by (simp add: bilinear_def linear_iff) |
44133 | 335 |
|
53406 | 336 |
lemma bilinear_lneg: "bilinear h \<Longrightarrow> h (- x) y = - h x y" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54413
diff
changeset
|
337 |
by (drule bilinear_lmul [of _ "- 1"]) simp |
44133 | 338 |
|
53406 | 339 |
lemma bilinear_rneg: "bilinear h \<Longrightarrow> h x (- y) = - h x y" |
54489
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
haftmann
parents:
54413
diff
changeset
|
340 |
by (drule bilinear_rmul [of _ _ "- 1"]) simp |
44133 | 341 |
|
53406 | 342 |
lemma (in ab_group_add) eq_add_iff: "x = x + y \<longleftrightarrow> y = 0" |
44133 | 343 |
using add_imp_eq[of x y 0] by auto |
344 |
||
53406 | 345 |
lemma bilinear_lzero: |
346 |
assumes "bilinear h" |
|
347 |
shows "h 0 x = 0" |
|
49663 | 348 |
using bilinear_ladd [OF assms, of 0 0 x] by (simp add: eq_add_iff field_simps) |
349 |
||
53406 | 350 |
lemma bilinear_rzero: |
351 |
assumes "bilinear h" |
|
352 |
shows "h x 0 = 0" |
|
49663 | 353 |
using bilinear_radd [OF assms, of x 0 0 ] by (simp add: eq_add_iff field_simps) |
44133 | 354 |
|
53406 | 355 |
lemma bilinear_lsub: "bilinear h \<Longrightarrow> h (x - y) z = h x z - h y z" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53939
diff
changeset
|
356 |
using bilinear_ladd [of h x "- y"] by (simp add: bilinear_lneg) |
44133 | 357 |
|
53406 | 358 |
lemma bilinear_rsub: "bilinear h \<Longrightarrow> h z (x - y) = h z x - h z y" |
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53939
diff
changeset
|
359 |
using bilinear_radd [of h _ x "- y"] by (simp add: bilinear_rneg) |
44133 | 360 |
|
361 |
lemma bilinear_setsum: |
|
49663 | 362 |
assumes bh: "bilinear h" |
363 |
and fS: "finite S" |
|
364 |
and fT: "finite T" |
|
44133 | 365 |
shows "h (setsum f S) (setsum g T) = setsum (\<lambda>(i,j). h (f i) (g j)) (S \<times> T) " |
49522 | 366 |
proof - |
44133 | 367 |
have "h (setsum f S) (setsum g T) = setsum (\<lambda>x. h (f x) (setsum g T)) S" |
368 |
apply (rule linear_setsum[unfolded o_def]) |
|
53406 | 369 |
using bh fS |
370 |
apply (auto simp add: bilinear_def) |
|
49522 | 371 |
done |
44133 | 372 |
also have "\<dots> = setsum (\<lambda>x. setsum (\<lambda>y. h (f x) (g y)) T) S" |
57418 | 373 |
apply (rule setsum.cong, simp) |
44133 | 374 |
apply (rule linear_setsum[unfolded o_def]) |
49522 | 375 |
using bh fT |
376 |
apply (auto simp add: bilinear_def) |
|
377 |
done |
|
53406 | 378 |
finally show ?thesis |
57418 | 379 |
unfolding setsum.cartesian_product . |
44133 | 380 |
qed |
381 |
||
49522 | 382 |
|
383 |
subsection {* Adjoints. *} |
|
44133 | 384 |
|
385 |
definition "adjoint f = (SOME f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y)" |
|
386 |
||
387 |
lemma adjoint_unique: |
|
388 |
assumes "\<forall>x y. inner (f x) y = inner x (g y)" |
|
389 |
shows "adjoint f = g" |
|
49522 | 390 |
unfolding adjoint_def |
44133 | 391 |
proof (rule some_equality) |
53406 | 392 |
show "\<forall>x y. inner (f x) y = inner x (g y)" |
393 |
by (rule assms) |
|
44133 | 394 |
next |
53406 | 395 |
fix h |
396 |
assume "\<forall>x y. inner (f x) y = inner x (h y)" |
|
397 |
then have "\<forall>x y. inner x (g y) = inner x (h y)" |
|
398 |
using assms by simp |
|
399 |
then have "\<forall>x y. inner x (g y - h y) = 0" |
|
400 |
by (simp add: inner_diff_right) |
|
401 |
then have "\<forall>y. inner (g y - h y) (g y - h y) = 0" |
|
402 |
by simp |
|
403 |
then have "\<forall>y. h y = g y" |
|
404 |
by simp |
|
49652 | 405 |
then show "h = g" by (simp add: ext) |
44133 | 406 |
qed |
407 |
||
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
408 |
text {* TODO: The following lemmas about adjoints should hold for any |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
409 |
Hilbert space (i.e. complete inner product space). |
54703 | 410 |
(see @{url "http://en.wikipedia.org/wiki/Hermitian_adjoint"}) |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
411 |
*} |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
412 |
|
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
413 |
lemma adjoint_works: |
56444 | 414 |
fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
415 |
assumes lf: "linear f" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
416 |
shows "x \<bullet> adjoint f y = f x \<bullet> y" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
417 |
proof - |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
418 |
have "\<forall>y. \<exists>w. \<forall>x. f x \<bullet> y = x \<bullet> w" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
419 |
proof (intro allI exI) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
420 |
fix y :: "'m" and x |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
421 |
let ?w = "(\<Sum>i\<in>Basis. (f i \<bullet> y) *\<^sub>R i) :: 'n" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
422 |
have "f x \<bullet> y = f (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R i) \<bullet> y" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
423 |
by (simp add: euclidean_representation) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
424 |
also have "\<dots> = (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R f i) \<bullet> y" |
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
425 |
unfolding linear_setsum[OF lf] |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
426 |
by (simp add: linear_cmul[OF lf]) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
427 |
finally show "f x \<bullet> y = x \<bullet> ?w" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
428 |
by (simp add: inner_setsum_left inner_setsum_right mult.commute) |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
429 |
qed |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
430 |
then show ?thesis |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
431 |
unfolding adjoint_def choice_iff |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
432 |
by (intro someI2_ex[where Q="\<lambda>f'. x \<bullet> f' y = f x \<bullet> y"]) auto |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
433 |
qed |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
434 |
|
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
435 |
lemma adjoint_clauses: |
56444 | 436 |
fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
437 |
assumes lf: "linear f" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
438 |
shows "x \<bullet> adjoint f y = f x \<bullet> y" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
439 |
and "adjoint f y \<bullet> x = y \<bullet> f x" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
440 |
by (simp_all add: adjoint_works[OF lf] inner_commute) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
441 |
|
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
442 |
lemma adjoint_linear: |
56444 | 443 |
fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
444 |
assumes lf: "linear f" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
445 |
shows "linear (adjoint f)" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
446 |
by (simp add: lf linear_iff euclidean_eq_iff[where 'a='n] euclidean_eq_iff[where 'a='m] |
53939 | 447 |
adjoint_clauses[OF lf] inner_distrib) |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
448 |
|
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
449 |
lemma adjoint_adjoint: |
56444 | 450 |
fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
451 |
assumes lf: "linear f" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
452 |
shows "adjoint (adjoint f) = f" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
453 |
by (rule adjoint_unique, simp add: adjoint_clauses [OF lf]) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
454 |
|
53406 | 455 |
|
49522 | 456 |
subsection {* Interlude: Some properties of real sets *} |
44133 | 457 |
|
53406 | 458 |
lemma seq_mono_lemma: |
459 |
assumes "\<forall>(n::nat) \<ge> m. (d n :: real) < e n" |
|
460 |
and "\<forall>n \<ge> m. e n \<le> e m" |
|
44133 | 461 |
shows "\<forall>n \<ge> m. d n < e m" |
53406 | 462 |
using assms |
463 |
apply auto |
|
44133 | 464 |
apply (erule_tac x="n" in allE) |
465 |
apply (erule_tac x="n" in allE) |
|
466 |
apply auto |
|
467 |
done |
|
468 |
||
53406 | 469 |
lemma infinite_enumerate: |
470 |
assumes fS: "infinite S" |
|
44133 | 471 |
shows "\<exists>r. subseq r \<and> (\<forall>n. r n \<in> S)" |
49525 | 472 |
unfolding subseq_def |
473 |
using enumerate_in_set[OF fS] enumerate_mono[of _ _ S] fS by auto |
|
44133 | 474 |
|
56444 | 475 |
lemma approachable_lt_le: "(\<exists>(d::real) > 0. \<forall>x. f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> P x)" |
49522 | 476 |
apply auto |
477 |
apply (rule_tac x="d/2" in exI) |
|
478 |
apply auto |
|
479 |
done |
|
44133 | 480 |
|
481 |
lemma triangle_lemma: |
|
53406 | 482 |
fixes x y z :: real |
483 |
assumes x: "0 \<le> x" |
|
484 |
and y: "0 \<le> y" |
|
485 |
and z: "0 \<le> z" |
|
486 |
and xy: "x\<^sup>2 \<le> y\<^sup>2 + z\<^sup>2" |
|
487 |
shows "x \<le> y + z" |
|
49522 | 488 |
proof - |
56444 | 489 |
have "y\<^sup>2 + z\<^sup>2 \<le> y\<^sup>2 + 2 * y * z + z\<^sup>2" |
56536 | 490 |
using z y by simp |
53406 | 491 |
with xy have th: "x\<^sup>2 \<le> (y + z)\<^sup>2" |
492 |
by (simp add: power2_eq_square field_simps) |
|
493 |
from y z have yz: "y + z \<ge> 0" |
|
494 |
by arith |
|
44133 | 495 |
from power2_le_imp_le[OF th yz] show ?thesis . |
496 |
qed |
|
497 |
||
49522 | 498 |
|
44133 | 499 |
subsection {* A generic notion of "hull" (convex, affine, conic hull and closure). *} |
500 |
||
53406 | 501 |
definition hull :: "('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "hull" 75) |
502 |
where "S hull s = \<Inter>{t. S t \<and> s \<subseteq> t}" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
503 |
|
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
504 |
lemma hull_same: "S s \<Longrightarrow> S hull s = s" |
44133 | 505 |
unfolding hull_def by auto |
506 |
||
53406 | 507 |
lemma hull_in: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> S (S hull s)" |
49522 | 508 |
unfolding hull_def Ball_def by auto |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
509 |
|
53406 | 510 |
lemma hull_eq: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> (S hull s) = s \<longleftrightarrow> S s" |
49522 | 511 |
using hull_same[of S s] hull_in[of S s] by metis |
44133 | 512 |
|
513 |
lemma hull_hull: "S hull (S hull s) = S hull s" |
|
514 |
unfolding hull_def by blast |
|
515 |
||
516 |
lemma hull_subset[intro]: "s \<subseteq> (S hull s)" |
|
517 |
unfolding hull_def by blast |
|
518 |
||
53406 | 519 |
lemma hull_mono: "s \<subseteq> t \<Longrightarrow> (S hull s) \<subseteq> (S hull t)" |
44133 | 520 |
unfolding hull_def by blast |
521 |
||
53406 | 522 |
lemma hull_antimono: "\<forall>x. S x \<longrightarrow> T x \<Longrightarrow> (T hull s) \<subseteq> (S hull s)" |
44133 | 523 |
unfolding hull_def by blast |
524 |
||
53406 | 525 |
lemma hull_minimal: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (S hull s) \<subseteq> t" |
44133 | 526 |
unfolding hull_def by blast |
527 |
||
53406 | 528 |
lemma subset_hull: "S t \<Longrightarrow> S hull s \<subseteq> t \<longleftrightarrow> s \<subseteq> t" |
44133 | 529 |
unfolding hull_def by blast |
530 |
||
53596 | 531 |
lemma hull_UNIV: "S hull UNIV = UNIV" |
532 |
unfolding hull_def by auto |
|
533 |
||
53406 | 534 |
lemma hull_unique: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (\<And>t'. s \<subseteq> t' \<Longrightarrow> S t' \<Longrightarrow> t \<subseteq> t') \<Longrightarrow> (S hull s = t)" |
49652 | 535 |
unfolding hull_def by auto |
44133 | 536 |
|
537 |
lemma hull_induct: "(\<And>x. x\<in> S \<Longrightarrow> P x) \<Longrightarrow> Q {x. P x} \<Longrightarrow> \<forall>x\<in> Q hull S. P x" |
|
538 |
using hull_minimal[of S "{x. P x}" Q] |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
539 |
by (auto simp add: subset_eq) |
44133 | 540 |
|
49522 | 541 |
lemma hull_inc: "x \<in> S \<Longrightarrow> x \<in> P hull S" |
542 |
by (metis hull_subset subset_eq) |
|
44133 | 543 |
|
544 |
lemma hull_union_subset: "(S hull s) \<union> (S hull t) \<subseteq> (S hull (s \<union> t))" |
|
49522 | 545 |
unfolding Un_subset_iff by (metis hull_mono Un_upper1 Un_upper2) |
546 |
||
547 |
lemma hull_union: |
|
53406 | 548 |
assumes T: "\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)" |
44133 | 549 |
shows "S hull (s \<union> t) = S hull (S hull s \<union> S hull t)" |
49522 | 550 |
apply rule |
551 |
apply (rule hull_mono) |
|
552 |
unfolding Un_subset_iff |
|
553 |
apply (metis hull_subset Un_upper1 Un_upper2 subset_trans) |
|
554 |
apply (rule hull_minimal) |
|
555 |
apply (metis hull_union_subset) |
|
556 |
apply (metis hull_in T) |
|
557 |
done |
|
44133 | 558 |
|
56444 | 559 |
lemma hull_redundant_eq: "a \<in> (S hull s) \<longleftrightarrow> S hull (insert a s) = S hull s" |
44133 | 560 |
unfolding hull_def by blast |
561 |
||
56444 | 562 |
lemma hull_redundant: "a \<in> (S hull s) \<Longrightarrow> S hull (insert a s) = S hull s" |
49522 | 563 |
by (metis hull_redundant_eq) |
564 |
||
44133 | 565 |
|
44666 | 566 |
subsection {* Archimedean properties and useful consequences *} |
44133 | 567 |
|
56444 | 568 |
lemma real_arch_simple: "\<exists>n::nat. x \<le> real n" |
44666 | 569 |
unfolding real_of_nat_def by (rule ex_le_of_nat) |
44133 | 570 |
|
571 |
lemma real_arch_inv: "0 < e \<longleftrightarrow> (\<exists>n::nat. n \<noteq> 0 \<and> 0 < inverse (real n) \<and> inverse (real n) < e)" |
|
56480
093ea91498e6
field_simps: better support for negation and division, and power
hoelzl
parents:
56479
diff
changeset
|
572 |
using reals_Archimedean[of e] less_trans[of 0 "1 / real n" e for n::nat] |
093ea91498e6
field_simps: better support for negation and division, and power
hoelzl
parents:
56479
diff
changeset
|
573 |
by (auto simp add: field_simps cong: conj_cong) |
44133 | 574 |
|
53406 | 575 |
lemma real_pow_lbound: "0 \<le> x \<Longrightarrow> 1 + real n * x \<le> (1 + x) ^ n" |
49522 | 576 |
proof (induct n) |
577 |
case 0 |
|
578 |
then show ?case by simp |
|
44133 | 579 |
next |
580 |
case (Suc n) |
|
53406 | 581 |
then have h: "1 + real n * x \<le> (1 + x) ^ n" |
582 |
by simp |
|
583 |
from h have p: "1 \<le> (1 + x) ^ n" |
|
584 |
using Suc.prems by simp |
|
585 |
from h have "1 + real n * x + x \<le> (1 + x) ^ n + x" |
|
586 |
by simp |
|
587 |
also have "\<dots> \<le> (1 + x) ^ Suc n" |
|
588 |
apply (subst diff_le_0_iff_le[symmetric]) |
|
44133 | 589 |
apply (simp add: field_simps) |
53406 | 590 |
using mult_left_mono[OF p Suc.prems] |
591 |
apply simp |
|
49522 | 592 |
done |
53406 | 593 |
finally show ?case |
594 |
by (simp add: real_of_nat_Suc field_simps) |
|
44133 | 595 |
qed |
596 |
||
53406 | 597 |
lemma real_arch_pow: |
598 |
fixes x :: real |
|
599 |
assumes x: "1 < x" |
|
600 |
shows "\<exists>n. y < x^n" |
|
49522 | 601 |
proof - |
53406 | 602 |
from x have x0: "x - 1 > 0" |
603 |
by arith |
|
44666 | 604 |
from reals_Archimedean3[OF x0, rule_format, of y] |
53406 | 605 |
obtain n :: nat where n: "y < real n * (x - 1)" by metis |
44133 | 606 |
from x0 have x00: "x- 1 \<ge> 0" by arith |
607 |
from real_pow_lbound[OF x00, of n] n |
|
608 |
have "y < x^n" by auto |
|
609 |
then show ?thesis by metis |
|
610 |
qed |
|
611 |
||
53406 | 612 |
lemma real_arch_pow2: |
613 |
fixes x :: real |
|
614 |
shows "\<exists>n. x < 2^ n" |
|
44133 | 615 |
using real_arch_pow[of 2 x] by simp |
616 |
||
49522 | 617 |
lemma real_arch_pow_inv: |
53406 | 618 |
fixes x y :: real |
619 |
assumes y: "y > 0" |
|
620 |
and x1: "x < 1" |
|
44133 | 621 |
shows "\<exists>n. x^n < y" |
53406 | 622 |
proof (cases "x > 0") |
623 |
case True |
|
624 |
with x1 have ix: "1 < 1/x" by (simp add: field_simps) |
|
625 |
from real_arch_pow[OF ix, of "1/y"] |
|
626 |
obtain n where n: "1/y < (1/x)^n" by blast |
|
627 |
then show ?thesis using y `x > 0` |
|
56480
093ea91498e6
field_simps: better support for negation and division, and power
hoelzl
parents:
56479
diff
changeset
|
628 |
by (auto simp add: field_simps) |
53406 | 629 |
next |
630 |
case False |
|
631 |
with y x1 show ?thesis |
|
632 |
apply auto |
|
633 |
apply (rule exI[where x=1]) |
|
634 |
apply auto |
|
635 |
done |
|
44133 | 636 |
qed |
637 |
||
49522 | 638 |
lemma forall_pos_mono: |
53406 | 639 |
"(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow> |
640 |
(\<And>n::nat. n \<noteq> 0 \<Longrightarrow> P (inverse (real n))) \<Longrightarrow> (\<And>e. 0 < e \<Longrightarrow> P e)" |
|
44133 | 641 |
by (metis real_arch_inv) |
642 |
||
49522 | 643 |
lemma forall_pos_mono_1: |
53406 | 644 |
"(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow> |
53716 | 645 |
(\<And>n. P (inverse (real (Suc n)))) \<Longrightarrow> 0 < e \<Longrightarrow> P e" |
44133 | 646 |
apply (rule forall_pos_mono) |
647 |
apply auto |
|
648 |
apply (atomize) |
|
649 |
apply (erule_tac x="n - 1" in allE) |
|
650 |
apply auto |
|
651 |
done |
|
652 |
||
49522 | 653 |
lemma real_archimedian_rdiv_eq_0: |
53406 | 654 |
assumes x0: "x \<ge> 0" |
655 |
and c: "c \<ge> 0" |
|
56444 | 656 |
and xc: "\<forall>(m::nat) > 0. real m * x \<le> c" |
44133 | 657 |
shows "x = 0" |
53406 | 658 |
proof (rule ccontr) |
659 |
assume "x \<noteq> 0" |
|
660 |
with x0 have xp: "x > 0" by arith |
|
661 |
from reals_Archimedean3[OF xp, rule_format, of c] |
|
662 |
obtain n :: nat where n: "c < real n * x" |
|
663 |
by blast |
|
664 |
with xc[rule_format, of n] have "n = 0" |
|
665 |
by arith |
|
666 |
with n c show False |
|
667 |
by simp |
|
44133 | 668 |
qed |
669 |
||
49522 | 670 |
|
44133 | 671 |
subsection{* A bit of linear algebra. *} |
672 |
||
49522 | 673 |
definition (in real_vector) subspace :: "'a set \<Rightarrow> bool" |
56444 | 674 |
where "subspace S \<longleftrightarrow> 0 \<in> S \<and> (\<forall>x \<in> S. \<forall>y \<in> S. x + y \<in> S) \<and> (\<forall>c. \<forall>x \<in> S. c *\<^sub>R x \<in> S)" |
44133 | 675 |
|
676 |
definition (in real_vector) "span S = (subspace hull S)" |
|
53716 | 677 |
definition (in real_vector) "dependent S \<longleftrightarrow> (\<exists>a \<in> S. a \<in> span (S - {a}))" |
53406 | 678 |
abbreviation (in real_vector) "independent s \<equiv> \<not> dependent s" |
44133 | 679 |
|
680 |
text {* Closure properties of subspaces. *} |
|
681 |
||
53406 | 682 |
lemma subspace_UNIV[simp]: "subspace UNIV" |
683 |
by (simp add: subspace_def) |
|
684 |
||
685 |
lemma (in real_vector) subspace_0: "subspace S \<Longrightarrow> 0 \<in> S" |
|
686 |
by (metis subspace_def) |
|
687 |
||
688 |
lemma (in real_vector) subspace_add: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x + y \<in> S" |
|
44133 | 689 |
by (metis subspace_def) |
690 |
||
691 |
lemma (in real_vector) subspace_mul: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> c *\<^sub>R x \<in> S" |
|
692 |
by (metis subspace_def) |
|
693 |
||
694 |
lemma subspace_neg: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> - x \<in> S" |
|
695 |
by (metis scaleR_minus1_left subspace_mul) |
|
696 |
||
697 |
lemma subspace_sub: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x - y \<in> S" |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53939
diff
changeset
|
698 |
using subspace_add [of S x "- y"] by (simp add: subspace_neg) |
44133 | 699 |
|
700 |
lemma (in real_vector) subspace_setsum: |
|
53406 | 701 |
assumes sA: "subspace A" |
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
702 |
and f: "\<forall>x\<in>B. f x \<in> A" |
44133 | 703 |
shows "setsum f B \<in> A" |
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
704 |
proof (cases "finite B") |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
705 |
case True |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
706 |
then show ?thesis |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
707 |
using f by induct (simp_all add: subspace_0 [OF sA] subspace_add [OF sA]) |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
708 |
qed (simp add: subspace_0 [OF sA]) |
44133 | 709 |
|
710 |
lemma subspace_linear_image: |
|
53406 | 711 |
assumes lf: "linear f" |
712 |
and sS: "subspace S" |
|
713 |
shows "subspace (f ` S)" |
|
44133 | 714 |
using lf sS linear_0[OF lf] |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
715 |
unfolding linear_iff subspace_def |
44133 | 716 |
apply (auto simp add: image_iff) |
53406 | 717 |
apply (rule_tac x="x + y" in bexI) |
718 |
apply auto |
|
719 |
apply (rule_tac x="c *\<^sub>R x" in bexI) |
|
720 |
apply auto |
|
44133 | 721 |
done |
722 |
||
44521 | 723 |
lemma subspace_linear_vimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace (f -` S)" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
724 |
by (auto simp add: subspace_def linear_iff linear_0[of f]) |
44521 | 725 |
|
53406 | 726 |
lemma subspace_linear_preimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace {x. f x \<in> S}" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
727 |
by (auto simp add: subspace_def linear_iff linear_0[of f]) |
44133 | 728 |
|
729 |
lemma subspace_trivial: "subspace {0}" |
|
730 |
by (simp add: subspace_def) |
|
731 |
||
53406 | 732 |
lemma (in real_vector) subspace_inter: "subspace A \<Longrightarrow> subspace B \<Longrightarrow> subspace (A \<inter> B)" |
44133 | 733 |
by (simp add: subspace_def) |
734 |
||
53406 | 735 |
lemma subspace_Times: "subspace A \<Longrightarrow> subspace B \<Longrightarrow> subspace (A \<times> B)" |
44521 | 736 |
unfolding subspace_def zero_prod_def by simp |
737 |
||
738 |
text {* Properties of span. *} |
|
739 |
||
53406 | 740 |
lemma (in real_vector) span_mono: "A \<subseteq> B \<Longrightarrow> span A \<subseteq> span B" |
44133 | 741 |
by (metis span_def hull_mono) |
742 |
||
53406 | 743 |
lemma (in real_vector) subspace_span: "subspace (span S)" |
44133 | 744 |
unfolding span_def |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
745 |
apply (rule hull_in) |
44133 | 746 |
apply (simp only: subspace_def Inter_iff Int_iff subset_eq) |
747 |
apply auto |
|
748 |
done |
|
749 |
||
750 |
lemma (in real_vector) span_clauses: |
|
53406 | 751 |
"a \<in> S \<Longrightarrow> a \<in> span S" |
44133 | 752 |
"0 \<in> span S" |
53406 | 753 |
"x\<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x + y \<in> span S" |
44133 | 754 |
"x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S" |
53406 | 755 |
by (metis span_def hull_subset subset_eq) (metis subspace_span subspace_def)+ |
44133 | 756 |
|
44521 | 757 |
lemma span_unique: |
49522 | 758 |
"S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> (\<And>T'. S \<subseteq> T' \<Longrightarrow> subspace T' \<Longrightarrow> T \<subseteq> T') \<Longrightarrow> span S = T" |
44521 | 759 |
unfolding span_def by (rule hull_unique) |
760 |
||
761 |
lemma span_minimal: "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> span S \<subseteq> T" |
|
762 |
unfolding span_def by (rule hull_minimal) |
|
763 |
||
764 |
lemma (in real_vector) span_induct: |
|
49522 | 765 |
assumes x: "x \<in> span S" |
766 |
and P: "subspace P" |
|
53406 | 767 |
and SP: "\<And>x. x \<in> S \<Longrightarrow> x \<in> P" |
44521 | 768 |
shows "x \<in> P" |
49522 | 769 |
proof - |
53406 | 770 |
from SP have SP': "S \<subseteq> P" |
771 |
by (simp add: subset_eq) |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
772 |
from x hull_minimal[where S=subspace, OF SP' P, unfolded span_def[symmetric]] |
53406 | 773 |
show "x \<in> P" |
774 |
by (metis subset_eq) |
|
44133 | 775 |
qed |
776 |
||
777 |
lemma span_empty[simp]: "span {} = {0}" |
|
778 |
apply (simp add: span_def) |
|
779 |
apply (rule hull_unique) |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
780 |
apply (auto simp add: subspace_def) |
44133 | 781 |
done |
782 |
||
783 |
lemma (in real_vector) independent_empty[intro]: "independent {}" |
|
784 |
by (simp add: dependent_def) |
|
785 |
||
49522 | 786 |
lemma dependent_single[simp]: "dependent {x} \<longleftrightarrow> x = 0" |
44133 | 787 |
unfolding dependent_def by auto |
788 |
||
53406 | 789 |
lemma (in real_vector) independent_mono: "independent A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> independent B" |
44133 | 790 |
apply (clarsimp simp add: dependent_def span_mono) |
791 |
apply (subgoal_tac "span (B - {a}) \<le> span (A - {a})") |
|
792 |
apply force |
|
793 |
apply (rule span_mono) |
|
794 |
apply auto |
|
795 |
done |
|
796 |
||
797 |
lemma (in real_vector) span_subspace: "A \<subseteq> B \<Longrightarrow> B \<le> span A \<Longrightarrow> subspace B \<Longrightarrow> span A = B" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
798 |
by (metis order_antisym span_def hull_minimal) |
44133 | 799 |
|
49711 | 800 |
lemma (in real_vector) span_induct': |
801 |
assumes SP: "\<forall>x \<in> S. P x" |
|
802 |
and P: "subspace {x. P x}" |
|
803 |
shows "\<forall>x \<in> span S. P x" |
|
44133 | 804 |
using span_induct SP P by blast |
805 |
||
56444 | 806 |
inductive_set (in real_vector) span_induct_alt_help for S :: "'a set" |
53406 | 807 |
where |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
808 |
span_induct_alt_help_0: "0 \<in> span_induct_alt_help S" |
49522 | 809 |
| span_induct_alt_help_S: |
53406 | 810 |
"x \<in> S \<Longrightarrow> z \<in> span_induct_alt_help S \<Longrightarrow> |
811 |
(c *\<^sub>R x + z) \<in> span_induct_alt_help S" |
|
44133 | 812 |
|
813 |
lemma span_induct_alt': |
|
53406 | 814 |
assumes h0: "h 0" |
815 |
and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)" |
|
49522 | 816 |
shows "\<forall>x \<in> span S. h x" |
817 |
proof - |
|
53406 | 818 |
{ |
819 |
fix x :: 'a |
|
820 |
assume x: "x \<in> span_induct_alt_help S" |
|
44133 | 821 |
have "h x" |
822 |
apply (rule span_induct_alt_help.induct[OF x]) |
|
823 |
apply (rule h0) |
|
53406 | 824 |
apply (rule hS) |
825 |
apply assumption |
|
826 |
apply assumption |
|
827 |
done |
|
828 |
} |
|
44133 | 829 |
note th0 = this |
53406 | 830 |
{ |
831 |
fix x |
|
832 |
assume x: "x \<in> span S" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
833 |
have "x \<in> span_induct_alt_help S" |
49522 | 834 |
proof (rule span_induct[where x=x and S=S]) |
53406 | 835 |
show "x \<in> span S" by (rule x) |
49522 | 836 |
next |
53406 | 837 |
fix x |
838 |
assume xS: "x \<in> S" |
|
839 |
from span_induct_alt_help_S[OF xS span_induct_alt_help_0, of 1] |
|
840 |
show "x \<in> span_induct_alt_help S" |
|
841 |
by simp |
|
49522 | 842 |
next |
843 |
have "0 \<in> span_induct_alt_help S" by (rule span_induct_alt_help_0) |
|
844 |
moreover |
|
53406 | 845 |
{ |
846 |
fix x y |
|
49522 | 847 |
assume h: "x \<in> span_induct_alt_help S" "y \<in> span_induct_alt_help S" |
848 |
from h have "(x + y) \<in> span_induct_alt_help S" |
|
849 |
apply (induct rule: span_induct_alt_help.induct) |
|
850 |
apply simp |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
851 |
unfolding add.assoc |
49522 | 852 |
apply (rule span_induct_alt_help_S) |
853 |
apply assumption |
|
854 |
apply simp |
|
53406 | 855 |
done |
856 |
} |
|
49522 | 857 |
moreover |
53406 | 858 |
{ |
859 |
fix c x |
|
49522 | 860 |
assume xt: "x \<in> span_induct_alt_help S" |
861 |
then have "(c *\<^sub>R x) \<in> span_induct_alt_help S" |
|
862 |
apply (induct rule: span_induct_alt_help.induct) |
|
863 |
apply (simp add: span_induct_alt_help_0) |
|
864 |
apply (simp add: scaleR_right_distrib) |
|
865 |
apply (rule span_induct_alt_help_S) |
|
866 |
apply assumption |
|
867 |
apply simp |
|
868 |
done } |
|
53406 | 869 |
ultimately show "subspace (span_induct_alt_help S)" |
49522 | 870 |
unfolding subspace_def Ball_def by blast |
53406 | 871 |
qed |
872 |
} |
|
44133 | 873 |
with th0 show ?thesis by blast |
874 |
qed |
|
875 |
||
876 |
lemma span_induct_alt: |
|
53406 | 877 |
assumes h0: "h 0" |
878 |
and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)" |
|
879 |
and x: "x \<in> span S" |
|
44133 | 880 |
shows "h x" |
49522 | 881 |
using span_induct_alt'[of h S] h0 hS x by blast |
44133 | 882 |
|
883 |
text {* Individual closure properties. *} |
|
884 |
||
885 |
lemma span_span: "span (span A) = span A" |
|
886 |
unfolding span_def hull_hull .. |
|
887 |
||
53406 | 888 |
lemma (in real_vector) span_superset: "x \<in> S \<Longrightarrow> x \<in> span S" |
889 |
by (metis span_clauses(1)) |
|
890 |
||
891 |
lemma (in real_vector) span_0: "0 \<in> span S" |
|
892 |
by (metis subspace_span subspace_0) |
|
44133 | 893 |
|
894 |
lemma span_inc: "S \<subseteq> span S" |
|
895 |
by (metis subset_eq span_superset) |
|
896 |
||
53406 | 897 |
lemma (in real_vector) dependent_0: |
898 |
assumes "0 \<in> A" |
|
899 |
shows "dependent A" |
|
900 |
unfolding dependent_def |
|
901 |
apply (rule_tac x=0 in bexI) |
|
902 |
using assms span_0 |
|
903 |
apply auto |
|
904 |
done |
|
905 |
||
906 |
lemma (in real_vector) span_add: "x \<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x + y \<in> span S" |
|
44133 | 907 |
by (metis subspace_add subspace_span) |
908 |
||
53406 | 909 |
lemma (in real_vector) span_mul: "x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S" |
44133 | 910 |
by (metis subspace_span subspace_mul) |
911 |
||
53406 | 912 |
lemma span_neg: "x \<in> span S \<Longrightarrow> - x \<in> span S" |
44133 | 913 |
by (metis subspace_neg subspace_span) |
914 |
||
53406 | 915 |
lemma span_sub: "x \<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x - y \<in> span S" |
44133 | 916 |
by (metis subspace_span subspace_sub) |
917 |
||
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
918 |
lemma (in real_vector) span_setsum: "\<forall>x\<in>A. f x \<in> span S \<Longrightarrow> setsum f A \<in> span S" |
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
919 |
by (rule subspace_setsum [OF subspace_span]) |
44133 | 920 |
|
921 |
lemma span_add_eq: "x \<in> span S \<Longrightarrow> x + y \<in> span S \<longleftrightarrow> y \<in> span S" |
|
55775 | 922 |
by (metis add_minus_cancel scaleR_minus1_left subspace_def subspace_span) |
44133 | 923 |
|
924 |
text {* Mapping under linear image. *} |
|
925 |
||
44521 | 926 |
lemma span_linear_image: |
927 |
assumes lf: "linear f" |
|
56444 | 928 |
shows "span (f ` S) = f ` span S" |
44521 | 929 |
proof (rule span_unique) |
930 |
show "f ` S \<subseteq> f ` span S" |
|
931 |
by (intro image_mono span_inc) |
|
932 |
show "subspace (f ` span S)" |
|
933 |
using lf subspace_span by (rule subspace_linear_image) |
|
934 |
next |
|
53406 | 935 |
fix T |
936 |
assume "f ` S \<subseteq> T" and "subspace T" |
|
49522 | 937 |
then show "f ` span S \<subseteq> T" |
44521 | 938 |
unfolding image_subset_iff_subset_vimage |
939 |
by (intro span_minimal subspace_linear_vimage lf) |
|
940 |
qed |
|
941 |
||
942 |
lemma span_union: "span (A \<union> B) = (\<lambda>(a, b). a + b) ` (span A \<times> span B)" |
|
943 |
proof (rule span_unique) |
|
944 |
show "A \<union> B \<subseteq> (\<lambda>(a, b). a + b) ` (span A \<times> span B)" |
|
945 |
by safe (force intro: span_clauses)+ |
|
946 |
next |
|
947 |
have "linear (\<lambda>(a, b). a + b)" |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
948 |
by (simp add: linear_iff scaleR_add_right) |
44521 | 949 |
moreover have "subspace (span A \<times> span B)" |
950 |
by (intro subspace_Times subspace_span) |
|
951 |
ultimately show "subspace ((\<lambda>(a, b). a + b) ` (span A \<times> span B))" |
|
952 |
by (rule subspace_linear_image) |
|
953 |
next |
|
49711 | 954 |
fix T |
955 |
assume "A \<union> B \<subseteq> T" and "subspace T" |
|
49522 | 956 |
then show "(\<lambda>(a, b). a + b) ` (span A \<times> span B) \<subseteq> T" |
44521 | 957 |
by (auto intro!: subspace_add elim: span_induct) |
44133 | 958 |
qed |
959 |
||
960 |
text {* The key breakdown property. *} |
|
961 |
||
44521 | 962 |
lemma span_singleton: "span {x} = range (\<lambda>k. k *\<^sub>R x)" |
963 |
proof (rule span_unique) |
|
964 |
show "{x} \<subseteq> range (\<lambda>k. k *\<^sub>R x)" |
|
965 |
by (fast intro: scaleR_one [symmetric]) |
|
966 |
show "subspace (range (\<lambda>k. k *\<^sub>R x))" |
|
967 |
unfolding subspace_def |
|
968 |
by (auto intro: scaleR_add_left [symmetric]) |
|
53406 | 969 |
next |
970 |
fix T |
|
971 |
assume "{x} \<subseteq> T" and "subspace T" |
|
972 |
then show "range (\<lambda>k. k *\<^sub>R x) \<subseteq> T" |
|
44521 | 973 |
unfolding subspace_def by auto |
974 |
qed |
|
975 |
||
49522 | 976 |
lemma span_insert: "span (insert a S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}" |
44521 | 977 |
proof - |
978 |
have "span ({a} \<union> S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}" |
|
979 |
unfolding span_union span_singleton |
|
980 |
apply safe |
|
981 |
apply (rule_tac x=k in exI, simp) |
|
982 |
apply (erule rev_image_eqI [OF SigmaI [OF rangeI]]) |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53939
diff
changeset
|
983 |
apply auto |
44521 | 984 |
done |
49522 | 985 |
then show ?thesis by simp |
44521 | 986 |
qed |
987 |
||
44133 | 988 |
lemma span_breakdown: |
53406 | 989 |
assumes bS: "b \<in> S" |
990 |
and aS: "a \<in> span S" |
|
44521 | 991 |
shows "\<exists>k. a - k *\<^sub>R b \<in> span (S - {b})" |
992 |
using assms span_insert [of b "S - {b}"] |
|
993 |
by (simp add: insert_absorb) |
|
44133 | 994 |
|
53406 | 995 |
lemma span_breakdown_eq: "x \<in> span (insert a S) \<longleftrightarrow> (\<exists>k. x - k *\<^sub>R a \<in> span S)" |
44521 | 996 |
by (simp add: span_insert) |
44133 | 997 |
|
998 |
text {* Hence some "reversal" results. *} |
|
999 |
||
1000 |
lemma in_span_insert: |
|
49711 | 1001 |
assumes a: "a \<in> span (insert b S)" |
1002 |
and na: "a \<notin> span S" |
|
44133 | 1003 |
shows "b \<in> span (insert a S)" |
49663 | 1004 |
proof - |
55910 | 1005 |
from a obtain k where k: "a - k *\<^sub>R b \<in> span S" |
1006 |
unfolding span_insert by fast |
|
53406 | 1007 |
show ?thesis |
1008 |
proof (cases "k = 0") |
|
1009 |
case True |
|
55910 | 1010 |
with k have "a \<in> span S" by simp |
1011 |
with na show ?thesis by simp |
|
53406 | 1012 |
next |
1013 |
case False |
|
55910 | 1014 |
from k have "(- inverse k) *\<^sub>R (a - k *\<^sub>R b) \<in> span S" |
44133 | 1015 |
by (rule span_mul) |
55910 | 1016 |
then have "b - inverse k *\<^sub>R a \<in> span S" |
1017 |
using `k \<noteq> 0` by (simp add: scaleR_diff_right) |
|
1018 |
then show ?thesis |
|
1019 |
unfolding span_insert by fast |
|
53406 | 1020 |
qed |
44133 | 1021 |
qed |
1022 |
||
1023 |
lemma in_span_delete: |
|
1024 |
assumes a: "a \<in> span S" |
|
53716 | 1025 |
and na: "a \<notin> span (S - {b})" |
44133 | 1026 |
shows "b \<in> span (insert a (S - {b}))" |
1027 |
apply (rule in_span_insert) |
|
1028 |
apply (rule set_rev_mp) |
|
1029 |
apply (rule a) |
|
1030 |
apply (rule span_mono) |
|
1031 |
apply blast |
|
1032 |
apply (rule na) |
|
1033 |
done |
|
1034 |
||
1035 |
text {* Transitivity property. *} |
|
1036 |
||
44521 | 1037 |
lemma span_redundant: "x \<in> span S \<Longrightarrow> span (insert x S) = span S" |
1038 |
unfolding span_def by (rule hull_redundant) |
|
1039 |
||
44133 | 1040 |
lemma span_trans: |
53406 | 1041 |
assumes x: "x \<in> span S" |
1042 |
and y: "y \<in> span (insert x S)" |
|
44133 | 1043 |
shows "y \<in> span S" |
44521 | 1044 |
using assms by (simp only: span_redundant) |
44133 | 1045 |
|
1046 |
lemma span_insert_0[simp]: "span (insert 0 S) = span S" |
|
44521 | 1047 |
by (simp only: span_redundant span_0) |
44133 | 1048 |
|
1049 |
text {* An explicit expansion is sometimes needed. *} |
|
1050 |
||
1051 |
lemma span_explicit: |
|
1052 |
"span P = {y. \<exists>S u. finite S \<and> S \<subseteq> P \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = y}" |
|
1053 |
(is "_ = ?E" is "_ = {y. ?h y}" is "_ = {y. \<exists>S u. ?Q S u y}") |
|
49663 | 1054 |
proof - |
53406 | 1055 |
{ |
1056 |
fix x |
|
55910 | 1057 |
assume "?h x" |
1058 |
then obtain S u where "finite S" and "S \<subseteq> P" and "setsum (\<lambda>v. u v *\<^sub>R v) S = x" |
|
44133 | 1059 |
by blast |
55910 | 1060 |
then have "x \<in> span P" |
1061 |
by (auto intro: span_setsum span_mul span_superset) |
|
53406 | 1062 |
} |
44133 | 1063 |
moreover |
55910 | 1064 |
have "\<forall>x \<in> span P. ?h x" |
49522 | 1065 |
proof (rule span_induct_alt') |
55910 | 1066 |
show "?h 0" |
1067 |
by (rule exI[where x="{}"], simp) |
|
44133 | 1068 |
next |
1069 |
fix c x y |
|
53406 | 1070 |
assume x: "x \<in> P" |
55910 | 1071 |
assume hy: "?h y" |
44133 | 1072 |
from hy obtain S u where fS: "finite S" and SP: "S\<subseteq>P" |
1073 |
and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y" by blast |
|
1074 |
let ?S = "insert x S" |
|
49522 | 1075 |
let ?u = "\<lambda>y. if y = x then (if x \<in> S then u y + c else c) else u y" |
53406 | 1076 |
from fS SP x have th0: "finite (insert x S)" "insert x S \<subseteq> P" |
1077 |
by blast+ |
|
1078 |
have "?Q ?S ?u (c*\<^sub>R x + y)" |
|
1079 |
proof cases |
|
1080 |
assume xS: "x \<in> S" |
|
55910 | 1081 |
have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = (\<Sum>v\<in>S - {x}. u v *\<^sub>R v) + (u x + c) *\<^sub>R x" |
1082 |
using xS by (simp add: setsum.remove [OF fS xS] insert_absorb) |
|
44133 | 1083 |
also have "\<dots> = (\<Sum>v\<in>S. u v *\<^sub>R v) + c *\<^sub>R x" |
55910 | 1084 |
by (simp add: setsum.remove [OF fS xS] algebra_simps) |
44133 | 1085 |
also have "\<dots> = c*\<^sub>R x + y" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
1086 |
by (simp add: add.commute u) |
44133 | 1087 |
finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = c*\<^sub>R x + y" . |
53406 | 1088 |
then show ?thesis using th0 by blast |
1089 |
next |
|
1090 |
assume xS: "x \<notin> S" |
|
49522 | 1091 |
have th00: "(\<Sum>v\<in>S. (if v = x then c else u v) *\<^sub>R v) = y" |
1092 |
unfolding u[symmetric] |
|
57418 | 1093 |
apply (rule setsum.cong) |
53406 | 1094 |
using xS |
1095 |
apply auto |
|
49522 | 1096 |
done |
53406 | 1097 |
show ?thesis using fS xS th0 |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
1098 |
by (simp add: th00 add.commute cong del: if_weak_cong) |
53406 | 1099 |
qed |
55910 | 1100 |
then show "?h (c*\<^sub>R x + y)" |
1101 |
by fast |
|
44133 | 1102 |
qed |
1103 |
ultimately show ?thesis by blast |
|
1104 |
qed |
|
1105 |
||
1106 |
lemma dependent_explicit: |
|
49522 | 1107 |
"dependent P \<longleftrightarrow> (\<exists>S u. finite S \<and> S \<subseteq> P \<and> (\<exists>v\<in>S. u v \<noteq> 0 \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = 0))" |
1108 |
(is "?lhs = ?rhs") |
|
1109 |
proof - |
|
53406 | 1110 |
{ |
1111 |
assume dP: "dependent P" |
|
44133 | 1112 |
then obtain a S u where aP: "a \<in> P" and fS: "finite S" |
1113 |
and SP: "S \<subseteq> P - {a}" and ua: "setsum (\<lambda>v. u v *\<^sub>R v) S = a" |
|
1114 |
unfolding dependent_def span_explicit by blast |
|
1115 |
let ?S = "insert a S" |
|
1116 |
let ?u = "\<lambda>y. if y = a then - 1 else u y" |
|
1117 |
let ?v = a |
|
53406 | 1118 |
from aP SP have aS: "a \<notin> S" |
1119 |
by blast |
|
1120 |
from fS SP aP have th0: "finite ?S" "?S \<subseteq> P" "?v \<in> ?S" "?u ?v \<noteq> 0" |
|
1121 |
by auto |
|
44133 | 1122 |
have s0: "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = 0" |
1123 |
using fS aS |
|
55910 | 1124 |
apply simp |
44133 | 1125 |
apply (subst (2) ua[symmetric]) |
57418 | 1126 |
apply (rule setsum.cong) |
49522 | 1127 |
apply auto |
1128 |
done |
|
55910 | 1129 |
with th0 have ?rhs by fast |
49522 | 1130 |
} |
44133 | 1131 |
moreover |
53406 | 1132 |
{ |
1133 |
fix S u v |
|
49522 | 1134 |
assume fS: "finite S" |
53406 | 1135 |
and SP: "S \<subseteq> P" |
1136 |
and vS: "v \<in> S" |
|
1137 |
and uv: "u v \<noteq> 0" |
|
49522 | 1138 |
and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = 0" |
44133 | 1139 |
let ?a = v |
1140 |
let ?S = "S - {v}" |
|
1141 |
let ?u = "\<lambda>i. (- u i) / u v" |
|
53406 | 1142 |
have th0: "?a \<in> P" "finite ?S" "?S \<subseteq> P" |
1143 |
using fS SP vS by auto |
|
1144 |
have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = |
|
1145 |
setsum (\<lambda>v. (- (inverse (u ?a))) *\<^sub>R (u v *\<^sub>R v)) S - ?u v *\<^sub>R v" |
|
56480
093ea91498e6
field_simps: better support for negation and division, and power
hoelzl
parents:
56479
diff
changeset
|
1146 |
using fS vS uv by (simp add: setsum_diff1 field_simps) |
53406 | 1147 |
also have "\<dots> = ?a" |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56444
diff
changeset
|
1148 |
unfolding scaleR_right.setsum [symmetric] u using uv by simp |
53406 | 1149 |
finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = ?a" . |
44133 | 1150 |
with th0 have ?lhs |
1151 |
unfolding dependent_def span_explicit |
|
1152 |
apply - |
|
1153 |
apply (rule bexI[where x= "?a"]) |
|
1154 |
apply (simp_all del: scaleR_minus_left) |
|
1155 |
apply (rule exI[where x= "?S"]) |
|
49522 | 1156 |
apply (auto simp del: scaleR_minus_left) |
1157 |
done |
|
1158 |
} |
|
44133 | 1159 |
ultimately show ?thesis by blast |
1160 |
qed |
|
1161 |
||
1162 |
||
1163 |
lemma span_finite: |
|
1164 |
assumes fS: "finite S" |
|
1165 |
shows "span S = {y. \<exists>u. setsum (\<lambda>v. u v *\<^sub>R v) S = y}" |
|
1166 |
(is "_ = ?rhs") |
|
49522 | 1167 |
proof - |
53406 | 1168 |
{ |
1169 |
fix y |
|
49711 | 1170 |
assume y: "y \<in> span S" |
53406 | 1171 |
from y obtain S' u where fS': "finite S'" |
1172 |
and SS': "S' \<subseteq> S" |
|
1173 |
and u: "setsum (\<lambda>v. u v *\<^sub>R v) S' = y" |
|
1174 |
unfolding span_explicit by blast |
|
44133 | 1175 |
let ?u = "\<lambda>x. if x \<in> S' then u x else 0" |
1176 |
have "setsum (\<lambda>v. ?u v *\<^sub>R v) S = setsum (\<lambda>v. u v *\<^sub>R v) S'" |
|
57418 | 1177 |
using SS' fS by (auto intro!: setsum.mono_neutral_cong_right) |
49522 | 1178 |
then have "setsum (\<lambda>v. ?u v *\<^sub>R v) S = y" by (metis u) |
53406 | 1179 |
then have "y \<in> ?rhs" by auto |
1180 |
} |
|
44133 | 1181 |
moreover |
53406 | 1182 |
{ |
1183 |
fix y u |
|
49522 | 1184 |
assume u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y" |
53406 | 1185 |
then have "y \<in> span S" using fS unfolding span_explicit by auto |
1186 |
} |
|
44133 | 1187 |
ultimately show ?thesis by blast |
1188 |
qed |
|
1189 |
||
1190 |
text {* This is useful for building a basis step-by-step. *} |
|
1191 |
||
1192 |
lemma independent_insert: |
|
53406 | 1193 |
"independent (insert a S) \<longleftrightarrow> |
1194 |
(if a \<in> S then independent S else independent S \<and> a \<notin> span S)" |
|
1195 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
1196 |
proof (cases "a \<in> S") |
|
1197 |
case True |
|
1198 |
then show ?thesis |
|
1199 |
using insert_absorb[OF True] by simp |
|
1200 |
next |
|
1201 |
case False |
|
1202 |
show ?thesis |
|
1203 |
proof |
|
1204 |
assume i: ?lhs |
|
1205 |
then show ?rhs |
|
1206 |
using False |
|
1207 |
apply simp |
|
1208 |
apply (rule conjI) |
|
1209 |
apply (rule independent_mono) |
|
1210 |
apply assumption |
|
1211 |
apply blast |
|
1212 |
apply (simp add: dependent_def) |
|
1213 |
done |
|
1214 |
next |
|
1215 |
assume i: ?rhs |
|
1216 |
show ?lhs |
|
1217 |
using i False |
|
1218 |
apply (auto simp add: dependent_def) |
|
55775 | 1219 |
by (metis in_span_insert insert_Diff insert_Diff_if insert_iff) |
53406 | 1220 |
qed |
44133 | 1221 |
qed |
1222 |
||
1223 |
text {* The degenerate case of the Exchange Lemma. *} |
|
1224 |
||
1225 |
lemma spanning_subset_independent: |
|
49711 | 1226 |
assumes BA: "B \<subseteq> A" |
1227 |
and iA: "independent A" |
|
49522 | 1228 |
and AsB: "A \<subseteq> span B" |
44133 | 1229 |
shows "A = B" |
1230 |
proof |
|
49663 | 1231 |
show "B \<subseteq> A" by (rule BA) |
1232 |
||
44133 | 1233 |
from span_mono[OF BA] span_mono[OF AsB] |
1234 |
have sAB: "span A = span B" unfolding span_span by blast |
|
1235 |
||
53406 | 1236 |
{ |
1237 |
fix x |
|
1238 |
assume x: "x \<in> A" |
|
44133 | 1239 |
from iA have th0: "x \<notin> span (A - {x})" |
1240 |
unfolding dependent_def using x by blast |
|
53406 | 1241 |
from x have xsA: "x \<in> span A" |
1242 |
by (blast intro: span_superset) |
|
44133 | 1243 |
have "A - {x} \<subseteq> A" by blast |
53406 | 1244 |
then have th1: "span (A - {x}) \<subseteq> span A" |
1245 |
by (metis span_mono) |
|
1246 |
{ |
|
1247 |
assume xB: "x \<notin> B" |
|
1248 |
from xB BA have "B \<subseteq> A - {x}" |
|
1249 |
by blast |
|
1250 |
then have "span B \<subseteq> span (A - {x})" |
|
1251 |
by (metis span_mono) |
|
1252 |
with th1 th0 sAB have "x \<notin> span A" |
|
1253 |
by blast |
|
1254 |
with x have False |
|
1255 |
by (metis span_superset) |
|
1256 |
} |
|
1257 |
then have "x \<in> B" by blast |
|
1258 |
} |
|
44133 | 1259 |
then show "A \<subseteq> B" by blast |
1260 |
qed |
|
1261 |
||
1262 |
text {* The general case of the Exchange Lemma, the key to what follows. *} |
|
1263 |
||
1264 |
lemma exchange_lemma: |
|
49711 | 1265 |
assumes f:"finite t" |
1266 |
and i: "independent s" |
|
1267 |
and sp: "s \<subseteq> span t" |
|
53406 | 1268 |
shows "\<exists>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'" |
49663 | 1269 |
using f i sp |
49522 | 1270 |
proof (induct "card (t - s)" arbitrary: s t rule: less_induct) |
44133 | 1271 |
case less |
1272 |
note ft = `finite t` and s = `independent s` and sp = `s \<subseteq> span t` |
|
53406 | 1273 |
let ?P = "\<lambda>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'" |
44133 | 1274 |
let ?ths = "\<exists>t'. ?P t'" |
53406 | 1275 |
{ |
55775 | 1276 |
assume "s \<subseteq> t" |
1277 |
then have ?ths |
|
1278 |
by (metis ft Un_commute sp sup_ge1) |
|
53406 | 1279 |
} |
44133 | 1280 |
moreover |
53406 | 1281 |
{ |
1282 |
assume st: "t \<subseteq> s" |
|
1283 |
from spanning_subset_independent[OF st s sp] st ft span_mono[OF st] |
|
1284 |
have ?ths |
|
55775 | 1285 |
by (metis Un_absorb sp) |
53406 | 1286 |
} |
44133 | 1287 |
moreover |
53406 | 1288 |
{ |
1289 |
assume st: "\<not> s \<subseteq> t" "\<not> t \<subseteq> s" |
|
1290 |
from st(2) obtain b where b: "b \<in> t" "b \<notin> s" |
|
1291 |
by blast |
|
1292 |
from b have "t - {b} - s \<subset> t - s" |
|
1293 |
by blast |
|
1294 |
then have cardlt: "card (t - {b} - s) < card (t - s)" |
|
1295 |
using ft by (auto intro: psubset_card_mono) |
|
1296 |
from b ft have ct0: "card t \<noteq> 0" |
|
1297 |
by auto |
|
1298 |
have ?ths |
|
1299 |
proof cases |
|
53716 | 1300 |
assume stb: "s \<subseteq> span (t - {b})" |
1301 |
from ft have ftb: "finite (t - {b})" |
|
53406 | 1302 |
by auto |
44133 | 1303 |
from less(1)[OF cardlt ftb s stb] |
53716 | 1304 |
obtain u where u: "card u = card (t - {b})" "s \<subseteq> u" "u \<subseteq> s \<union> (t - {b})" "s \<subseteq> span u" |
49522 | 1305 |
and fu: "finite u" by blast |
44133 | 1306 |
let ?w = "insert b u" |
53406 | 1307 |
have th0: "s \<subseteq> insert b u" |
1308 |
using u by blast |
|
1309 |
from u(3) b have "u \<subseteq> s \<union> t" |
|
1310 |
by blast |
|
1311 |
then have th1: "insert b u \<subseteq> s \<union> t" |
|
1312 |
using u b by blast |
|
1313 |
have bu: "b \<notin> u" |
|
1314 |
using b u by blast |
|
1315 |
from u(1) ft b have "card u = (card t - 1)" |
|
1316 |
by auto |
|
49522 | 1317 |
then have th2: "card (insert b u) = card t" |
44133 | 1318 |
using card_insert_disjoint[OF fu bu] ct0 by auto |
1319 |
from u(4) have "s \<subseteq> span u" . |
|
53406 | 1320 |
also have "\<dots> \<subseteq> span (insert b u)" |
1321 |
by (rule span_mono) blast |
|
44133 | 1322 |
finally have th3: "s \<subseteq> span (insert b u)" . |
53406 | 1323 |
from th0 th1 th2 th3 fu have th: "?P ?w" |
1324 |
by blast |
|
1325 |
from th show ?thesis by blast |
|
1326 |
next |
|
53716 | 1327 |
assume stb: "\<not> s \<subseteq> span (t - {b})" |
53406 | 1328 |
from stb obtain a where a: "a \<in> s" "a \<notin> span (t - {b})" |
1329 |
by blast |
|
1330 |
have ab: "a \<noteq> b" |
|
1331 |
using a b by blast |
|
1332 |
have at: "a \<notin> t" |
|
1333 |
using a ab span_superset[of a "t- {b}"] by auto |
|
44133 | 1334 |
have mlt: "card ((insert a (t - {b})) - s) < card (t - s)" |
1335 |
using cardlt ft a b by auto |
|
53406 | 1336 |
have ft': "finite (insert a (t - {b}))" |
1337 |
using ft by auto |
|
1338 |
{ |
|
1339 |
fix x |
|
1340 |
assume xs: "x \<in> s" |
|
1341 |
have t: "t \<subseteq> insert b (insert a (t - {b}))" |
|
1342 |
using b by auto |
|
1343 |
from b(1) have "b \<in> span t" |
|
1344 |
by (simp add: span_superset) |
|
1345 |
have bs: "b \<in> span (insert a (t - {b}))" |
|
1346 |
apply (rule in_span_delete) |
|
1347 |
using a sp unfolding subset_eq |
|
1348 |
apply auto |
|
1349 |
done |
|
1350 |
from xs sp have "x \<in> span t" |
|
1351 |
by blast |
|
1352 |
with span_mono[OF t] have x: "x \<in> span (insert b (insert a (t - {b})))" .. |
|
1353 |
from span_trans[OF bs x] have "x \<in> span (insert a (t - {b}))" . |
|
1354 |
} |
|
1355 |
then have sp': "s \<subseteq> span (insert a (t - {b}))" |
|
1356 |
by blast |
|
1357 |
from less(1)[OF mlt ft' s sp'] obtain u where u: |
|
53716 | 1358 |
"card u = card (insert a (t - {b}))" |
1359 |
"finite u" "s \<subseteq> u" "u \<subseteq> s \<union> insert a (t - {b})" |
|
53406 | 1360 |
"s \<subseteq> span u" by blast |
1361 |
from u a b ft at ct0 have "?P u" |
|
1362 |
by auto |
|
1363 |
then show ?thesis by blast |
|
1364 |
qed |
|
44133 | 1365 |
} |
49522 | 1366 |
ultimately show ?ths by blast |
44133 | 1367 |
qed |
1368 |
||
1369 |
text {* This implies corresponding size bounds. *} |
|
1370 |
||
1371 |
lemma independent_span_bound: |
|
53406 | 1372 |
assumes f: "finite t" |
1373 |
and i: "independent s" |
|
1374 |
and sp: "s \<subseteq> span t" |
|
44133 | 1375 |
shows "finite s \<and> card s \<le> card t" |
1376 |
by (metis exchange_lemma[OF f i sp] finite_subset card_mono) |
|
1377 |
||
1378 |
lemma finite_Atleast_Atmost_nat[simp]: "finite {f x |x. x\<in> (UNIV::'a::finite set)}" |
|
49522 | 1379 |
proof - |
53406 | 1380 |
have eq: "{f x |x. x\<in> UNIV} = f ` UNIV" |
1381 |
by auto |
|
44133 | 1382 |
show ?thesis unfolding eq |
1383 |
apply (rule finite_imageI) |
|
1384 |
apply (rule finite) |
|
1385 |
done |
|
1386 |
qed |
|
1387 |
||
53406 | 1388 |
|
1389 |
subsection {* Euclidean Spaces as Typeclass *} |
|
44133 | 1390 |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1391 |
lemma independent_Basis: "independent Basis" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1392 |
unfolding dependent_def |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1393 |
apply (subst span_finite) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1394 |
apply simp |
44133 | 1395 |
apply clarify |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1396 |
apply (drule_tac f="inner a" in arg_cong) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1397 |
apply (simp add: inner_Basis inner_setsum_right eq_commute) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1398 |
done |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1399 |
|
53939 | 1400 |
lemma span_Basis [simp]: "span Basis = UNIV" |
1401 |
unfolding span_finite [OF finite_Basis] |
|
1402 |
by (fast intro: euclidean_representation) |
|
44133 | 1403 |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1404 |
lemma in_span_Basis: "x \<in> span Basis" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1405 |
unfolding span_Basis .. |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1406 |
|
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1407 |
lemma Basis_le_norm: "b \<in> Basis \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> norm x" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1408 |
by (rule order_trans [OF Cauchy_Schwarz_ineq2]) simp |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1409 |
|
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1410 |
lemma norm_bound_Basis_le: "b \<in> Basis \<Longrightarrow> norm x \<le> e \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> e" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1411 |
by (metis Basis_le_norm order_trans) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1412 |
|
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1413 |
lemma norm_bound_Basis_lt: "b \<in> Basis \<Longrightarrow> norm x < e \<Longrightarrow> \<bar>x \<bullet> b\<bar> < e" |
53595 | 1414 |
by (metis Basis_le_norm le_less_trans) |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1415 |
|
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1416 |
lemma norm_le_l1: "norm x \<le> (\<Sum>b\<in>Basis. \<bar>x \<bullet> b\<bar>)" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1417 |
apply (subst euclidean_representation[of x, symmetric]) |
44176
eda112e9cdee
remove redundant lemma setsum_norm in favor of norm_setsum;
huffman
parents:
44170
diff
changeset
|
1418 |
apply (rule order_trans[OF norm_setsum]) |
49522 | 1419 |
apply (auto intro!: setsum_mono) |
1420 |
done |
|
44133 | 1421 |
|
1422 |
lemma setsum_norm_allsubsets_bound: |
|
56444 | 1423 |
fixes f :: "'a \<Rightarrow> 'n::euclidean_space" |
53406 | 1424 |
assumes fP: "finite P" |
1425 |
and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e" |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1426 |
shows "(\<Sum>x\<in>P. norm (f x)) \<le> 2 * real DIM('n) * e" |
49522 | 1427 |
proof - |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1428 |
have "(\<Sum>x\<in>P. norm (f x)) \<le> (\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>f x \<bullet> b\<bar>)" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1429 |
by (rule setsum_mono) (rule norm_le_l1) |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1430 |
also have "(\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>f x \<bullet> b\<bar>) = (\<Sum>b\<in>Basis. \<Sum>x\<in>P. \<bar>f x \<bullet> b\<bar>)" |
57418 | 1431 |
by (rule setsum.commute) |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1432 |
also have "\<dots> \<le> of_nat (card (Basis :: 'n set)) * (2 * e)" |
49522 | 1433 |
proof (rule setsum_bounded) |
53406 | 1434 |
fix i :: 'n |
1435 |
assume i: "i \<in> Basis" |
|
1436 |
have "norm (\<Sum>x\<in>P. \<bar>f x \<bullet> i\<bar>) \<le> |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1437 |
norm ((\<Sum>x\<in>P \<inter> - {x. f x \<bullet> i < 0}. f x) \<bullet> i) + norm ((\<Sum>x\<in>P \<inter> {x. f x \<bullet> i < 0}. f x) \<bullet> i)" |
57418 | 1438 |
by (simp add: abs_real_def setsum.If_cases[OF fP] setsum_negf norm_triangle_ineq4 inner_setsum_left |
56444 | 1439 |
del: real_norm_def) |
53406 | 1440 |
also have "\<dots> \<le> e + e" |
1441 |
unfolding real_norm_def |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1442 |
by (intro add_mono norm_bound_Basis_le i fPs) auto |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1443 |
finally show "(\<Sum>x\<in>P. \<bar>f x \<bullet> i\<bar>) \<le> 2*e" by simp |
44133 | 1444 |
qed |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1445 |
also have "\<dots> = 2 * real DIM('n) * e" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1446 |
by (simp add: real_of_nat_def) |
44133 | 1447 |
finally show ?thesis . |
1448 |
qed |
|
1449 |
||
53406 | 1450 |
|
44133 | 1451 |
subsection {* Linearity and Bilinearity continued *} |
1452 |
||
1453 |
lemma linear_bounded: |
|
56444 | 1454 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" |
44133 | 1455 |
assumes lf: "linear f" |
1456 |
shows "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x" |
|
53939 | 1457 |
proof |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1458 |
let ?B = "\<Sum>b\<in>Basis. norm (f b)" |
53939 | 1459 |
show "\<forall>x. norm (f x) \<le> ?B * norm x" |
1460 |
proof |
|
53406 | 1461 |
fix x :: 'a |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1462 |
let ?g = "\<lambda>b. (x \<bullet> b) *\<^sub>R f b" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1463 |
have "norm (f x) = norm (f (\<Sum>b\<in>Basis. (x \<bullet> b) *\<^sub>R b))" |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1464 |
unfolding euclidean_representation .. |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1465 |
also have "\<dots> = norm (setsum ?g Basis)" |
53939 | 1466 |
by (simp add: linear_setsum [OF lf] linear_cmul [OF lf]) |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1467 |
finally have th0: "norm (f x) = norm (setsum ?g Basis)" . |
53939 | 1468 |
have th: "\<forall>b\<in>Basis. norm (?g b) \<le> norm (f b) * norm x" |
1469 |
proof |
|
53406 | 1470 |
fix i :: 'a |
1471 |
assume i: "i \<in> Basis" |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1472 |
from Basis_le_norm[OF i, of x] |
53939 | 1473 |
show "norm (?g i) \<le> norm (f i) * norm x" |
49663 | 1474 |
unfolding norm_scaleR |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
1475 |
apply (subst mult.commute) |
49663 | 1476 |
apply (rule mult_mono) |
1477 |
apply (auto simp add: field_simps) |
|
53406 | 1478 |
done |
53939 | 1479 |
qed |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1480 |
from setsum_norm_le[of _ ?g, OF th] |
53939 | 1481 |
show "norm (f x) \<le> ?B * norm x" |
53406 | 1482 |
unfolding th0 setsum_left_distrib by metis |
53939 | 1483 |
qed |
44133 | 1484 |
qed |
1485 |
||
1486 |
lemma linear_conv_bounded_linear: |
|
1487 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" |
|
1488 |
shows "linear f \<longleftrightarrow> bounded_linear f" |
|
1489 |
proof |
|
1490 |
assume "linear f" |
|
53939 | 1491 |
then interpret f: linear f . |
44133 | 1492 |
show "bounded_linear f" |
1493 |
proof |
|
1494 |
have "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x" |
|
1495 |
using `linear f` by (rule linear_bounded) |
|
49522 | 1496 |
then show "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K" |
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
1497 |
by (simp add: mult.commute) |
44133 | 1498 |
qed |
1499 |
next |
|
1500 |
assume "bounded_linear f" |
|
1501 |
then interpret f: bounded_linear f . |
|
53939 | 1502 |
show "linear f" .. |
1503 |
qed |
|
1504 |
||
1505 |
lemma linear_bounded_pos: |
|
56444 | 1506 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" |
53939 | 1507 |
assumes lf: "linear f" |
1508 |
shows "\<exists>B > 0. \<forall>x. norm (f x) \<le> B * norm x" |
|
1509 |
proof - |
|
1510 |
have "\<exists>B > 0. \<forall>x. norm (f x) \<le> norm x * B" |
|
1511 |
using lf unfolding linear_conv_bounded_linear |
|
1512 |
by (rule bounded_linear.pos_bounded) |
|
1513 |
then show ?thesis |
|
57512
cc97b347b301
reduced name variants for assoc and commute on plus and mult
haftmann
parents:
57418
diff
changeset
|
1514 |
by (simp only: mult.commute) |
44133 | 1515 |
qed |
1516 |
||
49522 | 1517 |
lemma bounded_linearI': |
56444 | 1518 |
fixes f ::"'a::euclidean_space \<Rightarrow> 'b::real_normed_vector" |
53406 | 1519 |
assumes "\<And>x y. f (x + y) = f x + f y" |
1520 |
and "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x" |
|
49522 | 1521 |
shows "bounded_linear f" |
53406 | 1522 |
unfolding linear_conv_bounded_linear[symmetric] |
49522 | 1523 |
by (rule linearI[OF assms]) |
44133 | 1524 |
|
1525 |
lemma bilinear_bounded: |
|
56444 | 1526 |
fixes h :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'k::real_normed_vector" |
44133 | 1527 |
assumes bh: "bilinear h" |
1528 |
shows "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1529 |
proof (clarify intro!: exI[of _ "\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)"]) |
53406 | 1530 |
fix x :: 'm |
1531 |
fix y :: 'n |
|
1532 |
have "norm (h x y) = norm (h (setsum (\<lambda>i. (x \<bullet> i) *\<^sub>R i) Basis) (setsum (\<lambda>i. (y \<bullet> i) *\<^sub>R i) Basis))" |
|
1533 |
apply (subst euclidean_representation[where 'a='m]) |
|
1534 |
apply (subst euclidean_representation[where 'a='n]) |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1535 |
apply rule |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1536 |
done |
53406 | 1537 |
also have "\<dots> = norm (setsum (\<lambda> (i,j). h ((x \<bullet> i) *\<^sub>R i) ((y \<bullet> j) *\<^sub>R j)) (Basis \<times> Basis))" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1538 |
unfolding bilinear_setsum[OF bh finite_Basis finite_Basis] .. |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1539 |
finally have th: "norm (h x y) = \<dots>" . |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1540 |
show "norm (h x y) \<le> (\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)) * norm x * norm y" |
57418 | 1541 |
apply (auto simp add: setsum_left_distrib th setsum.cartesian_product) |
53406 | 1542 |
apply (rule setsum_norm_le) |
1543 |
apply simp |
|
1544 |
apply (auto simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh] |
|
1545 |
field_simps simp del: scaleR_scaleR) |
|
1546 |
apply (rule mult_mono) |
|
1547 |
apply (auto simp add: zero_le_mult_iff Basis_le_norm) |
|
1548 |
apply (rule mult_mono) |
|
1549 |
apply (auto simp add: zero_le_mult_iff Basis_le_norm) |
|
1550 |
done |
|
44133 | 1551 |
qed |
1552 |
||
1553 |
lemma bilinear_conv_bounded_bilinear: |
|
1554 |
fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector" |
|
1555 |
shows "bilinear h \<longleftrightarrow> bounded_bilinear h" |
|
1556 |
proof |
|
1557 |
assume "bilinear h" |
|
1558 |
show "bounded_bilinear h" |
|
1559 |
proof |
|
53406 | 1560 |
fix x y z |
1561 |
show "h (x + y) z = h x z + h y z" |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
1562 |
using `bilinear h` unfolding bilinear_def linear_iff by simp |
44133 | 1563 |
next |
53406 | 1564 |
fix x y z |
1565 |
show "h x (y + z) = h x y + h x z" |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
1566 |
using `bilinear h` unfolding bilinear_def linear_iff by simp |
44133 | 1567 |
next |
53406 | 1568 |
fix r x y |
1569 |
show "h (scaleR r x) y = scaleR r (h x y)" |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
1570 |
using `bilinear h` unfolding bilinear_def linear_iff |
44133 | 1571 |
by simp |
1572 |
next |
|
53406 | 1573 |
fix r x y |
1574 |
show "h x (scaleR r y) = scaleR r (h x y)" |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
1575 |
using `bilinear h` unfolding bilinear_def linear_iff |
44133 | 1576 |
by simp |
1577 |
next |
|
1578 |
have "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" |
|
1579 |
using `bilinear h` by (rule bilinear_bounded) |
|
49522 | 1580 |
then show "\<exists>K. \<forall>x y. norm (h x y) \<le> norm x * norm y * K" |
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
1581 |
by (simp add: ac_simps) |
44133 | 1582 |
qed |
1583 |
next |
|
1584 |
assume "bounded_bilinear h" |
|
1585 |
then interpret h: bounded_bilinear h . |
|
1586 |
show "bilinear h" |
|
1587 |
unfolding bilinear_def linear_conv_bounded_linear |
|
49522 | 1588 |
using h.bounded_linear_left h.bounded_linear_right by simp |
44133 | 1589 |
qed |
1590 |
||
53939 | 1591 |
lemma bilinear_bounded_pos: |
56444 | 1592 |
fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector" |
53939 | 1593 |
assumes bh: "bilinear h" |
1594 |
shows "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> B * norm x * norm y" |
|
1595 |
proof - |
|
1596 |
have "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> norm x * norm y * B" |
|
1597 |
using bh [unfolded bilinear_conv_bounded_bilinear] |
|
1598 |
by (rule bounded_bilinear.pos_bounded) |
|
1599 |
then show ?thesis |
|
57514
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents:
57512
diff
changeset
|
1600 |
by (simp only: ac_simps) |
53939 | 1601 |
qed |
1602 |
||
49522 | 1603 |
|
44133 | 1604 |
subsection {* We continue. *} |
1605 |
||
1606 |
lemma independent_bound: |
|
53716 | 1607 |
fixes S :: "'a::euclidean_space set" |
1608 |
shows "independent S \<Longrightarrow> finite S \<and> card S \<le> DIM('a)" |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1609 |
using independent_span_bound[OF finite_Basis, of S] by auto |
44133 | 1610 |
|
49663 | 1611 |
lemma dependent_biggerset: |
56444 | 1612 |
fixes S :: "'a::euclidean_space set" |
1613 |
shows "(finite S \<Longrightarrow> card S > DIM('a)) \<Longrightarrow> dependent S" |
|
44133 | 1614 |
by (metis independent_bound not_less) |
1615 |
||
1616 |
text {* Hence we can create a maximal independent subset. *} |
|
1617 |
||
1618 |
lemma maximal_independent_subset_extend: |
|
53406 | 1619 |
fixes S :: "'a::euclidean_space set" |
1620 |
assumes sv: "S \<subseteq> V" |
|
49663 | 1621 |
and iS: "independent S" |
44133 | 1622 |
shows "\<exists>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B" |
1623 |
using sv iS |
|
49522 | 1624 |
proof (induct "DIM('a) - card S" arbitrary: S rule: less_induct) |
44133 | 1625 |
case less |
1626 |
note sv = `S \<subseteq> V` and i = `independent S` |
|
1627 |
let ?P = "\<lambda>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B" |
|
1628 |
let ?ths = "\<exists>x. ?P x" |
|
1629 |
let ?d = "DIM('a)" |
|
53406 | 1630 |
show ?ths |
1631 |
proof (cases "V \<subseteq> span S") |
|
1632 |
case True |
|
1633 |
then show ?thesis |
|
1634 |
using sv i by blast |
|
1635 |
next |
|
1636 |
case False |
|
1637 |
then obtain a where a: "a \<in> V" "a \<notin> span S" |
|
1638 |
by blast |
|
1639 |
from a have aS: "a \<notin> S" |
|
1640 |
by (auto simp add: span_superset) |
|
1641 |
have th0: "insert a S \<subseteq> V" |
|
1642 |
using a sv by blast |
|
44133 | 1643 |
from independent_insert[of a S] i a |
53406 | 1644 |
have th1: "independent (insert a S)" |
1645 |
by auto |
|
44133 | 1646 |
have mlt: "?d - card (insert a S) < ?d - card S" |
49522 | 1647 |
using aS a independent_bound[OF th1] by auto |
44133 | 1648 |
|
1649 |
from less(1)[OF mlt th0 th1] |
|
1650 |
obtain B where B: "insert a S \<subseteq> B" "B \<subseteq> V" "independent B" " V \<subseteq> span B" |
|
1651 |
by blast |
|
1652 |
from B have "?P B" by auto |
|
53406 | 1653 |
then show ?thesis by blast |
1654 |
qed |
|
44133 | 1655 |
qed |
1656 |
||
1657 |
lemma maximal_independent_subset: |
|
1658 |
"\<exists>(B:: ('a::euclidean_space) set). B\<subseteq> V \<and> independent B \<and> V \<subseteq> span B" |
|
49522 | 1659 |
by (metis maximal_independent_subset_extend[of "{}:: ('a::euclidean_space) set"] |
1660 |
empty_subsetI independent_empty) |
|
44133 | 1661 |
|
1662 |
||
1663 |
text {* Notion of dimension. *} |
|
1664 |
||
53406 | 1665 |
definition "dim V = (SOME n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> card B = n)" |
44133 | 1666 |
|
49522 | 1667 |
lemma basis_exists: |
1668 |
"\<exists>B. (B :: ('a::euclidean_space) set) \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = dim V)" |
|
1669 |
unfolding dim_def some_eq_ex[of "\<lambda>n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = n)"] |
|
1670 |
using maximal_independent_subset[of V] independent_bound |
|
1671 |
by auto |
|
44133 | 1672 |
|
1673 |
text {* Consequences of independence or spanning for cardinality. *} |
|
1674 |
||
53406 | 1675 |
lemma independent_card_le_dim: |
1676 |
fixes B :: "'a::euclidean_space set" |
|
1677 |
assumes "B \<subseteq> V" |
|
1678 |
and "independent B" |
|
49522 | 1679 |
shows "card B \<le> dim V" |
44133 | 1680 |
proof - |
1681 |
from basis_exists[of V] `B \<subseteq> V` |
|
53406 | 1682 |
obtain B' where "independent B'" |
1683 |
and "B \<subseteq> span B'" |
|
1684 |
and "card B' = dim V" |
|
1685 |
by blast |
|
44133 | 1686 |
with independent_span_bound[OF _ `independent B` `B \<subseteq> span B'`] independent_bound[of B'] |
1687 |
show ?thesis by auto |
|
1688 |
qed |
|
1689 |
||
49522 | 1690 |
lemma span_card_ge_dim: |
53406 | 1691 |
fixes B :: "'a::euclidean_space set" |
1692 |
shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> finite B \<Longrightarrow> dim V \<le> card B" |
|
44133 | 1693 |
by (metis basis_exists[of V] independent_span_bound subset_trans) |
1694 |
||
1695 |
lemma basis_card_eq_dim: |
|
53406 | 1696 |
fixes V :: "'a::euclidean_space set" |
1697 |
shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> finite B \<and> card B = dim V" |
|
44133 | 1698 |
by (metis order_eq_iff independent_card_le_dim span_card_ge_dim independent_bound) |
1699 |
||
53406 | 1700 |
lemma dim_unique: |
1701 |
fixes B :: "'a::euclidean_space set" |
|
1702 |
shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> card B = n \<Longrightarrow> dim V = n" |
|
44133 | 1703 |
by (metis basis_card_eq_dim) |
1704 |
||
1705 |
text {* More lemmas about dimension. *} |
|
1706 |
||
53406 | 1707 |
lemma dim_UNIV: "dim (UNIV :: 'a::euclidean_space set) = DIM('a)" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1708 |
using independent_Basis |
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
1709 |
by (intro dim_unique[of Basis]) auto |
44133 | 1710 |
|
1711 |
lemma dim_subset: |
|
53406 | 1712 |
fixes S :: "'a::euclidean_space set" |
1713 |
shows "S \<subseteq> T \<Longrightarrow> dim S \<le> dim T" |
|
44133 | 1714 |
using basis_exists[of T] basis_exists[of S] |
1715 |
by (metis independent_card_le_dim subset_trans) |
|
1716 |
||
53406 | 1717 |
lemma dim_subset_UNIV: |
1718 |
fixes S :: "'a::euclidean_space set" |
|
1719 |
shows "dim S \<le> DIM('a)" |
|
44133 | 1720 |
by (metis dim_subset subset_UNIV dim_UNIV) |
1721 |
||
1722 |
text {* Converses to those. *} |
|
1723 |
||
1724 |
lemma card_ge_dim_independent: |
|
53406 | 1725 |
fixes B :: "'a::euclidean_space set" |
1726 |
assumes BV: "B \<subseteq> V" |
|
1727 |
and iB: "independent B" |
|
1728 |
and dVB: "dim V \<le> card B" |
|
44133 | 1729 |
shows "V \<subseteq> span B" |
53406 | 1730 |
proof |
1731 |
fix a |
|
1732 |
assume aV: "a \<in> V" |
|
1733 |
{ |
|
1734 |
assume aB: "a \<notin> span B" |
|
1735 |
then have iaB: "independent (insert a B)" |
|
1736 |
using iB aV BV by (simp add: independent_insert) |
|
1737 |
from aV BV have th0: "insert a B \<subseteq> V" |
|
1738 |
by blast |
|
1739 |
from aB have "a \<notin>B" |
|
1740 |
by (auto simp add: span_superset) |
|
1741 |
with independent_card_le_dim[OF th0 iaB] dVB independent_bound[OF iB] |
|
1742 |
have False by auto |
|
1743 |
} |
|
1744 |
then show "a \<in> span B" by blast |
|
44133 | 1745 |
qed |
1746 |
||
1747 |
lemma card_le_dim_spanning: |
|
49663 | 1748 |
assumes BV: "(B:: ('a::euclidean_space) set) \<subseteq> V" |
1749 |
and VB: "V \<subseteq> span B" |
|
1750 |
and fB: "finite B" |
|
1751 |
and dVB: "dim V \<ge> card B" |
|
44133 | 1752 |
shows "independent B" |
49522 | 1753 |
proof - |
53406 | 1754 |
{ |
1755 |
fix a |
|
53716 | 1756 |
assume a: "a \<in> B" "a \<in> span (B - {a})" |
53406 | 1757 |
from a fB have c0: "card B \<noteq> 0" |
1758 |
by auto |
|
53716 | 1759 |
from a fB have cb: "card (B - {a}) = card B - 1" |
53406 | 1760 |
by auto |
53716 | 1761 |
from BV a have th0: "B - {a} \<subseteq> V" |
53406 | 1762 |
by blast |
1763 |
{ |
|
1764 |
fix x |
|
1765 |
assume x: "x \<in> V" |
|
53716 | 1766 |
from a have eq: "insert a (B - {a}) = B" |
53406 | 1767 |
by blast |
1768 |
from x VB have x': "x \<in> span B" |
|
1769 |
by blast |
|
44133 | 1770 |
from span_trans[OF a(2), unfolded eq, OF x'] |
53716 | 1771 |
have "x \<in> span (B - {a})" . |
53406 | 1772 |
} |
53716 | 1773 |
then have th1: "V \<subseteq> span (B - {a})" |
53406 | 1774 |
by blast |
53716 | 1775 |
have th2: "finite (B - {a})" |
53406 | 1776 |
using fB by auto |
44133 | 1777 |
from span_card_ge_dim[OF th0 th1 th2] |
53716 | 1778 |
have c: "dim V \<le> card (B - {a})" . |
53406 | 1779 |
from c c0 dVB cb have False by simp |
1780 |
} |
|
1781 |
then show ?thesis |
|
1782 |
unfolding dependent_def by blast |
|
44133 | 1783 |
qed |
1784 |
||
53406 | 1785 |
lemma card_eq_dim: |
1786 |
fixes B :: "'a::euclidean_space set" |
|
1787 |
shows "B \<subseteq> V \<Longrightarrow> card B = dim V \<Longrightarrow> finite B \<Longrightarrow> independent B \<longleftrightarrow> V \<subseteq> span B" |
|
49522 | 1788 |
by (metis order_eq_iff card_le_dim_spanning card_ge_dim_independent) |
44133 | 1789 |
|
1790 |
text {* More general size bound lemmas. *} |
|
1791 |
||
1792 |
lemma independent_bound_general: |
|
53406 | 1793 |
fixes S :: "'a::euclidean_space set" |
1794 |
shows "independent S \<Longrightarrow> finite S \<and> card S \<le> dim S" |
|
44133 | 1795 |
by (metis independent_card_le_dim independent_bound subset_refl) |
1796 |
||
49522 | 1797 |
lemma dependent_biggerset_general: |
53406 | 1798 |
fixes S :: "'a::euclidean_space set" |
1799 |
shows "(finite S \<Longrightarrow> card S > dim S) \<Longrightarrow> dependent S" |
|
44133 | 1800 |
using independent_bound_general[of S] by (metis linorder_not_le) |
1801 |
||
53406 | 1802 |
lemma dim_span: |
1803 |
fixes S :: "'a::euclidean_space set" |
|
1804 |
shows "dim (span S) = dim S" |
|
49522 | 1805 |
proof - |
44133 | 1806 |
have th0: "dim S \<le> dim (span S)" |
1807 |
by (auto simp add: subset_eq intro: dim_subset span_superset) |
|
1808 |
from basis_exists[of S] |
|
53406 | 1809 |
obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" |
1810 |
by blast |
|
1811 |
from B have fB: "finite B" "card B = dim S" |
|
1812 |
using independent_bound by blast+ |
|
1813 |
have bSS: "B \<subseteq> span S" |
|
1814 |
using B(1) by (metis subset_eq span_inc) |
|
1815 |
have sssB: "span S \<subseteq> span B" |
|
1816 |
using span_mono[OF B(3)] by (simp add: span_span) |
|
44133 | 1817 |
from span_card_ge_dim[OF bSS sssB fB(1)] th0 show ?thesis |
49522 | 1818 |
using fB(2) by arith |
44133 | 1819 |
qed |
1820 |
||
53406 | 1821 |
lemma subset_le_dim: |
1822 |
fixes S :: "'a::euclidean_space set" |
|
1823 |
shows "S \<subseteq> span T \<Longrightarrow> dim S \<le> dim T" |
|
44133 | 1824 |
by (metis dim_span dim_subset) |
1825 |
||
53406 | 1826 |
lemma span_eq_dim: |
56444 | 1827 |
fixes S :: "'a::euclidean_space set" |
53406 | 1828 |
shows "span S = span T \<Longrightarrow> dim S = dim T" |
44133 | 1829 |
by (metis dim_span) |
1830 |
||
1831 |
lemma spans_image: |
|
49663 | 1832 |
assumes lf: "linear f" |
1833 |
and VB: "V \<subseteq> span B" |
|
44133 | 1834 |
shows "f ` V \<subseteq> span (f ` B)" |
49522 | 1835 |
unfolding span_linear_image[OF lf] by (metis VB image_mono) |
44133 | 1836 |
|
1837 |
lemma dim_image_le: |
|
1838 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
|
49663 | 1839 |
assumes lf: "linear f" |
1840 |
shows "dim (f ` S) \<le> dim (S)" |
|
49522 | 1841 |
proof - |
44133 | 1842 |
from basis_exists[of S] obtain B where |
1843 |
B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" by blast |
|
53406 | 1844 |
from B have fB: "finite B" "card B = dim S" |
1845 |
using independent_bound by blast+ |
|
44133 | 1846 |
have "dim (f ` S) \<le> card (f ` B)" |
1847 |
apply (rule span_card_ge_dim) |
|
53406 | 1848 |
using lf B fB |
1849 |
apply (auto simp add: span_linear_image spans_image subset_image_iff) |
|
49522 | 1850 |
done |
53406 | 1851 |
also have "\<dots> \<le> dim S" |
1852 |
using card_image_le[OF fB(1)] fB by simp |
|
44133 | 1853 |
finally show ?thesis . |
1854 |
qed |
|
1855 |
||
1856 |
text {* Relation between bases and injectivity/surjectivity of map. *} |
|
1857 |
||
1858 |
lemma spanning_surjective_image: |
|
1859 |
assumes us: "UNIV \<subseteq> span S" |
|
53406 | 1860 |
and lf: "linear f" |
1861 |
and sf: "surj f" |
|
44133 | 1862 |
shows "UNIV \<subseteq> span (f ` S)" |
49663 | 1863 |
proof - |
53406 | 1864 |
have "UNIV \<subseteq> f ` UNIV" |
1865 |
using sf by (auto simp add: surj_def) |
|
1866 |
also have " \<dots> \<subseteq> span (f ` S)" |
|
1867 |
using spans_image[OF lf us] . |
|
1868 |
finally show ?thesis . |
|
44133 | 1869 |
qed |
1870 |
||
1871 |
lemma independent_injective_image: |
|
49663 | 1872 |
assumes iS: "independent S" |
1873 |
and lf: "linear f" |
|
1874 |
and fi: "inj f" |
|
44133 | 1875 |
shows "independent (f ` S)" |
49663 | 1876 |
proof - |
53406 | 1877 |
{ |
1878 |
fix a |
|
49663 | 1879 |
assume a: "a \<in> S" "f a \<in> span (f ` S - {f a})" |
53406 | 1880 |
have eq: "f ` S - {f a} = f ` (S - {a})" |
1881 |
using fi by (auto simp add: inj_on_def) |
|
53716 | 1882 |
from a have "f a \<in> f ` span (S - {a})" |
53406 | 1883 |
unfolding eq span_linear_image[OF lf, of "S - {a}"] by blast |
53716 | 1884 |
then have "a \<in> span (S - {a})" |
53406 | 1885 |
using fi by (auto simp add: inj_on_def) |
1886 |
with a(1) iS have False |
|
1887 |
by (simp add: dependent_def) |
|
1888 |
} |
|
1889 |
then show ?thesis |
|
1890 |
unfolding dependent_def by blast |
|
44133 | 1891 |
qed |
1892 |
||
1893 |
text {* Picking an orthogonal replacement for a spanning set. *} |
|
1894 |
||
53406 | 1895 |
(* FIXME : Move to some general theory ?*) |
44133 | 1896 |
definition "pairwise R S \<longleftrightarrow> (\<forall>x \<in> S. \<forall>y\<in> S. x\<noteq>y \<longrightarrow> R x y)" |
1897 |
||
53406 | 1898 |
lemma vector_sub_project_orthogonal: |
1899 |
fixes b x :: "'a::euclidean_space" |
|
1900 |
shows "b \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *\<^sub>R b) = 0" |
|
44133 | 1901 |
unfolding inner_simps by auto |
1902 |
||
44528 | 1903 |
lemma pairwise_orthogonal_insert: |
1904 |
assumes "pairwise orthogonal S" |
|
49522 | 1905 |
and "\<And>y. y \<in> S \<Longrightarrow> orthogonal x y" |
44528 | 1906 |
shows "pairwise orthogonal (insert x S)" |
1907 |
using assms unfolding pairwise_def |
|
1908 |
by (auto simp add: orthogonal_commute) |
|
1909 |
||
44133 | 1910 |
lemma basis_orthogonal: |
53406 | 1911 |
fixes B :: "'a::real_inner set" |
44133 | 1912 |
assumes fB: "finite B" |
1913 |
shows "\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C" |
|
1914 |
(is " \<exists>C. ?P B C") |
|
49522 | 1915 |
using fB |
1916 |
proof (induct rule: finite_induct) |
|
1917 |
case empty |
|
53406 | 1918 |
then show ?case |
1919 |
apply (rule exI[where x="{}"]) |
|
1920 |
apply (auto simp add: pairwise_def) |
|
1921 |
done |
|
44133 | 1922 |
next |
49522 | 1923 |
case (insert a B) |
44133 | 1924 |
note fB = `finite B` and aB = `a \<notin> B` |
1925 |
from `\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C` |
|
1926 |
obtain C where C: "finite C" "card C \<le> card B" |
|
1927 |
"span C = span B" "pairwise orthogonal C" by blast |
|
1928 |
let ?a = "a - setsum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x) C" |
|
1929 |
let ?C = "insert ?a C" |
|
53406 | 1930 |
from C(1) have fC: "finite ?C" |
1931 |
by simp |
|
49522 | 1932 |
from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)" |
1933 |
by (simp add: card_insert_if) |
|
53406 | 1934 |
{ |
1935 |
fix x k |
|
49522 | 1936 |
have th0: "\<And>(a::'a) b c. a - (b - c) = c + (a - b)" |
1937 |
by (simp add: field_simps) |
|
44133 | 1938 |
have "x - k *\<^sub>R (a - (\<Sum>x\<in>C. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x)) \<in> span C \<longleftrightarrow> x - k *\<^sub>R a \<in> span C" |
1939 |
apply (simp only: scaleR_right_diff_distrib th0) |
|
1940 |
apply (rule span_add_eq) |
|
1941 |
apply (rule span_mul) |
|
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
1942 |
apply (rule span_setsum) |
44133 | 1943 |
apply clarify |
1944 |
apply (rule span_mul) |
|
49522 | 1945 |
apply (rule span_superset) |
1946 |
apply assumption |
|
53406 | 1947 |
done |
1948 |
} |
|
44133 | 1949 |
then have SC: "span ?C = span (insert a B)" |
1950 |
unfolding set_eq_iff span_breakdown_eq C(3)[symmetric] by auto |
|
53406 | 1951 |
{ |
1952 |
fix y |
|
1953 |
assume yC: "y \<in> C" |
|
1954 |
then have Cy: "C = insert y (C - {y})" |
|
1955 |
by blast |
|
1956 |
have fth: "finite (C - {y})" |
|
1957 |
using C by simp |
|
44528 | 1958 |
have "orthogonal ?a y" |
1959 |
unfolding orthogonal_def |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53939
diff
changeset
|
1960 |
unfolding inner_diff inner_setsum_left right_minus_eq |
57418 | 1961 |
unfolding setsum.remove [OF `finite C` `y \<in> C`] |
44528 | 1962 |
apply (clarsimp simp add: inner_commute[of y a]) |
57418 | 1963 |
apply (rule setsum.neutral) |
44528 | 1964 |
apply clarsimp |
1965 |
apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format]) |
|
53406 | 1966 |
using `y \<in> C` by auto |
1967 |
} |
|
44528 | 1968 |
with `pairwise orthogonal C` have CPO: "pairwise orthogonal ?C" |
1969 |
by (rule pairwise_orthogonal_insert) |
|
53406 | 1970 |
from fC cC SC CPO have "?P (insert a B) ?C" |
1971 |
by blast |
|
44133 | 1972 |
then show ?case by blast |
1973 |
qed |
|
1974 |
||
1975 |
lemma orthogonal_basis_exists: |
|
1976 |
fixes V :: "('a::euclidean_space) set" |
|
1977 |
shows "\<exists>B. independent B \<and> B \<subseteq> span V \<and> V \<subseteq> span B \<and> (card B = dim V) \<and> pairwise orthogonal B" |
|
49663 | 1978 |
proof - |
49522 | 1979 |
from basis_exists[of V] obtain B where |
53406 | 1980 |
B: "B \<subseteq> V" "independent B" "V \<subseteq> span B" "card B = dim V" |
1981 |
by blast |
|
1982 |
from B have fB: "finite B" "card B = dim V" |
|
1983 |
using independent_bound by auto |
|
44133 | 1984 |
from basis_orthogonal[OF fB(1)] obtain C where |
53406 | 1985 |
C: "finite C" "card C \<le> card B" "span C = span B" "pairwise orthogonal C" |
1986 |
by blast |
|
1987 |
from C B have CSV: "C \<subseteq> span V" |
|
1988 |
by (metis span_inc span_mono subset_trans) |
|
1989 |
from span_mono[OF B(3)] C have SVC: "span V \<subseteq> span C" |
|
1990 |
by (simp add: span_span) |
|
44133 | 1991 |
from card_le_dim_spanning[OF CSV SVC C(1)] C(2,3) fB |
53406 | 1992 |
have iC: "independent C" |
44133 | 1993 |
by (simp add: dim_span) |
53406 | 1994 |
from C fB have "card C \<le> dim V" |
1995 |
by simp |
|
1996 |
moreover have "dim V \<le> card C" |
|
1997 |
using span_card_ge_dim[OF CSV SVC C(1)] |
|
1998 |
by (simp add: dim_span) |
|
1999 |
ultimately have CdV: "card C = dim V" |
|
2000 |
using C(1) by simp |
|
2001 |
from C B CSV CdV iC show ?thesis |
|
2002 |
by auto |
|
44133 | 2003 |
qed |
2004 |
||
2005 |
lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S" |
|
2006 |
using span_inc[unfolded subset_eq] using span_mono[of T "span S"] span_mono[of S "span T"] |
|
49522 | 2007 |
by (auto simp add: span_span) |
44133 | 2008 |
|
2009 |
text {* Low-dimensional subset is in a hyperplane (weak orthogonal complement). *} |
|
2010 |
||
49522 | 2011 |
lemma span_not_univ_orthogonal: |
53406 | 2012 |
fixes S :: "'a::euclidean_space set" |
44133 | 2013 |
assumes sU: "span S \<noteq> UNIV" |
56444 | 2014 |
shows "\<exists>a::'a. a \<noteq> 0 \<and> (\<forall>x \<in> span S. a \<bullet> x = 0)" |
49522 | 2015 |
proof - |
53406 | 2016 |
from sU obtain a where a: "a \<notin> span S" |
2017 |
by blast |
|
44133 | 2018 |
from orthogonal_basis_exists obtain B where |
2019 |
B: "independent B" "B \<subseteq> span S" "S \<subseteq> span B" "card B = dim S" "pairwise orthogonal B" |
|
2020 |
by blast |
|
53406 | 2021 |
from B have fB: "finite B" "card B = dim S" |
2022 |
using independent_bound by auto |
|
44133 | 2023 |
from span_mono[OF B(2)] span_mono[OF B(3)] |
53406 | 2024 |
have sSB: "span S = span B" |
2025 |
by (simp add: span_span) |
|
44133 | 2026 |
let ?a = "a - setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B" |
2027 |
have "setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B \<in> span S" |
|
2028 |
unfolding sSB |
|
56196
32b7eafc5a52
remove unnecessary finiteness assumptions from lemmas about setsum
huffman
parents:
56166
diff
changeset
|
2029 |
apply (rule span_setsum) |
44133 | 2030 |
apply clarsimp |
2031 |
apply (rule span_mul) |
|
49522 | 2032 |
apply (rule span_superset) |
2033 |
apply assumption |
|
2034 |
done |
|
53406 | 2035 |
with a have a0:"?a \<noteq> 0" |
2036 |
by auto |
|
44133 | 2037 |
have "\<forall>x\<in>span B. ?a \<bullet> x = 0" |
49522 | 2038 |
proof (rule span_induct') |
2039 |
show "subspace {x. ?a \<bullet> x = 0}" |
|
2040 |
by (auto simp add: subspace_def inner_add) |
|
2041 |
next |
|
53406 | 2042 |
{ |
2043 |
fix x |
|
2044 |
assume x: "x \<in> B" |
|
2045 |
from x have B': "B = insert x (B - {x})" |
|
2046 |
by blast |
|
2047 |
have fth: "finite (B - {x})" |
|
2048 |
using fB by simp |
|
44133 | 2049 |
have "?a \<bullet> x = 0" |
53406 | 2050 |
apply (subst B') |
2051 |
using fB fth |
|
44133 | 2052 |
unfolding setsum_clauses(2)[OF fth] |
2053 |
apply simp unfolding inner_simps |
|
44527
bf8014b4f933
remove dot_lsum and dot_rsum in favor of inner_setsum_{left,right}
huffman
parents:
44521
diff
changeset
|
2054 |
apply (clarsimp simp add: inner_add inner_setsum_left) |
57418 | 2055 |
apply (rule setsum.neutral, rule ballI) |
44133 | 2056 |
unfolding inner_commute |
49711 | 2057 |
apply (auto simp add: x field_simps |
2058 |
intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format]) |
|
53406 | 2059 |
done |
2060 |
} |
|
2061 |
then show "\<forall>x \<in> B. ?a \<bullet> x = 0" |
|
2062 |
by blast |
|
44133 | 2063 |
qed |
53406 | 2064 |
with a0 show ?thesis |
2065 |
unfolding sSB by (auto intro: exI[where x="?a"]) |
|
44133 | 2066 |
qed |
2067 |
||
2068 |
lemma span_not_univ_subset_hyperplane: |
|
53406 | 2069 |
fixes S :: "'a::euclidean_space set" |
2070 |
assumes SU: "span S \<noteq> UNIV" |
|
44133 | 2071 |
shows "\<exists> a. a \<noteq>0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}" |
2072 |
using span_not_univ_orthogonal[OF SU] by auto |
|
2073 |
||
49663 | 2074 |
lemma lowdim_subset_hyperplane: |
53406 | 2075 |
fixes S :: "'a::euclidean_space set" |
44133 | 2076 |
assumes d: "dim S < DIM('a)" |
56444 | 2077 |
shows "\<exists>a::'a. a \<noteq> 0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}" |
49522 | 2078 |
proof - |
53406 | 2079 |
{ |
2080 |
assume "span S = UNIV" |
|
2081 |
then have "dim (span S) = dim (UNIV :: ('a) set)" |
|
2082 |
by simp |
|
2083 |
then have "dim S = DIM('a)" |
|
2084 |
by (simp add: dim_span dim_UNIV) |
|
2085 |
with d have False by arith |
|
2086 |
} |
|
2087 |
then have th: "span S \<noteq> UNIV" |
|
2088 |
by blast |
|
44133 | 2089 |
from span_not_univ_subset_hyperplane[OF th] show ?thesis . |
2090 |
qed |
|
2091 |
||
2092 |
text {* We can extend a linear basis-basis injection to the whole set. *} |
|
2093 |
||
2094 |
lemma linear_indep_image_lemma: |
|
49663 | 2095 |
assumes lf: "linear f" |
2096 |
and fB: "finite B" |
|
49522 | 2097 |
and ifB: "independent (f ` B)" |
49663 | 2098 |
and fi: "inj_on f B" |
2099 |
and xsB: "x \<in> span B" |
|
49522 | 2100 |
and fx: "f x = 0" |
44133 | 2101 |
shows "x = 0" |
2102 |
using fB ifB fi xsB fx |
|
49522 | 2103 |
proof (induct arbitrary: x rule: finite_induct[OF fB]) |
49663 | 2104 |
case 1 |
2105 |
then show ?case by auto |
|
44133 | 2106 |
next |
2107 |
case (2 a b x) |
|
2108 |
have fb: "finite b" using "2.prems" by simp |
|
2109 |
have th0: "f ` b \<subseteq> f ` (insert a b)" |
|
53406 | 2110 |
apply (rule image_mono) |
2111 |
apply blast |
|
2112 |
done |
|
44133 | 2113 |
from independent_mono[ OF "2.prems"(2) th0] |
2114 |
have ifb: "independent (f ` b)" . |
|
2115 |
have fib: "inj_on f b" |
|
2116 |
apply (rule subset_inj_on [OF "2.prems"(3)]) |
|
49522 | 2117 |
apply blast |
2118 |
done |
|
44133 | 2119 |
from span_breakdown[of a "insert a b", simplified, OF "2.prems"(4)] |
53406 | 2120 |
obtain k where k: "x - k*\<^sub>R a \<in> span (b - {a})" |
2121 |
by blast |
|
44133 | 2122 |
have "f (x - k*\<^sub>R a) \<in> span (f ` b)" |
2123 |
unfolding span_linear_image[OF lf] |
|
2124 |
apply (rule imageI) |
|
53716 | 2125 |
using k span_mono[of "b - {a}" b] |
53406 | 2126 |
apply blast |
49522 | 2127 |
done |
2128 |
then have "f x - k*\<^sub>R f a \<in> span (f ` b)" |
|
44133 | 2129 |
by (simp add: linear_sub[OF lf] linear_cmul[OF lf]) |
49522 | 2130 |
then have th: "-k *\<^sub>R f a \<in> span (f ` b)" |
44133 | 2131 |
using "2.prems"(5) by simp |
53406 | 2132 |
have xsb: "x \<in> span b" |
2133 |
proof (cases "k = 0") |
|
2134 |
case True |
|
53716 | 2135 |
with k have "x \<in> span (b - {a})" by simp |
2136 |
then show ?thesis using span_mono[of "b - {a}" b] |
|
53406 | 2137 |
by blast |
2138 |
next |
|
2139 |
case False |
|
2140 |
with span_mul[OF th, of "- 1/ k"] |
|
44133 | 2141 |
have th1: "f a \<in> span (f ` b)" |
56479
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents:
56444
diff
changeset
|
2142 |
by auto |
44133 | 2143 |
from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric] |
2144 |
have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast |
|
2145 |
from "2.prems"(2) [unfolded dependent_def bex_simps(8), rule_format, of "f a"] |
|
2146 |
have "f a \<notin> span (f ` b)" using tha |
|
2147 |
using "2.hyps"(2) |
|
2148 |
"2.prems"(3) by auto |
|
2149 |
with th1 have False by blast |
|
53406 | 2150 |
then show ?thesis by blast |
2151 |
qed |
|
2152 |
from "2.hyps"(3)[OF fb ifb fib xsb "2.prems"(5)] show "x = 0" . |
|
44133 | 2153 |
qed |
2154 |
||
2155 |
text {* We can extend a linear mapping from basis. *} |
|
2156 |
||
2157 |
lemma linear_independent_extend_lemma: |
|
2158 |
fixes f :: "'a::real_vector \<Rightarrow> 'b::real_vector" |
|
53406 | 2159 |
assumes fi: "finite B" |
2160 |
and ib: "independent B" |
|
2161 |
shows "\<exists>g. |
|
2162 |
(\<forall>x\<in> span B. \<forall>y\<in> span B. g (x + y) = g x + g y) \<and> |
|
2163 |
(\<forall>x\<in> span B. \<forall>c. g (c*\<^sub>R x) = c *\<^sub>R g x) \<and> |
|
2164 |
(\<forall>x\<in> B. g x = f x)" |
|
49663 | 2165 |
using ib fi |
49522 | 2166 |
proof (induct rule: finite_induct[OF fi]) |
49663 | 2167 |
case 1 |
2168 |
then show ?case by auto |
|
44133 | 2169 |
next |
2170 |
case (2 a b) |
|
2171 |
from "2.prems" "2.hyps" have ibf: "independent b" "finite b" |
|
2172 |
by (simp_all add: independent_insert) |
|
2173 |
from "2.hyps"(3)[OF ibf] obtain g where |
|
2174 |
g: "\<forall>x\<in>span b. \<forall>y\<in>span b. g (x + y) = g x + g y" |
|
2175 |
"\<forall>x\<in>span b. \<forall>c. g (c *\<^sub>R x) = c *\<^sub>R g x" "\<forall>x\<in>b. g x = f x" by blast |
|
2176 |
let ?h = "\<lambda>z. SOME k. (z - k *\<^sub>R a) \<in> span b" |
|
53406 | 2177 |
{ |
2178 |
fix z |
|
2179 |
assume z: "z \<in> span (insert a b)" |
|
44133 | 2180 |
have th0: "z - ?h z *\<^sub>R a \<in> span b" |
2181 |
apply (rule someI_ex) |
|
2182 |
unfolding span_breakdown_eq[symmetric] |
|
53406 | 2183 |
apply (rule z) |
2184 |
done |
|
2185 |
{ |
|
2186 |
fix k |
|
2187 |
assume k: "z - k *\<^sub>R a \<in> span b" |
|
44133 | 2188 |
have eq: "z - ?h z *\<^sub>R a - (z - k*\<^sub>R a) = (k - ?h z) *\<^sub>R a" |
2189 |
by (simp add: field_simps scaleR_left_distrib [symmetric]) |
|
53406 | 2190 |
from span_sub[OF th0 k] have khz: "(k - ?h z) *\<^sub>R a \<in> span b" |
2191 |
by (simp add: eq) |
|
2192 |
{ |
|
2193 |
assume "k \<noteq> ?h z" |
|
2194 |
then have k0: "k - ?h z \<noteq> 0" by simp |
|
44133 | 2195 |
from k0 span_mul[OF khz, of "1 /(k - ?h z)"] |
2196 |
have "a \<in> span b" by simp |
|
2197 |
with "2.prems"(1) "2.hyps"(2) have False |
|
53406 | 2198 |
by (auto simp add: dependent_def) |
2199 |
} |
|
2200 |
then have "k = ?h z" by blast |
|
2201 |
} |
|
2202 |
with th0 have "z - ?h z *\<^sub>R a \<in> span b \<and> (\<forall>k. z - k *\<^sub>R a \<in> span b \<longrightarrow> k = ?h z)" |
|
2203 |
by blast |
|
2204 |
} |
|
44133 | 2205 |
note h = this |
2206 |
let ?g = "\<lambda>z. ?h z *\<^sub>R f a + g (z - ?h z *\<^sub>R a)" |
|
53406 | 2207 |
{ |
2208 |
fix x y |
|
2209 |
assume x: "x \<in> span (insert a b)" |
|
2210 |
and y: "y \<in> span (insert a b)" |
|
44133 | 2211 |
have tha: "\<And>(x::'a) y a k l. (x + y) - (k + l) *\<^sub>R a = (x - k *\<^sub>R a) + (y - l *\<^sub>R a)" |
2212 |
by (simp add: algebra_simps) |
|
2213 |
have addh: "?h (x + y) = ?h x + ?h y" |
|
2214 |
apply (rule conjunct2[OF h, rule_format, symmetric]) |
|
2215 |
apply (rule span_add[OF x y]) |
|
2216 |
unfolding tha |
|
53406 | 2217 |
apply (metis span_add x y conjunct1[OF h, rule_format]) |
2218 |
done |
|
44133 | 2219 |
have "?g (x + y) = ?g x + ?g y" |
2220 |
unfolding addh tha |
|
2221 |
g(1)[rule_format,OF conjunct1[OF h, OF x] conjunct1[OF h, OF y]] |
|
2222 |
by (simp add: scaleR_left_distrib)} |
|
2223 |
moreover |
|
53406 | 2224 |
{ |
2225 |
fix x :: "'a" |
|
2226 |
fix c :: real |
|
49522 | 2227 |
assume x: "x \<in> span (insert a b)" |
44133 | 2228 |
have tha: "\<And>(x::'a) c k a. c *\<^sub>R x - (c * k) *\<^sub>R a = c *\<^sub>R (x - k *\<^sub>R a)" |
2229 |
by (simp add: algebra_simps) |
|
2230 |
have hc: "?h (c *\<^sub>R x) = c * ?h x" |
|
2231 |
apply (rule conjunct2[OF h, rule_format, symmetric]) |
|
2232 |
apply (metis span_mul x) |
|
49522 | 2233 |
apply (metis tha span_mul x conjunct1[OF h]) |
2234 |
done |
|
44133 | 2235 |
have "?g (c *\<^sub>R x) = c*\<^sub>R ?g x" |
2236 |
unfolding hc tha g(2)[rule_format, OF conjunct1[OF h, OF x]] |
|
53406 | 2237 |
by (simp add: algebra_simps) |
2238 |
} |
|
44133 | 2239 |
moreover |
53406 | 2240 |
{ |
2241 |
fix x |
|
2242 |
assume x: "x \<in> insert a b" |
|
2243 |
{ |
|
2244 |
assume xa: "x = a" |
|
44133 | 2245 |
have ha1: "1 = ?h a" |
2246 |
apply (rule conjunct2[OF h, rule_format]) |
|
2247 |
apply (metis span_superset insertI1) |
|
2248 |
using conjunct1[OF h, OF span_superset, OF insertI1] |
|
49522 | 2249 |
apply (auto simp add: span_0) |
2250 |
done |
|
44133 | 2251 |
from xa ha1[symmetric] have "?g x = f x" |
2252 |
apply simp |
|
2253 |
using g(2)[rule_format, OF span_0, of 0] |
|
49522 | 2254 |
apply simp |
53406 | 2255 |
done |
2256 |
} |
|
44133 | 2257 |
moreover |
53406 | 2258 |
{ |
2259 |
assume xb: "x \<in> b" |
|
44133 | 2260 |
have h0: "0 = ?h x" |
2261 |
apply (rule conjunct2[OF h, rule_format]) |
|
2262 |
apply (metis span_superset x) |
|
2263 |
apply simp |
|
2264 |
apply (metis span_superset xb) |
|
2265 |
done |
|
2266 |
have "?g x = f x" |
|
53406 | 2267 |
by (simp add: h0[symmetric] g(3)[rule_format, OF xb]) |
2268 |
} |
|
2269 |
ultimately have "?g x = f x" |
|
2270 |
using x by blast |
|
2271 |
} |
|
49663 | 2272 |
ultimately show ?case |
2273 |
apply - |
|
2274 |
apply (rule exI[where x="?g"]) |
|
2275 |
apply blast |
|
2276 |
done |
|
44133 | 2277 |
qed |
2278 |
||
2279 |
lemma linear_independent_extend: |
|
53406 | 2280 |
fixes B :: "'a::euclidean_space set" |
2281 |
assumes iB: "independent B" |
|
44133 | 2282 |
shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)" |
49522 | 2283 |
proof - |
44133 | 2284 |
from maximal_independent_subset_extend[of B UNIV] iB |
53406 | 2285 |
obtain C where C: "B \<subseteq> C" "independent C" "\<And>x. x \<in> span C" |
2286 |
by auto |
|
44133 | 2287 |
|
2288 |
from C(2) independent_bound[of C] linear_independent_extend_lemma[of C f] |
|
53406 | 2289 |
obtain g where g: |
2290 |
"(\<forall>x\<in> span C. \<forall>y\<in> span C. g (x + y) = g x + g y) \<and> |
|
2291 |
(\<forall>x\<in> span C. \<forall>c. g (c*\<^sub>R x) = c *\<^sub>R g x) \<and> |
|
2292 |
(\<forall>x\<in> C. g x = f x)" by blast |
|
2293 |
from g show ?thesis |
|
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
2294 |
unfolding linear_iff |
53406 | 2295 |
using C |
49663 | 2296 |
apply clarsimp |
2297 |
apply blast |
|
2298 |
done |
|
44133 | 2299 |
qed |
2300 |
||
2301 |
text {* Can construct an isomorphism between spaces of same dimension. *} |
|
2302 |
||
2303 |
lemma subspace_isomorphism: |
|
53406 | 2304 |
fixes S :: "'a::euclidean_space set" |
2305 |
and T :: "'b::euclidean_space set" |
|
2306 |
assumes s: "subspace S" |
|
2307 |
and t: "subspace T" |
|
49522 | 2308 |
and d: "dim S = dim T" |
44133 | 2309 |
shows "\<exists>f. linear f \<and> f ` S = T \<and> inj_on f S" |
49522 | 2310 |
proof - |
53406 | 2311 |
from basis_exists[of S] independent_bound |
2312 |
obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" and fB: "finite B" |
|
2313 |
by blast |
|
2314 |
from basis_exists[of T] independent_bound |
|
2315 |
obtain C where C: "C \<subseteq> T" "independent C" "T \<subseteq> span C" "card C = dim T" and fC: "finite C" |
|
2316 |
by blast |
|
2317 |
from B(4) C(4) card_le_inj[of B C] d |
|
2318 |
obtain f where f: "f ` B \<subseteq> C" "inj_on f B" using `finite B` `finite C` |
|
2319 |
by auto |
|
2320 |
from linear_independent_extend[OF B(2)] |
|
2321 |
obtain g where g: "linear g" "\<forall>x\<in> B. g x = f x" |
|
2322 |
by blast |
|
2323 |
from inj_on_iff_eq_card[OF fB, of f] f(2) have "card (f ` B) = card B" |
|
44133 | 2324 |
by simp |
53406 | 2325 |
with B(4) C(4) have ceq: "card (f ` B) = card C" |
2326 |
using d by simp |
|
2327 |
have "g ` B = f ` B" |
|
2328 |
using g(2) by (auto simp add: image_iff) |
|
44133 | 2329 |
also have "\<dots> = C" using card_subset_eq[OF fC f(1) ceq] . |
2330 |
finally have gBC: "g ` B = C" . |
|
53406 | 2331 |
have gi: "inj_on g B" |
2332 |
using f(2) g(2) by (auto simp add: inj_on_def) |
|
44133 | 2333 |
note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi] |
53406 | 2334 |
{ |
2335 |
fix x y |
|
2336 |
assume x: "x \<in> S" and y: "y \<in> S" and gxy: "g x = g y" |
|
2337 |
from B(3) x y have x': "x \<in> span B" and y': "y \<in> span B" |
|
2338 |
by blast+ |
|
2339 |
from gxy have th0: "g (x - y) = 0" |
|
2340 |
by (simp add: linear_sub[OF g(1)]) |
|
2341 |
have th1: "x - y \<in> span B" |
|
2342 |
using x' y' by (metis span_sub) |
|
2343 |
have "x = y" |
|
2344 |
using g0[OF th1 th0] by simp |
|
2345 |
} |
|
44133 | 2346 |
then have giS: "inj_on g S" |
2347 |
unfolding inj_on_def by blast |
|
53406 | 2348 |
from span_subspace[OF B(1,3) s] have "g ` S = span (g ` B)" |
2349 |
by (simp add: span_linear_image[OF g(1)]) |
|
44133 | 2350 |
also have "\<dots> = span C" unfolding gBC .. |
2351 |
also have "\<dots> = T" using span_subspace[OF C(1,3) t] . |
|
2352 |
finally have gS: "g ` S = T" . |
|
53406 | 2353 |
from g(1) gS giS show ?thesis |
2354 |
by blast |
|
44133 | 2355 |
qed |
2356 |
||
2357 |
text {* Linear functions are equal on a subspace if they are on a spanning set. *} |
|
2358 |
||
2359 |
lemma subspace_kernel: |
|
2360 |
assumes lf: "linear f" |
|
2361 |
shows "subspace {x. f x = 0}" |
|
49522 | 2362 |
apply (simp add: subspace_def) |
2363 |
apply (simp add: linear_add[OF lf] linear_cmul[OF lf] linear_0[OF lf]) |
|
2364 |
done |
|
44133 | 2365 |
|
2366 |
lemma linear_eq_0_span: |
|
2367 |
assumes lf: "linear f" and f0: "\<forall>x\<in>B. f x = 0" |
|
2368 |
shows "\<forall>x \<in> span B. f x = 0" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2369 |
using f0 subspace_kernel[OF lf] |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2370 |
by (rule span_induct') |
44133 | 2371 |
|
2372 |
lemma linear_eq_0: |
|
49663 | 2373 |
assumes lf: "linear f" |
2374 |
and SB: "S \<subseteq> span B" |
|
2375 |
and f0: "\<forall>x\<in>B. f x = 0" |
|
44133 | 2376 |
shows "\<forall>x \<in> S. f x = 0" |
2377 |
by (metis linear_eq_0_span[OF lf] subset_eq SB f0) |
|
2378 |
||
2379 |
lemma linear_eq: |
|
49663 | 2380 |
assumes lf: "linear f" |
2381 |
and lg: "linear g" |
|
2382 |
and S: "S \<subseteq> span B" |
|
49522 | 2383 |
and fg: "\<forall> x\<in> B. f x = g x" |
44133 | 2384 |
shows "\<forall>x\<in> S. f x = g x" |
49663 | 2385 |
proof - |
44133 | 2386 |
let ?h = "\<lambda>x. f x - g x" |
2387 |
from fg have fg': "\<forall>x\<in> B. ?h x = 0" by simp |
|
2388 |
from linear_eq_0[OF linear_compose_sub[OF lf lg] S fg'] |
|
2389 |
show ?thesis by simp |
|
2390 |
qed |
|
2391 |
||
2392 |
lemma linear_eq_stdbasis: |
|
56444 | 2393 |
fixes f :: "'a::euclidean_space \<Rightarrow> _" |
2394 |
assumes lf: "linear f" |
|
49663 | 2395 |
and lg: "linear g" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2396 |
and fg: "\<forall>b\<in>Basis. f b = g b" |
44133 | 2397 |
shows "f = g" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2398 |
using linear_eq[OF lf lg, of _ Basis] fg by auto |
44133 | 2399 |
|
2400 |
text {* Similar results for bilinear functions. *} |
|
2401 |
||
2402 |
lemma bilinear_eq: |
|
2403 |
assumes bf: "bilinear f" |
|
49522 | 2404 |
and bg: "bilinear g" |
53406 | 2405 |
and SB: "S \<subseteq> span B" |
2406 |
and TC: "T \<subseteq> span C" |
|
49522 | 2407 |
and fg: "\<forall>x\<in> B. \<forall>y\<in> C. f x y = g x y" |
44133 | 2408 |
shows "\<forall>x\<in>S. \<forall>y\<in>T. f x y = g x y " |
49663 | 2409 |
proof - |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2410 |
let ?P = "{x. \<forall>y\<in> span C. f x y = g x y}" |
44133 | 2411 |
from bf bg have sp: "subspace ?P" |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
2412 |
unfolding bilinear_def linear_iff subspace_def bf bg |
49663 | 2413 |
by (auto simp add: span_0 bilinear_lzero[OF bf] bilinear_lzero[OF bg] span_add Ball_def |
2414 |
intro: bilinear_ladd[OF bf]) |
|
44133 | 2415 |
|
2416 |
have "\<forall>x \<in> span B. \<forall>y\<in> span C. f x y = g x y" |
|
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2417 |
apply (rule span_induct' [OF _ sp]) |
44133 | 2418 |
apply (rule ballI) |
44170
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2419 |
apply (rule span_induct') |
510ac30f44c0
make Multivariate_Analysis work with separate set type
huffman
parents:
44166
diff
changeset
|
2420 |
apply (simp add: fg) |
44133 | 2421 |
apply (auto simp add: subspace_def) |
53600
8fda7ad57466
make 'linear' into a sublocale of 'bounded_linear';
huffman
parents:
53596
diff
changeset
|
2422 |
using bf bg unfolding bilinear_def linear_iff |
49522 | 2423 |
apply (auto simp add: span_0 bilinear_rzero[OF bf] bilinear_rzero[OF bg] span_add Ball_def |
49663 | 2424 |
intro: bilinear_ladd[OF bf]) |
49522 | 2425 |
done |
53406 | 2426 |
then show ?thesis |
2427 |
using SB TC by auto |
|
44133 | 2428 |
qed |
2429 |
||
49522 | 2430 |
lemma bilinear_eq_stdbasis: |
53406 | 2431 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> _" |
44133 | 2432 |
assumes bf: "bilinear f" |
49522 | 2433 |
and bg: "bilinear g" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2434 |
and fg: "\<forall>i\<in>Basis. \<forall>j\<in>Basis. f i j = g i j" |
44133 | 2435 |
shows "f = g" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2436 |
using bilinear_eq[OF bf bg equalityD2[OF span_Basis] equalityD2[OF span_Basis] fg] by blast |
44133 | 2437 |
|
2438 |
text {* Detailed theorems about left and right invertibility in general case. *} |
|
2439 |
||
49522 | 2440 |
lemma linear_injective_left_inverse: |
56444 | 2441 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
2442 |
assumes lf: "linear f" |
|
2443 |
and fi: "inj f" |
|
2444 |
shows "\<exists>g. linear g \<and> g \<circ> f = id" |
|
49522 | 2445 |
proof - |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2446 |
from linear_independent_extend[OF independent_injective_image, OF independent_Basis, OF lf fi] |
56444 | 2447 |
obtain h :: "'b \<Rightarrow> 'a" where h: "linear h" "\<forall>x \<in> f ` Basis. h x = inv f x" |
53406 | 2448 |
by blast |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2449 |
from h(2) have th: "\<forall>i\<in>Basis. (h \<circ> f) i = id i" |
44133 | 2450 |
using inv_o_cancel[OF fi, unfolded fun_eq_iff id_def o_def] |
2451 |
by auto |
|
2452 |
from linear_eq_stdbasis[OF linear_compose[OF lf h(1)] linear_id th] |
|
56444 | 2453 |
have "h \<circ> f = id" . |
53406 | 2454 |
then show ?thesis |
2455 |
using h(1) by blast |
|
44133 | 2456 |
qed |
2457 |
||
49522 | 2458 |
lemma linear_surjective_right_inverse: |
53406 | 2459 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space" |
2460 |
assumes lf: "linear f" |
|
2461 |
and sf: "surj f" |
|
56444 | 2462 |
shows "\<exists>g. linear g \<and> f \<circ> g = id" |
49522 | 2463 |
proof - |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2464 |
from linear_independent_extend[OF independent_Basis[where 'a='b],of "inv f"] |
56444 | 2465 |
obtain h :: "'b \<Rightarrow> 'a" where h: "linear h" "\<forall>x\<in>Basis. h x = inv f x" |
53406 | 2466 |
by blast |
56444 | 2467 |
from h(2) have th: "\<forall>i\<in>Basis. (f \<circ> h) i = id i" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2468 |
using sf by (auto simp add: surj_iff_all) |
44133 | 2469 |
from linear_eq_stdbasis[OF linear_compose[OF h(1) lf] linear_id th] |
56444 | 2470 |
have "f \<circ> h = id" . |
53406 | 2471 |
then show ?thesis |
2472 |
using h(1) by blast |
|
44133 | 2473 |
qed |
2474 |
||
2475 |
text {* An injective map @{typ "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"} is also surjective. *} |
|
2476 |
||
49522 | 2477 |
lemma linear_injective_imp_surjective: |
56444 | 2478 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" |
53406 | 2479 |
assumes lf: "linear f" |
2480 |
and fi: "inj f" |
|
44133 | 2481 |
shows "surj f" |
49522 | 2482 |
proof - |
44133 | 2483 |
let ?U = "UNIV :: 'a set" |
2484 |
from basis_exists[of ?U] obtain B |
|
2485 |
where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" "card B = dim ?U" |
|
2486 |
by blast |
|
53406 | 2487 |
from B(4) have d: "dim ?U = card B" |
2488 |
by simp |
|
44133 | 2489 |
have th: "?U \<subseteq> span (f ` B)" |
2490 |
apply (rule card_ge_dim_independent) |
|
2491 |
apply blast |
|
2492 |
apply (rule independent_injective_image[OF B(2) lf fi]) |
|
2493 |
apply (rule order_eq_refl) |
|
2494 |
apply (rule sym) |
|
2495 |
unfolding d |
|
2496 |
apply (rule card_image) |
|
2497 |
apply (rule subset_inj_on[OF fi]) |
|
49522 | 2498 |
apply blast |
2499 |
done |
|
44133 | 2500 |
from th show ?thesis |
2501 |
unfolding span_linear_image[OF lf] surj_def |
|
2502 |
using B(3) by blast |
|
2503 |
qed |
|
2504 |
||
2505 |
text {* And vice versa. *} |
|
2506 |
||
2507 |
lemma surjective_iff_injective_gen: |
|
49663 | 2508 |
assumes fS: "finite S" |
2509 |
and fT: "finite T" |
|
2510 |
and c: "card S = card T" |
|
49522 | 2511 |
and ST: "f ` S \<subseteq> T" |
53406 | 2512 |
shows "(\<forall>y \<in> T. \<exists>x \<in> S. f x = y) \<longleftrightarrow> inj_on f S" |
2513 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
2514 |
proof |
|
2515 |
assume h: "?lhs" |
|
2516 |
{ |
|
2517 |
fix x y |
|
2518 |
assume x: "x \<in> S" |
|
2519 |
assume y: "y \<in> S" |
|
2520 |
assume f: "f x = f y" |
|
2521 |
from x fS have S0: "card S \<noteq> 0" |
|
2522 |
by auto |
|
2523 |
have "x = y" |
|
2524 |
proof (rule ccontr) |
|
53716 | 2525 |
assume xy: "\<not> ?thesis" |
53406 | 2526 |
have th: "card S \<le> card (f ` (S - {y}))" |
2527 |
unfolding c |
|
2528 |
apply (rule card_mono) |
|
2529 |
apply (rule finite_imageI) |
|
2530 |
using fS apply simp |
|
2531 |
using h xy x y f unfolding subset_eq image_iff |
|
2532 |
apply auto |
|
2533 |
apply (case_tac "xa = f x") |
|
2534 |
apply (rule bexI[where x=x]) |
|
2535 |
apply auto |
|
2536 |
done |
|
53716 | 2537 |
also have " \<dots> \<le> card (S - {y})" |
53406 | 2538 |
apply (rule card_image_le) |
2539 |
using fS by simp |
|
2540 |
also have "\<dots> \<le> card S - 1" using y fS by simp |
|
2541 |
finally show False using S0 by arith |
|
2542 |
qed |
|
2543 |
} |
|
2544 |
then show ?rhs |
|
2545 |
unfolding inj_on_def by blast |
|
2546 |
next |
|
2547 |
assume h: ?rhs |
|
2548 |
have "f ` S = T" |
|
2549 |
apply (rule card_subset_eq[OF fT ST]) |
|
2550 |
unfolding card_image[OF h] |
|
2551 |
apply (rule c) |
|
2552 |
done |
|
2553 |
then show ?lhs by blast |
|
44133 | 2554 |
qed |
2555 |
||
49522 | 2556 |
lemma linear_surjective_imp_injective: |
53406 | 2557 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" |
2558 |
assumes lf: "linear f" |
|
2559 |
and sf: "surj f" |
|
44133 | 2560 |
shows "inj f" |
49522 | 2561 |
proof - |
44133 | 2562 |
let ?U = "UNIV :: 'a set" |
2563 |
from basis_exists[of ?U] obtain B |
|
2564 |
where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" and d: "card B = dim ?U" |
|
2565 |
by blast |
|
53406 | 2566 |
{ |
2567 |
fix x |
|
2568 |
assume x: "x \<in> span B" |
|
2569 |
assume fx: "f x = 0" |
|
2570 |
from B(2) have fB: "finite B" |
|
2571 |
using independent_bound by auto |
|
44133 | 2572 |
have fBi: "independent (f ` B)" |
2573 |
apply (rule card_le_dim_spanning[of "f ` B" ?U]) |
|
2574 |
apply blast |
|
2575 |
using sf B(3) |
|
2576 |
unfolding span_linear_image[OF lf] surj_def subset_eq image_iff |
|
2577 |
apply blast |
|
2578 |
using fB apply blast |
|
2579 |
unfolding d[symmetric] |
|
2580 |
apply (rule card_image_le) |
|
2581 |
apply (rule fB) |
|
2582 |
done |
|
2583 |
have th0: "dim ?U \<le> card (f ` B)" |
|
2584 |
apply (rule span_card_ge_dim) |
|
2585 |
apply blast |
|
2586 |
unfolding span_linear_image[OF lf] |
|
2587 |
apply (rule subset_trans[where B = "f ` UNIV"]) |
|
53406 | 2588 |
using sf unfolding surj_def |
2589 |
apply blast |
|
44133 | 2590 |
apply (rule image_mono) |
2591 |
apply (rule B(3)) |
|
2592 |
apply (metis finite_imageI fB) |
|
2593 |
done |
|
2594 |
moreover have "card (f ` B) \<le> card B" |
|
2595 |
by (rule card_image_le, rule fB) |
|
53406 | 2596 |
ultimately have th1: "card B = card (f ` B)" |
2597 |
unfolding d by arith |
|
44133 | 2598 |
have fiB: "inj_on f B" |
49522 | 2599 |
unfolding surjective_iff_injective_gen[OF fB finite_imageI[OF fB] th1 subset_refl, symmetric] |
2600 |
by blast |
|
44133 | 2601 |
from linear_indep_image_lemma[OF lf fB fBi fiB x] fx |
53406 | 2602 |
have "x = 0" by blast |
2603 |
} |
|
2604 |
then show ?thesis |
|
2605 |
unfolding linear_injective_0[OF lf] |
|
2606 |
using B(3) |
|
2607 |
by blast |
|
44133 | 2608 |
qed |
2609 |
||
2610 |
text {* Hence either is enough for isomorphism. *} |
|
2611 |
||
2612 |
lemma left_right_inverse_eq: |
|
53406 | 2613 |
assumes fg: "f \<circ> g = id" |
2614 |
and gh: "g \<circ> h = id" |
|
44133 | 2615 |
shows "f = h" |
49522 | 2616 |
proof - |
53406 | 2617 |
have "f = f \<circ> (g \<circ> h)" |
2618 |
unfolding gh by simp |
|
2619 |
also have "\<dots> = (f \<circ> g) \<circ> h" |
|
2620 |
by (simp add: o_assoc) |
|
2621 |
finally show "f = h" |
|
2622 |
unfolding fg by simp |
|
44133 | 2623 |
qed |
2624 |
||
2625 |
lemma isomorphism_expand: |
|
53406 | 2626 |
"f \<circ> g = id \<and> g \<circ> f = id \<longleftrightarrow> (\<forall>x. f (g x) = x) \<and> (\<forall>x. g (f x) = x)" |
44133 | 2627 |
by (simp add: fun_eq_iff o_def id_def) |
2628 |
||
49522 | 2629 |
lemma linear_injective_isomorphism: |
56444 | 2630 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" |
53406 | 2631 |
assumes lf: "linear f" |
2632 |
and fi: "inj f" |
|
44133 | 2633 |
shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)" |
49522 | 2634 |
unfolding isomorphism_expand[symmetric] |
2635 |
using linear_surjective_right_inverse[OF lf linear_injective_imp_surjective[OF lf fi]] |
|
2636 |
linear_injective_left_inverse[OF lf fi] |
|
2637 |
by (metis left_right_inverse_eq) |
|
44133 | 2638 |
|
53406 | 2639 |
lemma linear_surjective_isomorphism: |
2640 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" |
|
2641 |
assumes lf: "linear f" |
|
2642 |
and sf: "surj f" |
|
44133 | 2643 |
shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)" |
49522 | 2644 |
unfolding isomorphism_expand[symmetric] |
2645 |
using linear_surjective_right_inverse[OF lf sf] |
|
2646 |
linear_injective_left_inverse[OF lf linear_surjective_imp_injective[OF lf sf]] |
|
2647 |
by (metis left_right_inverse_eq) |
|
44133 | 2648 |
|
53406 | 2649 |
text {* Left and right inverses are the same for |
2650 |
@{typ "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"}. *} |
|
44133 | 2651 |
|
49522 | 2652 |
lemma linear_inverse_left: |
53406 | 2653 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" |
2654 |
assumes lf: "linear f" |
|
2655 |
and lf': "linear f'" |
|
2656 |
shows "f \<circ> f' = id \<longleftrightarrow> f' \<circ> f = id" |
|
49522 | 2657 |
proof - |
53406 | 2658 |
{ |
2659 |
fix f f':: "'a \<Rightarrow> 'a" |
|
2660 |
assume lf: "linear f" "linear f'" |
|
2661 |
assume f: "f \<circ> f' = id" |
|
44133 | 2662 |
from f have sf: "surj f" |
2663 |
apply (auto simp add: o_def id_def surj_def) |
|
49522 | 2664 |
apply metis |
2665 |
done |
|
44133 | 2666 |
from linear_surjective_isomorphism[OF lf(1) sf] lf f |
53406 | 2667 |
have "f' \<circ> f = id" |
2668 |
unfolding fun_eq_iff o_def id_def by metis |
|
2669 |
} |
|
2670 |
then show ?thesis |
|
2671 |
using lf lf' by metis |
|
44133 | 2672 |
qed |
2673 |
||
2674 |
text {* Moreover, a one-sided inverse is automatically linear. *} |
|
2675 |
||
49522 | 2676 |
lemma left_inverse_linear: |
53406 | 2677 |
fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space" |
2678 |
assumes lf: "linear f" |
|
2679 |
and gf: "g \<circ> f = id" |
|
44133 | 2680 |
shows "linear g" |
49522 | 2681 |
proof - |
2682 |
from gf have fi: "inj f" |
|
2683 |
apply (auto simp add: inj_on_def o_def id_def fun_eq_iff) |
|
2684 |
apply metis |
|
2685 |
done |
|
44133 | 2686 |
from linear_injective_isomorphism[OF lf fi] |
53406 | 2687 |
obtain h :: "'a \<Rightarrow> 'a" where h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x" |
2688 |
by blast |
|
49522 | 2689 |
have "h = g" |
2690 |
apply (rule ext) using gf h(2,3) |
|
44133 | 2691 |
apply (simp add: o_def id_def fun_eq_iff) |
49522 | 2692 |
apply metis |
2693 |
done |
|
44133 | 2694 |
with h(1) show ?thesis by blast |
2695 |
qed |
|
2696 |
||
49522 | 2697 |
|
44133 | 2698 |
subsection {* Infinity norm *} |
2699 |
||
56444 | 2700 |
definition "infnorm (x::'a::euclidean_space) = Sup {\<bar>x \<bullet> b\<bar> |b. b \<in> Basis}" |
44133 | 2701 |
|
2702 |
lemma infnorm_set_image: |
|
53716 | 2703 |
fixes x :: "'a::euclidean_space" |
56444 | 2704 |
shows "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} = (\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis" |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2705 |
by blast |
44133 | 2706 |
|
53716 | 2707 |
lemma infnorm_Max: |
2708 |
fixes x :: "'a::euclidean_space" |
|
56444 | 2709 |
shows "infnorm x = Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis)" |
56166 | 2710 |
by (simp add: infnorm_def infnorm_set_image cSup_eq_Max del: Sup_image_eq) |
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2711 |
|
44133 | 2712 |
lemma infnorm_set_lemma: |
53716 | 2713 |
fixes x :: "'a::euclidean_space" |
56444 | 2714 |
shows "finite {\<bar>x \<bullet> i\<bar> |i. i \<in> Basis}" |
2715 |
and "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} \<noteq> {}" |
|
44133 | 2716 |
unfolding infnorm_set_image |
2717 |
by auto |
|
2718 |
||
53406 | 2719 |
lemma infnorm_pos_le: |
2720 |
fixes x :: "'a::euclidean_space" |
|
2721 |
shows "0 \<le> infnorm x" |
|
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2722 |
by (simp add: infnorm_Max Max_ge_iff ex_in_conv) |
44133 | 2723 |
|
53406 | 2724 |
lemma infnorm_triangle: |
2725 |
fixes x :: "'a::euclidean_space" |
|
2726 |
shows "infnorm (x + y) \<le> infnorm x + infnorm y" |
|
49522 | 2727 |
proof - |
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2728 |
have *: "\<And>a b c d :: real. \<bar>a\<bar> \<le> c \<Longrightarrow> \<bar>b\<bar> \<le> d \<Longrightarrow> \<bar>a + b\<bar> \<le> c + d" |
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2729 |
by simp |
44133 | 2730 |
show ?thesis |
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2731 |
by (auto simp: infnorm_Max inner_add_left intro!: *) |
44133 | 2732 |
qed |
2733 |
||
53406 | 2734 |
lemma infnorm_eq_0: |
2735 |
fixes x :: "'a::euclidean_space" |
|
2736 |
shows "infnorm x = 0 \<longleftrightarrow> x = 0" |
|
49522 | 2737 |
proof - |
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2738 |
have "infnorm x \<le> 0 \<longleftrightarrow> x = 0" |
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2739 |
unfolding infnorm_Max by (simp add: euclidean_all_zero_iff) |
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2740 |
then show ?thesis |
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2741 |
using infnorm_pos_le[of x] by simp |
44133 | 2742 |
qed |
2743 |
||
2744 |
lemma infnorm_0: "infnorm 0 = 0" |
|
2745 |
by (simp add: infnorm_eq_0) |
|
2746 |
||
2747 |
lemma infnorm_neg: "infnorm (- x) = infnorm x" |
|
2748 |
unfolding infnorm_def |
|
2749 |
apply (rule cong[of "Sup" "Sup"]) |
|
49522 | 2750 |
apply blast |
2751 |
apply auto |
|
2752 |
done |
|
44133 | 2753 |
|
2754 |
lemma infnorm_sub: "infnorm (x - y) = infnorm (y - x)" |
|
49522 | 2755 |
proof - |
44133 | 2756 |
have "y - x = - (x - y)" by simp |
53406 | 2757 |
then show ?thesis |
2758 |
by (metis infnorm_neg) |
|
44133 | 2759 |
qed |
2760 |
||
53406 | 2761 |
lemma real_abs_sub_infnorm: "\<bar>infnorm x - infnorm y\<bar> \<le> infnorm (x - y)" |
49522 | 2762 |
proof - |
56444 | 2763 |
have th: "\<And>(nx::real) n ny. nx \<le> n + ny \<Longrightarrow> ny \<le> n + nx \<Longrightarrow> \<bar>nx - ny\<bar> \<le> n" |
44133 | 2764 |
by arith |
2765 |
from infnorm_triangle[of "x - y" " y"] infnorm_triangle[of "x - y" "-x"] |
|
2766 |
have ths: "infnorm x \<le> infnorm (x - y) + infnorm y" |
|
2767 |
"infnorm y \<le> infnorm (x - y) + infnorm x" |
|
44454 | 2768 |
by (simp_all add: field_simps infnorm_neg) |
53406 | 2769 |
from th[OF ths] show ?thesis . |
44133 | 2770 |
qed |
2771 |
||
53406 | 2772 |
lemma real_abs_infnorm: "\<bar>infnorm x\<bar> = infnorm x" |
44133 | 2773 |
using infnorm_pos_le[of x] by arith |
2774 |
||
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2775 |
lemma Basis_le_infnorm: |
53406 | 2776 |
fixes x :: "'a::euclidean_space" |
2777 |
shows "b \<in> Basis \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> infnorm x" |
|
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2778 |
by (simp add: infnorm_Max) |
44133 | 2779 |
|
56444 | 2780 |
lemma infnorm_mul: "infnorm (a *\<^sub>R x) = \<bar>a\<bar> * infnorm x" |
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2781 |
unfolding infnorm_Max |
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2782 |
proof (safe intro!: Max_eqI) |
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2783 |
let ?B = "(\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis" |
53406 | 2784 |
{ |
2785 |
fix b :: 'a |
|
2786 |
assume "b \<in> Basis" |
|
2787 |
then show "\<bar>a *\<^sub>R x \<bullet> b\<bar> \<le> \<bar>a\<bar> * Max ?B" |
|
2788 |
by (simp add: abs_mult mult_left_mono) |
|
2789 |
next |
|
2790 |
from Max_in[of ?B] obtain b where "b \<in> Basis" "Max ?B = \<bar>x \<bullet> b\<bar>" |
|
2791 |
by (auto simp del: Max_in) |
|
2792 |
then show "\<bar>a\<bar> * Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis) \<in> (\<lambda>i. \<bar>a *\<^sub>R x \<bullet> i\<bar>) ` Basis" |
|
2793 |
by (intro image_eqI[where x=b]) (auto simp: abs_mult) |
|
2794 |
} |
|
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2795 |
qed simp |
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2796 |
|
53406 | 2797 |
lemma infnorm_mul_lemma: "infnorm (a *\<^sub>R x) \<le> \<bar>a\<bar> * infnorm x" |
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2798 |
unfolding infnorm_mul .. |
44133 | 2799 |
|
2800 |
lemma infnorm_pos_lt: "infnorm x > 0 \<longleftrightarrow> x \<noteq> 0" |
|
2801 |
using infnorm_pos_le[of x] infnorm_eq_0[of x] by arith |
|
2802 |
||
2803 |
text {* Prove that it differs only up to a bound from Euclidean norm. *} |
|
2804 |
||
2805 |
lemma infnorm_le_norm: "infnorm x \<le> norm x" |
|
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2806 |
by (simp add: Basis_le_norm infnorm_Max) |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2807 |
|
54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
54703
diff
changeset
|
2808 |
lemma (in euclidean_space) euclidean_inner: "inner x y = (\<Sum>b\<in>Basis. (x \<bullet> b) * (y \<bullet> b))" |
57418 | 2809 |
by (subst (1 2) euclidean_representation [symmetric]) |
2810 |
(simp add: inner_setsum_right inner_Basis ac_simps) |
|
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2811 |
|
53716 | 2812 |
lemma norm_le_infnorm: |
2813 |
fixes x :: "'a::euclidean_space" |
|
2814 |
shows "norm x \<le> sqrt DIM('a) * infnorm x" |
|
49522 | 2815 |
proof - |
44133 | 2816 |
let ?d = "DIM('a)" |
53406 | 2817 |
have "real ?d \<ge> 0" |
2818 |
by simp |
|
53077 | 2819 |
then have d2: "(sqrt (real ?d))\<^sup>2 = real ?d" |
44133 | 2820 |
by (auto intro: real_sqrt_pow2) |
2821 |
have th: "sqrt (real ?d) * infnorm x \<ge> 0" |
|
2822 |
by (simp add: zero_le_mult_iff infnorm_pos_le) |
|
53077 | 2823 |
have th1: "x \<bullet> x \<le> (sqrt (real ?d) * infnorm x)\<^sup>2" |
44133 | 2824 |
unfolding power_mult_distrib d2 |
50526
899c9c4e4a4c
Remove the indexed basis from the definition of euclidean spaces and only use the set of Basis vectors
hoelzl
parents:
50105
diff
changeset
|
2825 |
unfolding real_of_nat_def |
53716 | 2826 |
apply (subst euclidean_inner) |
44133 | 2827 |
apply (subst power2_abs[symmetric]) |
53015
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
wenzelm
parents:
51478
diff
changeset
|
2828 |
apply (rule order_trans[OF setsum_bounded[where K="\<bar>infnorm x\<bar>\<^sup>2"]]) |
49663 | 2829 |
apply (auto simp add: power2_eq_square[symmetric]) |
44133 | 2830 |
apply (subst power2_abs[symmetric]) |
2831 |
apply (rule power_mono) |
|
51475
ebf9d4fd00ba
introduct the conditional_complete_lattice type class; generalize theorems about real Sup and Inf to it
hoelzl
parents:
50526
diff
changeset
|
2832 |
apply (auto simp: infnorm_Max) |
49522 | 2833 |
done |
44133 | 2834 |
from real_le_lsqrt[OF inner_ge_zero th th1] |
53406 | 2835 |
show ?thesis |
2836 |
unfolding norm_eq_sqrt_inner id_def . |
|
44133 | 2837 |
qed |
2838 |
||
44646 | 2839 |
lemma tendsto_infnorm [tendsto_intros]: |
49522 | 2840 |
assumes "(f ---> a) F" |
2841 |
shows "((\<lambda>x. infnorm (f x)) ---> infnorm a) F" |
|
44646 | 2842 |
proof (rule tendsto_compose [OF LIM_I assms]) |
53406 | 2843 |
fix r :: real |
2844 |
assume "r > 0" |
|
49522 | 2845 |
then show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (infnorm x - infnorm a) < r" |
44646 | 2846 |
by (metis real_norm_def le_less_trans real_abs_sub_infnorm infnorm_le_norm) |
2847 |
qed |
|
2848 |
||
44133 | 2849 |
text {* Equality in Cauchy-Schwarz and triangle inequalities. *} |
2850 |
||
53406 | 2851 |
lemma norm_cauchy_schwarz_eq: "x \<bullet> y = norm x * norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" |
2852 |
(is "?lhs \<longleftrightarrow> ?rhs") |
|
49522 | 2853 |
proof - |
53406 | 2854 |
{ |
2855 |
assume h: "x = 0" |
|
2856 |
then have ?thesis by simp |
|
2857 |
} |
|
44133 | 2858 |
moreover |
53406 | 2859 |
{ |
2860 |
assume h: "y = 0" |
|
2861 |
then have ?thesis by simp |
|
2862 |
} |
|
44133 | 2863 |
moreover |
53406 | 2864 |
{ |
2865 |
assume x: "x \<noteq> 0" and y: "y \<noteq> 0" |
|
44133 | 2866 |
from inner_eq_zero_iff[of "norm y *\<^sub>R x - norm x *\<^sub>R y"] |
49522 | 2867 |
have "?rhs \<longleftrightarrow> |
2868 |
(norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) - |
|
2869 |
norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) = 0)" |
|
44133 | 2870 |
using x y |
2871 |
unfolding inner_simps |
|
54230
b1d955791529
more simplification rules on unary and binary minus
haftmann
parents:
53939
diff
changeset
|
2872 |
unfolding power2_norm_eq_inner[symmetric] power2_eq_square right_minus_eq |
49522 | 2873 |
apply (simp add: inner_commute) |
2874 |
apply (simp add: field_simps) |
|
2875 |
apply metis |
|
2876 |
done |
|
44133 | 2877 |
also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y |
2878 |
by (simp add: field_simps inner_commute) |
|
2879 |
also have "\<dots> \<longleftrightarrow> ?lhs" using x y |
|
2880 |
apply simp |
|
49522 | 2881 |
apply metis |
2882 |
done |
|
53406 | 2883 |
finally have ?thesis by blast |
2884 |
} |
|
44133 | 2885 |
ultimately show ?thesis by blast |
2886 |
qed |
|
2887 |
||
2888 |
lemma norm_cauchy_schwarz_abs_eq: |
|
56444 | 2889 |
"\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow> |
53716 | 2890 |
norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm x *\<^sub>R y = - norm y *\<^sub>R x" |
53406 | 2891 |
(is "?lhs \<longleftrightarrow> ?rhs") |
49522 | 2892 |
proof - |
56444 | 2893 |
have th: "\<And>(x::real) a. a \<ge> 0 \<Longrightarrow> \<bar>x\<bar> = a \<longleftrightarrow> x = a \<or> x = - a" |
53406 | 2894 |
by arith |
44133 | 2895 |
have "?rhs \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm (- x) *\<^sub>R y = norm y *\<^sub>R (- x)" |
2896 |
by simp |
|
53406 | 2897 |
also have "\<dots> \<longleftrightarrow>(x \<bullet> y = norm x * norm y \<or> (- x) \<bullet> y = norm x * norm y)" |
44133 | 2898 |
unfolding norm_cauchy_schwarz_eq[symmetric] |
2899 |
unfolding norm_minus_cancel norm_scaleR .. |
|
2900 |
also have "\<dots> \<longleftrightarrow> ?lhs" |
|
53406 | 2901 |
unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps |
2902 |
by auto |
|
44133 | 2903 |
finally show ?thesis .. |
2904 |
qed |
|
2905 |
||
2906 |
lemma norm_triangle_eq: |
|
2907 |
fixes x y :: "'a::real_inner" |
|
53406 | 2908 |
shows "norm (x + y) = norm x + norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" |
49522 | 2909 |
proof - |
53406 | 2910 |
{ |
2911 |
assume x: "x = 0 \<or> y = 0" |
|
2912 |
then have ?thesis |
|
2913 |
by (cases "x = 0") simp_all |
|
2914 |
} |
|
44133 | 2915 |
moreover |
53406 | 2916 |
{ |
2917 |
assume x: "x \<noteq> 0" and y: "y \<noteq> 0" |
|
49522 | 2918 |
then have "norm x \<noteq> 0" "norm y \<noteq> 0" |
44133 | 2919 |
by simp_all |
49522 | 2920 |
then have n: "norm x > 0" "norm y > 0" |
2921 |
using norm_ge_zero[of x] norm_ge_zero[of y] by arith+ |
|
53406 | 2922 |
have th: "\<And>(a::real) b c. a + b + c \<noteq> 0 \<Longrightarrow> a = b + c \<longleftrightarrow> a\<^sup>2 = (b + c)\<^sup>2" |
49522 | 2923 |
by algebra |
53077 | 2924 |
have "norm (x + y) = norm x + norm y \<longleftrightarrow> (norm (x + y))\<^sup>2 = (norm x + norm y)\<^sup>2" |
53406 | 2925 |
apply (rule th) |
2926 |
using n norm_ge_zero[of "x + y"] |
|
49522 | 2927 |
apply arith |
2928 |
done |
|
44133 | 2929 |
also have "\<dots> \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x" |
2930 |
unfolding norm_cauchy_schwarz_eq[symmetric] |
|
2931 |
unfolding power2_norm_eq_inner inner_simps |
|
2932 |
by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute field_simps) |
|
53406 | 2933 |
finally have ?thesis . |
2934 |
} |
|
44133 | 2935 |
ultimately show ?thesis by blast |
2936 |
qed |
|
2937 |
||
49522 | 2938 |
|
44133 | 2939 |
subsection {* Collinearity *} |
2940 |
||
49522 | 2941 |
definition collinear :: "'a::real_vector set \<Rightarrow> bool" |
2942 |
where "collinear S \<longleftrightarrow> (\<exists>u. \<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u)" |
|
44133 | 2943 |
|
53406 | 2944 |
lemma collinear_empty: "collinear {}" |
2945 |
by (simp add: collinear_def) |
|
44133 | 2946 |
|
2947 |
lemma collinear_sing: "collinear {x}" |
|
2948 |
by (simp add: collinear_def) |
|
2949 |
||
2950 |
lemma collinear_2: "collinear {x, y}" |
|
2951 |
apply (simp add: collinear_def) |
|
2952 |
apply (rule exI[where x="x - y"]) |
|
2953 |
apply auto |
|
2954 |
apply (rule exI[where x=1], simp) |
|
2955 |
apply (rule exI[where x="- 1"], simp) |
|
2956 |
done |
|
2957 |
||
56444 | 2958 |
lemma collinear_lemma: "collinear {0, x, y} \<longleftrightarrow> x = 0 \<or> y = 0 \<or> (\<exists>c. y = c *\<^sub>R x)" |
53406 | 2959 |
(is "?lhs \<longleftrightarrow> ?rhs") |
49522 | 2960 |
proof - |
53406 | 2961 |
{ |
2962 |
assume "x = 0 \<or> y = 0" |
|
2963 |
then have ?thesis |
|
2964 |
by (cases "x = 0") (simp_all add: collinear_2 insert_commute) |
|
2965 |
} |
|
44133 | 2966 |
moreover |
53406 | 2967 |
{ |
2968 |
assume x: "x \<noteq> 0" and y: "y \<noteq> 0" |
|
2969 |
have ?thesis |
|
2970 |
proof |
|
2971 |
assume h: "?lhs" |
|
49522 | 2972 |
then obtain u where u: "\<forall> x\<in> {0,x,y}. \<forall>y\<in> {0,x,y}. \<exists>c. x - y = c *\<^sub>R u" |
2973 |
unfolding collinear_def by blast |
|
44133 | 2974 |
from u[rule_format, of x 0] u[rule_format, of y 0] |
2975 |
obtain cx and cy where |
|
2976 |
cx: "x = cx *\<^sub>R u" and cy: "y = cy *\<^sub>R u" |
|
2977 |
by auto |
|
2978 |
from cx x have cx0: "cx \<noteq> 0" by auto |
|
2979 |
from cy y have cy0: "cy \<noteq> 0" by auto |
|
2980 |
let ?d = "cy / cx" |
|
2981 |
from cx cy cx0 have "y = ?d *\<^sub>R x" |
|
2982 |
by simp |
|
53406 | 2983 |
then show ?rhs using x y by blast |
2984 |
next |
|
2985 |
assume h: "?rhs" |
|
2986 |
then obtain c where c: "y = c *\<^sub>R x" |
|
2987 |
using x y by blast |
|
2988 |
show ?lhs |
|
2989 |
unfolding collinear_def c |
|
44133 | 2990 |
apply (rule exI[where x=x]) |
2991 |
apply auto |
|
2992 |
apply (rule exI[where x="- 1"], simp) |
|
2993 |
apply (rule exI[where x= "-c"], simp) |
|
2994 |
apply (rule exI[where x=1], simp) |
|
2995 |
apply (rule exI[where x="1 - c"], simp add: scaleR_left_diff_distrib) |
|
2996 |
apply (rule exI[where x="c - 1"], simp add: scaleR_left_diff_distrib) |
|
53406 | 2997 |
done |
2998 |
qed |
|
2999 |
} |
|
44133 | 3000 |
ultimately show ?thesis by blast |
3001 |
qed |
|
3002 |
||
56444 | 3003 |
lemma norm_cauchy_schwarz_equal: "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow> collinear {0, x, y}" |
49522 | 3004 |
unfolding norm_cauchy_schwarz_abs_eq |
3005 |
apply (cases "x=0", simp_all add: collinear_2) |
|
3006 |
apply (cases "y=0", simp_all add: collinear_2 insert_commute) |
|
3007 |
unfolding collinear_lemma |
|
3008 |
apply simp |
|
3009 |
apply (subgoal_tac "norm x \<noteq> 0") |
|
3010 |
apply (subgoal_tac "norm y \<noteq> 0") |
|
3011 |
apply (rule iffI) |
|
3012 |
apply (cases "norm x *\<^sub>R y = norm y *\<^sub>R x") |
|
3013 |
apply (rule exI[where x="(1/norm x) * norm y"]) |
|
3014 |
apply (drule sym) |
|
3015 |
unfolding scaleR_scaleR[symmetric] |
|
3016 |
apply (simp add: field_simps) |
|
3017 |
apply (rule exI[where x="(1/norm x) * - norm y"]) |
|
3018 |
apply clarify |
|
3019 |
apply (drule sym) |
|
3020 |
unfolding scaleR_scaleR[symmetric] |
|
3021 |
apply (simp add: field_simps) |
|
3022 |
apply (erule exE) |
|
3023 |
apply (erule ssubst) |
|
3024 |
unfolding scaleR_scaleR |
|
3025 |
unfolding norm_scaleR |
|
3026 |
apply (subgoal_tac "norm x * c = \<bar>c\<bar> * norm x \<or> norm x * c = - \<bar>c\<bar> * norm x") |
|
55775 | 3027 |
apply (auto simp add: field_simps) |
49522 | 3028 |
done |
3029 |
||
54776
db890d9fc5c2
ordered_euclidean_space compatible with more standard pointwise ordering on products; conditionally complete lattice with product order
immler
parents:
54703
diff
changeset
|
3030 |
end |