| author | paulson <lp15@cam.ac.uk> | 
| Sun, 25 Feb 2018 12:54:55 +0000 | |
| changeset 67719 | bffb7482faaa | 
| parent 67091 | 1393c2340eec | 
| child 69597 | ff784d5a5bfb | 
| permissions | -rw-r--r-- | 
| 62479 | 1  | 
(* Title: HOL/Nonstandard_Analysis/HyperNat.thy  | 
2  | 
Author: Jacques D. Fleuriot  | 
|
3  | 
Copyright: 1998 University of Cambridge  | 
|
| 27468 | 4  | 
|
| 
62378
 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 
hoelzl 
parents: 
61981 
diff
changeset
 | 
5  | 
Converted to Isar and polished by lcp  | 
| 27468 | 6  | 
*)  | 
7  | 
||
| 64435 | 8  | 
section \<open>Hypernatural numbers\<close>  | 
| 27468 | 9  | 
|
10  | 
theory HyperNat  | 
|
| 64435 | 11  | 
imports StarDef  | 
| 27468 | 12  | 
begin  | 
13  | 
||
| 42463 | 14  | 
type_synonym hypnat = "nat star"  | 
| 27468 | 15  | 
|
| 64435 | 16  | 
abbreviation hypnat_of_nat :: "nat \<Rightarrow> nat star"  | 
17  | 
where "hypnat_of_nat \<equiv> star_of"  | 
|
| 27468 | 18  | 
|
| 64435 | 19  | 
definition hSuc :: "hypnat \<Rightarrow> hypnat"  | 
20  | 
where hSuc_def [transfer_unfold]: "hSuc = *f* Suc"  | 
|
| 27468 | 21  | 
|
| 64435 | 22  | 
|
23  | 
subsection \<open>Properties Transferred from Naturals\<close>  | 
|
| 27468 | 24  | 
|
25  | 
lemma hSuc_not_zero [iff]: "\<And>m. hSuc m \<noteq> 0"  | 
|
| 64435 | 26  | 
by transfer (rule Suc_not_Zero)  | 
| 27468 | 27  | 
|
28  | 
lemma zero_not_hSuc [iff]: "\<And>m. 0 \<noteq> hSuc m"  | 
|
| 64435 | 29  | 
by transfer (rule Zero_not_Suc)  | 
| 27468 | 30  | 
|
| 64435 | 31  | 
lemma hSuc_hSuc_eq [iff]: "\<And>m n. hSuc m = hSuc n \<longleftrightarrow> m = n"  | 
32  | 
by transfer (rule nat.inject)  | 
|
| 27468 | 33  | 
|
34  | 
lemma zero_less_hSuc [iff]: "\<And>n. 0 < hSuc n"  | 
|
| 64435 | 35  | 
by transfer (rule zero_less_Suc)  | 
| 27468 | 36  | 
|
| 64435 | 37  | 
lemma hypnat_minus_zero [simp]: "\<And>z::hypnat. z - z = 0"  | 
38  | 
by transfer (rule diff_self_eq_0)  | 
|
| 27468 | 39  | 
|
| 64435 | 40  | 
lemma hypnat_diff_0_eq_0 [simp]: "\<And>n::hypnat. 0 - n = 0"  | 
41  | 
by transfer (rule diff_0_eq_0)  | 
|
| 27468 | 42  | 
|
| 64435 | 43  | 
lemma hypnat_add_is_0 [iff]: "\<And>m n::hypnat. m + n = 0 \<longleftrightarrow> m = 0 \<and> n = 0"  | 
44  | 
by transfer (rule add_is_0)  | 
|
| 27468 | 45  | 
|
| 64435 | 46  | 
lemma hypnat_diff_diff_left: "\<And>i j k::hypnat. i - j - k = i - (j + k)"  | 
47  | 
by transfer (rule diff_diff_left)  | 
|
| 27468 | 48  | 
|
| 64435 | 49  | 
lemma hypnat_diff_commute: "\<And>i j k::hypnat. i - j - k = i - k - j"  | 
50  | 
by transfer (rule diff_commute)  | 
|
| 27468 | 51  | 
|
| 64435 | 52  | 
lemma hypnat_diff_add_inverse [simp]: "\<And>m n::hypnat. n + m - n = m"  | 
53  | 
by transfer (rule diff_add_inverse)  | 
|
| 27468 | 54  | 
|
| 64435 | 55  | 
lemma hypnat_diff_add_inverse2 [simp]: "\<And>m n::hypnat. m + n - n = m"  | 
56  | 
by transfer (rule diff_add_inverse2)  | 
|
| 27468 | 57  | 
|
| 64435 | 58  | 
lemma hypnat_diff_cancel [simp]: "\<And>k m n::hypnat. (k + m) - (k + n) = m - n"  | 
59  | 
by transfer (rule diff_cancel)  | 
|
| 27468 | 60  | 
|
| 64435 | 61  | 
lemma hypnat_diff_cancel2 [simp]: "\<And>k m n::hypnat. (m + k) - (n + k) = m - n"  | 
62  | 
by transfer (rule diff_cancel2)  | 
|
| 27468 | 63  | 
|
| 64435 | 64  | 
lemma hypnat_diff_add_0 [simp]: "\<And>m n::hypnat. n - (n + m) = 0"  | 
65  | 
by transfer (rule diff_add_0)  | 
|
| 27468 | 66  | 
|
| 64435 | 67  | 
lemma hypnat_diff_mult_distrib: "\<And>k m n::hypnat. (m - n) * k = (m * k) - (n * k)"  | 
68  | 
by transfer (rule diff_mult_distrib)  | 
|
| 27468 | 69  | 
|
| 64435 | 70  | 
lemma hypnat_diff_mult_distrib2: "\<And>k m n::hypnat. k * (m - n) = (k * m) - (k * n)"  | 
71  | 
by transfer (rule diff_mult_distrib2)  | 
|
| 27468 | 72  | 
|
| 64435 | 73  | 
lemma hypnat_le_zero_cancel [iff]: "\<And>n::hypnat. n \<le> 0 \<longleftrightarrow> n = 0"  | 
74  | 
by transfer (rule le_0_eq)  | 
|
| 27468 | 75  | 
|
| 64435 | 76  | 
lemma hypnat_mult_is_0 [simp]: "\<And>m n::hypnat. m * n = 0 \<longleftrightarrow> m = 0 \<or> n = 0"  | 
77  | 
by transfer (rule mult_is_0)  | 
|
| 27468 | 78  | 
|
| 64435 | 79  | 
lemma hypnat_diff_is_0_eq [simp]: "\<And>m n::hypnat. m - n = 0 \<longleftrightarrow> m \<le> n"  | 
80  | 
by transfer (rule diff_is_0_eq)  | 
|
| 27468 | 81  | 
|
| 64435 | 82  | 
lemma hypnat_not_less0 [iff]: "\<And>n::hypnat. \<not> n < 0"  | 
83  | 
by transfer (rule not_less0)  | 
|
84  | 
||
85  | 
lemma hypnat_less_one [iff]: "\<And>n::hypnat. n < 1 \<longleftrightarrow> n = 0"  | 
|
86  | 
by transfer (rule less_one)  | 
|
| 27468 | 87  | 
|
| 64435 | 88  | 
lemma hypnat_add_diff_inverse: "\<And>m n::hypnat. \<not> m < n \<Longrightarrow> n + (m - n) = m"  | 
89  | 
by transfer (rule add_diff_inverse)  | 
|
| 27468 | 90  | 
|
| 64435 | 91  | 
lemma hypnat_le_add_diff_inverse [simp]: "\<And>m n::hypnat. n \<le> m \<Longrightarrow> n + (m - n) = m"  | 
92  | 
by transfer (rule le_add_diff_inverse)  | 
|
| 27468 | 93  | 
|
| 64435 | 94  | 
lemma hypnat_le_add_diff_inverse2 [simp]: "\<And>m n::hypnat. n \<le> m \<Longrightarrow> (m - n) + n = m"  | 
95  | 
by transfer (rule le_add_diff_inverse2)  | 
|
| 27468 | 96  | 
|
97  | 
declare hypnat_le_add_diff_inverse2 [OF order_less_imp_le]  | 
|
98  | 
||
| 64435 | 99  | 
lemma hypnat_le0 [iff]: "\<And>n::hypnat. 0 \<le> n"  | 
100  | 
by transfer (rule le0)  | 
|
| 27468 | 101  | 
|
| 64435 | 102  | 
lemma hypnat_le_add1 [simp]: "\<And>x n::hypnat. x \<le> x + n"  | 
103  | 
by transfer (rule le_add1)  | 
|
| 27468 | 104  | 
|
| 64435 | 105  | 
lemma hypnat_add_self_le [simp]: "\<And>x n::hypnat. x \<le> n + x"  | 
106  | 
by transfer (rule le_add2)  | 
|
| 27468 | 107  | 
|
| 64435 | 108  | 
lemma hypnat_add_one_self_less [simp]: "x < x + 1" for x :: hypnat  | 
| 
62378
 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 
hoelzl 
parents: 
61981 
diff
changeset
 | 
109  | 
by (fact less_add_one)  | 
| 27468 | 110  | 
|
| 64435 | 111  | 
lemma hypnat_neq0_conv [iff]: "\<And>n::hypnat. n \<noteq> 0 \<longleftrightarrow> 0 < n"  | 
112  | 
by transfer (rule neq0_conv)  | 
|
| 27468 | 113  | 
|
| 64435 | 114  | 
lemma hypnat_gt_zero_iff: "0 < n \<longleftrightarrow> 1 \<le> n" for n :: hypnat  | 
115  | 
by (auto simp add: linorder_not_less [symmetric])  | 
|
| 27468 | 116  | 
|
| 64435 | 117  | 
lemma hypnat_gt_zero_iff2: "0 < n \<longleftrightarrow> (\<exists>m. n = m + 1)" for n :: hypnat  | 
| 
62378
 
85ed00c1fe7c
generalize more theorems to support enat and ennreal
 
hoelzl 
parents: 
61981 
diff
changeset
 | 
118  | 
by (auto intro!: add_nonneg_pos exI[of _ "n - 1"] simp: hypnat_gt_zero_iff)  | 
| 27468 | 119  | 
|
| 64435 | 120  | 
lemma hypnat_add_self_not_less: "\<not> x + y < x" for x y :: hypnat  | 
121  | 
by (simp add: linorder_not_le [symmetric] add.commute [of x])  | 
|
| 27468 | 122  | 
|
| 64435 | 123  | 
lemma hypnat_diff_split: "P (a - b) \<longleftrightarrow> (a < b \<longrightarrow> P 0) \<and> (\<forall>d. a = b + d \<longrightarrow> P d)"  | 
124  | 
for a b :: hypnat  | 
|
125  | 
\<comment> \<open>elimination of \<open>-\<close> on \<open>hypnat\<close>\<close>  | 
|
126  | 
proof (cases "a < b" rule: case_split)  | 
|
| 27468 | 127  | 
case True  | 
| 64435 | 128  | 
then show ?thesis  | 
129  | 
by (auto simp add: hypnat_add_self_not_less order_less_imp_le hypnat_diff_is_0_eq [THEN iffD2])  | 
|
| 27468 | 130  | 
next  | 
131  | 
case False  | 
|
| 64435 | 132  | 
then show ?thesis  | 
133  | 
by (auto simp add: linorder_not_less dest: order_le_less_trans)  | 
|
| 27468 | 134  | 
qed  | 
135  | 
||
| 64435 | 136  | 
|
137  | 
subsection \<open>Properties of the set of embedded natural numbers\<close>  | 
|
| 27468 | 138  | 
|
139  | 
lemma of_nat_eq_star_of [simp]: "of_nat = star_of"  | 
|
140  | 
proof  | 
|
| 64435 | 141  | 
show "of_nat n = star_of n" for n  | 
142  | 
by transfer simp  | 
|
| 27468 | 143  | 
qed  | 
144  | 
||
145  | 
lemma Nats_eq_Standard: "(Nats :: nat star set) = Standard"  | 
|
| 64435 | 146  | 
by (auto simp: Nats_def Standard_def)  | 
| 27468 | 147  | 
|
148  | 
lemma hypnat_of_nat_mem_Nats [simp]: "hypnat_of_nat n \<in> Nats"  | 
|
| 64435 | 149  | 
by (simp add: Nats_eq_Standard)  | 
| 27468 | 150  | 
|
| 64435 | 151  | 
lemma hypnat_of_nat_one [simp]: "hypnat_of_nat (Suc 0) = 1"  | 
152  | 
by transfer simp  | 
|
| 27468 | 153  | 
|
| 64435 | 154  | 
lemma hypnat_of_nat_Suc [simp]: "hypnat_of_nat (Suc n) = hypnat_of_nat n + 1"  | 
155  | 
by transfer simp  | 
|
| 27468 | 156  | 
|
| 67091 | 157  | 
lemma of_nat_eq_add [rule_format]: "\<forall>d::hypnat. of_nat m = of_nat n + d \<longrightarrow> d \<in> range of_nat"  | 
| 64435 | 158  | 
apply (induct n)  | 
159  | 
apply (auto simp add: add.assoc)  | 
|
160  | 
apply (case_tac x)  | 
|
161  | 
apply (auto simp add: add.commute [of 1])  | 
|
162  | 
done  | 
|
| 27468 | 163  | 
|
| 64435 | 164  | 
lemma Nats_diff [simp]: "a \<in> Nats \<Longrightarrow> b \<in> Nats \<Longrightarrow> a - b \<in> Nats" for a b :: hypnat  | 
165  | 
by (simp add: Nats_eq_Standard)  | 
|
| 27468 | 166  | 
|
167  | 
||
| 64435 | 168  | 
subsection \<open>Infinite Hypernatural Numbers -- @{term HNatInfinite}\<close>
 | 
169  | 
||
170  | 
text \<open>The set of infinite hypernatural numbers.\<close>  | 
|
171  | 
definition HNatInfinite :: "hypnat set"  | 
|
172  | 
  where "HNatInfinite = {n. n \<notin> Nats}"
 | 
|
| 27468 | 173  | 
|
| 64435 | 174  | 
lemma Nats_not_HNatInfinite_iff: "x \<in> Nats \<longleftrightarrow> x \<notin> HNatInfinite"  | 
175  | 
by (simp add: HNatInfinite_def)  | 
|
| 27468 | 176  | 
|
| 64435 | 177  | 
lemma HNatInfinite_not_Nats_iff: "x \<in> HNatInfinite \<longleftrightarrow> x \<notin> Nats"  | 
178  | 
by (simp add: HNatInfinite_def)  | 
|
| 27468 | 179  | 
|
180  | 
lemma star_of_neq_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<noteq> N"  | 
|
| 64435 | 181  | 
by (auto simp add: HNatInfinite_def Nats_eq_Standard)  | 
| 27468 | 182  | 
|
| 64435 | 183  | 
lemma star_of_Suc_lessI: "\<And>N. star_of n < N \<Longrightarrow> star_of (Suc n) \<noteq> N \<Longrightarrow> star_of (Suc n) < N"  | 
184  | 
by transfer (rule Suc_lessI)  | 
|
| 27468 | 185  | 
|
186  | 
lemma star_of_less_HNatInfinite:  | 
|
187  | 
assumes N: "N \<in> HNatInfinite"  | 
|
188  | 
shows "star_of n < N"  | 
|
189  | 
proof (induct n)  | 
|
190  | 
case 0  | 
|
| 64435 | 191  | 
from N have "star_of 0 \<noteq> N"  | 
192  | 
by (rule star_of_neq_HNatInfinite)  | 
|
193  | 
then show ?case by simp  | 
|
| 27468 | 194  | 
next  | 
195  | 
case (Suc n)  | 
|
| 64435 | 196  | 
from N have "star_of (Suc n) \<noteq> N"  | 
197  | 
by (rule star_of_neq_HNatInfinite)  | 
|
198  | 
with Suc show ?case  | 
|
199  | 
by (rule star_of_Suc_lessI)  | 
|
| 27468 | 200  | 
qed  | 
201  | 
||
202  | 
lemma star_of_le_HNatInfinite: "N \<in> HNatInfinite \<Longrightarrow> star_of n \<le> N"  | 
|
| 64435 | 203  | 
by (rule star_of_less_HNatInfinite [THEN order_less_imp_le])  | 
204  | 
||
| 27468 | 205  | 
|
| 61975 | 206  | 
subsubsection \<open>Closure Rules\<close>  | 
| 27468 | 207  | 
|
| 64435 | 208  | 
lemma Nats_less_HNatInfinite: "x \<in> Nats \<Longrightarrow> y \<in> HNatInfinite \<Longrightarrow> x < y"  | 
209  | 
by (auto simp add: Nats_def star_of_less_HNatInfinite)  | 
|
| 27468 | 210  | 
|
| 64435 | 211  | 
lemma Nats_le_HNatInfinite: "x \<in> Nats \<Longrightarrow> y \<in> HNatInfinite \<Longrightarrow> x \<le> y"  | 
212  | 
by (rule Nats_less_HNatInfinite [THEN order_less_imp_le])  | 
|
| 27468 | 213  | 
|
214  | 
lemma zero_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 0 < x"  | 
|
| 64435 | 215  | 
by (simp add: Nats_less_HNatInfinite)  | 
| 27468 | 216  | 
|
217  | 
lemma one_less_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 < x"  | 
|
| 64435 | 218  | 
by (simp add: Nats_less_HNatInfinite)  | 
| 27468 | 219  | 
|
220  | 
lemma one_le_HNatInfinite: "x \<in> HNatInfinite \<Longrightarrow> 1 \<le> x"  | 
|
| 64435 | 221  | 
by (simp add: Nats_le_HNatInfinite)  | 
| 27468 | 222  | 
|
223  | 
lemma zero_not_mem_HNatInfinite [simp]: "0 \<notin> HNatInfinite"  | 
|
| 64435 | 224  | 
by (simp add: HNatInfinite_def)  | 
| 27468 | 225  | 
|
| 64435 | 226  | 
lemma Nats_downward_closed: "x \<in> Nats \<Longrightarrow> y \<le> x \<Longrightarrow> y \<in> Nats" for x y :: hypnat  | 
227  | 
apply (simp only: linorder_not_less [symmetric])  | 
|
228  | 
apply (erule contrapos_np)  | 
|
229  | 
apply (drule HNatInfinite_not_Nats_iff [THEN iffD2])  | 
|
230  | 
apply (erule (1) Nats_less_HNatInfinite)  | 
|
231  | 
done  | 
|
| 27468 | 232  | 
|
| 64435 | 233  | 
lemma HNatInfinite_upward_closed: "x \<in> HNatInfinite \<Longrightarrow> x \<le> y \<Longrightarrow> y \<in> HNatInfinite"  | 
234  | 
apply (simp only: HNatInfinite_not_Nats_iff)  | 
|
235  | 
apply (erule contrapos_nn)  | 
|
236  | 
apply (erule (1) Nats_downward_closed)  | 
|
237  | 
done  | 
|
| 27468 | 238  | 
|
239  | 
lemma HNatInfinite_add: "x \<in> HNatInfinite \<Longrightarrow> x + y \<in> HNatInfinite"  | 
|
| 64435 | 240  | 
apply (erule HNatInfinite_upward_closed)  | 
241  | 
apply (rule hypnat_le_add1)  | 
|
242  | 
done  | 
|
| 27468 | 243  | 
|
244  | 
lemma HNatInfinite_add_one: "x \<in> HNatInfinite \<Longrightarrow> x + 1 \<in> HNatInfinite"  | 
|
| 64435 | 245  | 
by (rule HNatInfinite_add)  | 
| 27468 | 246  | 
|
| 64435 | 247  | 
lemma HNatInfinite_diff: "x \<in> HNatInfinite \<Longrightarrow> y \<in> Nats \<Longrightarrow> x - y \<in> HNatInfinite"  | 
248  | 
apply (frule (1) Nats_le_HNatInfinite)  | 
|
249  | 
apply (simp only: HNatInfinite_not_Nats_iff)  | 
|
250  | 
apply (erule contrapos_nn)  | 
|
251  | 
apply (drule (1) Nats_add, simp)  | 
|
252  | 
done  | 
|
| 27468 | 253  | 
|
| 64435 | 254  | 
lemma HNatInfinite_is_Suc: "x \<in> HNatInfinite \<Longrightarrow> \<exists>y. x = y + 1" for x :: hypnat  | 
255  | 
apply (rule_tac x = "x - (1::hypnat) " in exI)  | 
|
256  | 
apply (simp add: Nats_le_HNatInfinite)  | 
|
257  | 
done  | 
|
| 27468 | 258  | 
|
259  | 
||
| 64435 | 260  | 
subsection \<open>Existence of an infinite hypernatural number\<close>  | 
| 27468 | 261  | 
|
| 64435 | 262  | 
text \<open>\<open>\<omega>\<close> is in fact an infinite hypernatural number = \<open>[<1, 2, 3, \<dots>>]\<close>\<close>  | 
263  | 
definition whn :: hypnat  | 
|
264  | 
where hypnat_omega_def: "whn = star_n (\<lambda>n::nat. n)"  | 
|
| 27468 | 265  | 
|
266  | 
lemma hypnat_of_nat_neq_whn: "hypnat_of_nat n \<noteq> whn"  | 
|
| 64435 | 267  | 
by (simp add: FreeUltrafilterNat.singleton' hypnat_omega_def star_of_def star_n_eq_iff)  | 
| 27468 | 268  | 
|
269  | 
lemma whn_neq_hypnat_of_nat: "whn \<noteq> hypnat_of_nat n"  | 
|
| 64435 | 270  | 
by (simp add: FreeUltrafilterNat.singleton hypnat_omega_def star_of_def star_n_eq_iff)  | 
| 27468 | 271  | 
|
272  | 
lemma whn_not_Nats [simp]: "whn \<notin> Nats"  | 
|
| 64435 | 273  | 
by (simp add: Nats_def image_def whn_neq_hypnat_of_nat)  | 
| 27468 | 274  | 
|
275  | 
lemma HNatInfinite_whn [simp]: "whn \<in> HNatInfinite"  | 
|
| 64435 | 276  | 
by (simp add: HNatInfinite_def)  | 
| 27468 | 277  | 
|
| 60041 | 278  | 
lemma lemma_unbounded_set [simp]: "eventually (\<lambda>n::nat. m < n) \<U>"  | 
279  | 
by (rule filter_leD[OF FreeUltrafilterNat.le_cofinite])  | 
|
280  | 
(auto simp add: cofinite_eq_sequentially eventually_at_top_dense)  | 
|
| 27468 | 281  | 
|
| 64435 | 282  | 
lemma hypnat_of_nat_eq: "hypnat_of_nat m = star_n (\<lambda>n::nat. m)"  | 
283  | 
by (simp add: star_of_def)  | 
|
| 27468 | 284  | 
|
285  | 
lemma SHNat_eq: "Nats = {n. \<exists>N. n = hypnat_of_nat N}"
 | 
|
| 64435 | 286  | 
by (simp add: Nats_def image_def)  | 
| 27468 | 287  | 
|
288  | 
lemma Nats_less_whn: "n \<in> Nats \<Longrightarrow> n < whn"  | 
|
| 64435 | 289  | 
by (simp add: Nats_less_HNatInfinite)  | 
| 27468 | 290  | 
|
291  | 
lemma Nats_le_whn: "n \<in> Nats \<Longrightarrow> n \<le> whn"  | 
|
| 64435 | 292  | 
by (simp add: Nats_le_HNatInfinite)  | 
| 27468 | 293  | 
|
294  | 
lemma hypnat_of_nat_less_whn [simp]: "hypnat_of_nat n < whn"  | 
|
| 64435 | 295  | 
by (simp add: Nats_less_whn)  | 
| 27468 | 296  | 
|
297  | 
lemma hypnat_of_nat_le_whn [simp]: "hypnat_of_nat n \<le> whn"  | 
|
| 64435 | 298  | 
by (simp add: Nats_le_whn)  | 
| 27468 | 299  | 
|
300  | 
lemma hypnat_zero_less_hypnat_omega [simp]: "0 < whn"  | 
|
| 64435 | 301  | 
by (simp add: Nats_less_whn)  | 
| 27468 | 302  | 
|
303  | 
lemma hypnat_one_less_hypnat_omega [simp]: "1 < whn"  | 
|
| 64435 | 304  | 
by (simp add: Nats_less_whn)  | 
| 27468 | 305  | 
|
306  | 
||
| 64435 | 307  | 
subsubsection \<open>Alternative characterization of the set of infinite hypernaturals\<close>  | 
| 27468 | 308  | 
|
| 64435 | 309  | 
text \<open>@{term "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"}\<close>
 | 
| 27468 | 310  | 
|
311  | 
(*??delete? similar reasoning in hypnat_omega_gt_SHNat above*)  | 
|
312  | 
lemma HNatInfinite_FreeUltrafilterNat_lemma:  | 
|
| 60041 | 313  | 
assumes "\<forall>N::nat. eventually (\<lambda>n. f n \<noteq> N) \<U>"  | 
314  | 
shows "eventually (\<lambda>n. N < f n) \<U>"  | 
|
| 64435 | 315  | 
apply (induct N)  | 
316  | 
using assms  | 
|
317  | 
apply (drule_tac x = 0 in spec, simp)  | 
|
318  | 
using assms  | 
|
319  | 
apply (drule_tac x = "Suc N" in spec)  | 
|
320  | 
apply (auto elim: eventually_elim2)  | 
|
321  | 
done  | 
|
| 27468 | 322  | 
|
323  | 
lemma HNatInfinite_iff: "HNatInfinite = {N. \<forall>n \<in> Nats. n < N}"
 | 
|
| 64435 | 324  | 
apply (safe intro!: Nats_less_HNatInfinite)  | 
325  | 
apply (auto simp add: HNatInfinite_def)  | 
|
326  | 
done  | 
|
| 27468 | 327  | 
|
328  | 
||
| 64435 | 329  | 
subsubsection \<open>Alternative Characterization of @{term HNatInfinite} using Free Ultrafilter\<close>
 | 
| 27468 | 330  | 
|
331  | 
lemma HNatInfinite_FreeUltrafilterNat:  | 
|
| 64438 | 332  | 
"star_n X \<in> HNatInfinite \<Longrightarrow> \<forall>u. eventually (\<lambda>n. u < X n) \<U>"  | 
| 64435 | 333  | 
apply (auto simp add: HNatInfinite_iff SHNat_eq)  | 
334  | 
apply (drule_tac x="star_of u" in spec, simp)  | 
|
335  | 
apply (simp add: star_of_def star_less_def starP2_star_n)  | 
|
336  | 
done  | 
|
| 27468 | 337  | 
|
338  | 
lemma FreeUltrafilterNat_HNatInfinite:  | 
|
| 64438 | 339  | 
"\<forall>u. eventually (\<lambda>n. u < X n) \<U> \<Longrightarrow> star_n X \<in> HNatInfinite"  | 
| 64435 | 340  | 
by (auto simp add: star_less_def starP2_star_n HNatInfinite_iff SHNat_eq hypnat_of_nat_eq)  | 
| 27468 | 341  | 
|
342  | 
lemma HNatInfinite_FreeUltrafilterNat_iff:  | 
|
| 64438 | 343  | 
"(star_n X \<in> HNatInfinite) = (\<forall>u. eventually (\<lambda>n. u < X n) \<U>)"  | 
| 64435 | 344  | 
by (rule iffI [OF HNatInfinite_FreeUltrafilterNat FreeUltrafilterNat_HNatInfinite])  | 
345  | 
||
| 27468 | 346  | 
|
| 61975 | 347  | 
subsection \<open>Embedding of the Hypernaturals into other types\<close>  | 
| 27468 | 348  | 
|
| 64435 | 349  | 
definition of_hypnat :: "hypnat \<Rightarrow> 'a::semiring_1_cancel star"  | 
350  | 
where of_hypnat_def [transfer_unfold]: "of_hypnat = *f* of_nat"  | 
|
| 27468 | 351  | 
|
352  | 
lemma of_hypnat_0 [simp]: "of_hypnat 0 = 0"  | 
|
| 64435 | 353  | 
by transfer (rule of_nat_0)  | 
| 27468 | 354  | 
|
355  | 
lemma of_hypnat_1 [simp]: "of_hypnat 1 = 1"  | 
|
| 64435 | 356  | 
by transfer (rule of_nat_1)  | 
| 27468 | 357  | 
|
358  | 
lemma of_hypnat_hSuc: "\<And>m. of_hypnat (hSuc m) = 1 + of_hypnat m"  | 
|
| 64435 | 359  | 
by transfer (rule of_nat_Suc)  | 
| 27468 | 360  | 
|
| 64435 | 361  | 
lemma of_hypnat_add [simp]: "\<And>m n. of_hypnat (m + n) = of_hypnat m + of_hypnat n"  | 
362  | 
by transfer (rule of_nat_add)  | 
|
| 27468 | 363  | 
|
| 64435 | 364  | 
lemma of_hypnat_mult [simp]: "\<And>m n. of_hypnat (m * n) = of_hypnat m * of_hypnat n"  | 
365  | 
by transfer (rule of_nat_mult)  | 
|
| 27468 | 366  | 
|
367  | 
lemma of_hypnat_less_iff [simp]:  | 
|
| 64435 | 368  | 
"\<And>m n. of_hypnat m < (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m < n"  | 
369  | 
by transfer (rule of_nat_less_iff)  | 
|
| 27468 | 370  | 
|
371  | 
lemma of_hypnat_0_less_iff [simp]:  | 
|
| 64435 | 372  | 
"\<And>n. 0 < (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> 0 < n"  | 
373  | 
by transfer (rule of_nat_0_less_iff)  | 
|
| 27468 | 374  | 
|
| 64435 | 375  | 
lemma of_hypnat_less_0_iff [simp]: "\<And>m. \<not> (of_hypnat m::'a::linordered_semidom star) < 0"  | 
376  | 
by transfer (rule of_nat_less_0_iff)  | 
|
| 27468 | 377  | 
|
378  | 
lemma of_hypnat_le_iff [simp]:  | 
|
| 64435 | 379  | 
"\<And>m n. of_hypnat m \<le> (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m \<le> n"  | 
380  | 
by transfer (rule of_nat_le_iff)  | 
|
| 27468 | 381  | 
|
| 64435 | 382  | 
lemma of_hypnat_0_le_iff [simp]: "\<And>n. 0 \<le> (of_hypnat n::'a::linordered_semidom star)"  | 
383  | 
by transfer (rule of_nat_0_le_iff)  | 
|
| 27468 | 384  | 
|
| 64435 | 385  | 
lemma of_hypnat_le_0_iff [simp]: "\<And>m. (of_hypnat m::'a::linordered_semidom star) \<le> 0 \<longleftrightarrow> m = 0"  | 
386  | 
by transfer (rule of_nat_le_0_iff)  | 
|
| 27468 | 387  | 
|
388  | 
lemma of_hypnat_eq_iff [simp]:  | 
|
| 64435 | 389  | 
"\<And>m n. of_hypnat m = (of_hypnat n::'a::linordered_semidom star) \<longleftrightarrow> m = n"  | 
390  | 
by transfer (rule of_nat_eq_iff)  | 
|
| 27468 | 391  | 
|
| 64435 | 392  | 
lemma of_hypnat_eq_0_iff [simp]: "\<And>m. (of_hypnat m::'a::linordered_semidom star) = 0 \<longleftrightarrow> m = 0"  | 
393  | 
by transfer (rule of_nat_eq_0_iff)  | 
|
| 27468 | 394  | 
|
395  | 
lemma HNatInfinite_of_hypnat_gt_zero:  | 
|
| 
35028
 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 
haftmann 
parents: 
29920 
diff
changeset
 | 
396  | 
"N \<in> HNatInfinite \<Longrightarrow> (0::'a::linordered_semidom star) < of_hypnat N"  | 
| 64435 | 397  | 
by (rule ccontr) (simp add: linorder_not_less)  | 
| 27468 | 398  | 
|
399  | 
end  |