| author | wenzelm | 
| Sat, 08 Sep 2018 11:44:47 +0200 | |
| changeset 68941 | c192c8f9f19b | 
| parent 63055 | ae0ca486bd3f | 
| child 69597 | ff784d5a5bfb | 
| permissions | -rw-r--r-- | 
| 15871 | 1 | (* Title: HOL/ex/CTL.thy | 
| 2 | Author: Gertrud Bauer | |
| 3 | *) | |
| 4 | ||
| 61343 | 5 | section \<open>CTL formulae\<close> | 
| 15871 | 6 | |
| 46685 | 7 | theory CTL | 
| 8 | imports Main | |
| 9 | begin | |
| 15871 | 10 | |
| 61343 | 11 | text \<open> | 
| 61934 | 12 |   We formalize basic concepts of Computational Tree Logic (CTL) @{cite
 | 
| 13 | "McMillan-PhDThesis" and "McMillan-LectureNotes"} within the simply-typed | |
| 14 | set theory of HOL. | |
| 15871 | 15 | |
| 61934 | 16 | By using the common technique of ``shallow embedding'', a CTL formula is | 
| 17 | identified with the corresponding set of states where it holds. | |
| 18 | Consequently, CTL operations such as negation, conjunction, disjunction | |
| 19 | simply become complement, intersection, union of sets. We only require a | |
| 20 | separate operation for implication, as point-wise inclusion is usually not | |
| 21 | encountered in plain set-theory. | |
| 61343 | 22 | \<close> | 
| 15871 | 23 | |
| 24 | lemmas [intro!] = Int_greatest Un_upper2 Un_upper1 Int_lower1 Int_lower2 | |
| 25 | ||
| 42463 | 26 | type_synonym 'a ctl = "'a set" | 
| 20807 | 27 | |
| 63054 | 28 | definition imp :: "'a ctl \<Rightarrow> 'a ctl \<Rightarrow> 'a ctl" (infixr "\<rightarrow>" 75) | 
| 29 | where "p \<rightarrow> q = - p \<union> q" | |
| 15871 | 30 | |
| 20807 | 31 | lemma [intro!]: "p \<inter> p \<rightarrow> q \<subseteq> q" unfolding imp_def by auto | 
| 32 | lemma [intro!]: "p \<subseteq> (q \<rightarrow> p)" unfolding imp_def by rule | |
| 15871 | 33 | |
| 34 | ||
| 61343 | 35 | text \<open> | 
| 61934 | 36 | \<^smallskip> | 
| 37 | The CTL path operators are more interesting; they are based on an arbitrary, | |
| 38 | but fixed model \<open>\<M>\<close>, which is simply a transition relation over states | |
| 39 |   @{typ 'a}.
 | |
| 61343 | 40 | \<close> | 
| 15871 | 41 | |
| 20807 | 42 | axiomatization \<M> :: "('a \<times> 'a) set"
 | 
| 15871 | 43 | |
| 61343 | 44 | text \<open> | 
| 63055 | 45 | The operators \<open>\<^bold>E\<^bold>X\<close>, \<open>\<^bold>E\<^bold>F\<close>, \<open>\<^bold>E\<^bold>G\<close> are taken as primitives, while \<open>\<^bold>A\<^bold>X\<close>, | 
| 46 | \<open>\<^bold>A\<^bold>F\<close>, \<open>\<^bold>A\<^bold>G\<close> are defined as derived ones. The formula \<open>\<^bold>E\<^bold>X p\<close> holds in a | |
| 47 | state \<open>s\<close>, iff there is a successor state \<open>s'\<close> (with respect to the model | |
| 48 | \<open>\<M>\<close>), such that \<open>p\<close> holds in \<open>s'\<close>. The formula \<open>\<^bold>E\<^bold>F p\<close> holds in a state | |
| 49 | \<open>s\<close>, iff there is a path in \<open>\<M>\<close>, starting from \<open>s\<close>, such that there exists a | |
| 50 | state \<open>s'\<close> on the path, such that \<open>p\<close> holds in \<open>s'\<close>. The formula \<open>\<^bold>E\<^bold>G p\<close> | |
| 51 | holds in a state \<open>s\<close>, iff there is a path, starting from \<open>s\<close>, such that for | |
| 52 | all states \<open>s'\<close> on the path, \<open>p\<close> holds in \<open>s'\<close>. It is easy to see that \<open>\<^bold>E\<^bold>F | |
| 53 | p\<close> and \<open>\<^bold>E\<^bold>G p\<close> may be expressed using least and greatest fixed points | |
| 54 |   @{cite "McMillan-PhDThesis"}.
 | |
| 61343 | 55 | \<close> | 
| 15871 | 56 | |
| 63055 | 57 | definition EX  ("\<^bold>E\<^bold>X _" [80] 90)
 | 
| 58 |   where [simp]: "\<^bold>E\<^bold>X p = {s. \<exists>s'. (s, s') \<in> \<M> \<and> s' \<in> p}"
 | |
| 59 | ||
| 60 | definition EF ("\<^bold>E\<^bold>F _" [80] 90)
 | |
| 61 | where [simp]: "\<^bold>E\<^bold>F p = lfp (\<lambda>s. p \<union> \<^bold>E\<^bold>X s)" | |
| 62 | ||
| 63 | definition EG ("\<^bold>E\<^bold>G _" [80] 90)
 | |
| 64 | where [simp]: "\<^bold>E\<^bold>G p = gfp (\<lambda>s. p \<inter> \<^bold>E\<^bold>X s)" | |
| 15871 | 65 | |
| 61343 | 66 | text \<open> | 
| 63055 | 67 | \<open>\<^bold>A\<^bold>X\<close>, \<open>\<^bold>A\<^bold>F\<close> and \<open>\<^bold>A\<^bold>G\<close> are now defined dually in terms of \<open>\<^bold>E\<^bold>X\<close>, | 
| 68 | \<open>\<^bold>E\<^bold>F\<close> and \<open>\<^bold>E\<^bold>G\<close>. | |
| 61343 | 69 | \<close> | 
| 15871 | 70 | |
| 63055 | 71 | definition AX  ("\<^bold>A\<^bold>X _" [80] 90)
 | 
| 72 | where [simp]: "\<^bold>A\<^bold>X p = - \<^bold>E\<^bold>X - p" | |
| 73 | definition AF  ("\<^bold>A\<^bold>F _" [80] 90)
 | |
| 74 | where [simp]: "\<^bold>A\<^bold>F p = - \<^bold>E\<^bold>G - p" | |
| 75 | definition AG  ("\<^bold>A\<^bold>G _" [80] 90)
 | |
| 76 | where [simp]: "\<^bold>A\<^bold>G p = - \<^bold>E\<^bold>F - p" | |
| 15871 | 77 | |
| 78 | ||
| 61343 | 79 | subsection \<open>Basic fixed point properties\<close> | 
| 15871 | 80 | |
| 61343 | 81 | text \<open> | 
| 61934 | 82 | First of all, we use the de-Morgan property of fixed points. | 
| 61343 | 83 | \<close> | 
| 15871 | 84 | |
| 21026 | 85 | lemma lfp_gfp: "lfp f = - gfp (\<lambda>s::'a set. - (f (- s)))" | 
| 15871 | 86 | proof | 
| 87 | show "lfp f \<subseteq> - gfp (\<lambda>s. - f (- s))" | |
| 88 | proof | |
| 63054 | 89 | show "x \<in> - gfp (\<lambda>s. - f (- s))" if l: "x \<in> lfp f" for x | 
| 15871 | 90 | proof | 
| 91 | assume "x \<in> gfp (\<lambda>s. - f (- s))" | |
| 21026 | 92 | then obtain u where "x \<in> u" and "u \<subseteq> - f (- u)" | 
| 32587 
caa5ada96a00
Inter and Union are mere abbreviations for Inf and Sup
 haftmann parents: 
26813diff
changeset | 93 | by (auto simp add: gfp_def) | 
| 15871 | 94 | then have "f (- u) \<subseteq> - u" by auto | 
| 95 | then have "lfp f \<subseteq> - u" by (rule lfp_lowerbound) | |
| 96 | from l and this have "x \<notin> u" by auto | |
| 61343 | 97 | with \<open>x \<in> u\<close> show False by contradiction | 
| 15871 | 98 | qed | 
| 99 | qed | |
| 100 | show "- gfp (\<lambda>s. - f (- s)) \<subseteq> lfp f" | |
| 101 | proof (rule lfp_greatest) | |
| 63054 | 102 | fix u | 
| 103 | assume "f u \<subseteq> u" | |
| 15871 | 104 | then have "- u \<subseteq> - f u" by auto | 
| 105 | then have "- u \<subseteq> - f (- (- u))" by simp | |
| 106 | then have "- u \<subseteq> gfp (\<lambda>s. - f (- s))" by (rule gfp_upperbound) | |
| 107 | then show "- gfp (\<lambda>s. - f (- s)) \<subseteq> u" by auto | |
| 108 | qed | |
| 109 | qed | |
| 110 | ||
| 21026 | 111 | lemma lfp_gfp': "- lfp f = gfp (\<lambda>s::'a set. - (f (- s)))" | 
| 15871 | 112 | by (simp add: lfp_gfp) | 
| 113 | ||
| 21026 | 114 | lemma gfp_lfp': "- gfp f = lfp (\<lambda>s::'a set. - (f (- s)))" | 
| 15871 | 115 | by (simp add: lfp_gfp) | 
| 116 | ||
| 61343 | 117 | text \<open> | 
| 63055 | 118 |   In order to give dual fixed point representations of @{term "\<^bold>A\<^bold>F p"} and
 | 
| 119 |   @{term "\<^bold>A\<^bold>G p"}:
 | |
| 61343 | 120 | \<close> | 
| 15871 | 121 | |
| 63055 | 122 | lemma AF_lfp: "\<^bold>A\<^bold>F p = lfp (\<lambda>s. p \<union> \<^bold>A\<^bold>X s)" | 
| 61934 | 123 | by (simp add: lfp_gfp) | 
| 15871 | 124 | |
| 63055 | 125 | lemma AG_gfp: "\<^bold>A\<^bold>G p = gfp (\<lambda>s. p \<inter> \<^bold>A\<^bold>X s)" | 
| 126 | by (simp add: lfp_gfp) | |
| 127 | ||
| 128 | lemma EF_fp: "\<^bold>E\<^bold>F p = p \<union> \<^bold>E\<^bold>X \<^bold>E\<^bold>F p" | |
| 15871 | 129 | proof - | 
| 63055 | 130 | have "mono (\<lambda>s. p \<union> \<^bold>E\<^bold>X s)" by rule auto | 
| 15871 | 131 | then show ?thesis by (simp only: EF_def) (rule lfp_unfold) | 
| 132 | qed | |
| 133 | ||
| 63055 | 134 | lemma AF_fp: "\<^bold>A\<^bold>F p = p \<union> \<^bold>A\<^bold>X \<^bold>A\<^bold>F p" | 
| 15871 | 135 | proof - | 
| 63055 | 136 | have "mono (\<lambda>s. p \<union> \<^bold>A\<^bold>X s)" by rule auto | 
| 15871 | 137 | then show ?thesis by (simp only: AF_lfp) (rule lfp_unfold) | 
| 138 | qed | |
| 139 | ||
| 63055 | 140 | lemma EG_fp: "\<^bold>E\<^bold>G p = p \<inter> \<^bold>E\<^bold>X \<^bold>E\<^bold>G p" | 
| 15871 | 141 | proof - | 
| 63055 | 142 | have "mono (\<lambda>s. p \<inter> \<^bold>E\<^bold>X s)" by rule auto | 
| 15871 | 143 | then show ?thesis by (simp only: EG_def) (rule gfp_unfold) | 
| 144 | qed | |
| 145 | ||
| 61343 | 146 | text \<open> | 
| 63055 | 147 |   From the greatest fixed point definition of @{term "\<^bold>A\<^bold>G p"}, we derive as
 | 
| 61934 | 148 |   a consequence of the Knaster-Tarski theorem on the one hand that @{term
 | 
| 63055 | 149 | "\<^bold>A\<^bold>G p"} is a fixed point of the monotonic function | 
| 150 |   @{term "\<lambda>s. p \<inter> \<^bold>A\<^bold>X s"}.
 | |
| 61343 | 151 | \<close> | 
| 15871 | 152 | |
| 63055 | 153 | lemma AG_fp: "\<^bold>A\<^bold>G p = p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" | 
| 15871 | 154 | proof - | 
| 63055 | 155 | have "mono (\<lambda>s. p \<inter> \<^bold>A\<^bold>X s)" by rule auto | 
| 15871 | 156 | then show ?thesis by (simp only: AG_gfp) (rule gfp_unfold) | 
| 157 | qed | |
| 158 | ||
| 61343 | 159 | text \<open> | 
| 61934 | 160 | This fact may be split up into two inequalities (merely using transitivity | 
| 161 | of \<open>\<subseteq>\<close>, which is an instance of the overloaded \<open>\<le>\<close> in Isabelle/HOL). | |
| 61343 | 162 | \<close> | 
| 15871 | 163 | |
| 63055 | 164 | lemma AG_fp_1: "\<^bold>A\<^bold>G p \<subseteq> p" | 
| 15871 | 165 | proof - | 
| 63055 | 166 | note AG_fp also have "p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p \<subseteq> p" by auto | 
| 15871 | 167 | finally show ?thesis . | 
| 168 | qed | |
| 169 | ||
| 63055 | 170 | lemma AG_fp_2: "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" | 
| 15871 | 171 | proof - | 
| 63055 | 172 | note AG_fp also have "p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" by auto | 
| 15871 | 173 | finally show ?thesis . | 
| 174 | qed | |
| 175 | ||
| 61343 | 176 | text \<open> | 
| 61934 | 177 | On the other hand, we have from the Knaster-Tarski fixed point theorem that | 
| 63055 | 178 |   any other post-fixed point of @{term "\<lambda>s. p \<inter> \<^bold>A\<^bold>X s"} is smaller than
 | 
| 179 |   @{term "\<^bold>A\<^bold>G p"}. A post-fixed point is a set of states \<open>q\<close> such that @{term
 | |
| 180 | "q \<subseteq> p \<inter> \<^bold>A\<^bold>X q"}. This leads to the following co-induction principle for | |
| 181 |   @{term "\<^bold>A\<^bold>G p"}.
 | |
| 61343 | 182 | \<close> | 
| 15871 | 183 | |
| 63055 | 184 | lemma AG_I: "q \<subseteq> p \<inter> \<^bold>A\<^bold>X q \<Longrightarrow> q \<subseteq> \<^bold>A\<^bold>G p" | 
| 15871 | 185 | by (simp only: AG_gfp) (rule gfp_upperbound) | 
| 186 | ||
| 187 | ||
| 61343 | 188 | subsection \<open>The tree induction principle \label{sec:calc-ctl-tree-induct}\<close>
 | 
| 15871 | 189 | |
| 61343 | 190 | text \<open> | 
| 61934 | 191 | With the most basic facts available, we are now able to establish a few more | 
| 63055 | 192 | interesting results, leading to the \<^emph>\<open>tree induction\<close> principle for \<open>\<^bold>A\<^bold>G\<close> | 
| 61934 | 193 | (see below). We will use some elementary monotonicity and distributivity | 
| 194 | rules. | |
| 61343 | 195 | \<close> | 
| 15871 | 196 | |
| 63055 | 197 | lemma AX_int: "\<^bold>A\<^bold>X (p \<inter> q) = \<^bold>A\<^bold>X p \<inter> \<^bold>A\<^bold>X q" by auto | 
| 198 | lemma AX_mono: "p \<subseteq> q \<Longrightarrow> \<^bold>A\<^bold>X p \<subseteq> \<^bold>A\<^bold>X q" by auto | |
| 199 | lemma AG_mono: "p \<subseteq> q \<Longrightarrow> \<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G q" | |
| 200 | by (simp only: AG_gfp, rule gfp_mono) auto | |
| 15871 | 201 | |
| 61343 | 202 | text \<open> | 
| 61934 | 203 |   The formula @{term "AG p"} implies @{term "AX p"} (we use substitution of
 | 
| 204 | \<open>\<subseteq>\<close> with monotonicity). | |
| 61343 | 205 | \<close> | 
| 15871 | 206 | |
| 63055 | 207 | lemma AG_AX: "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X p" | 
| 15871 | 208 | proof - | 
| 63055 | 209 | have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" by (rule AG_fp_2) | 
| 210 | also have "\<^bold>A\<^bold>G p \<subseteq> p" by (rule AG_fp_1) | |
| 61934 | 211 | moreover note AX_mono | 
| 15871 | 212 | finally show ?thesis . | 
| 213 | qed | |
| 214 | ||
| 61343 | 215 | text \<open> | 
| 63055 | 216 | Furthermore we show idempotency of the \<open>\<^bold>A\<^bold>G\<close> operator. The proof is a good | 
| 61934 | 217 | example of how accumulated facts may get used to feed a single rule step. | 
| 61343 | 218 | \<close> | 
| 15871 | 219 | |
| 63055 | 220 | lemma AG_AG: "\<^bold>A\<^bold>G \<^bold>A\<^bold>G p = \<^bold>A\<^bold>G p" | 
| 15871 | 221 | proof | 
| 63055 | 222 | show "\<^bold>A\<^bold>G \<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G p" by (rule AG_fp_1) | 
| 15871 | 223 | next | 
| 63055 | 224 | show "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G \<^bold>A\<^bold>G p" | 
| 15871 | 225 | proof (rule AG_I) | 
| 63055 | 226 | have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G p" .. | 
| 227 | moreover have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" by (rule AG_fp_2) | |
| 228 | ultimately show "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" .. | |
| 15871 | 229 | qed | 
| 230 | qed | |
| 231 | ||
| 61343 | 232 | text \<open> | 
| 61934 | 233 | \<^smallskip> | 
| 63055 | 234 | We now give an alternative characterization of the \<open>\<^bold>A\<^bold>G\<close> operator, which | 
| 235 | describes the \<open>\<^bold>A\<^bold>G\<close> operator in an ``operational'' way by tree induction: | |
| 236 |   In a state holds @{term "AG p"} iff in that state holds \<open>p\<close>, and in all
 | |
| 237 | reachable states \<open>s\<close> follows from the fact that \<open>p\<close> holds in \<open>s\<close>, that \<open>p\<close> | |
| 238 | also holds in all successor states of \<open>s\<close>. We use the co-induction principle | |
| 239 |   @{thm [source] AG_I} to establish this in a purely algebraic manner.
 | |
| 61343 | 240 | \<close> | 
| 15871 | 241 | |
| 63055 | 242 | theorem AG_induct: "p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) = \<^bold>A\<^bold>G p" | 
| 15871 | 243 | proof | 
| 63055 | 244 | show "p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) \<subseteq> \<^bold>A\<^bold>G p" (is "?lhs \<subseteq> _") | 
| 15871 | 245 | proof (rule AG_I) | 
| 63055 | 246 | show "?lhs \<subseteq> p \<inter> \<^bold>A\<^bold>X ?lhs" | 
| 15871 | 247 | proof | 
| 248 | show "?lhs \<subseteq> p" .. | |
| 63055 | 249 | show "?lhs \<subseteq> \<^bold>A\<^bold>X ?lhs" | 
| 15871 | 250 | proof - | 
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32587diff
changeset | 251 |         {
 | 
| 63055 | 252 | have "\<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) \<subseteq> p \<rightarrow> \<^bold>A\<^bold>X p" by (rule AG_fp_1) | 
| 253 | also have "p \<inter> p \<rightarrow> \<^bold>A\<^bold>X p \<subseteq> \<^bold>A\<^bold>X p" .. | |
| 254 | finally have "?lhs \<subseteq> \<^bold>A\<^bold>X p" by auto | |
| 255 | } | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32587diff
changeset | 256 | moreover | 
| 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32587diff
changeset | 257 |         {
 | 
| 63055 | 258 | have "p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) \<subseteq> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)" .. | 
| 259 | also have "\<dots> \<subseteq> \<^bold>A\<^bold>X \<dots>" by (rule AG_fp_2) | |
| 260 | finally have "?lhs \<subseteq> \<^bold>A\<^bold>X \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)" . | |
| 261 | } | |
| 262 | ultimately have "?lhs \<subseteq> \<^bold>A\<^bold>X p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)" .. | |
| 263 | also have "\<dots> = \<^bold>A\<^bold>X ?lhs" by (simp only: AX_int) | |
| 32960 
69916a850301
eliminated hard tabulators, guessing at each author's individual tab-width;
 wenzelm parents: 
32587diff
changeset | 264 | finally show ?thesis . | 
| 15871 | 265 | qed | 
| 266 | qed | |
| 267 | qed | |
| 268 | next | |
| 63055 | 269 | show "\<^bold>A\<^bold>G p \<subseteq> p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)" | 
| 15871 | 270 | proof | 
| 63055 | 271 | show "\<^bold>A\<^bold>G p \<subseteq> p" by (rule AG_fp_1) | 
| 272 | show "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p)" | |
| 15871 | 273 | proof - | 
| 63055 | 274 | have "\<^bold>A\<^bold>G p = \<^bold>A\<^bold>G \<^bold>A\<^bold>G p" by (simp only: AG_AG) | 
| 275 | also have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X p" by (rule AG_AX) moreover note AG_mono | |
| 276 | also have "\<^bold>A\<^bold>X p \<subseteq> (p \<rightarrow> \<^bold>A\<^bold>X p)" .. moreover note AG_mono | |
| 15871 | 277 | finally show ?thesis . | 
| 278 | qed | |
| 279 | qed | |
| 280 | qed | |
| 281 | ||
| 282 | ||
| 61343 | 283 | subsection \<open>An application of tree induction \label{sec:calc-ctl-commute}\<close>
 | 
| 15871 | 284 | |
| 61343 | 285 | text \<open> | 
| 61934 | 286 | Further interesting properties of CTL expressions may be demonstrated with | 
| 63055 | 287 | the help of tree induction; here we show that \<open>\<^bold>A\<^bold>X\<close> and \<open>\<^bold>A\<^bold>G\<close> commute. | 
| 61343 | 288 | \<close> | 
| 15871 | 289 | |
| 63055 | 290 | theorem AG_AX_commute: "\<^bold>A\<^bold>G \<^bold>A\<^bold>X p = \<^bold>A\<^bold>X \<^bold>A\<^bold>G p" | 
| 15871 | 291 | proof - | 
| 63055 | 292 | have "\<^bold>A\<^bold>G \<^bold>A\<^bold>X p = \<^bold>A\<^bold>X p \<inter> \<^bold>A\<^bold>X \<^bold>A\<^bold>G \<^bold>A\<^bold>X p" by (rule AG_fp) | 
| 293 | also have "\<dots> = \<^bold>A\<^bold>X (p \<inter> \<^bold>A\<^bold>G \<^bold>A\<^bold>X p)" by (simp only: AX_int) | |
| 294 | also have "p \<inter> \<^bold>A\<^bold>G \<^bold>A\<^bold>X p = \<^bold>A\<^bold>G p" (is "?lhs = _") | |
| 295 | proof | |
| 296 | have "\<^bold>A\<^bold>X p \<subseteq> p \<rightarrow> \<^bold>A\<^bold>X p" .. | |
| 297 | also have "p \<inter> \<^bold>A\<^bold>G (p \<rightarrow> \<^bold>A\<^bold>X p) = \<^bold>A\<^bold>G p" by (rule AG_induct) | |
| 15871 | 298 | also note Int_mono AG_mono | 
| 63055 | 299 | ultimately show "?lhs \<subseteq> \<^bold>A\<^bold>G p" by fast | 
| 300 | next | |
| 301 | have "\<^bold>A\<^bold>G p \<subseteq> p" by (rule AG_fp_1) | |
| 302 | moreover | |
| 15871 | 303 |     {
 | 
| 63055 | 304 | have "\<^bold>A\<^bold>G p = \<^bold>A\<^bold>G \<^bold>A\<^bold>G p" by (simp only: AG_AG) | 
| 305 | also have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>X p" by (rule AG_AX) | |
| 15871 | 306 | also note AG_mono | 
| 63055 | 307 | ultimately have "\<^bold>A\<^bold>G p \<subseteq> \<^bold>A\<^bold>G \<^bold>A\<^bold>X p" . | 
| 308 | } | |
| 309 | ultimately show "\<^bold>A\<^bold>G p \<subseteq> ?lhs" .. | |
| 310 | qed | |
| 15871 | 311 | finally show ?thesis . | 
| 312 | qed | |
| 313 | ||
| 314 | end |