| 30946 |      1 | (*  Authors:  Klaus Aehlig, Tobias Nipkow *)
 | 
| 19829 |      2 | 
 | 
| 30946 |      3 | header {* Testing implementation of normalization by evaluation *}
 | 
| 19829 |      4 | 
 | 
|  |      5 | theory NormalForm
 | 
| 35372 |      6 | imports Complex_Main
 | 
| 19829 |      7 | begin
 | 
|  |      8 | 
 | 
| 21117 |      9 | lemma "True" by normalization
 | 
| 19971 |     10 | lemma "p \<longrightarrow> True" by normalization
 | 
| 28350 |     11 | declare disj_assoc [code nbe]
 | 
|  |     12 | lemma "((P | Q) | R) = (P | (Q | R))" by normalization
 | 
|  |     13 | lemma "0 + (n::nat) = n" by normalization
 | 
|  |     14 | lemma "0 + Suc n = Suc n" by normalization
 | 
|  |     15 | lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization
 | 
| 19971 |     16 | lemma "~((0::nat) < (0::nat))" by normalization
 | 
|  |     17 | 
 | 
| 19829 |     18 | datatype n = Z | S n
 | 
| 28350 |     19 | 
 | 
| 30946 |     20 | primrec add :: "n \<Rightarrow> n \<Rightarrow> n" where
 | 
|  |     21 |    "add Z = id"
 | 
|  |     22 |  | "add (S m) = S o add m"
 | 
|  |     23 | 
 | 
|  |     24 | primrec add2 :: "n \<Rightarrow> n \<Rightarrow> n" where
 | 
|  |     25 |    "add2 Z n = n"
 | 
|  |     26 |  | "add2 (S m) n = S(add2 m n)"
 | 
| 19829 |     27 | 
 | 
| 28143 |     28 | declare add2.simps [code]
 | 
| 28709 |     29 | lemma [code nbe]: "add2 (add2 n m) k = add2 n (add2 m k)"
 | 
| 28143 |     30 |   by (induct n) auto
 | 
| 20842 |     31 | lemma [code]: "add2 n (S m) =  S (add2 n m)"
 | 
|  |     32 |   by(induct n) auto
 | 
| 19829 |     33 | lemma [code]: "add2 n Z = n"
 | 
| 20842 |     34 |   by(induct n) auto
 | 
| 19971 |     35 | 
 | 
| 28350 |     36 | lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization
 | 
|  |     37 | lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
 | 
|  |     38 | lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
 | 
| 19829 |     39 | 
 | 
| 30946 |     40 | primrec mul :: "n \<Rightarrow> n \<Rightarrow> n" where
 | 
|  |     41 |    "mul Z = (%n. Z)"
 | 
|  |     42 |  | "mul (S m) = (%n. add (mul m n) n)"
 | 
|  |     43 | 
 | 
|  |     44 | primrec mul2 :: "n \<Rightarrow> n \<Rightarrow> n" where
 | 
|  |     45 |    "mul2 Z n = Z"
 | 
|  |     46 |  | "mul2 (S m) n = add2 n (mul2 m n)"
 | 
|  |     47 | 
 | 
|  |     48 | primrec exp :: "n \<Rightarrow> n \<Rightarrow> n" where
 | 
|  |     49 |    "exp m Z = S Z"
 | 
|  |     50 |  | "exp m (S n) = mul (exp m n) m"
 | 
| 19829 |     51 | 
 | 
| 19971 |     52 | lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
 | 
|  |     53 | lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
 | 
|  |     54 | lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization
 | 
|  |     55 | 
 | 
|  |     56 | lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization
 | 
| 28350 |     57 | lemma "split (%x y. x) (a, b) = a" by normalization
 | 
| 19971 |     58 | lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization
 | 
|  |     59 | 
 | 
|  |     60 | lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization
 | 
| 19829 |     61 | 
 | 
| 20842 |     62 | lemma "[] @ [] = []" by normalization
 | 
| 28350 |     63 | lemma "map f [x,y,z::'x] = [f x, f y, f z]" by normalization
 | 
|  |     64 | lemma "[a, b, c] @ xs = a # b # c # xs" by normalization
 | 
|  |     65 | lemma "[] @ xs = xs" by normalization
 | 
|  |     66 | lemma "map (%f. f True) [id, g, Not] = [True, g True, False]" by normalization
 | 
|  |     67 | 
 | 
| 28422 |     68 | lemma "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs"
 | 
|  |     69 |   by normalization rule+
 | 
| 28350 |     70 | lemma "rev [a, b, c] = [c, b, a]" by normalization
 | 
| 26739 |     71 | normal_form "rev (a#b#cs) = rev cs @ [b, a]"
 | 
| 19829 |     72 | normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])"
 | 
|  |     73 | normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))"
 | 
|  |     74 | normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])"
 | 
| 25934 |     75 | lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" 
 | 
|  |     76 |   by normalization
 | 
| 19829 |     77 | normal_form "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False"
 | 
| 25934 |     78 | normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs = P"
 | 
| 28350 |     79 | lemma "let x = y in [x, x] = [y, y]" by normalization
 | 
|  |     80 | lemma "Let y (%x. [x,x]) = [y, y]" by normalization
 | 
| 19829 |     81 | normal_form "case n of Z \<Rightarrow> True | S x \<Rightarrow> False"
 | 
| 28350 |     82 | lemma "(%(x,y). add x y) (S z,S z) = S (add z (S z))" by normalization
 | 
| 19829 |     83 | normal_form "filter (%x. x) ([True,False,x]@xs)"
 | 
|  |     84 | normal_form "filter Not ([True,False,x]@xs)"
 | 
|  |     85 | 
 | 
| 28350 |     86 | lemma "[x,y,z] @ [a,b,c] = [x, y, z, a, b, c]" by normalization
 | 
|  |     87 | lemma "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" by normalization
 | 
| 25100 |     88 | lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" by normalization
 | 
| 19829 |     89 | 
 | 
| 28350 |     90 | lemma "last [a, b, c] = c" by normalization
 | 
|  |     91 | lemma "last ([a, b, c] @ xs) = last (c # xs)" by normalization
 | 
| 19829 |     92 | 
 | 
| 28350 |     93 | lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization
 | 
| 20842 |     94 | lemma "(-4::int) * 2 = -8" by normalization
 | 
|  |     95 | lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
 | 
|  |     96 | lemma "(2::int) + 3 = 5" by normalization
 | 
|  |     97 | lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization
 | 
|  |     98 | lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization
 | 
|  |     99 | lemma "(2::int) < 3" by normalization
 | 
|  |    100 | lemma "(2::int) <= 3" by normalization
 | 
|  |    101 | lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
 | 
|  |    102 | lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization
 | 
|  |    103 | lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization
 | 
| 22394 |    104 | lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization
 | 
|  |    105 | lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization
 | 
| 25100 |    106 | lemma "[Suc 0, 0] = [Suc 0, 0]" by normalization
 | 
|  |    107 | lemma "max (Suc 0) 0 = Suc 0" by normalization
 | 
| 25187 |    108 | lemma "(42::rat) / 1704 = 1 / 284 + 3 / 142" by normalization
 | 
| 21059 |    109 | normal_form "Suc 0 \<in> set ms"
 | 
| 20922 |    110 | 
 | 
| 28350 |    111 | lemma "f = f" by normalization
 | 
|  |    112 | lemma "f x = f x" by normalization
 | 
|  |    113 | lemma "(f o g) x = f (g x)" by normalization
 | 
|  |    114 | lemma "(f o id) x = f x" by normalization
 | 
| 25934 |    115 | normal_form "(\<lambda>x. x)"
 | 
| 21987 |    116 | 
 | 
| 23396 |    117 | (* Church numerals: *)
 | 
|  |    118 | 
 | 
|  |    119 | normal_form "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
 | 
|  |    120 | normal_form "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
 | 
|  |    121 | normal_form "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
 | 
|  |    122 | 
 | 
| 32544 |    123 | (* handling of type classes in connection with equality *)
 | 
|  |    124 | 
 | 
|  |    125 | lemma "map f [x, y] = [f x, f y]" by normalization
 | 
|  |    126 | lemma "(map f [x, y], w) = ([f x, f y], w)" by normalization
 | 
|  |    127 | lemma "map f [x, y] = [f x \<Colon> 'a\<Colon>semigroup_add, f y]" by normalization
 | 
|  |    128 | lemma "map f [x \<Colon> 'a\<Colon>semigroup_add, y] = [f x, f y]" by normalization
 | 
|  |    129 | lemma "(map f [x \<Colon> 'a\<Colon>semigroup_add, y], w \<Colon> 'b\<Colon>finite) = ([f x, f y], w)" by normalization
 | 
|  |    130 | 
 | 
| 19829 |    131 | end
 |