author | wenzelm |
Sat, 12 Apr 2008 17:00:35 +0200 | |
changeset 26626 | c6231d64d264 |
parent 23178 | 07ba6b58b3d2 |
child 29606 | fedb8be05f24 |
permissions | -rw-r--r-- |
12319 | 1 |
(* Title: Pure/net.ML |
0 | 2 |
ID: $Id$ |
12319 | 3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
0 | 4 |
Copyright 1993 University of Cambridge |
5 |
||
6 |
Discrimination nets: a data structure for indexing items |
|
7 |
||
12319 | 8 |
From the book |
9 |
E. Charniak, C. K. Riesbeck, D. V. McDermott. |
|
0 | 10 |
Artificial Intelligence Programming. |
11 |
(Lawrence Erlbaum Associates, 1980). [Chapter 14] |
|
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
12 |
|
12319 | 13 |
match_term no longer treats abstractions as wildcards; instead they match |
228 | 14 |
only wildcards in patterns. Requires operands to be beta-eta-normal. |
0 | 15 |
*) |
16 |
||
12319 | 17 |
signature NET = |
16808 | 18 |
sig |
0 | 19 |
type key |
16808 | 20 |
val key_of_term: term -> key list |
0 | 21 |
type 'a net |
22 |
val empty: 'a net |
|
16808 | 23 |
exception INSERT |
24 |
val insert: ('a * 'a -> bool) -> key list * 'a -> 'a net -> 'a net |
|
25 |
val insert_term: ('a * 'a -> bool) -> term * 'a -> 'a net -> 'a net |
|
26 |
exception DELETE |
|
27 |
val delete: ('b * 'a -> bool) -> key list * 'b -> 'a net -> 'a net |
|
28 |
val delete_term: ('b * 'a -> bool) -> term * 'b -> 'a net -> 'a net |
|
29 |
val lookup: 'a net -> key list -> 'a list |
|
0 | 30 |
val match_term: 'a net -> term -> 'a list |
31 |
val unify_term: 'a net -> term -> 'a list |
|
16808 | 32 |
val entries: 'a net -> 'a list |
33 |
val subtract: ('b * 'a -> bool) -> 'a net -> 'b net -> 'b list |
|
34 |
val merge: ('a * 'a -> bool) -> 'a net * 'a net -> 'a net |
|
20011 | 35 |
val content: 'a net -> 'a list |
16808 | 36 |
end; |
0 | 37 |
|
16808 | 38 |
structure Net: NET = |
0 | 39 |
struct |
40 |
||
41 |
datatype key = CombK | VarK | AtomK of string; |
|
42 |
||
228 | 43 |
(*Keys are preorder lists of symbols -- Combinations, Vars, Atoms. |
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
44 |
Any term whose head is a Var is regarded entirely as a Var. |
228 | 45 |
Abstractions are also regarded as Vars; this covers eta-conversion |
46 |
and "near" eta-conversions such as %x.?P(?f(x)). |
|
0 | 47 |
*) |
12319 | 48 |
fun add_key_of_terms (t, cs) = |
0 | 49 |
let fun rands (f$t, cs) = CombK :: rands (f, add_key_of_terms(t, cs)) |
12319 | 50 |
| rands (Const(c,_), cs) = AtomK c :: cs |
51 |
| rands (Free(c,_), cs) = AtomK c :: cs |
|
20080 | 52 |
| rands (Bound i, cs) = AtomK (Name.bound i) :: cs |
0 | 53 |
in case (head_of t) of |
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
54 |
Var _ => VarK :: cs |
228 | 55 |
| Abs _ => VarK :: cs |
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
56 |
| _ => rands(t,cs) |
0 | 57 |
end; |
58 |
||
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
59 |
(*convert a term to a list of keys*) |
0 | 60 |
fun key_of_term t = add_key_of_terms (t, []); |
61 |
||
62 |
||
63 |
(*Trees indexed by key lists: each arc is labelled by a key. |
|
64 |
Each node contains a list of items, and arcs to children. |
|
65 |
The empty key addresses the entire net. |
|
66 |
Lookup functions preserve order in items stored at same level. |
|
67 |
*) |
|
68 |
datatype 'a net = Leaf of 'a list |
|
12319 | 69 |
| Net of {comb: 'a net, |
70 |
var: 'a net, |
|
16708 | 71 |
atoms: 'a net Symtab.table}; |
0 | 72 |
|
73 |
val empty = Leaf[]; |
|
16708 | 74 |
fun is_empty (Leaf []) = true | is_empty _ = false; |
75 |
val emptynet = Net{comb=empty, var=empty, atoms=Symtab.empty}; |
|
0 | 76 |
|
77 |
||
78 |
(*** Insertion into a discrimination net ***) |
|
79 |
||
12319 | 80 |
exception INSERT; (*duplicate item in the net*) |
0 | 81 |
|
82 |
||
83 |
(*Adds item x to the list at the node addressed by the keys. |
|
84 |
Creates node if not already present. |
|
12319 | 85 |
eq is the equality test for items. |
0 | 86 |
The empty list of keys generates a Leaf node, others a Net node. |
87 |
*) |
|
16808 | 88 |
fun insert eq (keys,x) net = |
12319 | 89 |
let fun ins1 ([], Leaf xs) = |
16686 | 90 |
if member eq xs x then raise INSERT else Leaf(x::xs) |
0 | 91 |
| ins1 (keys, Leaf[]) = ins1 (keys, emptynet) (*expand empty...*) |
16708 | 92 |
| ins1 (CombK :: keys, Net{comb,var,atoms}) = |
93 |
Net{comb=ins1(keys,comb), var=var, atoms=atoms} |
|
94 |
| ins1 (VarK :: keys, Net{comb,var,atoms}) = |
|
95 |
Net{comb=comb, var=ins1(keys,var), atoms=atoms} |
|
96 |
| ins1 (AtomK a :: keys, Net{comb,var,atoms}) = |
|
97 |
let |
|
18939 | 98 |
val net' = the_default empty (Symtab.lookup atoms a); |
17412 | 99 |
val atoms' = Symtab.update (a, ins1 (keys, net')) atoms; |
16708 | 100 |
in Net{comb=comb, var=var, atoms=atoms'} end |
0 | 101 |
in ins1 (keys,net) end; |
102 |
||
16808 | 103 |
fun insert_safe eq entry net = insert eq entry net handle INSERT => net; |
104 |
fun insert_term eq (t, x) = insert eq (key_of_term t, x); |
|
105 |
||
0 | 106 |
|
107 |
(*** Deletion from a discrimination net ***) |
|
108 |
||
12319 | 109 |
exception DELETE; (*missing item in the net*) |
0 | 110 |
|
111 |
(*Create a new Net node if it would be nonempty*) |
|
16708 | 112 |
fun newnet (args as {comb,var,atoms}) = |
113 |
if is_empty comb andalso is_empty var andalso Symtab.is_empty atoms |
|
114 |
then empty else Net args; |
|
0 | 115 |
|
116 |
(*Deletes item x from the list at the node addressed by the keys. |
|
117 |
Raises DELETE if absent. Collapses the net if possible. |
|
118 |
eq is the equality test for items. *) |
|
16808 | 119 |
fun delete eq (keys, x) net = |
0 | 120 |
let fun del1 ([], Leaf xs) = |
16686 | 121 |
if member eq xs x then Leaf (remove eq x xs) |
0 | 122 |
else raise DELETE |
12319 | 123 |
| del1 (keys, Leaf[]) = raise DELETE |
16708 | 124 |
| del1 (CombK :: keys, Net{comb,var,atoms}) = |
125 |
newnet{comb=del1(keys,comb), var=var, atoms=atoms} |
|
126 |
| del1 (VarK :: keys, Net{comb,var,atoms}) = |
|
127 |
newnet{comb=comb, var=del1(keys,var), atoms=atoms} |
|
128 |
| del1 (AtomK a :: keys, Net{comb,var,atoms}) = |
|
129 |
let val atoms' = |
|
17412 | 130 |
(case Symtab.lookup atoms a of |
16708 | 131 |
NONE => raise DELETE |
132 |
| SOME net' => |
|
133 |
(case del1 (keys, net') of |
|
134 |
Leaf [] => Symtab.delete a atoms |
|
17412 | 135 |
| net'' => Symtab.update (a, net'') atoms)) |
16708 | 136 |
in newnet{comb=comb, var=var, atoms=atoms'} end |
0 | 137 |
in del1 (keys,net) end; |
138 |
||
16808 | 139 |
fun delete_term eq (t, x) = delete eq (key_of_term t, x); |
0 | 140 |
|
16677 | 141 |
|
0 | 142 |
(*** Retrieval functions for discrimination nets ***) |
143 |
||
16708 | 144 |
exception ABSENT; |
0 | 145 |
|
16708 | 146 |
fun the_atom atoms a = |
17412 | 147 |
(case Symtab.lookup atoms a of |
16708 | 148 |
NONE => raise ABSENT |
149 |
| SOME net => net); |
|
0 | 150 |
|
151 |
(*Return the list of items at the given node, [] if no such node*) |
|
16808 | 152 |
fun lookup (Leaf xs) [] = xs |
153 |
| lookup (Leaf _) (_ :: _) = [] (*non-empty keys and empty net*) |
|
154 |
| lookup (Net {comb, var, atoms}) (CombK :: keys) = lookup comb keys |
|
155 |
| lookup (Net {comb, var, atoms}) (VarK :: keys) = lookup var keys |
|
156 |
| lookup (Net {comb, var, atoms}) (AtomK a :: keys) = |
|
157 |
lookup (the_atom atoms a) keys handle ABSENT => []; |
|
0 | 158 |
|
159 |
||
160 |
(*Skipping a term in a net. Recursively skip 2 levels if a combination*) |
|
23178 | 161 |
fun net_skip (Leaf _) nets = nets |
162 |
| net_skip (Net{comb,var,atoms}) nets = |
|
163 |
fold_rev net_skip (net_skip comb []) (Symtab.fold (cons o #2) atoms (var::nets)); |
|
0 | 164 |
|
16808 | 165 |
|
166 |
(** Matching and Unification **) |
|
0 | 167 |
|
168 |
(*conses the linked net, if present, to nets*) |
|
16708 | 169 |
fun look1 (atoms, a) nets = |
170 |
the_atom atoms a :: nets handle ABSENT => nets; |
|
0 | 171 |
|
12319 | 172 |
(*Return the nodes accessible from the term (cons them before nets) |
0 | 173 |
"unif" signifies retrieval for unification rather than matching. |
174 |
Var in net matches any term. |
|
12319 | 175 |
Abs or Var in object: if "unif", regarded as wildcard, |
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
176 |
else matches only a variable in net. |
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
177 |
*) |
23178 | 178 |
fun matching unif t net nets = |
0 | 179 |
let fun rands _ (Leaf _, nets) = nets |
16708 | 180 |
| rands t (Net{comb,atoms,...}, nets) = |
12319 | 181 |
case t of |
23178 | 182 |
f$t => fold_rev (matching unif t) (rands f (comb,[])) nets |
16708 | 183 |
| Const(c,_) => look1 (atoms, c) nets |
184 |
| Free(c,_) => look1 (atoms, c) nets |
|
20080 | 185 |
| Bound i => look1 (atoms, Name.bound i) nets |
12319 | 186 |
| _ => nets |
187 |
in |
|
0 | 188 |
case net of |
12319 | 189 |
Leaf _ => nets |
0 | 190 |
| Net{var,...} => |
12319 | 191 |
case head_of t of |
23178 | 192 |
Var _ => if unif then net_skip net nets |
12319 | 193 |
else var::nets (*only matches Var in net*) |
2836 | 194 |
(*If "unif" then a var instantiation in the abstraction could allow |
195 |
an eta-reduction, so regard the abstraction as a wildcard.*) |
|
23178 | 196 |
| Abs _ => if unif then net_skip net nets |
12319 | 197 |
else var::nets (*only a Var can match*) |
198 |
| _ => rands t (net, var::nets) (*var could match also*) |
|
0 | 199 |
end; |
200 |
||
19482
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
wenzelm
parents:
18939
diff
changeset
|
201 |
fun extract_leaves l = maps (fn Leaf xs => xs) l; |
0 | 202 |
|
225
76f60e6400e8
optimized net for matching of abstractions to speed up simplifier
nipkow
parents:
0
diff
changeset
|
203 |
(*return items whose key could match t, WHICH MUST BE BETA-ETA NORMAL*) |
12319 | 204 |
fun match_term net t = |
23178 | 205 |
extract_leaves (matching false t net []); |
0 | 206 |
|
207 |
(*return items whose key could unify with t*) |
|
12319 | 208 |
fun unify_term net t = |
23178 | 209 |
extract_leaves (matching true t net []); |
0 | 210 |
|
3548 | 211 |
|
16808 | 212 |
(** operations on nets **) |
213 |
||
214 |
(*subtraction: collect entries of second net that are NOT present in first net*) |
|
215 |
fun subtract eq net1 net2 = |
|
216 |
let |
|
217 |
fun subtr (Net _) (Leaf ys) = append ys |
|
218 |
| subtr (Leaf xs) (Leaf ys) = |
|
219 |
fold_rev (fn y => if member eq xs y then I else cons y) ys |
|
220 |
| subtr (Leaf _) (net as Net _) = subtr emptynet net |
|
221 |
| subtr (Net {comb = comb1, var = var1, atoms = atoms1}) |
|
222 |
(Net {comb = comb2, var = var2, atoms = atoms2}) = |
|
16842 | 223 |
subtr comb1 comb2 |
224 |
#> subtr var1 var2 |
|
225 |
#> Symtab.fold (fn (a, net) => |
|
18939 | 226 |
subtr (the_default emptynet (Symtab.lookup atoms1 a)) net) atoms2 |
16808 | 227 |
in subtr net1 net2 [] end; |
228 |
||
229 |
fun entries net = subtract (K false) empty net; |
|
230 |
||
231 |
||
232 |
(* merge *) |
|
3548 | 233 |
|
234 |
fun cons_fst x (xs, y) = (x :: xs, y); |
|
235 |
||
236 |
fun dest (Leaf xs) = map (pair []) xs |
|
16708 | 237 |
| dest (Net {comb, var, atoms}) = |
3560 | 238 |
map (cons_fst CombK) (dest comb) @ |
239 |
map (cons_fst VarK) (dest var) @ |
|
19482
9f11af8f7ef9
tuned basic list operators (flat, maps, map_filter);
wenzelm
parents:
18939
diff
changeset
|
240 |
maps (fn (a, net) => map (cons_fst (AtomK a)) (dest net)) (Symtab.dest atoms); |
3548 | 241 |
|
16808 | 242 |
fun merge eq (net1, net2) = fold (insert_safe eq) (dest net2) net1; |
3548 | 243 |
|
20011 | 244 |
fun content net = map #2 (dest net); |
245 |
||
0 | 246 |
end; |