src/HOL/ex/Normalization_by_Evaluation.thy
author wenzelm
Mon, 03 Mar 2014 13:54:47 +0100
changeset 55885 c871a2e751ec
parent 41037 6d6f23b3a879
child 56927 4044a7d1720f
permissions -rw-r--r--
tuned proofs;
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
30946
haftmann
parents: 28952
diff changeset
     1
(*  Authors:  Klaus Aehlig, Tobias Nipkow *)
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
     2
30946
haftmann
parents: 28952
diff changeset
     3
header {* Testing implementation of normalization by evaluation *}
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
     4
39395
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
     5
theory Normalization_by_Evaluation
35372
ca158c7b1144 renamed theory Rational to Rat
haftmann
parents: 32547
diff changeset
     6
imports Complex_Main
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
     7
begin
d909e782e247 renamed file
nipkow
parents:
diff changeset
     8
21117
e8657a20a52f *** empty log message ***
haftmann
parents: 21059
diff changeset
     9
lemma "True" by normalization
19971
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    10
lemma "p \<longrightarrow> True" by normalization
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    11
declare disj_assoc [code nbe]
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    12
lemma "((P | Q) | R) = (P | (Q | R))" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    13
lemma "0 + (n::nat) = n" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    14
lemma "0 + Suc n = Suc n" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    15
lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization
19971
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    16
lemma "~((0::nat) < (0::nat))" by normalization
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    17
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
    18
datatype n = Z | S n
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    19
30946
haftmann
parents: 28952
diff changeset
    20
primrec add :: "n \<Rightarrow> n \<Rightarrow> n" where
haftmann
parents: 28952
diff changeset
    21
   "add Z = id"
haftmann
parents: 28952
diff changeset
    22
 | "add (S m) = S o add m"
haftmann
parents: 28952
diff changeset
    23
haftmann
parents: 28952
diff changeset
    24
primrec add2 :: "n \<Rightarrow> n \<Rightarrow> n" where
haftmann
parents: 28952
diff changeset
    25
   "add2 Z n = n"
haftmann
parents: 28952
diff changeset
    26
 | "add2 (S m) n = S(add2 m n)"
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
    27
28143
e5c6c4aac52c different bookkeeping for code equations
haftmann
parents: 26739
diff changeset
    28
declare add2.simps [code]
28709
6a5d214aaa82 adapted to strict pattern discipline
haftmann
parents: 28562
diff changeset
    29
lemma [code nbe]: "add2 (add2 n m) k = add2 n (add2 m k)"
28143
e5c6c4aac52c different bookkeeping for code equations
haftmann
parents: 26739
diff changeset
    30
  by (induct n) auto
20842
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    31
lemma [code]: "add2 n (S m) =  S (add2 n m)"
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    32
  by(induct n) auto
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
    33
lemma [code]: "add2 n Z = n"
20842
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    34
  by(induct n) auto
19971
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    35
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    36
lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    37
lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    38
lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
    39
30946
haftmann
parents: 28952
diff changeset
    40
primrec mul :: "n \<Rightarrow> n \<Rightarrow> n" where
haftmann
parents: 28952
diff changeset
    41
   "mul Z = (%n. Z)"
haftmann
parents: 28952
diff changeset
    42
 | "mul (S m) = (%n. add (mul m n) n)"
haftmann
parents: 28952
diff changeset
    43
haftmann
parents: 28952
diff changeset
    44
primrec mul2 :: "n \<Rightarrow> n \<Rightarrow> n" where
haftmann
parents: 28952
diff changeset
    45
   "mul2 Z n = Z"
haftmann
parents: 28952
diff changeset
    46
 | "mul2 (S m) n = add2 n (mul2 m n)"
haftmann
parents: 28952
diff changeset
    47
haftmann
parents: 28952
diff changeset
    48
primrec exp :: "n \<Rightarrow> n \<Rightarrow> n" where
haftmann
parents: 28952
diff changeset
    49
   "exp m Z = S Z"
haftmann
parents: 28952
diff changeset
    50
 | "exp m (S n) = mul (exp m n) m"
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
    51
19971
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    52
lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    53
lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    54
lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    55
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    56
lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    57
lemma "split (%x y. x) (a, b) = a" by normalization
19971
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    58
lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    59
ddf69abaffa8 normal_form to lemma test
nipkow
parents: 19829
diff changeset
    60
lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
    61
20842
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    62
lemma "[] @ [] = []" by normalization
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    63
lemma "map f [x,y,z::'x] = [f x, f y, f z]" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    64
lemma "[a, b, c] @ xs = a # b # c # xs" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    65
lemma "[] @ xs = xs" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    66
lemma "map (%f. f True) [id, g, Not] = [True, g True, False]" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    67
28422
haftmann
parents: 28351
diff changeset
    68
lemma "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs"
41037
6d6f23b3a879 removed experimental equality checking of closures; acknowledge underapproximation of equality in function name
haftmann
parents: 40730
diff changeset
    69
  by normalization rule
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    70
lemma "rev [a, b, c] = [c, b, a]" by normalization
39395
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
    71
value [nbe] "rev (a#b#cs) = rev cs @ [b, a]"
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
    72
value [nbe] "map (%F. F [a,b,c::'x]) (map map [f,g,h])"
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
    73
value [nbe] "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))"
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
    74
value [nbe] "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])"
25934
7b8f3a9efa03 more lemmas
haftmann
parents: 25866
diff changeset
    75
lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" 
7b8f3a9efa03 more lemmas
haftmann
parents: 25866
diff changeset
    76
  by normalization
39395
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
    77
value [nbe] "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False"
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
    78
value [nbe] "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs = P"
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    79
lemma "let x = y in [x, x] = [y, y]" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    80
lemma "Let y (%x. [x,x]) = [y, y]" by normalization
39395
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
    81
value [nbe] "case n of Z \<Rightarrow> True | S x \<Rightarrow> False"
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    82
lemma "(%(x,y). add x y) (S z,S z) = S (add z (S z))" by normalization
39395
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
    83
value [nbe] "filter (%x. x) ([True,False,x]@xs)"
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
    84
value [nbe] "filter Not ([True,False,x]@xs)"
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
    85
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    86
lemma "[x,y,z] @ [a,b,c] = [x, y, z, a, b, c]" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    87
lemma "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" by normalization
25100
fe9632d914c7 added examples
haftmann
parents: 23396
diff changeset
    88
lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" by normalization
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
    89
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    90
lemma "last [a, b, c] = c" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    91
lemma "last ([a, b, c] @ xs) = last (c # xs)" by normalization
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
    92
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
    93
lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization
20842
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    94
lemma "(-4::int) * 2 = -8" by normalization
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    95
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    96
lemma "(2::int) + 3 = 5" by normalization
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    97
lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    98
lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
    99
lemma "(2::int) < 3" by normalization
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
   100
lemma "(2::int) <= 3" by normalization
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
   101
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
   102
lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization
f5f69a1059f4 cleaned and extended
haftmann
parents: 20807
diff changeset
   103
lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization
22394
54ea68b5a92f tuned code theorems for ord on integers
haftmann
parents: 21987
diff changeset
   104
lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization
54ea68b5a92f tuned code theorems for ord on integers
haftmann
parents: 21987
diff changeset
   105
lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization
25100
fe9632d914c7 added examples
haftmann
parents: 23396
diff changeset
   106
lemma "[Suc 0, 0] = [Suc 0, 0]" by normalization
fe9632d914c7 added examples
haftmann
parents: 23396
diff changeset
   107
lemma "max (Suc 0) 0 = Suc 0" by normalization
25187
2d225c1c4b78 more computation with rationals
haftmann
parents: 25165
diff changeset
   108
lemma "(42::rat) / 1704 = 1 / 284 + 3 / 142" by normalization
39395
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
   109
value [nbe] "Suc 0 \<in> set ms"
20922
14873e42659c added nbe_post for delayed_if
nipkow
parents: 20921
diff changeset
   110
40730
2aa0390a2da7 nbe decides equality of abstractions by extensionality
haftmann
parents: 39395
diff changeset
   111
(* non-left-linear patterns, equality by extensionality *)
2aa0390a2da7 nbe decides equality of abstractions by extensionality
haftmann
parents: 39395
diff changeset
   112
28350
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
   113
lemma "f = f" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
   114
lemma "f x = f x" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
   115
lemma "(f o g) x = f (g x)" by normalization
715163ec93c0 non left-linear equations for nbe
haftmann
parents: 28337
diff changeset
   116
lemma "(f o id) x = f x" by normalization
40730
2aa0390a2da7 nbe decides equality of abstractions by extensionality
haftmann
parents: 39395
diff changeset
   117
lemma "(id :: bool \<Rightarrow> bool) = id" by normalization
39395
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
   118
value [nbe] "(\<lambda>x. x)"
21987
29d5cdd1cc03 more term examples
haftmann
parents: 21460
diff changeset
   119
23396
6d72ababc58f Church numerals added
nipkow
parents: 22845
diff changeset
   120
(* Church numerals: *)
6d72ababc58f Church numerals added
nipkow
parents: 22845
diff changeset
   121
39395
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
   122
value [nbe] "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
   123
value [nbe] "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
a1aa9fbcbd3d more explicit theory name
haftmann
parents: 35372
diff changeset
   124
value [nbe] "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"
23396
6d72ababc58f Church numerals added
nipkow
parents: 22845
diff changeset
   125
32544
e129333b9df0 moved eq handling in nbe into separate oracle
haftmann
parents: 31062
diff changeset
   126
(* handling of type classes in connection with equality *)
e129333b9df0 moved eq handling in nbe into separate oracle
haftmann
parents: 31062
diff changeset
   127
e129333b9df0 moved eq handling in nbe into separate oracle
haftmann
parents: 31062
diff changeset
   128
lemma "map f [x, y] = [f x, f y]" by normalization
e129333b9df0 moved eq handling in nbe into separate oracle
haftmann
parents: 31062
diff changeset
   129
lemma "(map f [x, y], w) = ([f x, f y], w)" by normalization
e129333b9df0 moved eq handling in nbe into separate oracle
haftmann
parents: 31062
diff changeset
   130
lemma "map f [x, y] = [f x \<Colon> 'a\<Colon>semigroup_add, f y]" by normalization
e129333b9df0 moved eq handling in nbe into separate oracle
haftmann
parents: 31062
diff changeset
   131
lemma "map f [x \<Colon> 'a\<Colon>semigroup_add, y] = [f x, f y]" by normalization
e129333b9df0 moved eq handling in nbe into separate oracle
haftmann
parents: 31062
diff changeset
   132
lemma "(map f [x \<Colon> 'a\<Colon>semigroup_add, y], w \<Colon> 'b\<Colon>finite) = ([f x, f y], w)" by normalization
e129333b9df0 moved eq handling in nbe into separate oracle
haftmann
parents: 31062
diff changeset
   133
19829
d909e782e247 renamed file
nipkow
parents:
diff changeset
   134
end