| author | wenzelm | 
| Fri, 23 Feb 2018 19:25:37 +0100 | |
| changeset 67710 | cc2db3239932 | 
| parent 67091 | 1393c2340eec | 
| child 69605 | a96320074298 | 
| permissions | -rw-r--r-- | 
| 58128 | 1  | 
(* Title: HOL/BNF_Least_Fixpoint.thy  | 
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
2  | 
Author: Dmitriy Traytel, TU Muenchen  | 
| 53305 | 3  | 
Author: Lorenz Panny, TU Muenchen  | 
4  | 
Author: Jasmin Blanchette, TU Muenchen  | 
|
| 57698 | 5  | 
Copyright 2012, 2013, 2014  | 
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
6  | 
|
| 
58352
 
37745650a3f4
register 'prod' and 'sum' as datatypes, to allow N2M through them
 
blanchet 
parents: 
58314 
diff
changeset
 | 
7  | 
Least fixpoint (datatype) operation on bounded natural functors.  | 
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
8  | 
*)  | 
| 
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
9  | 
|
| 60758 | 10  | 
section \<open>Least Fixpoint (Datatype) Operation on Bounded Natural Functors\<close>  | 
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
11  | 
|
| 58128 | 12  | 
theory BNF_Least_Fixpoint  | 
13  | 
imports BNF_Fixpoint_Base  | 
|
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
14  | 
keywords  | 
| 
58305
 
57752a91eec4
renamed 'datatype' to 'old_datatype'; 'datatype' is now alias for 'datatype_new'
 
blanchet 
parents: 
58276 
diff
changeset
 | 
15  | 
"datatype" :: thy_decl and  | 
| 
55575
 
a5e33e18fb5c
moved 'primrec' up (for real this time) and removed temporary 'old_primrec'
 
blanchet 
parents: 
55571 
diff
changeset
 | 
16  | 
"datatype_compat" :: thy_decl  | 
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
17  | 
begin  | 
| 
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
18  | 
|
| 49312 | 19  | 
lemma subset_emptyI: "(\<And>x. x \<in> A \<Longrightarrow> False) \<Longrightarrow> A \<subseteq> {}"
 | 
| 57987 | 20  | 
by blast  | 
| 49312 | 21  | 
|
| 56346 | 22  | 
lemma image_Collect_subsetI: "(\<And>x. P x \<Longrightarrow> f x \<in> B) \<Longrightarrow> f ` {x. P x} \<subseteq> B"
 | 
| 57987 | 23  | 
by blast  | 
| 49312 | 24  | 
|
25  | 
lemma Collect_restrict: "{x. x \<in> X \<and> P x} \<subseteq> X"
 | 
|
| 57987 | 26  | 
by auto  | 
| 49312 | 27  | 
|
28  | 
lemma prop_restrict: "\<lbrakk>x \<in> Z; Z \<subseteq> {x. x \<in> X \<and> P x}\<rbrakk> \<Longrightarrow> P x"
 | 
|
| 57987 | 29  | 
by auto  | 
| 49312 | 30  | 
|
| 
55023
 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
 
blanchet 
parents: 
54841 
diff
changeset
 | 
31  | 
lemma underS_I: "\<lbrakk>i \<noteq> j; (i, j) \<in> R\<rbrakk> \<Longrightarrow> i \<in> underS R j"  | 
| 57987 | 32  | 
unfolding underS_def by simp  | 
| 49312 | 33  | 
|
| 
55023
 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
 
blanchet 
parents: 
54841 
diff
changeset
 | 
34  | 
lemma underS_E: "i \<in> underS R j \<Longrightarrow> i \<noteq> j \<and> (i, j) \<in> R"  | 
| 57987 | 35  | 
unfolding underS_def by simp  | 
| 49312 | 36  | 
|
| 
55023
 
38db7814481d
get rid of 'rel' locale, to facilitate inclusion of 'Order_Relation_More_FP' into 'Order_Relation'
 
blanchet 
parents: 
54841 
diff
changeset
 | 
37  | 
lemma underS_Field: "i \<in> underS R j \<Longrightarrow> i \<in> Field R"  | 
| 57987 | 38  | 
unfolding underS_def Field_def by auto  | 
| 49312 | 39  | 
|
40  | 
lemma bij_betwE: "bij_betw f A B \<Longrightarrow> \<forall>a\<in>A. f a \<in> B"  | 
|
| 57987 | 41  | 
unfolding bij_betw_def by auto  | 
| 49312 | 42  | 
|
| 58159 | 43  | 
lemma f_the_inv_into_f_bij_betw:  | 
44  | 
"bij_betw f A B \<Longrightarrow> (bij_betw f A B \<Longrightarrow> x \<in> B) \<Longrightarrow> f (the_inv_into A f x) = x"  | 
|
| 56237 | 45  | 
unfolding bij_betw_def by (blast intro: f_the_inv_into_f)  | 
| 49312 | 46  | 
|
| 56237 | 47  | 
lemma ex_bij_betw: "|A| \<le>o (r :: 'b rel) \<Longrightarrow> \<exists>f B :: 'b set. bij_betw f B A"  | 
| 58159 | 48  | 
by (subst (asm) internalize_card_of_ordLeq) (auto dest!: iffD2[OF card_of_ordIso ordIso_symmetric])  | 
| 49312 | 49  | 
|
50  | 
lemma bij_betwI':  | 
|
51  | 
"\<lbrakk>\<And>x y. \<lbrakk>x \<in> X; y \<in> X\<rbrakk> \<Longrightarrow> (f x = f y) = (x = y);  | 
|
52  | 
\<And>x. x \<in> X \<Longrightarrow> f x \<in> Y;  | 
|
53  | 
\<And>y. y \<in> Y \<Longrightarrow> \<exists>x \<in> X. y = f x\<rbrakk> \<Longrightarrow> bij_betw f X Y"  | 
|
| 57987 | 54  | 
unfolding bij_betw_def inj_on_def by blast  | 
| 49312 | 55  | 
|
56  | 
lemma surj_fun_eq:  | 
|
| 67091 | 57  | 
assumes surj_on: "f ` X = UNIV" and eq_on: "\<forall>x \<in> X. (g1 \<circ> f) x = (g2 \<circ> f) x"  | 
| 49312 | 58  | 
shows "g1 = g2"  | 
59  | 
proof (rule ext)  | 
|
60  | 
fix y  | 
|
61  | 
from surj_on obtain x where "x \<in> X" and "y = f x" by blast  | 
|
62  | 
thus "g1 y = g2 y" using eq_on by simp  | 
|
63  | 
qed  | 
|
64  | 
||
65  | 
lemma Card_order_wo_rel: "Card_order r \<Longrightarrow> wo_rel r"  | 
|
| 58147 | 66  | 
unfolding wo_rel_def card_order_on_def by blast  | 
| 49312 | 67  | 
|
| 58147 | 68  | 
lemma Cinfinite_limit: "\<lbrakk>x \<in> Field r; Cinfinite r\<rbrakk> \<Longrightarrow> \<exists>y \<in> Field r. x \<noteq> y \<and> (x, y) \<in> r"  | 
69  | 
unfolding cinfinite_def by (auto simp add: infinite_Card_order_limit)  | 
|
| 49312 | 70  | 
|
71  | 
lemma Card_order_trans:  | 
|
72  | 
"\<lbrakk>Card_order r; x \<noteq> y; (x, y) \<in> r; y \<noteq> z; (y, z) \<in> r\<rbrakk> \<Longrightarrow> x \<noteq> z \<and> (x, z) \<in> r"  | 
|
| 58147 | 73  | 
unfolding card_order_on_def well_order_on_def linear_order_on_def  | 
74  | 
partial_order_on_def preorder_on_def trans_def antisym_def by blast  | 
|
| 49312 | 75  | 
|
76  | 
lemma Cinfinite_limit2:  | 
|
| 58147 | 77  | 
assumes x1: "x1 \<in> Field r" and x2: "x2 \<in> Field r" and r: "Cinfinite r"  | 
78  | 
shows "\<exists>y \<in> Field r. (x1 \<noteq> y \<and> (x1, y) \<in> r) \<and> (x2 \<noteq> y \<and> (x2, y) \<in> r)"  | 
|
| 49312 | 79  | 
proof -  | 
80  | 
from r have trans: "trans r" and total: "Total r" and antisym: "antisym r"  | 
|
81  | 
unfolding card_order_on_def well_order_on_def linear_order_on_def  | 
|
82  | 
partial_order_on_def preorder_on_def by auto  | 
|
83  | 
obtain y1 where y1: "y1 \<in> Field r" "x1 \<noteq> y1" "(x1, y1) \<in> r"  | 
|
84  | 
using Cinfinite_limit[OF x1 r] by blast  | 
|
85  | 
obtain y2 where y2: "y2 \<in> Field r" "x2 \<noteq> y2" "(x2, y2) \<in> r"  | 
|
86  | 
using Cinfinite_limit[OF x2 r] by blast  | 
|
87  | 
show ?thesis  | 
|
88  | 
proof (cases "y1 = y2")  | 
|
89  | 
case True with y1 y2 show ?thesis by blast  | 
|
90  | 
next  | 
|
91  | 
case False  | 
|
92  | 
with y1(1) y2(1) total have "(y1, y2) \<in> r \<or> (y2, y1) \<in> r"  | 
|
93  | 
unfolding total_on_def by auto  | 
|
94  | 
thus ?thesis  | 
|
95  | 
proof  | 
|
96  | 
assume *: "(y1, y2) \<in> r"  | 
|
97  | 
with trans y1(3) have "(x1, y2) \<in> r" unfolding trans_def by blast  | 
|
98  | 
with False y1 y2 * antisym show ?thesis by (cases "x1 = y2") (auto simp: antisym_def)  | 
|
99  | 
next  | 
|
100  | 
assume *: "(y2, y1) \<in> r"  | 
|
101  | 
with trans y2(3) have "(x2, y1) \<in> r" unfolding trans_def by blast  | 
|
102  | 
with False y1 y2 * antisym show ?thesis by (cases "x2 = y1") (auto simp: antisym_def)  | 
|
103  | 
qed  | 
|
104  | 
qed  | 
|
105  | 
qed  | 
|
106  | 
||
| 58147 | 107  | 
lemma Cinfinite_limit_finite:  | 
108  | 
"\<lbrakk>finite X; X \<subseteq> Field r; Cinfinite r\<rbrakk> \<Longrightarrow> \<exists>y \<in> Field r. \<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)"  | 
|
| 49312 | 109  | 
proof (induct X rule: finite_induct)  | 
110  | 
case empty thus ?case unfolding cinfinite_def using ex_in_conv[of "Field r"] finite.emptyI by auto  | 
|
111  | 
next  | 
|
112  | 
case (insert x X)  | 
|
113  | 
then obtain y where y: "y \<in> Field r" "\<forall>x \<in> X. (x \<noteq> y \<and> (x, y) \<in> r)" by blast  | 
|
114  | 
then obtain z where z: "z \<in> Field r" "x \<noteq> z \<and> (x, z) \<in> r" "y \<noteq> z \<and> (y, z) \<in> r"  | 
|
115  | 
using Cinfinite_limit2[OF _ y(1) insert(5), of x] insert(4) by blast  | 
|
| 49326 | 116  | 
show ?case  | 
117  | 
apply (intro bexI ballI)  | 
|
118  | 
apply (erule insertE)  | 
|
119  | 
apply hypsubst  | 
|
120  | 
apply (rule z(2))  | 
|
121  | 
using Card_order_trans[OF insert(5)[THEN conjunct2]] y(2) z(3)  | 
|
122  | 
apply blast  | 
|
123  | 
apply (rule z(1))  | 
|
124  | 
done  | 
|
| 49312 | 125  | 
qed  | 
126  | 
||
127  | 
lemma insert_subsetI: "\<lbrakk>x \<in> A; X \<subseteq> A\<rbrakk> \<Longrightarrow> insert x X \<subseteq> A"  | 
|
| 58147 | 128  | 
by auto  | 
| 49312 | 129  | 
|
| 58136 | 130  | 
lemmas well_order_induct_imp = wo_rel.well_order_induct[of r "\<lambda>x. x \<in> Field r \<longrightarrow> P x" for r P]  | 
| 49312 | 131  | 
|
132  | 
lemma meta_spec2:  | 
|
133  | 
assumes "(\<And>x y. PROP P x y)"  | 
|
134  | 
shows "PROP P x y"  | 
|
| 58136 | 135  | 
by (rule assms)  | 
| 49312 | 136  | 
|
| 
54841
 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
 
traytel 
parents: 
54246 
diff
changeset
 | 
137  | 
lemma nchotomy_relcomppE:  | 
| 55811 | 138  | 
assumes "\<And>y. \<exists>x. y = f x" "(r OO s) a c" "\<And>b. r a (f b) \<Longrightarrow> s (f b) c \<Longrightarrow> P"  | 
139  | 
shows P  | 
|
140  | 
proof (rule relcompp.cases[OF assms(2)], hypsubst)  | 
|
141  | 
fix b assume "r a b" "s b c"  | 
|
142  | 
moreover from assms(1) obtain b' where "b = f b'" by blast  | 
|
143  | 
ultimately show P by (blast intro: assms(3))  | 
|
144  | 
qed  | 
|
| 
54841
 
af71b753c459
express weak pullback property of bnfs only in terms of the relator
 
traytel 
parents: 
54246 
diff
changeset
 | 
145  | 
|
| 52731 | 146  | 
lemma predicate2D_vimage2p: "\<lbrakk>R \<le> vimage2p f g S; R x y\<rbrakk> \<Longrightarrow> S (f x) (g y)"  | 
147  | 
unfolding vimage2p_def by auto  | 
|
148  | 
||
| 
55770
 
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
 
traytel 
parents: 
55575 
diff
changeset
 | 
149  | 
lemma ssubst_Pair_rhs: "\<lbrakk>(r, s) \<in> R; s' = s\<rbrakk> \<Longrightarrow> (r, s') \<in> R"  | 
| 
55851
 
3d40cf74726c
optimize cardinal bounds involving natLeq (omega)
 
blanchet 
parents: 
55811 
diff
changeset
 | 
150  | 
by (rule ssubst)  | 
| 
55770
 
f2cf7f92c9ac
intermediate typedef for the type of the bound (local to lfp)
 
traytel 
parents: 
55575 
diff
changeset
 | 
151  | 
|
| 
58211
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
152  | 
lemma all_mem_range1:  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
153  | 
"(\<And>y. y \<in> range f \<Longrightarrow> P y) \<equiv> (\<And>x. P (f x)) "  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
154  | 
by (rule equal_intr_rule) fast+  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
155  | 
|
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
156  | 
lemma all_mem_range2:  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
157  | 
"(\<And>fa y. fa \<in> range f \<Longrightarrow> y \<in> range fa \<Longrightarrow> P y) \<equiv> (\<And>x xa. P (f x xa))"  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
158  | 
by (rule equal_intr_rule) fast+  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
159  | 
|
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
160  | 
lemma all_mem_range3:  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
161  | 
"(\<And>fa fb y. fa \<in> range f \<Longrightarrow> fb \<in> range fa \<Longrightarrow> y \<in> range fb \<Longrightarrow> P y) \<equiv> (\<And>x xa xb. P (f x xa xb))"  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
162  | 
by (rule equal_intr_rule) fast+  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
163  | 
|
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
164  | 
lemma all_mem_range4:  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
165  | 
"(\<And>fa fb fc y. fa \<in> range f \<Longrightarrow> fb \<in> range fa \<Longrightarrow> fc \<in> range fb \<Longrightarrow> y \<in> range fc \<Longrightarrow> P y) \<equiv>  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
166  | 
(\<And>x xa xb xc. P (f x xa xb xc))"  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
167  | 
by (rule equal_intr_rule) fast+  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
168  | 
|
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
169  | 
lemma all_mem_range5:  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
170  | 
"(\<And>fa fb fc fd y. fa \<in> range f \<Longrightarrow> fb \<in> range fa \<Longrightarrow> fc \<in> range fb \<Longrightarrow> fd \<in> range fc \<Longrightarrow>  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
171  | 
y \<in> range fd \<Longrightarrow> P y) \<equiv>  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
172  | 
(\<And>x xa xb xc xd. P (f x xa xb xc xd))"  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
173  | 
by (rule equal_intr_rule) fast+  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
174  | 
|
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
175  | 
lemma all_mem_range6:  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
176  | 
"(\<And>fa fb fc fd fe ff y. fa \<in> range f \<Longrightarrow> fb \<in> range fa \<Longrightarrow> fc \<in> range fb \<Longrightarrow> fd \<in> range fc \<Longrightarrow>  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
177  | 
fe \<in> range fd \<Longrightarrow> ff \<in> range fe \<Longrightarrow> y \<in> range ff \<Longrightarrow> P y) \<equiv>  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
178  | 
(\<And>x xa xb xc xd xe xf. P (f x xa xb xc xd xe xf))"  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
179  | 
by (rule equal_intr_rule) (fastforce, fast)  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
180  | 
|
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
181  | 
lemma all_mem_range7:  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
182  | 
"(\<And>fa fb fc fd fe ff fg y. fa \<in> range f \<Longrightarrow> fb \<in> range fa \<Longrightarrow> fc \<in> range fb \<Longrightarrow> fd \<in> range fc \<Longrightarrow>  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
183  | 
fe \<in> range fd \<Longrightarrow> ff \<in> range fe \<Longrightarrow> fg \<in> range ff \<Longrightarrow> y \<in> range fg \<Longrightarrow> P y) \<equiv>  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
184  | 
(\<And>x xa xb xc xd xe xf xg. P (f x xa xb xc xd xe xf xg))"  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
185  | 
by (rule equal_intr_rule) (fastforce, fast)  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
186  | 
|
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
187  | 
lemma all_mem_range8:  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
188  | 
"(\<And>fa fb fc fd fe ff fg fh y. fa \<in> range f \<Longrightarrow> fb \<in> range fa \<Longrightarrow> fc \<in> range fb \<Longrightarrow> fd \<in> range fc \<Longrightarrow>  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
189  | 
fe \<in> range fd \<Longrightarrow> ff \<in> range fe \<Longrightarrow> fg \<in> range ff \<Longrightarrow> fh \<in> range fg \<Longrightarrow> y \<in> range fh \<Longrightarrow> P y) \<equiv>  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
190  | 
(\<And>x xa xb xc xd xe xf xg xh. P (f x xa xb xc xd xe xf xg xh))"  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
191  | 
by (rule equal_intr_rule) (fastforce, fast)  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
192  | 
|
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
193  | 
lemmas all_mem_range = all_mem_range1 all_mem_range2 all_mem_range3 all_mem_range4 all_mem_range5  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
194  | 
all_mem_range6 all_mem_range7 all_mem_range8  | 
| 
 
c1f3fa32d322
extended 'datatype_compat' to generate the expected, old-style recursor in the presence of recursion through functions
 
blanchet 
parents: 
58182 
diff
changeset
 | 
195  | 
|
| 66290 | 196  | 
lemma pred_fun_True_id: "NO_MATCH id p \<Longrightarrow> pred_fun (\<lambda>x. True) p f = pred_fun (\<lambda>x. True) id (p \<circ> f)"  | 
197  | 
unfolding fun.pred_map unfolding comp_def id_def ..  | 
|
198  | 
||
| 55062 | 199  | 
ML_file "Tools/BNF/bnf_lfp_util.ML"  | 
200  | 
ML_file "Tools/BNF/bnf_lfp_tactics.ML"  | 
|
201  | 
ML_file "Tools/BNF/bnf_lfp.ML"  | 
|
202  | 
ML_file "Tools/BNF/bnf_lfp_compat.ML"  | 
|
| 55571 | 203  | 
ML_file "Tools/BNF/bnf_lfp_rec_sugar_more.ML"  | 
| 58179 | 204  | 
ML_file "Tools/BNF/bnf_lfp_size.ML"  | 
205  | 
||
| 
48975
 
7f79f94a432c
added new (co)datatype package + theories of ordinals and cardinals (with Dmitriy and Andrei)
 
blanchet 
parents:  
diff
changeset
 | 
206  | 
end  |