| author | boehmes | 
| Fri, 23 Oct 2009 14:22:36 +0200 | |
| changeset 33082 | ccefc096abc9 | 
| parent 32547 | f3eab1682b0d | 
| child 35372 | ca158c7b1144 | 
| permissions | -rw-r--r-- | 
| 30946 | 1  | 
(* Authors: Klaus Aehlig, Tobias Nipkow *)  | 
| 19829 | 2  | 
|
| 30946 | 3  | 
header {* Testing implementation of normalization by evaluation *}
 | 
| 19829 | 4  | 
|
5  | 
theory NormalForm  | 
|
| 
28952
 
15a4b2cf8c34
made repository layout more coherent with logical distribution structure; stripped some $Id$s
 
haftmann 
parents: 
28709 
diff
changeset
 | 
6  | 
imports Main Rational  | 
| 19829 | 7  | 
begin  | 
8  | 
||
| 21117 | 9  | 
lemma "True" by normalization  | 
| 19971 | 10  | 
lemma "p \<longrightarrow> True" by normalization  | 
| 28350 | 11  | 
declare disj_assoc [code nbe]  | 
12  | 
lemma "((P | Q) | R) = (P | (Q | R))" by normalization  | 
|
13  | 
lemma "0 + (n::nat) = n" by normalization  | 
|
14  | 
lemma "0 + Suc n = Suc n" by normalization  | 
|
15  | 
lemma "Suc n + Suc m = n + Suc (Suc m)" by normalization  | 
|
| 19971 | 16  | 
lemma "~((0::nat) < (0::nat))" by normalization  | 
17  | 
||
| 19829 | 18  | 
datatype n = Z | S n  | 
| 28350 | 19  | 
|
| 30946 | 20  | 
primrec add :: "n \<Rightarrow> n \<Rightarrow> n" where  | 
21  | 
"add Z = id"  | 
|
22  | 
| "add (S m) = S o add m"  | 
|
23  | 
||
24  | 
primrec add2 :: "n \<Rightarrow> n \<Rightarrow> n" where  | 
|
25  | 
"add2 Z n = n"  | 
|
26  | 
| "add2 (S m) n = S(add2 m n)"  | 
|
| 19829 | 27  | 
|
| 28143 | 28  | 
declare add2.simps [code]  | 
| 28709 | 29  | 
lemma [code nbe]: "add2 (add2 n m) k = add2 n (add2 m k)"  | 
| 28143 | 30  | 
by (induct n) auto  | 
| 20842 | 31  | 
lemma [code]: "add2 n (S m) = S (add2 n m)"  | 
32  | 
by(induct n) auto  | 
|
| 19829 | 33  | 
lemma [code]: "add2 n Z = n"  | 
| 20842 | 34  | 
by(induct n) auto  | 
| 19971 | 35  | 
|
| 28350 | 36  | 
lemma "add2 (add2 n m) k = add2 n (add2 m k)" by normalization  | 
37  | 
lemma "add2 (add2 (S n) (S m)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization  | 
|
38  | 
lemma "add2 (add2 (S n) (add2 (S m) Z)) (S k) = S(S(S(add2 n (add2 m k))))" by normalization  | 
|
| 19829 | 39  | 
|
| 30946 | 40  | 
primrec mul :: "n \<Rightarrow> n \<Rightarrow> n" where  | 
41  | 
"mul Z = (%n. Z)"  | 
|
42  | 
| "mul (S m) = (%n. add (mul m n) n)"  | 
|
43  | 
||
44  | 
primrec mul2 :: "n \<Rightarrow> n \<Rightarrow> n" where  | 
|
45  | 
"mul2 Z n = Z"  | 
|
46  | 
| "mul2 (S m) n = add2 n (mul2 m n)"  | 
|
47  | 
||
48  | 
primrec exp :: "n \<Rightarrow> n \<Rightarrow> n" where  | 
|
49  | 
"exp m Z = S Z"  | 
|
50  | 
| "exp m (S n) = mul (exp m n) m"  | 
|
| 19829 | 51  | 
|
| 19971 | 52  | 
lemma "mul2 (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization  | 
53  | 
lemma "mul (S(S(S(S(S Z))))) (S(S(S Z))) = S(S(S(S(S(S(S(S(S(S(S(S(S(S(S Z))))))))))))))" by normalization  | 
|
54  | 
lemma "exp (S(S Z)) (S(S(S(S Z)))) = exp (S(S(S(S Z)))) (S(S Z))" by normalization  | 
|
55  | 
||
56  | 
lemma "(let ((x,y),(u,v)) = ((Z,Z),(Z,Z)) in add (add x y) (add u v)) = Z" by normalization  | 
|
| 28350 | 57  | 
lemma "split (%x y. x) (a, b) = a" by normalization  | 
| 19971 | 58  | 
lemma "(%((x,y),(u,v)). add (add x y) (add u v)) ((Z,Z),(Z,Z)) = Z" by normalization  | 
59  | 
||
60  | 
lemma "case Z of Z \<Rightarrow> True | S x \<Rightarrow> False" by normalization  | 
|
| 19829 | 61  | 
|
| 20842 | 62  | 
lemma "[] @ [] = []" by normalization  | 
| 28350 | 63  | 
lemma "map f [x,y,z::'x] = [f x, f y, f z]" by normalization  | 
64  | 
lemma "[a, b, c] @ xs = a # b # c # xs" by normalization  | 
|
65  | 
lemma "[] @ xs = xs" by normalization  | 
|
66  | 
lemma "map (%f. f True) [id, g, Not] = [True, g True, False]" by normalization  | 
|
67  | 
||
| 28422 | 68  | 
lemma "map (%f. f True) ([id, g, Not] @ fs) = [True, g True, False] @ map (%f. f True) fs"  | 
69  | 
by normalization rule+  | 
|
| 28350 | 70  | 
lemma "rev [a, b, c] = [c, b, a]" by normalization  | 
| 26739 | 71  | 
normal_form "rev (a#b#cs) = rev cs @ [b, a]"  | 
| 19829 | 72  | 
normal_form "map (%F. F [a,b,c::'x]) (map map [f,g,h])"  | 
73  | 
normal_form "map (%F. F ([a,b,c] @ ds)) (map map ([f,g,h]@fs))"  | 
|
74  | 
normal_form "map (%F. F [Z,S Z,S(S Z)]) (map map [S,add (S Z),mul (S(S Z)),id])"  | 
|
| 25934 | 75  | 
lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]"  | 
76  | 
by normalization  | 
|
| 19829 | 77  | 
normal_form "case xs of [] \<Rightarrow> True | x#xs \<Rightarrow> False"  | 
| 25934 | 78  | 
normal_form "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) xs = P"  | 
| 28350 | 79  | 
lemma "let x = y in [x, x] = [y, y]" by normalization  | 
80  | 
lemma "Let y (%x. [x,x]) = [y, y]" by normalization  | 
|
| 19829 | 81  | 
normal_form "case n of Z \<Rightarrow> True | S x \<Rightarrow> False"  | 
| 28350 | 82  | 
lemma "(%(x,y). add x y) (S z,S z) = S (add z (S z))" by normalization  | 
| 19829 | 83  | 
normal_form "filter (%x. x) ([True,False,x]@xs)"  | 
84  | 
normal_form "filter Not ([True,False,x]@xs)"  | 
|
85  | 
||
| 28350 | 86  | 
lemma "[x,y,z] @ [a,b,c] = [x, y, z, a, b, c]" by normalization  | 
87  | 
lemma "(%(xs, ys). xs @ ys) ([a, b, c], [d, e, f]) = [a, b, c, d, e, f]" by normalization  | 
|
| 25100 | 88  | 
lemma "map (%x. case x of None \<Rightarrow> False | Some y \<Rightarrow> True) [None, Some ()] = [False, True]" by normalization  | 
| 19829 | 89  | 
|
| 28350 | 90  | 
lemma "last [a, b, c] = c" by normalization  | 
91  | 
lemma "last ([a, b, c] @ xs) = last (c # xs)" by normalization  | 
|
| 19829 | 92  | 
|
| 28350 | 93  | 
lemma "(2::int) + 3 - 1 + (- k) * 2 = 4 + - k * 2" by normalization  | 
| 20842 | 94  | 
lemma "(-4::int) * 2 = -8" by normalization  | 
95  | 
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization  | 
|
96  | 
lemma "(2::int) + 3 = 5" by normalization  | 
|
97  | 
lemma "(2::int) + 3 * (- 4) * (- 1) = 14" by normalization  | 
|
98  | 
lemma "(2::int) + 3 * (- 4) * 1 + 0 = -10" by normalization  | 
|
99  | 
lemma "(2::int) < 3" by normalization  | 
|
100  | 
lemma "(2::int) <= 3" by normalization  | 
|
101  | 
lemma "abs ((-4::int) + 2 * 1) = 2" by normalization  | 
|
102  | 
lemma "4 - 42 * abs (3 + (-7\<Colon>int)) = -164" by normalization  | 
|
103  | 
lemma "(if (0\<Colon>nat) \<le> (x\<Colon>nat) then 0\<Colon>nat else x) = 0" by normalization  | 
|
| 22394 | 104  | 
lemma "4 = Suc (Suc (Suc (Suc 0)))" by normalization  | 
105  | 
lemma "nat 4 = Suc (Suc (Suc (Suc 0)))" by normalization  | 
|
| 25100 | 106  | 
lemma "[Suc 0, 0] = [Suc 0, 0]" by normalization  | 
107  | 
lemma "max (Suc 0) 0 = Suc 0" by normalization  | 
|
| 25187 | 108  | 
lemma "(42::rat) / 1704 = 1 / 284 + 3 / 142" by normalization  | 
| 21059 | 109  | 
normal_form "Suc 0 \<in> set ms"  | 
| 20922 | 110  | 
|
| 28350 | 111  | 
lemma "f = f" by normalization  | 
112  | 
lemma "f x = f x" by normalization  | 
|
113  | 
lemma "(f o g) x = f (g x)" by normalization  | 
|
114  | 
lemma "(f o id) x = f x" by normalization  | 
|
| 25934 | 115  | 
normal_form "(\<lambda>x. x)"  | 
| 21987 | 116  | 
|
| 23396 | 117  | 
(* Church numerals: *)  | 
118  | 
||
119  | 
normal_form "(%m n f x. m f (n f x)) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"  | 
|
120  | 
normal_form "(%m n f x. m (n f) x) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"  | 
|
121  | 
normal_form "(%m n. n m) (%f x. f(f(f(x)))) (%f x. f(f(f(x))))"  | 
|
122  | 
||
| 32544 | 123  | 
(* handling of type classes in connection with equality *)  | 
124  | 
||
125  | 
lemma "map f [x, y] = [f x, f y]" by normalization  | 
|
126  | 
lemma "(map f [x, y], w) = ([f x, f y], w)" by normalization  | 
|
127  | 
lemma "map f [x, y] = [f x \<Colon> 'a\<Colon>semigroup_add, f y]" by normalization  | 
|
128  | 
lemma "map f [x \<Colon> 'a\<Colon>semigroup_add, y] = [f x, f y]" by normalization  | 
|
129  | 
lemma "(map f [x \<Colon> 'a\<Colon>semigroup_add, y], w \<Colon> 'b\<Colon>finite) = ([f x, f y], w)" by normalization  | 
|
130  | 
||
| 19829 | 131  | 
end  |