| author | wenzelm | 
| Thu, 26 Feb 2009 22:13:01 +0100 | |
| changeset 30127 | cd3f37ba3e25 | 
| parent 29281 | b22ccb3998db | 
| child 31604 | eb2f9d709296 | 
| permissions | -rw-r--r-- | 
| 7700 | 1 | (* Title: HOL/Inductive.thy | 
| 10402 | 2 | Author: Markus Wenzel, TU Muenchen | 
| 11688 | 3 | *) | 
| 10727 | 4 | |
| 24915 | 5 | header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *}
 | 
| 1187 | 6 | |
| 15131 | 7 | theory Inductive | 
| 24915 | 8 | imports Lattices Sum_Type | 
| 16417 | 9 | uses | 
| 10402 | 10 |   ("Tools/inductive_package.ML")
 | 
| 24625 
0398a5e802d3
separated code for inductive sequences from inductive_codegen.ML
 haftmann parents: 
24349diff
changeset | 11 | "Tools/dseq.ML" | 
| 12437 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 12 |   ("Tools/inductive_codegen.ML")
 | 
| 10402 | 13 |   ("Tools/datatype_aux.ML")
 | 
| 14 |   ("Tools/datatype_prop.ML")
 | |
| 15 |   ("Tools/datatype_rep_proofs.ML")
 | |
| 16 |   ("Tools/datatype_abs_proofs.ML")
 | |
| 22783 | 17 |   ("Tools/datatype_case.ML")
 | 
| 10402 | 18 |   ("Tools/datatype_package.ML")
 | 
| 25557 | 19 |   ("Tools/old_primrec_package.ML")
 | 
| 15131 | 20 |   ("Tools/primrec_package.ML")
 | 
| 25534 
d0b74fdd6067
simplified infrastructure for code generator operational equality
 haftmann parents: 
25510diff
changeset | 21 |   ("Tools/datatype_codegen.ML")
 | 
| 15131 | 22 | begin | 
| 10727 | 23 | |
| 24915 | 24 | subsection {* Least and greatest fixed points *}
 | 
| 25 | ||
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 26 | context complete_lattice | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 27 | begin | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 28 | |
| 24915 | 29 | definition | 
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 30 |   lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 24915 | 31 |   "lfp f = Inf {u. f u \<le> u}"    --{*least fixed point*}
 | 
| 32 | ||
| 33 | definition | |
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 34 |   gfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 24915 | 35 |   "gfp f = Sup {u. u \<le> f u}"    --{*greatest fixed point*}
 | 
| 36 | ||
| 37 | ||
| 38 | subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *}
 | |
| 39 | ||
| 40 | text{*@{term "lfp f"} is the least upper bound of 
 | |
| 41 |       the set @{term "{u. f(u) \<le> u}"} *}
 | |
| 42 | ||
| 43 | lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A" | |
| 44 | by (auto simp add: lfp_def intro: Inf_lower) | |
| 45 | ||
| 46 | lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f" | |
| 47 | by (auto simp add: lfp_def intro: Inf_greatest) | |
| 48 | ||
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 49 | end | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 50 | |
| 24915 | 51 | lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f" | 
| 52 | by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound) | |
| 53 | ||
| 54 | lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)" | |
| 55 | by (iprover intro: lfp_lemma2 monoD lfp_lowerbound) | |
| 56 | ||
| 57 | lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)" | |
| 58 | by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3) | |
| 59 | ||
| 60 | lemma lfp_const: "lfp (\<lambda>x. t) = t" | |
| 61 | by (rule lfp_unfold) (simp add:mono_def) | |
| 62 | ||
| 63 | ||
| 64 | subsection {* General induction rules for least fixed points *}
 | |
| 65 | ||
| 66 | theorem lfp_induct: | |
| 67 | assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P" | |
| 68 | shows "lfp f <= P" | |
| 69 | proof - | |
| 70 | have "inf (lfp f) P <= lfp f" by (rule inf_le1) | |
| 71 | with mono have "f (inf (lfp f) P) <= f (lfp f)" .. | |
| 72 | also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric]) | |
| 73 | finally have "f (inf (lfp f) P) <= lfp f" . | |
| 74 | from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI) | |
| 75 | hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound) | |
| 76 | also have "inf (lfp f) P <= P" by (rule inf_le2) | |
| 77 | finally show ?thesis . | |
| 78 | qed | |
| 79 | ||
| 80 | lemma lfp_induct_set: | |
| 81 | assumes lfp: "a: lfp(f)" | |
| 82 | and mono: "mono(f)" | |
| 83 |       and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)"
 | |
| 84 | shows "P(a)" | |
| 85 | by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp]) | |
| 86 | (auto simp: inf_set_eq intro: indhyp) | |
| 87 | ||
| 26013 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 88 | lemma lfp_ordinal_induct: | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 89 | fixes f :: "'a\<Colon>complete_lattice \<Rightarrow> 'a" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 90 | assumes mono: "mono f" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 91 | and P_f: "\<And>S. P S \<Longrightarrow> P (f S)" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 92 | and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Sup M)" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 93 | shows "P (lfp f)" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 94 | proof - | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 95 |   let ?M = "{S. S \<le> lfp f \<and> P S}"
 | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 96 | have "P (Sup ?M)" using P_Union by simp | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 97 | also have "Sup ?M = lfp f" | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 98 | proof (rule antisym) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 99 | show "Sup ?M \<le> lfp f" by (blast intro: Sup_least) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 100 | hence "f (Sup ?M) \<le> f (lfp f)" by (rule mono [THEN monoD]) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 101 | hence "f (Sup ?M) \<le> lfp f" using mono [THEN lfp_unfold] by simp | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 102 | hence "f (Sup ?M) \<in> ?M" using P_f P_Union by simp | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 103 | hence "f (Sup ?M) \<le> Sup ?M" by (rule Sup_upper) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 104 | thus "lfp f \<le> Sup ?M" by (rule lfp_lowerbound) | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 105 | qed | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 106 | finally show ?thesis . | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 107 | qed | 
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 108 | |
| 
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
 haftmann parents: 
25557diff
changeset | 109 | lemma lfp_ordinal_induct_set: | 
| 24915 | 110 | assumes mono: "mono f" | 
| 111 | and P_f: "!!S. P S ==> P(f S)" | |
| 112 | and P_Union: "!!M. !S:M. P S ==> P(Union M)" | |
| 113 | shows "P(lfp f)" | |
| 26793 
e36a92ff543e
Instantiated some rules to avoid problems with HO unification.
 berghofe parents: 
26013diff
changeset | 114 | using assms unfolding Sup_set_eq [symmetric] | 
| 
e36a92ff543e
Instantiated some rules to avoid problems with HO unification.
 berghofe parents: 
26013diff
changeset | 115 | by (rule lfp_ordinal_induct [where P=P]) | 
| 24915 | 116 | |
| 117 | ||
| 118 | text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, 
 | |
| 119 | to control unfolding*} | |
| 120 | ||
| 121 | lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)" | |
| 122 | by (auto intro!: lfp_unfold) | |
| 123 | ||
| 124 | lemma def_lfp_induct: | |
| 125 | "[| A == lfp(f); mono(f); | |
| 126 | f (inf A P) \<le> P | |
| 127 | |] ==> A \<le> P" | |
| 128 | by (blast intro: lfp_induct) | |
| 129 | ||
| 130 | lemma def_lfp_induct_set: | |
| 131 | "[| A == lfp(f); mono(f); a:A; | |
| 132 |         !!x. [| x: f(A Int {x. P(x)}) |] ==> P(x)         
 | |
| 133 | |] ==> P(a)" | |
| 134 | by (blast intro: lfp_induct_set) | |
| 135 | ||
| 136 | (*Monotonicity of lfp!*) | |
| 137 | lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g" | |
| 138 | by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans) | |
| 139 | ||
| 140 | ||
| 141 | subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *}
 | |
| 142 | ||
| 143 | text{*@{term "gfp f"} is the greatest lower bound of 
 | |
| 144 |       the set @{term "{u. u \<le> f(u)}"} *}
 | |
| 145 | ||
| 146 | lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f" | |
| 147 | by (auto simp add: gfp_def intro: Sup_upper) | |
| 148 | ||
| 149 | lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X" | |
| 150 | by (auto simp add: gfp_def intro: Sup_least) | |
| 151 | ||
| 152 | lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)" | |
| 153 | by (iprover intro: gfp_least order_trans monoD gfp_upperbound) | |
| 154 | ||
| 155 | lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f" | |
| 156 | by (iprover intro: gfp_lemma2 monoD gfp_upperbound) | |
| 157 | ||
| 158 | lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)" | |
| 159 | by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3) | |
| 160 | ||
| 161 | ||
| 162 | subsection {* Coinduction rules for greatest fixed points *}
 | |
| 163 | ||
| 164 | text{*weak version*}
 | |
| 165 | lemma weak_coinduct: "[| a: X; X \<subseteq> f(X) |] ==> a : gfp(f)" | |
| 166 | by (rule gfp_upperbound [THEN subsetD], auto) | |
| 167 | ||
| 168 | lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f" | |
| 169 | apply (erule gfp_upperbound [THEN subsetD]) | |
| 170 | apply (erule imageI) | |
| 171 | done | |
| 172 | ||
| 173 | lemma coinduct_lemma: | |
| 174 | "[| X \<le> f (sup X (gfp f)); mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))" | |
| 175 | apply (frule gfp_lemma2) | |
| 176 | apply (drule mono_sup) | |
| 177 | apply (rule le_supI) | |
| 178 | apply assumption | |
| 179 | apply (rule order_trans) | |
| 180 | apply (rule order_trans) | |
| 181 | apply assumption | |
| 182 | apply (rule sup_ge2) | |
| 183 | apply assumption | |
| 184 | done | |
| 185 | ||
| 186 | text{*strong version, thanks to Coen and Frost*}
 | |
| 187 | lemma coinduct_set: "[| mono(f); a: X; X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)" | |
| 188 | by (blast intro: weak_coinduct [OF _ coinduct_lemma, simplified sup_set_eq]) | |
| 189 | ||
| 190 | lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)" | |
| 191 | apply (rule order_trans) | |
| 192 | apply (rule sup_ge1) | |
| 193 | apply (erule gfp_upperbound [OF coinduct_lemma]) | |
| 194 | apply assumption | |
| 195 | done | |
| 196 | ||
| 197 | lemma gfp_fun_UnI2: "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))" | |
| 198 | by (blast dest: gfp_lemma2 mono_Un) | |
| 199 | ||
| 200 | ||
| 201 | subsection {* Even Stronger Coinduction Rule, by Martin Coen *}
 | |
| 202 | ||
| 203 | text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both
 | |
| 204 |   @{term lfp} and @{term gfp}*}
 | |
| 205 | ||
| 206 | lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)" | |
| 207 | by (iprover intro: subset_refl monoI Un_mono monoD) | |
| 208 | ||
| 209 | lemma coinduct3_lemma: | |
| 210 | "[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |] | |
| 211 | ==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))" | |
| 212 | apply (rule subset_trans) | |
| 213 | apply (erule coinduct3_mono_lemma [THEN lfp_lemma3]) | |
| 214 | apply (rule Un_least [THEN Un_least]) | |
| 215 | apply (rule subset_refl, assumption) | |
| 216 | apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption) | |
| 26793 
e36a92ff543e
Instantiated some rules to avoid problems with HO unification.
 berghofe parents: 
26013diff
changeset | 217 | apply (rule monoD [where f=f], assumption) | 
| 24915 | 218 | apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto) | 
| 219 | done | |
| 220 | ||
| 221 | lemma coinduct3: | |
| 222 | "[| mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)" | |
| 223 | apply (rule coinduct3_lemma [THEN [2] weak_coinduct]) | |
| 224 | apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst], auto) | |
| 225 | done | |
| 226 | ||
| 227 | ||
| 228 | text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, 
 | |
| 229 | to control unfolding*} | |
| 230 | ||
| 231 | lemma def_gfp_unfold: "[| A==gfp(f); mono(f) |] ==> A = f(A)" | |
| 232 | by (auto intro!: gfp_unfold) | |
| 233 | ||
| 234 | lemma def_coinduct: | |
| 235 | "[| A==gfp(f); mono(f); X \<le> f(sup X A) |] ==> X \<le> A" | |
| 236 | by (iprover intro!: coinduct) | |
| 237 | ||
| 238 | lemma def_coinduct_set: | |
| 239 | "[| A==gfp(f); mono(f); a:X; X \<subseteq> f(X Un A) |] ==> a: A" | |
| 240 | by (auto intro!: coinduct_set) | |
| 241 | ||
| 242 | (*The version used in the induction/coinduction package*) | |
| 243 | lemma def_Collect_coinduct: | |
| 244 | "[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); | |
| 245 | a: X; !!z. z: X ==> P (X Un A) z |] ==> | |
| 246 | a : A" | |
| 247 | apply (erule def_coinduct_set, auto) | |
| 248 | done | |
| 249 | ||
| 250 | lemma def_coinduct3: | |
| 251 | "[| A==gfp(f); mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A" | |
| 252 | by (auto intro!: coinduct3) | |
| 253 | ||
| 254 | text{*Monotonicity of @{term gfp}!*}
 | |
| 255 | lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g" | |
| 256 | by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans) | |
| 257 | ||
| 258 | ||
| 23734 | 259 | subsection {* Inductive predicates and sets *}
 | 
| 11688 | 260 | |
| 261 | text {* Inversion of injective functions. *}
 | |
| 11436 | 262 | |
| 263 | constdefs | |
| 264 |   myinv :: "('a => 'b) => ('b => 'a)"
 | |
| 265 | "myinv (f :: 'a => 'b) == \<lambda>y. THE x. f x = y" | |
| 266 | ||
| 267 | lemma myinv_f_f: "inj f ==> myinv f (f x) = x" | |
| 268 | proof - | |
| 269 | assume "inj f" | |
| 270 | hence "(THE x'. f x' = f x) = (THE x'. x' = x)" | |
| 271 | by (simp only: inj_eq) | |
| 272 | also have "... = x" by (rule the_eq_trivial) | |
| 11439 | 273 | finally show ?thesis by (unfold myinv_def) | 
| 11436 | 274 | qed | 
| 275 | ||
| 276 | lemma f_myinv_f: "inj f ==> y \<in> range f ==> f (myinv f y) = y" | |
| 277 | proof (unfold myinv_def) | |
| 278 | assume inj: "inj f" | |
| 279 | assume "y \<in> range f" | |
| 280 | then obtain x where "y = f x" .. | |
| 281 | hence x: "f x = y" .. | |
| 282 | thus "f (THE x. f x = y) = y" | |
| 283 | proof (rule theI) | |
| 284 | fix x' assume "f x' = y" | |
| 285 | with x have "f x' = f x" by simp | |
| 286 | with inj show "x' = x" by (rule injD) | |
| 287 | qed | |
| 288 | qed | |
| 289 | ||
| 290 | hide const myinv | |
| 291 | ||
| 292 | ||
| 11688 | 293 | text {* Package setup. *}
 | 
| 10402 | 294 | |
| 23734 | 295 | theorems basic_monos = | 
| 22218 | 296 | subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj | 
| 11688 | 297 | Collect_mono in_mono vimage_mono | 
| 298 | imp_conv_disj not_not de_Morgan_disj de_Morgan_conj | |
| 299 | not_all not_ex | |
| 300 | Ball_def Bex_def | |
| 18456 | 301 | induct_rulify_fallback | 
| 11688 | 302 | |
| 24915 | 303 | ML {*
 | 
| 304 | val def_lfp_unfold = @{thm def_lfp_unfold}
 | |
| 305 | val def_gfp_unfold = @{thm def_gfp_unfold}
 | |
| 306 | val def_lfp_induct = @{thm def_lfp_induct}
 | |
| 307 | val def_coinduct = @{thm def_coinduct}
 | |
| 25510 | 308 | val inf_bool_eq = @{thm inf_bool_eq} RS @{thm eq_reflection}
 | 
| 309 | val inf_fun_eq = @{thm inf_fun_eq} RS @{thm eq_reflection}
 | |
| 310 | val sup_bool_eq = @{thm sup_bool_eq} RS @{thm eq_reflection}
 | |
| 311 | val sup_fun_eq = @{thm sup_fun_eq} RS @{thm eq_reflection}
 | |
| 24915 | 312 | val le_boolI = @{thm le_boolI}
 | 
| 313 | val le_boolI' = @{thm le_boolI'}
 | |
| 314 | val le_funI = @{thm le_funI}
 | |
| 315 | val le_boolE = @{thm le_boolE}
 | |
| 316 | val le_funE = @{thm le_funE}
 | |
| 317 | val le_boolD = @{thm le_boolD}
 | |
| 318 | val le_funD = @{thm le_funD}
 | |
| 25510 | 319 | val le_bool_def = @{thm le_bool_def} RS @{thm eq_reflection}
 | 
| 320 | val le_fun_def = @{thm le_fun_def} RS @{thm eq_reflection}
 | |
| 24915 | 321 | *} | 
| 322 | ||
| 21018 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 323 | use "Tools/inductive_package.ML" | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 324 | setup InductivePackage.setup | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 325 | |
| 23734 | 326 | theorems [mono] = | 
| 22218 | 327 | imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj | 
| 21018 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 328 | imp_conv_disj not_not de_Morgan_disj de_Morgan_conj | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 329 | not_all not_ex | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 330 | Ball_def Bex_def | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 331 | induct_rulify_fallback | 
| 
e6b8d6784792
Added new package for inductive definitions, moved old package
 berghofe parents: 
20604diff
changeset | 332 | |
| 11688 | 333 | |
| 12023 | 334 | subsection {* Inductive datatypes and primitive recursion *}
 | 
| 11688 | 335 | |
| 11825 | 336 | text {* Package setup. *}
 | 
| 337 | ||
| 10402 | 338 | use "Tools/datatype_aux.ML" | 
| 339 | use "Tools/datatype_prop.ML" | |
| 340 | use "Tools/datatype_rep_proofs.ML" | |
| 341 | use "Tools/datatype_abs_proofs.ML" | |
| 22783 | 342 | use "Tools/datatype_case.ML" | 
| 10402 | 343 | use "Tools/datatype_package.ML" | 
| 7700 | 344 | setup DatatypePackage.setup | 
| 25557 | 345 | use "Tools/old_primrec_package.ML" | 
| 24699 
c6674504103f
datatype interpretators for size and datatype_realizer
 haftmann parents: 
24626diff
changeset | 346 | use "Tools/primrec_package.ML" | 
| 12437 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 347 | |
| 25534 
d0b74fdd6067
simplified infrastructure for code generator operational equality
 haftmann parents: 
25510diff
changeset | 348 | use "Tools/datatype_codegen.ML" | 
| 
d0b74fdd6067
simplified infrastructure for code generator operational equality
 haftmann parents: 
25510diff
changeset | 349 | setup DatatypeCodegen.setup | 
| 
d0b74fdd6067
simplified infrastructure for code generator operational equality
 haftmann parents: 
25510diff
changeset | 350 | |
| 12437 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 351 | use "Tools/inductive_codegen.ML" | 
| 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 352 | setup InductiveCodegen.setup | 
| 
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
 berghofe parents: 
12023diff
changeset | 353 | |
| 23526 | 354 | text{* Lambda-abstractions with pattern matching: *}
 | 
| 355 | ||
| 356 | syntax | |
| 23529 | 357 |   "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(%_)" 10)
 | 
| 23526 | 358 | syntax (xsymbols) | 
| 23529 | 359 |   "_lam_pats_syntax" :: "cases_syn => 'a => 'b"               ("(\<lambda>_)" 10)
 | 
| 23526 | 360 | |
| 23529 | 361 | parse_translation (advanced) {*
 | 
| 362 | let | |
| 363 | fun fun_tr ctxt [cs] = | |
| 364 | let | |
| 29281 | 365 | val x = Free (Name.variant (Term.add_free_names cs []) "x", dummyT); | 
| 24349 | 366 | val ft = DatatypeCase.case_tr true DatatypePackage.datatype_of_constr | 
| 367 | ctxt [x, cs] | |
| 23529 | 368 | in lambda x ft end | 
| 369 | in [("_lam_pats_syntax", fun_tr)] end
 | |
| 23526 | 370 | *} | 
| 371 | ||
| 372 | end |