| author | wenzelm | 
| Thu, 26 Feb 2009 22:13:01 +0100 | |
| changeset 30127 | cd3f37ba3e25 | 
| parent 29580 | 117b88da143c | 
| child 30302 | 5ffa9d4dbea7 | 
| permissions | -rw-r--r-- | 
| 21249 | 1 | (* Title: HOL/Lattices.thy | 
| 2 | Author: Tobias Nipkow | |
| 3 | *) | |
| 4 | ||
| 22454 | 5 | header {* Abstract lattices *}
 | 
| 21249 | 6 | |
| 7 | theory Lattices | |
| 26794 | 8 | imports Fun | 
| 21249 | 9 | begin | 
| 10 | ||
| 28562 | 11 | subsection {* Lattices *}
 | 
| 21249 | 12 | |
| 25206 | 13 | notation | 
| 25382 | 14 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 15 | less (infix "\<sqsubset>" 50) | |
| 25206 | 16 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 17 | class lower_semilattice = order + | 
| 21249 | 18 | fixes inf :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<sqinter>" 70) | 
| 22737 | 19 | assumes inf_le1 [simp]: "x \<sqinter> y \<sqsubseteq> x" | 
| 20 | and inf_le2 [simp]: "x \<sqinter> y \<sqsubseteq> y" | |
| 21733 | 21 | and inf_greatest: "x \<sqsubseteq> y \<Longrightarrow> x \<sqsubseteq> z \<Longrightarrow> x \<sqsubseteq> y \<sqinter> z" | 
| 21249 | 22 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 23 | class upper_semilattice = order + | 
| 21249 | 24 | fixes sup :: "'a \<Rightarrow> 'a \<Rightarrow> 'a" (infixl "\<squnion>" 65) | 
| 22737 | 25 | assumes sup_ge1 [simp]: "x \<sqsubseteq> x \<squnion> y" | 
| 26 | and sup_ge2 [simp]: "y \<sqsubseteq> x \<squnion> y" | |
| 21733 | 27 | and sup_least: "y \<sqsubseteq> x \<Longrightarrow> z \<sqsubseteq> x \<Longrightarrow> y \<squnion> z \<sqsubseteq> x" | 
| 26014 | 28 | begin | 
| 29 | ||
| 30 | text {* Dual lattice *}
 | |
| 31 | ||
| 32 | lemma dual_lattice: | |
| 33 | "lower_semilattice (op \<ge>) (op >) sup" | |
| 27682 | 34 | by (rule lower_semilattice.intro, rule dual_order) | 
| 35 | (unfold_locales, simp_all add: sup_least) | |
| 26014 | 36 | |
| 37 | end | |
| 21249 | 38 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 39 | class lattice = lower_semilattice + upper_semilattice | 
| 21249 | 40 | |
| 25382 | 41 | |
| 28562 | 42 | subsubsection {* Intro and elim rules*}
 | 
| 21733 | 43 | |
| 44 | context lower_semilattice | |
| 45 | begin | |
| 21249 | 46 | |
| 25062 | 47 | lemma le_infI1[intro]: | 
| 48 | assumes "a \<sqsubseteq> x" | |
| 49 | shows "a \<sqinter> b \<sqsubseteq> x" | |
| 50 | proof (rule order_trans) | |
| 25482 | 51 | from assms show "a \<sqsubseteq> x" . | 
| 52 | show "a \<sqinter> b \<sqsubseteq> a" by simp | |
| 25062 | 53 | qed | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 54 | lemmas (in -) [rule del] = le_infI1 | 
| 21249 | 55 | |
| 25062 | 56 | lemma le_infI2[intro]: | 
| 57 | assumes "b \<sqsubseteq> x" | |
| 58 | shows "a \<sqinter> b \<sqsubseteq> x" | |
| 59 | proof (rule order_trans) | |
| 25482 | 60 | from assms show "b \<sqsubseteq> x" . | 
| 61 | show "a \<sqinter> b \<sqsubseteq> b" by simp | |
| 25062 | 62 | qed | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 63 | lemmas (in -) [rule del] = le_infI2 | 
| 21733 | 64 | |
| 21734 | 65 | lemma le_infI[intro!]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<sqinter> b" | 
| 21733 | 66 | by(blast intro: inf_greatest) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 67 | lemmas (in -) [rule del] = le_infI | 
| 21249 | 68 | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 69 | lemma le_infE [elim!]: "x \<sqsubseteq> a \<sqinter> b \<Longrightarrow> (x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> b \<Longrightarrow> P) \<Longrightarrow> P" | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 70 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 71 | lemmas (in -) [rule del] = le_infE | 
| 21249 | 72 | |
| 21734 | 73 | lemma le_inf_iff [simp]: | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 74 | "x \<sqsubseteq> y \<sqinter> z = (x \<sqsubseteq> y \<and> x \<sqsubseteq> z)" | 
| 21733 | 75 | by blast | 
| 76 | ||
| 21734 | 77 | lemma le_iff_inf: "(x \<sqsubseteq> y) = (x \<sqinter> y = x)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 78 | by (blast intro: antisym dest: eq_iff [THEN iffD1]) | 
| 21249 | 79 | |
| 25206 | 80 | lemma mono_inf: | 
| 81 | fixes f :: "'a \<Rightarrow> 'b\<Colon>lower_semilattice" | |
| 82 | shows "mono f \<Longrightarrow> f (A \<sqinter> B) \<le> f A \<sqinter> f B" | |
| 83 | by (auto simp add: mono_def intro: Lattices.inf_greatest) | |
| 21733 | 84 | |
| 25206 | 85 | end | 
| 21733 | 86 | |
| 87 | context upper_semilattice | |
| 88 | begin | |
| 21249 | 89 | |
| 21734 | 90 | lemma le_supI1[intro]: "x \<sqsubseteq> a \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 25062 | 91 | by (rule order_trans) auto | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 92 | lemmas (in -) [rule del] = le_supI1 | 
| 21249 | 93 | |
| 21734 | 94 | lemma le_supI2[intro]: "x \<sqsubseteq> b \<Longrightarrow> x \<sqsubseteq> a \<squnion> b" | 
| 25062 | 95 | by (rule order_trans) auto | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 96 | lemmas (in -) [rule del] = le_supI2 | 
| 21733 | 97 | |
| 21734 | 98 | lemma le_supI[intro!]: "a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> a \<squnion> b \<sqsubseteq> x" | 
| 26014 | 99 | by (blast intro: sup_least) | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 100 | lemmas (in -) [rule del] = le_supI | 
| 21249 | 101 | |
| 21734 | 102 | lemma le_supE[elim!]: "a \<squnion> b \<sqsubseteq> x \<Longrightarrow> (a \<sqsubseteq> x \<Longrightarrow> b \<sqsubseteq> x \<Longrightarrow> P) \<Longrightarrow> P" | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 103 | by (blast intro: order_trans) | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 104 | lemmas (in -) [rule del] = le_supE | 
| 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 105 | |
| 21734 | 106 | lemma ge_sup_conv[simp]: | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 107 | "x \<squnion> y \<sqsubseteq> z = (x \<sqsubseteq> z \<and> y \<sqsubseteq> z)" | 
| 21733 | 108 | by blast | 
| 109 | ||
| 21734 | 110 | lemma le_iff_sup: "(x \<sqsubseteq> y) = (x \<squnion> y = y)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 111 | by (blast intro: antisym dest: eq_iff [THEN iffD1]) | 
| 21734 | 112 | |
| 25206 | 113 | lemma mono_sup: | 
| 114 | fixes f :: "'a \<Rightarrow> 'b\<Colon>upper_semilattice" | |
| 115 | shows "mono f \<Longrightarrow> f A \<squnion> f B \<le> f (A \<squnion> B)" | |
| 116 | by (auto simp add: mono_def intro: Lattices.sup_least) | |
| 21733 | 117 | |
| 25206 | 118 | end | 
| 23878 | 119 | |
| 21733 | 120 | |
| 121 | subsubsection{* Equational laws *}
 | |
| 21249 | 122 | |
| 21733 | 123 | context lower_semilattice | 
| 124 | begin | |
| 125 | ||
| 126 | lemma inf_commute: "(x \<sqinter> y) = (y \<sqinter> x)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 127 | by (blast intro: antisym) | 
| 21733 | 128 | |
| 129 | lemma inf_assoc: "(x \<sqinter> y) \<sqinter> z = x \<sqinter> (y \<sqinter> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 130 | by (blast intro: antisym) | 
| 21733 | 131 | |
| 132 | lemma inf_idem[simp]: "x \<sqinter> x = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 133 | by (blast intro: antisym) | 
| 21733 | 134 | |
| 135 | lemma inf_left_idem[simp]: "x \<sqinter> (x \<sqinter> y) = x \<sqinter> y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 136 | by (blast intro: antisym) | 
| 21733 | 137 | |
| 138 | lemma inf_absorb1: "x \<sqsubseteq> y \<Longrightarrow> x \<sqinter> y = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 139 | by (blast intro: antisym) | 
| 21733 | 140 | |
| 141 | lemma inf_absorb2: "y \<sqsubseteq> x \<Longrightarrow> x \<sqinter> y = y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 142 | by (blast intro: antisym) | 
| 21733 | 143 | |
| 144 | lemma inf_left_commute: "x \<sqinter> (y \<sqinter> z) = y \<sqinter> (x \<sqinter> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 145 | by (blast intro: antisym) | 
| 21733 | 146 | |
| 147 | lemmas inf_ACI = inf_commute inf_assoc inf_left_commute inf_left_idem | |
| 148 | ||
| 149 | end | |
| 150 | ||
| 151 | ||
| 152 | context upper_semilattice | |
| 153 | begin | |
| 21249 | 154 | |
| 21733 | 155 | lemma sup_commute: "(x \<squnion> y) = (y \<squnion> x)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 156 | by (blast intro: antisym) | 
| 21733 | 157 | |
| 158 | lemma sup_assoc: "(x \<squnion> y) \<squnion> z = x \<squnion> (y \<squnion> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 159 | by (blast intro: antisym) | 
| 21733 | 160 | |
| 161 | lemma sup_idem[simp]: "x \<squnion> x = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 162 | by (blast intro: antisym) | 
| 21733 | 163 | |
| 164 | lemma sup_left_idem[simp]: "x \<squnion> (x \<squnion> y) = x \<squnion> y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 165 | by (blast intro: antisym) | 
| 21733 | 166 | |
| 167 | lemma sup_absorb1: "y \<sqsubseteq> x \<Longrightarrow> x \<squnion> y = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 168 | by (blast intro: antisym) | 
| 21733 | 169 | |
| 170 | lemma sup_absorb2: "x \<sqsubseteq> y \<Longrightarrow> x \<squnion> y = y" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 171 | by (blast intro: antisym) | 
| 21249 | 172 | |
| 21733 | 173 | lemma sup_left_commute: "x \<squnion> (y \<squnion> z) = y \<squnion> (x \<squnion> z)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 174 | by (blast intro: antisym) | 
| 21733 | 175 | |
| 176 | lemmas sup_ACI = sup_commute sup_assoc sup_left_commute sup_left_idem | |
| 177 | ||
| 178 | end | |
| 21249 | 179 | |
| 21733 | 180 | context lattice | 
| 181 | begin | |
| 182 | ||
| 183 | lemma inf_sup_absorb: "x \<sqinter> (x \<squnion> y) = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 184 | by (blast intro: antisym inf_le1 inf_greatest sup_ge1) | 
| 21733 | 185 | |
| 186 | lemma sup_inf_absorb: "x \<squnion> (x \<sqinter> y) = x" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 187 | by (blast intro: antisym sup_ge1 sup_least inf_le1) | 
| 21733 | 188 | |
| 21734 | 189 | lemmas ACI = inf_ACI sup_ACI | 
| 190 | ||
| 22454 | 191 | lemmas inf_sup_ord = inf_le1 inf_le2 sup_ge1 sup_ge2 | 
| 192 | ||
| 21734 | 193 | text{* Towards distributivity *}
 | 
| 21249 | 194 | |
| 21734 | 195 | lemma distrib_sup_le: "x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 196 | by blast | 
| 21734 | 197 | |
| 198 | lemma distrib_inf_le: "(x \<sqinter> y) \<squnion> (x \<sqinter> z) \<sqsubseteq> x \<sqinter> (y \<squnion> z)" | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 199 | by blast | 
| 21734 | 200 | |
| 201 | ||
| 202 | text{* If you have one of them, you have them all. *}
 | |
| 21249 | 203 | |
| 21733 | 204 | lemma distrib_imp1: | 
| 21249 | 205 | assumes D: "!!x y z. x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 206 | shows "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | |
| 207 | proof- | |
| 208 | have "x \<squnion> (y \<sqinter> z) = (x \<squnion> (x \<sqinter> z)) \<squnion> (y \<sqinter> z)" by(simp add:sup_inf_absorb) | |
| 209 | also have "\<dots> = x \<squnion> (z \<sqinter> (x \<squnion> y))" by(simp add:D inf_commute sup_assoc) | |
| 210 | also have "\<dots> = ((x \<squnion> y) \<sqinter> x) \<squnion> ((x \<squnion> y) \<sqinter> z)" | |
| 211 | by(simp add:inf_sup_absorb inf_commute) | |
| 212 | also have "\<dots> = (x \<squnion> y) \<sqinter> (x \<squnion> z)" by(simp add:D) | |
| 213 | finally show ?thesis . | |
| 214 | qed | |
| 215 | ||
| 21733 | 216 | lemma distrib_imp2: | 
| 21249 | 217 | assumes D: "!!x y z. x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 218 | shows "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | |
| 219 | proof- | |
| 220 | have "x \<sqinter> (y \<squnion> z) = (x \<sqinter> (x \<squnion> z)) \<sqinter> (y \<squnion> z)" by(simp add:inf_sup_absorb) | |
| 221 | also have "\<dots> = x \<sqinter> (z \<squnion> (x \<sqinter> y))" by(simp add:D sup_commute inf_assoc) | |
| 222 | also have "\<dots> = ((x \<sqinter> y) \<squnion> x) \<sqinter> ((x \<sqinter> y) \<squnion> z)" | |
| 223 | by(simp add:sup_inf_absorb sup_commute) | |
| 224 | also have "\<dots> = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" by(simp add:D) | |
| 225 | finally show ?thesis . | |
| 226 | qed | |
| 227 | ||
| 21734 | 228 | (* seems unused *) | 
| 229 | lemma modular_le: "x \<sqsubseteq> z \<Longrightarrow> x \<squnion> (y \<sqinter> z) \<sqsubseteq> (x \<squnion> y) \<sqinter> z" | |
| 230 | by blast | |
| 231 | ||
| 21733 | 232 | end | 
| 21249 | 233 | |
| 234 | ||
| 24164 | 235 | subsection {* Distributive lattices *}
 | 
| 21249 | 236 | |
| 22454 | 237 | class distrib_lattice = lattice + | 
| 21249 | 238 | assumes sup_inf_distrib1: "x \<squnion> (y \<sqinter> z) = (x \<squnion> y) \<sqinter> (x \<squnion> z)" | 
| 239 | ||
| 21733 | 240 | context distrib_lattice | 
| 241 | begin | |
| 242 | ||
| 243 | lemma sup_inf_distrib2: | |
| 21249 | 244 | "(y \<sqinter> z) \<squnion> x = (y \<squnion> x) \<sqinter> (z \<squnion> x)" | 
| 245 | by(simp add:ACI sup_inf_distrib1) | |
| 246 | ||
| 21733 | 247 | lemma inf_sup_distrib1: | 
| 21249 | 248 | "x \<sqinter> (y \<squnion> z) = (x \<sqinter> y) \<squnion> (x \<sqinter> z)" | 
| 249 | by(rule distrib_imp2[OF sup_inf_distrib1]) | |
| 250 | ||
| 21733 | 251 | lemma inf_sup_distrib2: | 
| 21249 | 252 | "(y \<squnion> z) \<sqinter> x = (y \<sqinter> x) \<squnion> (z \<sqinter> x)" | 
| 253 | by(simp add:ACI inf_sup_distrib1) | |
| 254 | ||
| 21733 | 255 | lemmas distrib = | 
| 21249 | 256 | sup_inf_distrib1 sup_inf_distrib2 inf_sup_distrib1 inf_sup_distrib2 | 
| 257 | ||
| 21733 | 258 | end | 
| 259 | ||
| 21249 | 260 | |
| 22454 | 261 | subsection {* Uniqueness of inf and sup *}
 | 
| 262 | ||
| 22737 | 263 | lemma (in lower_semilattice) inf_unique: | 
| 22454 | 264 | fixes f (infixl "\<triangle>" 70) | 
| 25062 | 265 | assumes le1: "\<And>x y. x \<triangle> y \<le> x" and le2: "\<And>x y. x \<triangle> y \<le> y" | 
| 266 | and greatest: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z" | |
| 22737 | 267 | shows "x \<sqinter> y = x \<triangle> y" | 
| 22454 | 268 | proof (rule antisym) | 
| 25062 | 269 | show "x \<triangle> y \<le> x \<sqinter> y" by (rule le_infI) (rule le1, rule le2) | 
| 22454 | 270 | next | 
| 25062 | 271 | have leI: "\<And>x y z. x \<le> y \<Longrightarrow> x \<le> z \<Longrightarrow> x \<le> y \<triangle> z" by (blast intro: greatest) | 
| 272 | show "x \<sqinter> y \<le> x \<triangle> y" by (rule leI) simp_all | |
| 22454 | 273 | qed | 
| 274 | ||
| 22737 | 275 | lemma (in upper_semilattice) sup_unique: | 
| 22454 | 276 | fixes f (infixl "\<nabla>" 70) | 
| 25062 | 277 | assumes ge1 [simp]: "\<And>x y. x \<le> x \<nabla> y" and ge2: "\<And>x y. y \<le> x \<nabla> y" | 
| 278 | and least: "\<And>x y z. y \<le> x \<Longrightarrow> z \<le> x \<Longrightarrow> y \<nabla> z \<le> x" | |
| 22737 | 279 | shows "x \<squnion> y = x \<nabla> y" | 
| 22454 | 280 | proof (rule antisym) | 
| 25062 | 281 | show "x \<squnion> y \<le> x \<nabla> y" by (rule le_supI) (rule ge1, rule ge2) | 
| 22454 | 282 | next | 
| 25062 | 283 | have leI: "\<And>x y z. x \<le> z \<Longrightarrow> y \<le> z \<Longrightarrow> x \<nabla> y \<le> z" by (blast intro: least) | 
| 284 | show "x \<nabla> y \<le> x \<squnion> y" by (rule leI) simp_all | |
| 22454 | 285 | qed | 
| 286 | ||
| 287 | ||
| 22916 | 288 | subsection {* @{const min}/@{const max} on linear orders as
 | 
| 289 |   special case of @{const inf}/@{const sup} *}
 | |
| 290 | ||
| 291 | lemma (in linorder) distrib_lattice_min_max: | |
| 25062 | 292 | "distrib_lattice (op \<le>) (op <) min max" | 
| 28823 | 293 | proof | 
| 25062 | 294 | have aux: "\<And>x y \<Colon> 'a. x < y \<Longrightarrow> y \<le> x \<Longrightarrow> x = y" | 
| 22916 | 295 | by (auto simp add: less_le antisym) | 
| 296 | fix x y z | |
| 297 | show "max x (min y z) = min (max x y) (max x z)" | |
| 298 | unfolding min_def max_def | |
| 24640 
85a6c200ecd3
Simplified proofs due to transitivity reasoner setup.
 ballarin parents: 
24514diff
changeset | 299 | by auto | 
| 22916 | 300 | qed (auto simp add: min_def max_def not_le less_imp_le) | 
| 21249 | 301 | |
| 29509 
1ff0f3f08a7b
migrated class package to new locale implementation
 haftmann parents: 
29223diff
changeset | 302 | interpretation min_max!: distrib_lattice "op \<le> :: 'a::linorder \<Rightarrow> 'a \<Rightarrow> bool" "op <" min max | 
| 23948 | 303 | by (rule distrib_lattice_min_max) | 
| 21249 | 304 | |
| 22454 | 305 | lemma inf_min: "inf = (min \<Colon> 'a\<Colon>{lower_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 306 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 307 | |
| 22454 | 308 | lemma sup_max: "sup = (max \<Colon> 'a\<Colon>{upper_semilattice, linorder} \<Rightarrow> 'a \<Rightarrow> 'a)"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 309 | by (rule ext)+ (auto intro: antisym) | 
| 21733 | 310 | |
| 21249 | 311 | lemmas le_maxI1 = min_max.sup_ge1 | 
| 312 | lemmas le_maxI2 = min_max.sup_ge2 | |
| 21381 | 313 | |
| 21249 | 314 | lemmas max_ac = min_max.sup_assoc min_max.sup_commute | 
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 315 | mk_left_commute [of max, OF min_max.sup_assoc min_max.sup_commute] | 
| 21249 | 316 | |
| 317 | lemmas min_ac = min_max.inf_assoc min_max.inf_commute | |
| 22422 
ee19cdb07528
stepping towards uniform lattice theory development in HOL
 haftmann parents: 
22384diff
changeset | 318 | mk_left_commute [of min, OF min_max.inf_assoc min_max.inf_commute] | 
| 21249 | 319 | |
| 22454 | 320 | text {*
 | 
| 321 | Now we have inherited antisymmetry as an intro-rule on all | |
| 322 | linear orders. This is a problem because it applies to bool, which is | |
| 323 | undesirable. | |
| 324 | *} | |
| 325 | ||
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 326 | lemmas [rule del] = min_max.le_infI min_max.le_supI | 
| 22454 | 327 | min_max.le_supE min_max.le_infE min_max.le_supI1 min_max.le_supI2 | 
| 328 | min_max.le_infI1 min_max.le_infI2 | |
| 329 | ||
| 330 | ||
| 23878 | 331 | subsection {* Complete lattices *}
 | 
| 332 | ||
| 28692 | 333 | class complete_lattice = lattice + bot + top + | 
| 23878 | 334 |   fixes Inf :: "'a set \<Rightarrow> 'a" ("\<Sqinter>_" [900] 900)
 | 
| 24345 | 335 |     and Sup :: "'a set \<Rightarrow> 'a" ("\<Squnion>_" [900] 900)
 | 
| 23878 | 336 | assumes Inf_lower: "x \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> x" | 
| 24345 | 337 | and Inf_greatest: "(\<And>x. x \<in> A \<Longrightarrow> z \<sqsubseteq> x) \<Longrightarrow> z \<sqsubseteq> \<Sqinter>A" | 
| 338 | assumes Sup_upper: "x \<in> A \<Longrightarrow> x \<sqsubseteq> \<Squnion>A" | |
| 339 | and Sup_least: "(\<And>x. x \<in> A \<Longrightarrow> x \<sqsubseteq> z) \<Longrightarrow> \<Squnion>A \<sqsubseteq> z" | |
| 23878 | 340 | begin | 
| 341 | ||
| 25062 | 342 | lemma Inf_Sup: "\<Sqinter>A = \<Squnion>{b. \<forall>a \<in> A. b \<le> a}"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 343 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 23878 | 344 | |
| 25062 | 345 | lemma Sup_Inf:  "\<Squnion>A = \<Sqinter>{b. \<forall>a \<in> A. a \<le> b}"
 | 
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 346 | by (auto intro: antisym Inf_lower Inf_greatest Sup_upper Sup_least) | 
| 23878 | 347 | |
| 348 | lemma Inf_Univ: "\<Sqinter>UNIV = \<Squnion>{}"
 | |
| 24345 | 349 | unfolding Sup_Inf by auto | 
| 23878 | 350 | |
| 351 | lemma Sup_Univ: "\<Squnion>UNIV = \<Sqinter>{}"
 | |
| 352 | unfolding Inf_Sup by auto | |
| 353 | ||
| 354 | lemma Inf_insert: "\<Sqinter>insert a A = a \<sqinter> \<Sqinter>A" | |
| 26233 | 355 | by (auto intro: antisym Inf_greatest Inf_lower) | 
| 23878 | 356 | |
| 24345 | 357 | lemma Sup_insert: "\<Squnion>insert a A = a \<squnion> \<Squnion>A" | 
| 26233 | 358 | by (auto intro: antisym Sup_least Sup_upper) | 
| 23878 | 359 | |
| 360 | lemma Inf_singleton [simp]: | |
| 361 |   "\<Sqinter>{a} = a"
 | |
| 362 | by (auto intro: antisym Inf_lower Inf_greatest) | |
| 363 | ||
| 24345 | 364 | lemma Sup_singleton [simp]: | 
| 23878 | 365 |   "\<Squnion>{a} = a"
 | 
| 366 | by (auto intro: antisym Sup_upper Sup_least) | |
| 367 | ||
| 368 | lemma Inf_insert_simp: | |
| 369 |   "\<Sqinter>insert a A = (if A = {} then a else a \<sqinter> \<Sqinter>A)"
 | |
| 370 |   by (cases "A = {}") (simp_all, simp add: Inf_insert)
 | |
| 371 | ||
| 372 | lemma Sup_insert_simp: | |
| 373 |   "\<Squnion>insert a A = (if A = {} then a else a \<squnion> \<Squnion>A)"
 | |
| 374 |   by (cases "A = {}") (simp_all, simp add: Sup_insert)
 | |
| 375 | ||
| 376 | lemma Inf_binary: | |
| 377 |   "\<Sqinter>{a, b} = a \<sqinter> b"
 | |
| 378 | by (simp add: Inf_insert_simp) | |
| 379 | ||
| 380 | lemma Sup_binary: | |
| 381 |   "\<Squnion>{a, b} = a \<squnion> b"
 | |
| 382 | by (simp add: Sup_insert_simp) | |
| 383 | ||
| 28685 | 384 | lemma bot_def: | 
| 25206 | 385 |   "bot = \<Squnion>{}"
 | 
| 28685 | 386 | by (auto intro: antisym Sup_least) | 
| 23878 | 387 | |
| 28692 | 388 | lemma top_def: | 
| 389 |   "top = \<Sqinter>{}"
 | |
| 390 | by (auto intro: antisym Inf_greatest) | |
| 391 | ||
| 392 | lemma sup_bot [simp]: | |
| 393 | "x \<squnion> bot = x" | |
| 394 | using bot_least [of x] by (simp add: le_iff_sup sup_commute) | |
| 395 | ||
| 396 | lemma inf_top [simp]: | |
| 397 | "x \<sqinter> top = x" | |
| 398 | using top_greatest [of x] by (simp add: le_iff_inf inf_commute) | |
| 399 | ||
| 400 | definition SUPR :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | |
| 25206 | 401 | "SUPR A f == \<Squnion> (f ` A)" | 
| 23878 | 402 | |
| 28692 | 403 | definition INFI :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'a" where
 | 
| 25206 | 404 | "INFI A f == \<Sqinter> (f ` A)" | 
| 23878 | 405 | |
| 24749 | 406 | end | 
| 407 | ||
| 23878 | 408 | syntax | 
| 409 |   "_SUP1"     :: "pttrns => 'b => 'b"           ("(3SUP _./ _)" [0, 10] 10)
 | |
| 410 |   "_SUP"      :: "pttrn => 'a set => 'b => 'b"  ("(3SUP _:_./ _)" [0, 10] 10)
 | |
| 411 |   "_INF1"     :: "pttrns => 'b => 'b"           ("(3INF _./ _)" [0, 10] 10)
 | |
| 412 |   "_INF"      :: "pttrn => 'a set => 'b => 'b"  ("(3INF _:_./ _)" [0, 10] 10)
 | |
| 413 | ||
| 414 | translations | |
| 415 | "SUP x y. B" == "SUP x. SUP y. B" | |
| 416 | "SUP x. B" == "CONST SUPR UNIV (%x. B)" | |
| 417 | "SUP x. B" == "SUP x:UNIV. B" | |
| 418 | "SUP x:A. B" == "CONST SUPR A (%x. B)" | |
| 419 | "INF x y. B" == "INF x. INF y. B" | |
| 420 | "INF x. B" == "CONST INFI UNIV (%x. B)" | |
| 421 | "INF x. B" == "INF x:UNIV. B" | |
| 422 | "INF x:A. B" == "CONST INFI A (%x. B)" | |
| 423 | ||
| 424 | (* To avoid eta-contraction of body: *) | |
| 425 | print_translation {*
 | |
| 426 | let | |
| 427 | fun btr' syn (A :: Abs abs :: ts) = | |
| 428 | let val (x,t) = atomic_abs_tr' abs | |
| 429 | in list_comb (Syntax.const syn $ x $ A $ t, ts) end | |
| 430 |   val const_syntax_name = Sign.const_syntax_name @{theory} o fst o dest_Const
 | |
| 431 | in | |
| 432 | [(const_syntax_name @{term SUPR}, btr' "_SUP"),(const_syntax_name @{term "INFI"}, btr' "_INF")]
 | |
| 433 | end | |
| 434 | *} | |
| 435 | ||
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 436 | context complete_lattice | 
| 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 437 | begin | 
| 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 438 | |
| 23878 | 439 | lemma le_SUPI: "i : A \<Longrightarrow> M i \<le> (SUP i:A. M i)" | 
| 440 | by (auto simp add: SUPR_def intro: Sup_upper) | |
| 441 | ||
| 442 | lemma SUP_leI: "(\<And>i. i : A \<Longrightarrow> M i \<le> u) \<Longrightarrow> (SUP i:A. M i) \<le> u" | |
| 443 | by (auto simp add: SUPR_def intro: Sup_least) | |
| 444 | ||
| 445 | lemma INF_leI: "i : A \<Longrightarrow> (INF i:A. M i) \<le> M i" | |
| 446 | by (auto simp add: INFI_def intro: Inf_lower) | |
| 447 | ||
| 448 | lemma le_INFI: "(\<And>i. i : A \<Longrightarrow> u \<le> M i) \<Longrightarrow> u \<le> (INF i:A. M i)" | |
| 449 | by (auto simp add: INFI_def intro: Inf_greatest) | |
| 450 | ||
| 451 | lemma SUP_const[simp]: "A \<noteq> {} \<Longrightarrow> (SUP i:A. M) = M"
 | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 452 | by (auto intro: antisym SUP_leI le_SUPI) | 
| 23878 | 453 | |
| 454 | lemma INF_const[simp]: "A \<noteq> {} \<Longrightarrow> (INF i:A. M) = M"
 | |
| 25102 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 455 | by (auto intro: antisym INF_leI le_INFI) | 
| 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 456 | |
| 
db3e412c4cb1
antisymmetry not a default intro rule any longer
 haftmann parents: 
25062diff
changeset | 457 | end | 
| 23878 | 458 | |
| 459 | ||
| 22454 | 460 | subsection {* Bool as lattice *}
 | 
| 461 | ||
| 25510 | 462 | instantiation bool :: distrib_lattice | 
| 463 | begin | |
| 464 | ||
| 465 | definition | |
| 466 | inf_bool_eq: "P \<sqinter> Q \<longleftrightarrow> P \<and> Q" | |
| 467 | ||
| 468 | definition | |
| 469 | sup_bool_eq: "P \<squnion> Q \<longleftrightarrow> P \<or> Q" | |
| 470 | ||
| 471 | instance | |
| 22454 | 472 | by intro_classes (auto simp add: inf_bool_eq sup_bool_eq le_bool_def) | 
| 473 | ||
| 25510 | 474 | end | 
| 475 | ||
| 476 | instantiation bool :: complete_lattice | |
| 477 | begin | |
| 478 | ||
| 479 | definition | |
| 480 | Inf_bool_def: "\<Sqinter>A \<longleftrightarrow> (\<forall>x\<in>A. x)" | |
| 481 | ||
| 482 | definition | |
| 483 | Sup_bool_def: "\<Squnion>A \<longleftrightarrow> (\<exists>x\<in>A. x)" | |
| 484 | ||
| 485 | instance | |
| 24345 | 486 | by intro_classes (auto simp add: Inf_bool_def Sup_bool_def le_bool_def) | 
| 23878 | 487 | |
| 25510 | 488 | end | 
| 489 | ||
| 23878 | 490 | lemma Inf_empty_bool [simp]: | 
| 25206 | 491 |   "\<Sqinter>{}"
 | 
| 23878 | 492 | unfolding Inf_bool_def by auto | 
| 493 | ||
| 494 | lemma not_Sup_empty_bool [simp]: | |
| 495 |   "\<not> Sup {}"
 | |
| 24345 | 496 | unfolding Sup_bool_def by auto | 
| 23878 | 497 | |
| 498 | ||
| 499 | subsection {* Fun as lattice *}
 | |
| 500 | ||
| 25510 | 501 | instantiation "fun" :: (type, lattice) lattice | 
| 502 | begin | |
| 503 | ||
| 504 | definition | |
| 28562 | 505 | inf_fun_eq [code del]: "f \<sqinter> g = (\<lambda>x. f x \<sqinter> g x)" | 
| 25510 | 506 | |
| 507 | definition | |
| 28562 | 508 | sup_fun_eq [code del]: "f \<squnion> g = (\<lambda>x. f x \<squnion> g x)" | 
| 25510 | 509 | |
| 510 | instance | |
| 23878 | 511 | apply intro_classes | 
| 512 | unfolding inf_fun_eq sup_fun_eq | |
| 513 | apply (auto intro: le_funI) | |
| 514 | apply (rule le_funI) | |
| 515 | apply (auto dest: le_funD) | |
| 516 | apply (rule le_funI) | |
| 517 | apply (auto dest: le_funD) | |
| 518 | done | |
| 519 | ||
| 25510 | 520 | end | 
| 23878 | 521 | |
| 522 | instance "fun" :: (type, distrib_lattice) distrib_lattice | |
| 523 | by default (auto simp add: inf_fun_eq sup_fun_eq sup_inf_distrib1) | |
| 524 | ||
| 25510 | 525 | instantiation "fun" :: (type, complete_lattice) complete_lattice | 
| 526 | begin | |
| 527 | ||
| 528 | definition | |
| 28562 | 529 |   Inf_fun_def [code del]: "\<Sqinter>A = (\<lambda>x. \<Sqinter>{y. \<exists>f\<in>A. y = f x})"
 | 
| 25510 | 530 | |
| 531 | definition | |
| 28562 | 532 |   Sup_fun_def [code del]: "\<Squnion>A = (\<lambda>x. \<Squnion>{y. \<exists>f\<in>A. y = f x})"
 | 
| 25510 | 533 | |
| 534 | instance | |
| 24345 | 535 | by intro_classes | 
| 536 | (auto simp add: Inf_fun_def Sup_fun_def le_fun_def | |
| 537 | intro: Inf_lower Sup_upper Inf_greatest Sup_least) | |
| 23878 | 538 | |
| 25510 | 539 | end | 
| 23878 | 540 | |
| 541 | lemma Inf_empty_fun: | |
| 25206 | 542 |   "\<Sqinter>{} = (\<lambda>_. \<Sqinter>{})"
 | 
| 23878 | 543 | by rule (auto simp add: Inf_fun_def) | 
| 544 | ||
| 545 | lemma Sup_empty_fun: | |
| 25206 | 546 |   "\<Squnion>{} = (\<lambda>_. \<Squnion>{})"
 | 
| 24345 | 547 | by rule (auto simp add: Sup_fun_def) | 
| 23878 | 548 | |
| 549 | ||
| 26794 | 550 | subsection {* Set as lattice *}
 | 
| 551 | ||
| 552 | lemma inf_set_eq: "A \<sqinter> B = A \<inter> B" | |
| 553 | apply (rule subset_antisym) | |
| 554 | apply (rule Int_greatest) | |
| 555 | apply (rule inf_le1) | |
| 556 | apply (rule inf_le2) | |
| 557 | apply (rule inf_greatest) | |
| 558 | apply (rule Int_lower1) | |
| 559 | apply (rule Int_lower2) | |
| 560 | done | |
| 561 | ||
| 562 | lemma sup_set_eq: "A \<squnion> B = A \<union> B" | |
| 563 | apply (rule subset_antisym) | |
| 564 | apply (rule sup_least) | |
| 565 | apply (rule Un_upper1) | |
| 566 | apply (rule Un_upper2) | |
| 567 | apply (rule Un_least) | |
| 568 | apply (rule sup_ge1) | |
| 569 | apply (rule sup_ge2) | |
| 570 | done | |
| 571 | ||
| 572 | lemma mono_Int: "mono f \<Longrightarrow> f (A \<inter> B) \<subseteq> f A \<inter> f B" | |
| 573 | apply (fold inf_set_eq sup_set_eq) | |
| 574 | apply (erule mono_inf) | |
| 575 | done | |
| 576 | ||
| 577 | lemma mono_Un: "mono f \<Longrightarrow> f A \<union> f B \<subseteq> f (A \<union> B)" | |
| 578 | apply (fold inf_set_eq sup_set_eq) | |
| 579 | apply (erule mono_sup) | |
| 580 | done | |
| 581 | ||
| 582 | lemma Inf_set_eq: "\<Sqinter>S = \<Inter>S" | |
| 583 | apply (rule subset_antisym) | |
| 584 | apply (rule Inter_greatest) | |
| 585 | apply (erule Inf_lower) | |
| 586 | apply (rule Inf_greatest) | |
| 587 | apply (erule Inter_lower) | |
| 588 | done | |
| 589 | ||
| 590 | lemma Sup_set_eq: "\<Squnion>S = \<Union>S" | |
| 591 | apply (rule subset_antisym) | |
| 592 | apply (rule Sup_least) | |
| 593 | apply (erule Union_upper) | |
| 594 | apply (rule Union_least) | |
| 595 | apply (erule Sup_upper) | |
| 596 | done | |
| 597 | ||
| 598 | lemma top_set_eq: "top = UNIV" | |
| 599 | by (iprover intro!: subset_antisym subset_UNIV top_greatest) | |
| 600 | ||
| 601 | lemma bot_set_eq: "bot = {}"
 | |
| 602 | by (iprover intro!: subset_antisym empty_subsetI bot_least) | |
| 603 | ||
| 604 | ||
| 23878 | 605 | text {* redundant bindings *}
 | 
| 22454 | 606 | |
| 607 | lemmas inf_aci = inf_ACI | |
| 608 | lemmas sup_aci = sup_ACI | |
| 609 | ||
| 25062 | 610 | no_notation | 
| 25382 | 611 | less_eq (infix "\<sqsubseteq>" 50) and | 
| 612 | less (infix "\<sqsubset>" 50) and | |
| 613 | inf (infixl "\<sqinter>" 70) and | |
| 614 | sup (infixl "\<squnion>" 65) and | |
| 615 |   Inf  ("\<Sqinter>_" [900] 900) and
 | |
| 616 |   Sup  ("\<Squnion>_" [900] 900)
 | |
| 25062 | 617 | |
| 21249 | 618 | end |