author | blanchet |
Thu, 30 Aug 2012 14:52:39 +0200 | |
changeset 49030 | d0f4f113e43d |
parent 48891 | c0eafbd55de3 |
child 50302 | 9149a07a6c67 |
permissions | -rw-r--r-- |
7700 | 1 |
(* Title: HOL/Inductive.thy |
10402 | 2 |
Author: Markus Wenzel, TU Muenchen |
11688 | 3 |
*) |
10727 | 4 |
|
24915 | 5 |
header {* Knaster-Tarski Fixpoint Theorem and inductive definitions *} |
1187 | 6 |
|
15131 | 7 |
theory Inductive |
44860
56101fa00193
renamed theory Complete_Lattice to Complete_Lattices, in accordance with Lattices, Orderings etc.
haftmann
parents:
43580
diff
changeset
|
8 |
imports Complete_Lattices |
46950
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
46947
diff
changeset
|
9 |
keywords |
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
46947
diff
changeset
|
10 |
"inductive" "coinductive" :: thy_decl and |
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
46947
diff
changeset
|
11 |
"inductive_cases" "inductive_simps" :: thy_script and "monos" and |
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
46947
diff
changeset
|
12 |
"rep_datatype" :: thy_goal and |
d0181abdbdac
declare command keywords via theory header, including strict checking outside Pure;
wenzelm
parents:
46947
diff
changeset
|
13 |
"primrec" :: thy_decl |
15131 | 14 |
begin |
10727 | 15 |
|
24915 | 16 |
subsection {* Least and greatest fixed points *} |
17 |
||
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
18 |
context complete_lattice |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
19 |
begin |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
20 |
|
24915 | 21 |
definition |
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
22 |
lfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where |
24915 | 23 |
"lfp f = Inf {u. f u \<le> u}" --{*least fixed point*} |
24 |
||
25 |
definition |
|
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
26 |
gfp :: "('a \<Rightarrow> 'a) \<Rightarrow> 'a" where |
24915 | 27 |
"gfp f = Sup {u. u \<le> f u}" --{*greatest fixed point*} |
28 |
||
29 |
||
30 |
subsection{* Proof of Knaster-Tarski Theorem using @{term lfp} *} |
|
31 |
||
32 |
text{*@{term "lfp f"} is the least upper bound of |
|
33 |
the set @{term "{u. f(u) \<le> u}"} *} |
|
34 |
||
35 |
lemma lfp_lowerbound: "f A \<le> A ==> lfp f \<le> A" |
|
36 |
by (auto simp add: lfp_def intro: Inf_lower) |
|
37 |
||
38 |
lemma lfp_greatest: "(!!u. f u \<le> u ==> A \<le> u) ==> A \<le> lfp f" |
|
39 |
by (auto simp add: lfp_def intro: Inf_greatest) |
|
40 |
||
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
41 |
end |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
42 |
|
24915 | 43 |
lemma lfp_lemma2: "mono f ==> f (lfp f) \<le> lfp f" |
44 |
by (iprover intro: lfp_greatest order_trans monoD lfp_lowerbound) |
|
45 |
||
46 |
lemma lfp_lemma3: "mono f ==> lfp f \<le> f (lfp f)" |
|
47 |
by (iprover intro: lfp_lemma2 monoD lfp_lowerbound) |
|
48 |
||
49 |
lemma lfp_unfold: "mono f ==> lfp f = f (lfp f)" |
|
50 |
by (iprover intro: order_antisym lfp_lemma2 lfp_lemma3) |
|
51 |
||
52 |
lemma lfp_const: "lfp (\<lambda>x. t) = t" |
|
53 |
by (rule lfp_unfold) (simp add:mono_def) |
|
54 |
||
55 |
||
56 |
subsection {* General induction rules for least fixed points *} |
|
57 |
||
58 |
theorem lfp_induct: |
|
59 |
assumes mono: "mono f" and ind: "f (inf (lfp f) P) <= P" |
|
60 |
shows "lfp f <= P" |
|
61 |
proof - |
|
62 |
have "inf (lfp f) P <= lfp f" by (rule inf_le1) |
|
63 |
with mono have "f (inf (lfp f) P) <= f (lfp f)" .. |
|
64 |
also from mono have "f (lfp f) = lfp f" by (rule lfp_unfold [symmetric]) |
|
65 |
finally have "f (inf (lfp f) P) <= lfp f" . |
|
66 |
from this and ind have "f (inf (lfp f) P) <= inf (lfp f) P" by (rule le_infI) |
|
67 |
hence "lfp f <= inf (lfp f) P" by (rule lfp_lowerbound) |
|
68 |
also have "inf (lfp f) P <= P" by (rule inf_le2) |
|
69 |
finally show ?thesis . |
|
70 |
qed |
|
71 |
||
72 |
lemma lfp_induct_set: |
|
73 |
assumes lfp: "a: lfp(f)" |
|
74 |
and mono: "mono(f)" |
|
75 |
and indhyp: "!!x. [| x: f(lfp(f) Int {x. P(x)}) |] ==> P(x)" |
|
76 |
shows "P(a)" |
|
77 |
by (rule lfp_induct [THEN subsetD, THEN CollectD, OF mono _ lfp]) |
|
32683
7c1fe854ca6a
inter and union are mere abbreviations for inf and sup
haftmann
parents:
32587
diff
changeset
|
78 |
(auto simp: intro: indhyp) |
24915 | 79 |
|
26013
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
80 |
lemma lfp_ordinal_induct: |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
81 |
fixes f :: "'a\<Colon>complete_lattice \<Rightarrow> 'a" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
82 |
assumes mono: "mono f" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
83 |
and P_f: "\<And>S. P S \<Longrightarrow> P (f S)" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
84 |
and P_Union: "\<And>M. \<forall>S\<in>M. P S \<Longrightarrow> P (Sup M)" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
85 |
shows "P (lfp f)" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
86 |
proof - |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
87 |
let ?M = "{S. S \<le> lfp f \<and> P S}" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
88 |
have "P (Sup ?M)" using P_Union by simp |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
89 |
also have "Sup ?M = lfp f" |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
90 |
proof (rule antisym) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
91 |
show "Sup ?M \<le> lfp f" by (blast intro: Sup_least) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
92 |
hence "f (Sup ?M) \<le> f (lfp f)" by (rule mono [THEN monoD]) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
93 |
hence "f (Sup ?M) \<le> lfp f" using mono [THEN lfp_unfold] by simp |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
94 |
hence "f (Sup ?M) \<in> ?M" using P_f P_Union by simp |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
95 |
hence "f (Sup ?M) \<le> Sup ?M" by (rule Sup_upper) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
96 |
thus "lfp f \<le> Sup ?M" by (rule lfp_lowerbound) |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
97 |
qed |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
98 |
finally show ?thesis . |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
99 |
qed |
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
100 |
|
8764a1f1253b
Theorem Inductive.lfp_ordinal_induct generalized to complete lattices
haftmann
parents:
25557
diff
changeset
|
101 |
lemma lfp_ordinal_induct_set: |
24915 | 102 |
assumes mono: "mono f" |
103 |
and P_f: "!!S. P S ==> P(f S)" |
|
104 |
and P_Union: "!!M. !S:M. P S ==> P(Union M)" |
|
105 |
shows "P(lfp f)" |
|
46008
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents:
45907
diff
changeset
|
106 |
using assms by (rule lfp_ordinal_induct) |
24915 | 107 |
|
108 |
||
109 |
text{*Definition forms of @{text lfp_unfold} and @{text lfp_induct}, |
|
110 |
to control unfolding*} |
|
111 |
||
112 |
lemma def_lfp_unfold: "[| h==lfp(f); mono(f) |] ==> h = f(h)" |
|
45899 | 113 |
by (auto intro!: lfp_unfold) |
24915 | 114 |
|
115 |
lemma def_lfp_induct: |
|
116 |
"[| A == lfp(f); mono(f); |
|
117 |
f (inf A P) \<le> P |
|
118 |
|] ==> A \<le> P" |
|
119 |
by (blast intro: lfp_induct) |
|
120 |
||
121 |
lemma def_lfp_induct_set: |
|
122 |
"[| A == lfp(f); mono(f); a:A; |
|
123 |
!!x. [| x: f(A Int {x. P(x)}) |] ==> P(x) |
|
124 |
|] ==> P(a)" |
|
125 |
by (blast intro: lfp_induct_set) |
|
126 |
||
127 |
(*Monotonicity of lfp!*) |
|
128 |
lemma lfp_mono: "(!!Z. f Z \<le> g Z) ==> lfp f \<le> lfp g" |
|
129 |
by (rule lfp_lowerbound [THEN lfp_greatest], blast intro: order_trans) |
|
130 |
||
131 |
||
132 |
subsection {* Proof of Knaster-Tarski Theorem using @{term gfp} *} |
|
133 |
||
134 |
text{*@{term "gfp f"} is the greatest lower bound of |
|
135 |
the set @{term "{u. u \<le> f(u)}"} *} |
|
136 |
||
137 |
lemma gfp_upperbound: "X \<le> f X ==> X \<le> gfp f" |
|
138 |
by (auto simp add: gfp_def intro: Sup_upper) |
|
139 |
||
140 |
lemma gfp_least: "(!!u. u \<le> f u ==> u \<le> X) ==> gfp f \<le> X" |
|
141 |
by (auto simp add: gfp_def intro: Sup_least) |
|
142 |
||
143 |
lemma gfp_lemma2: "mono f ==> gfp f \<le> f (gfp f)" |
|
144 |
by (iprover intro: gfp_least order_trans monoD gfp_upperbound) |
|
145 |
||
146 |
lemma gfp_lemma3: "mono f ==> f (gfp f) \<le> gfp f" |
|
147 |
by (iprover intro: gfp_lemma2 monoD gfp_upperbound) |
|
148 |
||
149 |
lemma gfp_unfold: "mono f ==> gfp f = f (gfp f)" |
|
150 |
by (iprover intro: order_antisym gfp_lemma2 gfp_lemma3) |
|
151 |
||
152 |
||
153 |
subsection {* Coinduction rules for greatest fixed points *} |
|
154 |
||
155 |
text{*weak version*} |
|
156 |
lemma weak_coinduct: "[| a: X; X \<subseteq> f(X) |] ==> a : gfp(f)" |
|
45899 | 157 |
by (rule gfp_upperbound [THEN subsetD]) auto |
24915 | 158 |
|
159 |
lemma weak_coinduct_image: "!!X. [| a : X; g`X \<subseteq> f (g`X) |] ==> g a : gfp f" |
|
45899 | 160 |
apply (erule gfp_upperbound [THEN subsetD]) |
161 |
apply (erule imageI) |
|
162 |
done |
|
24915 | 163 |
|
164 |
lemma coinduct_lemma: |
|
165 |
"[| X \<le> f (sup X (gfp f)); mono f |] ==> sup X (gfp f) \<le> f (sup X (gfp f))" |
|
166 |
apply (frule gfp_lemma2) |
|
167 |
apply (drule mono_sup) |
|
168 |
apply (rule le_supI) |
|
169 |
apply assumption |
|
170 |
apply (rule order_trans) |
|
171 |
apply (rule order_trans) |
|
172 |
apply assumption |
|
173 |
apply (rule sup_ge2) |
|
174 |
apply assumption |
|
175 |
done |
|
176 |
||
177 |
text{*strong version, thanks to Coen and Frost*} |
|
178 |
lemma coinduct_set: "[| mono(f); a: X; X \<subseteq> f(X Un gfp(f)) |] ==> a : gfp(f)" |
|
45899 | 179 |
by (blast intro: weak_coinduct [OF _ coinduct_lemma]) |
24915 | 180 |
|
181 |
lemma coinduct: "[| mono(f); X \<le> f (sup X (gfp f)) |] ==> X \<le> gfp(f)" |
|
182 |
apply (rule order_trans) |
|
183 |
apply (rule sup_ge1) |
|
184 |
apply (erule gfp_upperbound [OF coinduct_lemma]) |
|
185 |
apply assumption |
|
186 |
done |
|
187 |
||
188 |
lemma gfp_fun_UnI2: "[| mono(f); a: gfp(f) |] ==> a: f(X Un gfp(f))" |
|
45899 | 189 |
by (blast dest: gfp_lemma2 mono_Un) |
24915 | 190 |
|
191 |
||
192 |
subsection {* Even Stronger Coinduction Rule, by Martin Coen *} |
|
193 |
||
194 |
text{* Weakens the condition @{term "X \<subseteq> f(X)"} to one expressed using both |
|
195 |
@{term lfp} and @{term gfp}*} |
|
196 |
||
197 |
lemma coinduct3_mono_lemma: "mono(f) ==> mono(%x. f(x) Un X Un B)" |
|
198 |
by (iprover intro: subset_refl monoI Un_mono monoD) |
|
199 |
||
200 |
lemma coinduct3_lemma: |
|
201 |
"[| X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))); mono(f) |] |
|
202 |
==> lfp(%x. f(x) Un X Un gfp(f)) \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f)))" |
|
203 |
apply (rule subset_trans) |
|
204 |
apply (erule coinduct3_mono_lemma [THEN lfp_lemma3]) |
|
205 |
apply (rule Un_least [THEN Un_least]) |
|
206 |
apply (rule subset_refl, assumption) |
|
207 |
apply (rule gfp_unfold [THEN equalityD1, THEN subset_trans], assumption) |
|
46008
c296c75f4cf4
reverted some changes for set->predicate transition, according to "hg log -u berghofe -r Isabelle2007:Isabelle2008";
wenzelm
parents:
45907
diff
changeset
|
208 |
apply (rule monoD, assumption) |
24915 | 209 |
apply (subst coinduct3_mono_lemma [THEN lfp_unfold], auto) |
210 |
done |
|
211 |
||
212 |
lemma coinduct3: |
|
213 |
"[| mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un gfp(f))) |] ==> a : gfp(f)" |
|
214 |
apply (rule coinduct3_lemma [THEN [2] weak_coinduct]) |
|
41081 | 215 |
apply (rule coinduct3_mono_lemma [THEN lfp_unfold, THEN ssubst]) |
216 |
apply (simp_all) |
|
24915 | 217 |
done |
218 |
||
219 |
||
220 |
text{*Definition forms of @{text gfp_unfold} and @{text coinduct}, |
|
221 |
to control unfolding*} |
|
222 |
||
223 |
lemma def_gfp_unfold: "[| A==gfp(f); mono(f) |] ==> A = f(A)" |
|
45899 | 224 |
by (auto intro!: gfp_unfold) |
24915 | 225 |
|
226 |
lemma def_coinduct: |
|
227 |
"[| A==gfp(f); mono(f); X \<le> f(sup X A) |] ==> X \<le> A" |
|
45899 | 228 |
by (iprover intro!: coinduct) |
24915 | 229 |
|
230 |
lemma def_coinduct_set: |
|
231 |
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(X Un A) |] ==> a: A" |
|
45899 | 232 |
by (auto intro!: coinduct_set) |
24915 | 233 |
|
234 |
(*The version used in the induction/coinduction package*) |
|
235 |
lemma def_Collect_coinduct: |
|
236 |
"[| A == gfp(%w. Collect(P(w))); mono(%w. Collect(P(w))); |
|
237 |
a: X; !!z. z: X ==> P (X Un A) z |] ==> |
|
238 |
a : A" |
|
45899 | 239 |
by (erule def_coinduct_set) auto |
24915 | 240 |
|
241 |
lemma def_coinduct3: |
|
242 |
"[| A==gfp(f); mono(f); a:X; X \<subseteq> f(lfp(%x. f(x) Un X Un A)) |] ==> a: A" |
|
45899 | 243 |
by (auto intro!: coinduct3) |
24915 | 244 |
|
245 |
text{*Monotonicity of @{term gfp}!*} |
|
246 |
lemma gfp_mono: "(!!Z. f Z \<le> g Z) ==> gfp f \<le> gfp g" |
|
247 |
by (rule gfp_upperbound [THEN gfp_least], blast intro: order_trans) |
|
248 |
||
249 |
||
23734 | 250 |
subsection {* Inductive predicates and sets *} |
11688 | 251 |
|
252 |
text {* Package setup. *} |
|
10402 | 253 |
|
23734 | 254 |
theorems basic_monos = |
22218 | 255 |
subset_refl imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj |
11688 | 256 |
Collect_mono in_mono vimage_mono |
257 |
||
48891 | 258 |
ML_file "Tools/inductive.ML" |
31723
f5cafe803b55
discontinued ancient tradition to suffix certain ML module names with "_package"
haftmann
parents:
31604
diff
changeset
|
259 |
setup Inductive.setup |
21018
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
260 |
|
23734 | 261 |
theorems [mono] = |
22218 | 262 |
imp_refl disj_mono conj_mono ex_mono all_mono if_bool_eq_conj |
33934
25d6a8982e37
Streamlined setup for monotonicity rules (no longer requires classical rules).
berghofe
parents:
32701
diff
changeset
|
263 |
imp_mono not_mono |
21018
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
264 |
Ball_def Bex_def |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
265 |
induct_rulify_fallback |
e6b8d6784792
Added new package for inductive definitions, moved old package
berghofe
parents:
20604
diff
changeset
|
266 |
|
11688 | 267 |
|
12023 | 268 |
subsection {* Inductive datatypes and primitive recursion *} |
11688 | 269 |
|
11825 | 270 |
text {* Package setup. *} |
271 |
||
48891 | 272 |
ML_file "Tools/Datatype/datatype_aux.ML" |
273 |
ML_file "Tools/Datatype/datatype_prop.ML" |
|
274 |
ML_file "Tools/Datatype/datatype_data.ML" setup Datatype_Data.setup |
|
275 |
ML_file "Tools/Datatype/datatype_case.ML" setup Datatype_Case.setup |
|
276 |
ML_file "Tools/Datatype/rep_datatype.ML" |
|
277 |
ML_file "Tools/Datatype/datatype_codegen.ML" setup Datatype_Codegen.setup |
|
278 |
ML_file "Tools/Datatype/primrec.ML" |
|
12437
6d4e02b6dd43
Moved code generator setup from Recdef to Inductive.
berghofe
parents:
12023
diff
changeset
|
279 |
|
23526 | 280 |
text{* Lambda-abstractions with pattern matching: *} |
281 |
||
282 |
syntax |
|
23529 | 283 |
"_lam_pats_syntax" :: "cases_syn => 'a => 'b" ("(%_)" 10) |
23526 | 284 |
syntax (xsymbols) |
23529 | 285 |
"_lam_pats_syntax" :: "cases_syn => 'a => 'b" ("(\<lambda>_)" 10) |
23526 | 286 |
|
23529 | 287 |
parse_translation (advanced) {* |
288 |
let |
|
289 |
fun fun_tr ctxt [cs] = |
|
290 |
let |
|
45899 | 291 |
val x = Syntax.free (fst (Name.variant "x" (Term.declare_term_frees cs Name.context))); |
45891
d73605c829cc
clarified module dependencies: Datatype_Data, Datatype_Case, Rep_Datatype;
wenzelm
parents:
45890
diff
changeset
|
292 |
val ft = Datatype_Case.case_tr true ctxt [x, cs]; |
23529 | 293 |
in lambda x ft end |
35115 | 294 |
in [(@{syntax_const "_lam_pats_syntax"}, fun_tr)] end |
23526 | 295 |
*} |
296 |
||
297 |
end |