| author | wenzelm | 
| Tue, 25 Apr 2006 22:23:04 +0200 | |
| changeset 19461 | d3bc9c1ff241 | 
| parent 17782 | b3846df9d643 | 
| child 19761 | 5cd82054c2c6 | 
| permissions | -rw-r--r-- | 
| 17441 | 1 | (* Title: CTT/CTT.thy | 
| 0 | 2 | ID: $Id$ | 
| 3 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | |
| 4 | Copyright 1993 University of Cambridge | |
| 5 | *) | |
| 6 | ||
| 17441 | 7 | header {* Constructive Type Theory *}
 | 
| 0 | 8 | |
| 17441 | 9 | theory CTT | 
| 10 | imports Pure | |
| 11 | begin | |
| 12 | ||
| 13 | typedecl i | |
| 14 | typedecl t | |
| 15 | typedecl o | |
| 0 | 16 | |
| 17 | consts | |
| 18 | (*Types*) | |
| 17441 | 19 | F :: "t" | 
| 20 | T :: "t" (*F is empty, T contains one element*) | |
| 0 | 21 | contr :: "i=>i" | 
| 22 | tt :: "i" | |
| 23 | (*Natural numbers*) | |
| 24 | N :: "t" | |
| 25 | succ :: "i=>i" | |
| 26 | rec :: "[i, i, [i,i]=>i] => i" | |
| 27 | (*Unions*) | |
| 17441 | 28 | inl :: "i=>i" | 
| 29 | inr :: "i=>i" | |
| 0 | 30 | when :: "[i, i=>i, i=>i]=>i" | 
| 31 | (*General Sum and Binary Product*) | |
| 32 | Sum :: "[t, i=>t]=>t" | |
| 17441 | 33 | fst :: "i=>i" | 
| 34 | snd :: "i=>i" | |
| 0 | 35 | split :: "[i, [i,i]=>i] =>i" | 
| 36 | (*General Product and Function Space*) | |
| 37 | Prod :: "[t, i=>t]=>t" | |
| 14765 | 38 | (*Types*) | 
| 39 | "+" :: "[t,t]=>t" (infixr 40) | |
| 0 | 40 | (*Equality type*) | 
| 41 | Eq :: "[t,i,i]=>t" | |
| 42 | eq :: "i" | |
| 43 | (*Judgements*) | |
| 44 |   Type      :: "t => prop"          ("(_ type)" [10] 5)
 | |
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 45 |   Eqtype    :: "[t,t]=>prop"        ("(_ =/ _)" [10,10] 5)
 | 
| 0 | 46 |   Elem      :: "[i, t]=>prop"       ("(_ /: _)" [10,10] 5)
 | 
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 47 |   Eqelem    :: "[i,i,t]=>prop"      ("(_ =/ _ :/ _)" [10,10,10] 5)
 | 
| 0 | 48 |   Reduce    :: "[i,i]=>prop"        ("Reduce[_,_]")
 | 
| 49 | (*Types*) | |
| 14765 | 50 | |
| 0 | 51 | (*Functions*) | 
| 52 | lambda :: "(i => i) => i" (binder "lam " 10) | |
| 53 | "`" :: "[i,i]=>i" (infixl 60) | |
| 54 | (*Natural numbers*) | |
| 55 |   "0"       :: "i"                  ("0")
 | |
| 56 | (*Pairing*) | |
| 57 |   pair      :: "[i,i]=>i"           ("(1<_,/_>)")
 | |
| 58 | ||
| 14765 | 59 | syntax | 
| 60 |   "@PROD"   :: "[idt,t,t]=>t"       ("(3PROD _:_./ _)" 10)
 | |
| 61 |   "@SUM"    :: "[idt,t,t]=>t"       ("(3SUM _:_./ _)" 10)
 | |
| 62 |   "@-->"    :: "[t,t]=>t"           ("(_ -->/ _)" [31,30] 30)
 | |
| 63 |   "@*"      :: "[t,t]=>t"           ("(_ */ _)" [51,50] 50)
 | |
| 64 | ||
| 0 | 65 | translations | 
| 66 | "PROD x:A. B" => "Prod(A, %x. B)" | |
| 17782 | 67 | "A --> B" => "Prod(A, %_. B)" | 
| 0 | 68 | "SUM x:A. B" => "Sum(A, %x. B)" | 
| 17782 | 69 | "A * B" => "Sum(A, %_. B)" | 
| 0 | 70 | |
| 17441 | 71 | print_translation {*
 | 
| 72 |   [("Prod", dependent_tr' ("@PROD", "@-->")),
 | |
| 73 |    ("Sum", dependent_tr' ("@SUM", "@*"))]
 | |
| 74 | *} | |
| 75 | ||
| 76 | ||
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 77 | syntax (xsymbols) | 
| 17441 | 78 |   "@-->"    :: "[t,t]=>t"           ("(_ \<longrightarrow>/ _)" [31,30] 30)
 | 
| 79 |   "@*"      :: "[t,t]=>t"           ("(_ \<times>/ _)"          [51,50] 50)
 | |
| 80 |   Elem      :: "[i, t]=>prop"       ("(_ /\<in> _)" [10,10] 5)
 | |
| 81 |   Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
 | |
| 82 |   "@SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
 | |
| 83 |   "@PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
 | |
| 84 |   "lam "    :: "[idts, i] => i"     ("(3\<lambda>\<lambda>_./ _)" 10)
 | |
| 10467 
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
 paulson parents: 
3837diff
changeset | 85 | |
| 14565 | 86 | syntax (HTML output) | 
| 17441 | 87 |   "@*"      :: "[t,t]=>t"           ("(_ \<times>/ _)"          [51,50] 50)
 | 
| 88 |   Elem      :: "[i, t]=>prop"       ("(_ /\<in> _)" [10,10] 5)
 | |
| 89 |   Eqelem    :: "[i,i,t]=>prop"      ("(2_ =/ _ \<in>/ _)" [10,10,10] 5)
 | |
| 90 |   "@SUM"    :: "[idt,t,t] => t"     ("(3\<Sigma> _\<in>_./ _)" 10)
 | |
| 91 |   "@PROD"   :: "[idt,t,t] => t"     ("(3\<Pi> _\<in>_./ _)"    10)
 | |
| 92 |   "lam "    :: "[idts, i] => i"     ("(3\<lambda>\<lambda>_./ _)" 10)
 | |
| 14565 | 93 | |
| 17441 | 94 | axioms | 
| 0 | 95 | |
| 96 | (*Reduction: a weaker notion than equality; a hack for simplification. | |
| 97 | Reduce[a,b] means either that a=b:A for some A or else that "a" and "b" | |
| 98 | are textually identical.*) | |
| 99 | ||
| 100 | (*does not verify a:A! Sound because only trans_red uses a Reduce premise | |
| 101 | No new theorems can be proved about the standard judgements.*) | |
| 17441 | 102 | refl_red: "Reduce[a,a]" | 
| 103 | red_if_equal: "a = b : A ==> Reduce[a,b]" | |
| 104 | trans_red: "[| a = b : A; Reduce[b,c] |] ==> a = c : A" | |
| 0 | 105 | |
| 106 | (*Reflexivity*) | |
| 107 | ||
| 17441 | 108 | refl_type: "A type ==> A = A" | 
| 109 | refl_elem: "a : A ==> a = a : A" | |
| 0 | 110 | |
| 111 | (*Symmetry*) | |
| 112 | ||
| 17441 | 113 | sym_type: "A = B ==> B = A" | 
| 114 | sym_elem: "a = b : A ==> b = a : A" | |
| 0 | 115 | |
| 116 | (*Transitivity*) | |
| 117 | ||
| 17441 | 118 | trans_type: "[| A = B; B = C |] ==> A = C" | 
| 119 | trans_elem: "[| a = b : A; b = c : A |] ==> a = c : A" | |
| 0 | 120 | |
| 17441 | 121 | equal_types: "[| a : A; A = B |] ==> a : B" | 
| 122 | equal_typesL: "[| a = b : A; A = B |] ==> a = b : B" | |
| 0 | 123 | |
| 124 | (*Substitution*) | |
| 125 | ||
| 17441 | 126 | subst_type: "[| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type" | 
| 127 | subst_typeL: "[| a = c : A; !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)" | |
| 0 | 128 | |
| 17441 | 129 | subst_elem: "[| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)" | 
| 130 | subst_elemL: | |
| 0 | 131 | "[| a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)" | 
| 132 | ||
| 133 | ||
| 134 | (*The type N -- natural numbers*) | |
| 135 | ||
| 17441 | 136 | NF: "N type" | 
| 137 | NI0: "0 : N" | |
| 138 | NI_succ: "a : N ==> succ(a) : N" | |
| 139 | NI_succL: "a = b : N ==> succ(a) = succ(b) : N" | |
| 0 | 140 | |
| 17441 | 141 | NE: | 
| 142 | "[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] | |
| 3837 | 143 | ==> rec(p, a, %u v. b(u,v)) : C(p)" | 
| 0 | 144 | |
| 17441 | 145 | NEL: | 
| 146 | "[| p = q : N; a = c : C(0); | |
| 147 | !!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] | |
| 3837 | 148 | ==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)" | 
| 0 | 149 | |
| 17441 | 150 | NC0: | 
| 151 | "[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] | |
| 3837 | 152 | ==> rec(0, a, %u v. b(u,v)) = a : C(0)" | 
| 0 | 153 | |
| 17441 | 154 | NC_succ: | 
| 155 | "[| p: N; a: C(0); | |
| 156 | !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==> | |
| 3837 | 157 | rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))" | 
| 0 | 158 | |
| 159 | (*The fourth Peano axiom. See page 91 of Martin-Lof's book*) | |
| 17441 | 160 | zero_ne_succ: | 
| 0 | 161 | "[| a: N; 0 = succ(a) : N |] ==> 0: F" | 
| 162 | ||
| 163 | ||
| 164 | (*The Product of a family of types*) | |
| 165 | ||
| 17441 | 166 | ProdF: "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type" | 
| 0 | 167 | |
| 17441 | 168 | ProdFL: | 
| 169 | "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> | |
| 3837 | 170 | PROD x:A. B(x) = PROD x:C. D(x)" | 
| 0 | 171 | |
| 17441 | 172 | ProdI: | 
| 3837 | 173 | "[| A type; !!x. x:A ==> b(x):B(x)|] ==> lam x. b(x) : PROD x:A. B(x)" | 
| 0 | 174 | |
| 17441 | 175 | ProdIL: | 
| 176 | "[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==> | |
| 3837 | 177 | lam x. b(x) = lam x. c(x) : PROD x:A. B(x)" | 
| 0 | 178 | |
| 17441 | 179 | ProdE: "[| p : PROD x:A. B(x); a : A |] ==> p`a : B(a)" | 
| 180 | ProdEL: "[| p=q: PROD x:A. B(x); a=b : A |] ==> p`a = q`b : B(a)" | |
| 0 | 181 | |
| 17441 | 182 | ProdC: | 
| 183 | "[| a : A; !!x. x:A ==> b(x) : B(x)|] ==> | |
| 3837 | 184 | (lam x. b(x)) ` a = b(a) : B(a)" | 
| 0 | 185 | |
| 17441 | 186 | ProdC2: | 
| 3837 | 187 | "p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)" | 
| 0 | 188 | |
| 189 | ||
| 190 | (*The Sum of a family of types*) | |
| 191 | ||
| 17441 | 192 | SumF: "[| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type" | 
| 193 | SumFL: | |
| 3837 | 194 | "[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A. B(x) = SUM x:C. D(x)" | 
| 0 | 195 | |
| 17441 | 196 | SumI: "[| a : A; b : B(a) |] ==> <a,b> : SUM x:A. B(x)" | 
| 197 | SumIL: "[| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)" | |
| 0 | 198 | |
| 17441 | 199 | SumE: | 
| 200 | "[| p: SUM x:A. B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] | |
| 3837 | 201 | ==> split(p, %x y. c(x,y)) : C(p)" | 
| 0 | 202 | |
| 17441 | 203 | SumEL: | 
| 204 | "[| p=q : SUM x:A. B(x); | |
| 205 | !!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] | |
| 3837 | 206 | ==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)" | 
| 0 | 207 | |
| 17441 | 208 | SumC: | 
| 209 | "[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] | |
| 3837 | 210 | ==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)" | 
| 0 | 211 | |
| 17441 | 212 | fst_def: "fst(a) == split(a, %x y. x)" | 
| 213 | snd_def: "snd(a) == split(a, %x y. y)" | |
| 0 | 214 | |
| 215 | ||
| 216 | (*The sum of two types*) | |
| 217 | ||
| 17441 | 218 | PlusF: "[| A type; B type |] ==> A+B type" | 
| 219 | PlusFL: "[| A = C; B = D |] ==> A+B = C+D" | |
| 0 | 220 | |
| 17441 | 221 | PlusI_inl: "[| a : A; B type |] ==> inl(a) : A+B" | 
| 222 | PlusI_inlL: "[| a = c : A; B type |] ==> inl(a) = inl(c) : A+B" | |
| 0 | 223 | |
| 17441 | 224 | PlusI_inr: "[| A type; b : B |] ==> inr(b) : A+B" | 
| 225 | PlusI_inrL: "[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B" | |
| 0 | 226 | |
| 17441 | 227 | PlusE: | 
| 228 | "[| p: A+B; !!x. x:A ==> c(x): C(inl(x)); | |
| 229 | !!y. y:B ==> d(y): C(inr(y)) |] | |
| 3837 | 230 | ==> when(p, %x. c(x), %y. d(y)) : C(p)" | 
| 0 | 231 | |
| 17441 | 232 | PlusEL: | 
| 233 | "[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); | |
| 234 | !!y. y: B ==> d(y) = f(y) : C(inr(y)) |] | |
| 3837 | 235 | ==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)" | 
| 0 | 236 | |
| 17441 | 237 | PlusC_inl: | 
| 238 | "[| a: A; !!x. x:A ==> c(x): C(inl(x)); | |
| 239 | !!y. y:B ==> d(y): C(inr(y)) |] | |
| 3837 | 240 | ==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))" | 
| 0 | 241 | |
| 17441 | 242 | PlusC_inr: | 
| 243 | "[| b: B; !!x. x:A ==> c(x): C(inl(x)); | |
| 244 | !!y. y:B ==> d(y): C(inr(y)) |] | |
| 3837 | 245 | ==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))" | 
| 0 | 246 | |
| 247 | ||
| 248 | (*The type Eq*) | |
| 249 | ||
| 17441 | 250 | EqF: "[| A type; a : A; b : A |] ==> Eq(A,a,b) type" | 
| 251 | EqFL: "[| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)" | |
| 252 | EqI: "a = b : A ==> eq : Eq(A,a,b)" | |
| 253 | EqE: "p : Eq(A,a,b) ==> a = b : A" | |
| 0 | 254 | |
| 255 | (*By equality of types, can prove C(p) from C(eq), an elimination rule*) | |
| 17441 | 256 | EqC: "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)" | 
| 0 | 257 | |
| 258 | (*The type F*) | |
| 259 | ||
| 17441 | 260 | FF: "F type" | 
| 261 | FE: "[| p: F; C type |] ==> contr(p) : C" | |
| 262 | FEL: "[| p = q : F; C type |] ==> contr(p) = contr(q) : C" | |
| 0 | 263 | |
| 264 | (*The type T | |
| 265 | Martin-Lof's book (page 68) discusses elimination and computation. | |
| 266 | Elimination can be derived by computation and equality of types, | |
| 267 | but with an extra premise C(x) type x:T. | |
| 268 | Also computation can be derived from elimination. *) | |
| 269 | ||
| 17441 | 270 | TF: "T type" | 
| 271 | TI: "tt : T" | |
| 272 | TE: "[| p : T; c : C(tt) |] ==> c : C(p)" | |
| 273 | TEL: "[| p = q : T; c = d : C(tt) |] ==> c = d : C(p)" | |
| 274 | TC: "p : T ==> p = tt : T" | |
| 0 | 275 | |
| 17441 | 276 | ML {* use_legacy_bindings (the_context ()) *}
 | 
| 0 | 277 | |
| 17441 | 278 | end |