author | blanchet |
Mon, 05 Jan 2015 21:48:05 +0100 | |
changeset 59284 | d418ac9727f2 |
parent 58977 | 9576b510f6a2 |
child 59498 | 50b60f501b05 |
permissions | -rw-r--r-- |
17456 | 1 |
(* Title: CCL/Wfd.thy |
1474 | 2 |
Author: Martin Coen, Cambridge University Computer Laboratory |
0 | 3 |
Copyright 1993 University of Cambridge |
4 |
*) |
|
5 |
||
58889 | 6 |
section {* Well-founded relations in CCL *} |
17456 | 7 |
|
8 |
theory Wfd |
|
9 |
imports Trancl Type Hered |
|
10 |
begin |
|
0 | 11 |
|
58977 | 12 |
definition Wfd :: "[i set] \<Rightarrow> o" |
13 |
where "Wfd(R) == ALL P.(ALL x.(ALL y.<y,x> : R \<longrightarrow> y:P) \<longrightarrow> x:P) \<longrightarrow> (ALL a. a:P)" |
|
0 | 14 |
|
58977 | 15 |
definition wf :: "[i set] \<Rightarrow> i set" |
16 |
where "wf(R) == {x. x:R \<and> Wfd(R)}" |
|
57521 | 17 |
|
58977 | 18 |
definition wmap :: "[i\<Rightarrow>i,i set] \<Rightarrow> i set" |
19 |
where "wmap(f,R) == {p. EX x y. p=<x,y> \<and> <f(x),f(y)> : R}" |
|
0 | 20 |
|
57521 | 21 |
definition lex :: "[i set,i set] => i set" (infixl "**" 70) |
58977 | 22 |
where "ra**rb == {p. EX a a' b b'. p = <<a,b>,<a',b'>> \<and> (<a,a'> : ra | (a=a' \<and> <b,b'> : rb))}" |
0 | 23 |
|
57521 | 24 |
definition NatPR :: "i set" |
25 |
where "NatPR == {p. EX x:Nat. p=<x,succ(x)>}" |
|
0 | 26 |
|
58977 | 27 |
definition ListPR :: "i set \<Rightarrow> i set" |
57521 | 28 |
where "ListPR(A) == {p. EX h:A. EX t:List(A). p=<t,h$t>}" |
17456 | 29 |
|
20140 | 30 |
|
31 |
lemma wfd_induct: |
|
32 |
assumes 1: "Wfd(R)" |
|
58977 | 33 |
and 2: "\<And>x. ALL y. <y,x>: R \<longrightarrow> P(y) \<Longrightarrow> P(x)" |
20140 | 34 |
shows "P(a)" |
35 |
apply (rule 1 [unfolded Wfd_def, rule_format, THEN CollectD]) |
|
36 |
using 2 apply blast |
|
37 |
done |
|
38 |
||
39 |
lemma wfd_strengthen_lemma: |
|
58977 | 40 |
assumes 1: "\<And>x y.<x,y> : R \<Longrightarrow> Q(x)" |
41 |
and 2: "ALL x. (ALL y. <y,x> : R \<longrightarrow> y : P) \<longrightarrow> x : P" |
|
42 |
and 3: "\<And>x. Q(x) \<Longrightarrow> x:P" |
|
20140 | 43 |
shows "a:P" |
44 |
apply (rule 2 [rule_format]) |
|
45 |
using 1 3 |
|
46 |
apply blast |
|
47 |
done |
|
48 |
||
58971 | 49 |
method_setup wfd_strengthen = {* |
58975 | 50 |
Scan.lift Args.name_inner_syntax >> (fn s => fn ctxt => |
58971 | 51 |
SIMPLE_METHOD' (fn i => |
52 |
res_inst_tac ctxt [(("Q", 0), s)] @{thm wfd_strengthen_lemma} i THEN assume_tac ctxt (i+1))) |
|
20140 | 53 |
*} |
54 |
||
58977 | 55 |
lemma wf_anti_sym: "\<lbrakk>Wfd(r); <a,x>:r; <x,a>:r\<rbrakk> \<Longrightarrow> P" |
56 |
apply (subgoal_tac "ALL x. <a,x>:r \<longrightarrow> <x,a>:r \<longrightarrow> P") |
|
20140 | 57 |
apply blast |
58 |
apply (erule wfd_induct) |
|
59 |
apply blast |
|
60 |
done |
|
61 |
||
58977 | 62 |
lemma wf_anti_refl: "\<lbrakk>Wfd(r); <a,a>: r\<rbrakk> \<Longrightarrow> P" |
20140 | 63 |
apply (rule wf_anti_sym) |
64 |
apply assumption+ |
|
65 |
done |
|
66 |
||
67 |
||
68 |
subsection {* Irreflexive transitive closure *} |
|
69 |
||
70 |
lemma trancl_wf: |
|
71 |
assumes 1: "Wfd(R)" |
|
72 |
shows "Wfd(R^+)" |
|
73 |
apply (unfold Wfd_def) |
|
74 |
apply (rule allI ballI impI)+ |
|
75 |
(*must retain the universal formula for later use!*) |
|
76 |
apply (rule allE, assumption) |
|
77 |
apply (erule mp) |
|
78 |
apply (rule 1 [THEN wfd_induct]) |
|
79 |
apply (rule impI [THEN allI]) |
|
80 |
apply (erule tranclE) |
|
81 |
apply blast |
|
82 |
apply (erule spec [THEN mp, THEN spec, THEN mp]) |
|
83 |
apply assumption+ |
|
84 |
done |
|
85 |
||
86 |
||
87 |
subsection {* Lexicographic Ordering *} |
|
88 |
||
89 |
lemma lexXH: |
|
58977 | 90 |
"p : ra**rb \<longleftrightarrow> (EX a a' b b'. p = <<a,b>,<a',b'>> \<and> (<a,a'> : ra | a=a' \<and> <b,b'> : rb))" |
20140 | 91 |
unfolding lex_def by blast |
92 |
||
58977 | 93 |
lemma lexI1: "<a,a'> : ra \<Longrightarrow> <<a,b>,<a',b'>> : ra**rb" |
20140 | 94 |
by (blast intro!: lexXH [THEN iffD2]) |
95 |
||
58977 | 96 |
lemma lexI2: "<b,b'> : rb \<Longrightarrow> <<a,b>,<a,b'>> : ra**rb" |
20140 | 97 |
by (blast intro!: lexXH [THEN iffD2]) |
98 |
||
99 |
lemma lexE: |
|
100 |
assumes 1: "p : ra**rb" |
|
58977 | 101 |
and 2: "\<And>a a' b b'. \<lbrakk><a,a'> : ra; p=<<a,b>,<a',b'>>\<rbrakk> \<Longrightarrow> R" |
102 |
and 3: "\<And>a b b'. \<lbrakk><b,b'> : rb; p = <<a,b>,<a,b'>>\<rbrakk> \<Longrightarrow> R" |
|
20140 | 103 |
shows R |
104 |
apply (rule 1 [THEN lexXH [THEN iffD1], THEN exE]) |
|
105 |
using 2 3 |
|
106 |
apply blast |
|
107 |
done |
|
108 |
||
58977 | 109 |
lemma lex_pair: "\<lbrakk>p : r**s; \<And>a a' b b'. p = <<a,b>,<a',b'>> \<Longrightarrow> P\<rbrakk> \<Longrightarrow>P" |
20140 | 110 |
apply (erule lexE) |
111 |
apply blast+ |
|
112 |
done |
|
113 |
||
114 |
lemma lex_wf: |
|
115 |
assumes 1: "Wfd(R)" |
|
116 |
and 2: "Wfd(S)" |
|
117 |
shows "Wfd(R**S)" |
|
118 |
apply (unfold Wfd_def) |
|
119 |
apply safe |
|
58977 | 120 |
apply (wfd_strengthen "\<lambda>x. EX a b. x=<a,b>") |
20140 | 121 |
apply (blast elim!: lex_pair) |
122 |
apply (subgoal_tac "ALL a b.<a,b>:P") |
|
123 |
apply blast |
|
124 |
apply (rule 1 [THEN wfd_induct, THEN allI]) |
|
125 |
apply (rule 2 [THEN wfd_induct, THEN allI]) back |
|
126 |
apply (fast elim!: lexE) |
|
127 |
done |
|
128 |
||
129 |
||
130 |
subsection {* Mapping *} |
|
131 |
||
58977 | 132 |
lemma wmapXH: "p : wmap(f,r) \<longleftrightarrow> (EX x y. p=<x,y> \<and> <f(x),f(y)> : r)" |
20140 | 133 |
unfolding wmap_def by blast |
134 |
||
58977 | 135 |
lemma wmapI: "<f(a),f(b)> : r \<Longrightarrow> <a,b> : wmap(f,r)" |
20140 | 136 |
by (blast intro!: wmapXH [THEN iffD2]) |
137 |
||
58977 | 138 |
lemma wmapE: "\<lbrakk>p : wmap(f,r); \<And>a b. \<lbrakk><f(a),f(b)> : r; p=<a,b>\<rbrakk> \<Longrightarrow> R\<rbrakk> \<Longrightarrow> R" |
20140 | 139 |
by (blast dest!: wmapXH [THEN iffD1]) |
140 |
||
141 |
lemma wmap_wf: |
|
142 |
assumes 1: "Wfd(r)" |
|
143 |
shows "Wfd(wmap(f,r))" |
|
144 |
apply (unfold Wfd_def) |
|
145 |
apply clarify |
|
58977 | 146 |
apply (subgoal_tac "ALL b. ALL a. f (a) = b \<longrightarrow> a:P") |
20140 | 147 |
apply blast |
148 |
apply (rule 1 [THEN wfd_induct, THEN allI]) |
|
149 |
apply clarify |
|
150 |
apply (erule spec [THEN mp]) |
|
151 |
apply (safe elim!: wmapE) |
|
152 |
apply (erule spec [THEN mp, THEN spec, THEN mp]) |
|
153 |
apply assumption |
|
154 |
apply (rule refl) |
|
155 |
done |
|
156 |
||
157 |
||
158 |
subsection {* Projections *} |
|
159 |
||
58977 | 160 |
lemma wfstI: "<xa,ya> : r \<Longrightarrow> <<xa,xb>,<ya,yb>> : wmap(fst,r)" |
20140 | 161 |
apply (rule wmapI) |
162 |
apply simp |
|
163 |
done |
|
164 |
||
58977 | 165 |
lemma wsndI: "<xb,yb> : r \<Longrightarrow> <<xa,xb>,<ya,yb>> : wmap(snd,r)" |
20140 | 166 |
apply (rule wmapI) |
167 |
apply simp |
|
168 |
done |
|
169 |
||
58977 | 170 |
lemma wthdI: "<xc,yc> : r \<Longrightarrow> <<xa,<xb,xc>>,<ya,<yb,yc>>> : wmap(thd,r)" |
20140 | 171 |
apply (rule wmapI) |
172 |
apply simp |
|
173 |
done |
|
174 |
||
175 |
||
176 |
subsection {* Ground well-founded relations *} |
|
177 |
||
58977 | 178 |
lemma wfI: "\<lbrakk>Wfd(r); a : r\<rbrakk> \<Longrightarrow> a : wf(r)" |
20140 | 179 |
unfolding wf_def by blast |
180 |
||
181 |
lemma Empty_wf: "Wfd({})" |
|
182 |
unfolding Wfd_def by (blast elim: EmptyXH [THEN iffD1, THEN FalseE]) |
|
183 |
||
184 |
lemma wf_wf: "Wfd(wf(R))" |
|
185 |
unfolding wf_def |
|
186 |
apply (rule_tac Q = "Wfd(R)" in excluded_middle [THEN disjE]) |
|
187 |
apply simp_all |
|
188 |
apply (rule Empty_wf) |
|
189 |
done |
|
190 |
||
58977 | 191 |
lemma NatPRXH: "p : NatPR \<longleftrightarrow> (EX x:Nat. p=<x,succ(x)>)" |
20140 | 192 |
unfolding NatPR_def by blast |
193 |
||
58977 | 194 |
lemma ListPRXH: "p : ListPR(A) \<longleftrightarrow> (EX h:A. EX t:List(A).p=<t,h$t>)" |
20140 | 195 |
unfolding ListPR_def by blast |
196 |
||
58977 | 197 |
lemma NatPRI: "x : Nat \<Longrightarrow> <x,succ(x)> : NatPR" |
20140 | 198 |
by (auto simp: NatPRXH) |
199 |
||
58977 | 200 |
lemma ListPRI: "\<lbrakk>t : List(A); h : A\<rbrakk> \<Longrightarrow> <t,h $ t> : ListPR(A)" |
20140 | 201 |
by (auto simp: ListPRXH) |
202 |
||
203 |
lemma NatPR_wf: "Wfd(NatPR)" |
|
204 |
apply (unfold Wfd_def) |
|
205 |
apply clarify |
|
58977 | 206 |
apply (wfd_strengthen "\<lambda>x. x:Nat") |
47966 | 207 |
apply (fastforce iff: NatPRXH) |
20140 | 208 |
apply (erule Nat_ind) |
47966 | 209 |
apply (fastforce iff: NatPRXH)+ |
20140 | 210 |
done |
211 |
||
212 |
lemma ListPR_wf: "Wfd(ListPR(A))" |
|
213 |
apply (unfold Wfd_def) |
|
214 |
apply clarify |
|
58977 | 215 |
apply (wfd_strengthen "\<lambda>x. x:List (A)") |
47966 | 216 |
apply (fastforce iff: ListPRXH) |
20140 | 217 |
apply (erule List_ind) |
47966 | 218 |
apply (fastforce iff: ListPRXH)+ |
20140 | 219 |
done |
220 |
||
221 |
||
222 |
subsection {* General Recursive Functions *} |
|
223 |
||
224 |
lemma letrecT: |
|
225 |
assumes 1: "a : A" |
|
58977 | 226 |
and 2: "\<And>p g. \<lbrakk>p:A; ALL x:{x: A. <x,p>:wf(R)}. g(x) : D(x)\<rbrakk> \<Longrightarrow> h(p,g) : D(p)" |
20140 | 227 |
shows "letrec g x be h(x,g) in g(a) : D(a)" |
228 |
apply (rule 1 [THEN rev_mp]) |
|
229 |
apply (rule wf_wf [THEN wfd_induct]) |
|
230 |
apply (subst letrecB) |
|
231 |
apply (rule impI) |
|
232 |
apply (erule 2) |
|
233 |
apply blast |
|
234 |
done |
|
235 |
||
236 |
lemma SPLITB: "SPLIT(<a,b>,B) = B(a,b)" |
|
237 |
unfolding SPLIT_def |
|
238 |
apply (rule set_ext) |
|
239 |
apply blast |
|
240 |
done |
|
17456 | 241 |
|
20140 | 242 |
lemma letrec2T: |
243 |
assumes "a : A" |
|
244 |
and "b : B" |
|
58977 | 245 |
and "\<And>p q g. \<lbrakk>p:A; q:B; |
246 |
ALL x:A. ALL y:{y: B. <<x,y>,<p,q>>:wf(R)}. g(x,y) : D(x,y)\<rbrakk> \<Longrightarrow> |
|
20140 | 247 |
h(p,q,g) : D(p,q)" |
248 |
shows "letrec g x y be h(x,y,g) in g(a,b) : D(a,b)" |
|
249 |
apply (unfold letrec2_def) |
|
250 |
apply (rule SPLITB [THEN subst]) |
|
41526 | 251 |
apply (assumption | rule letrecT pairT splitT assms)+ |
20140 | 252 |
apply (subst SPLITB) |
41526 | 253 |
apply (assumption | rule ballI SubtypeI assms)+ |
20140 | 254 |
apply (rule SPLITB [THEN subst]) |
41526 | 255 |
apply (assumption | rule letrecT SubtypeI pairT splitT assms | |
20140 | 256 |
erule bspec SubtypeE sym [THEN subst])+ |
257 |
done |
|
258 |
||
58977 | 259 |
lemma lem: "SPLIT(<a,<b,c>>,\<lambda>x xs. SPLIT(xs,\<lambda>y z. B(x,y,z))) = B(a,b,c)" |
20140 | 260 |
by (simp add: SPLITB) |
261 |
||
262 |
lemma letrec3T: |
|
263 |
assumes "a : A" |
|
264 |
and "b : B" |
|
265 |
and "c : C" |
|
58977 | 266 |
and "\<And>p q r g. \<lbrakk>p:A; q:B; r:C; |
267 |
ALL x:A. ALL y:B. ALL z:{z:C. <<x,<y,z>>,<p,<q,r>>> : wf(R)}. |
|
268 |
g(x,y,z) : D(x,y,z) \<rbrakk> \<Longrightarrow> |
|
20140 | 269 |
h(p,q,r,g) : D(p,q,r)" |
270 |
shows "letrec g x y z be h(x,y,z,g) in g(a,b,c) : D(a,b,c)" |
|
271 |
apply (unfold letrec3_def) |
|
272 |
apply (rule lem [THEN subst]) |
|
41526 | 273 |
apply (assumption | rule letrecT pairT splitT assms)+ |
20140 | 274 |
apply (simp add: SPLITB) |
41526 | 275 |
apply (assumption | rule ballI SubtypeI assms)+ |
20140 | 276 |
apply (rule lem [THEN subst]) |
41526 | 277 |
apply (assumption | rule letrecT SubtypeI pairT splitT assms | |
20140 | 278 |
erule bspec SubtypeE sym [THEN subst])+ |
279 |
done |
|
280 |
||
281 |
lemmas letrecTs = letrecT letrec2T letrec3T |
|
282 |
||
283 |
||
284 |
subsection {* Type Checking for Recursive Calls *} |
|
285 |
||
286 |
lemma rcallT: |
|
58977 | 287 |
"\<lbrakk>ALL x:{x:A.<x,p>:wf(R)}.g(x):D(x); |
288 |
g(a) : D(a) \<Longrightarrow> g(a) : E; a:A; <a,p>:wf(R)\<rbrakk> \<Longrightarrow> g(a) : E" |
|
20140 | 289 |
by blast |
290 |
||
291 |
lemma rcall2T: |
|
58977 | 292 |
"\<lbrakk>ALL x:A. ALL y:{y:B.<<x,y>,<p,q>>:wf(R)}.g(x,y):D(x,y); |
293 |
g(a,b) : D(a,b) \<Longrightarrow> g(a,b) : E; a:A; b:B; <<a,b>,<p,q>>:wf(R)\<rbrakk> \<Longrightarrow> g(a,b) : E" |
|
20140 | 294 |
by blast |
295 |
||
296 |
lemma rcall3T: |
|
58977 | 297 |
"\<lbrakk>ALL x:A. ALL y:B. ALL z:{z:C.<<x,<y,z>>,<p,<q,r>>>:wf(R)}. g(x,y,z):D(x,y,z); |
298 |
g(a,b,c) : D(a,b,c) \<Longrightarrow> g(a,b,c) : E; |
|
299 |
a:A; b:B; c:C; <<a,<b,c>>,<p,<q,r>>> : wf(R)\<rbrakk> \<Longrightarrow> g(a,b,c) : E" |
|
20140 | 300 |
by blast |
301 |
||
302 |
lemmas rcallTs = rcallT rcall2T rcall3T |
|
303 |
||
304 |
||
305 |
subsection {* Instantiating an induction hypothesis with an equality assumption *} |
|
306 |
||
307 |
lemma hyprcallT: |
|
308 |
assumes 1: "g(a) = b" |
|
309 |
and 2: "ALL x:{x:A.<x,p>:wf(R)}.g(x):D(x)" |
|
58977 | 310 |
and 3: "ALL x:{x:A.<x,p>:wf(R)}.g(x):D(x) \<Longrightarrow> b=g(a) \<Longrightarrow> g(a) : D(a) \<Longrightarrow> P" |
311 |
and 4: "ALL x:{x:A.<x,p>:wf(R)}.g(x):D(x) \<Longrightarrow> a:A" |
|
312 |
and 5: "ALL x:{x:A.<x,p>:wf(R)}.g(x):D(x) \<Longrightarrow> <a,p>:wf(R)" |
|
20140 | 313 |
shows P |
314 |
apply (rule 3 [OF 2, OF 1 [symmetric]]) |
|
315 |
apply (rule rcallT [OF 2]) |
|
316 |
apply assumption |
|
317 |
apply (rule 4 [OF 2]) |
|
318 |
apply (rule 5 [OF 2]) |
|
319 |
done |
|
320 |
||
321 |
lemma hyprcall2T: |
|
322 |
assumes 1: "g(a,b) = c" |
|
323 |
and 2: "ALL x:A. ALL y:{y:B.<<x,y>,<p,q>>:wf(R)}.g(x,y):D(x,y)" |
|
58977 | 324 |
and 3: "\<lbrakk>c = g(a,b); g(a,b) : D(a,b)\<rbrakk> \<Longrightarrow> P" |
20140 | 325 |
and 4: "a:A" |
326 |
and 5: "b:B" |
|
327 |
and 6: "<<a,b>,<p,q>>:wf(R)" |
|
328 |
shows P |
|
329 |
apply (rule 3) |
|
330 |
apply (rule 1 [symmetric]) |
|
331 |
apply (rule rcall2T) |
|
23467 | 332 |
apply (rule 2) |
333 |
apply assumption |
|
334 |
apply (rule 4) |
|
335 |
apply (rule 5) |
|
336 |
apply (rule 6) |
|
20140 | 337 |
done |
338 |
||
339 |
lemma hyprcall3T: |
|
340 |
assumes 1: "g(a,b,c) = d" |
|
341 |
and 2: "ALL x:A. ALL y:B. ALL z:{z:C.<<x,<y,z>>,<p,<q,r>>>:wf(R)}.g(x,y,z):D(x,y,z)" |
|
58977 | 342 |
and 3: "\<lbrakk>d = g(a,b,c); g(a,b,c) : D(a,b,c)\<rbrakk> \<Longrightarrow> P" |
20140 | 343 |
and 4: "a:A" |
344 |
and 5: "b:B" |
|
345 |
and 6: "c:C" |
|
346 |
and 7: "<<a,<b,c>>,<p,<q,r>>> : wf(R)" |
|
347 |
shows P |
|
348 |
apply (rule 3) |
|
349 |
apply (rule 1 [symmetric]) |
|
350 |
apply (rule rcall3T) |
|
23467 | 351 |
apply (rule 2) |
352 |
apply assumption |
|
353 |
apply (rule 4) |
|
354 |
apply (rule 5) |
|
355 |
apply (rule 6) |
|
356 |
apply (rule 7) |
|
20140 | 357 |
done |
358 |
||
359 |
lemmas hyprcallTs = hyprcallT hyprcall2T hyprcall3T |
|
360 |
||
361 |
||
362 |
subsection {* Rules to Remove Induction Hypotheses after Type Checking *} |
|
363 |
||
58977 | 364 |
lemma rmIH1: "\<lbrakk>ALL x:{x:A.<x,p>:wf(R)}.g(x):D(x); P\<rbrakk> \<Longrightarrow> P" . |
20140 | 365 |
|
58977 | 366 |
lemma rmIH2: "\<lbrakk>ALL x:A. ALL y:{y:B.<<x,y>,<p,q>>:wf(R)}.g(x,y):D(x,y); P\<rbrakk> \<Longrightarrow> P" . |
20140 | 367 |
|
368 |
lemma rmIH3: |
|
58977 | 369 |
"\<lbrakk>ALL x:A. ALL y:B. ALL z:{z:C.<<x,<y,z>>,<p,<q,r>>>:wf(R)}.g(x,y,z):D(x,y,z); P\<rbrakk> \<Longrightarrow> P" . |
20140 | 370 |
|
371 |
lemmas rmIHs = rmIH1 rmIH2 rmIH3 |
|
372 |
||
373 |
||
374 |
subsection {* Lemmas for constructors and subtypes *} |
|
375 |
||
376 |
(* 0-ary constructors do not need additional rules as they are handled *) |
|
377 |
(* correctly by applying SubtypeI *) |
|
378 |
||
379 |
lemma Subtype_canTs: |
|
58977 | 380 |
"\<And>a b A B P. a : {x:A. b:{y:B(a).P(<x,y>)}} \<Longrightarrow> <a,b> : {x:Sigma(A,B).P(x)}" |
381 |
"\<And>a A B P. a : {x:A. P(inl(x))} \<Longrightarrow> inl(a) : {x:A+B. P(x)}" |
|
382 |
"\<And>b A B P. b : {x:B. P(inr(x))} \<Longrightarrow> inr(b) : {x:A+B. P(x)}" |
|
383 |
"\<And>a P. a : {x:Nat. P(succ(x))} \<Longrightarrow> succ(a) : {x:Nat. P(x)}" |
|
384 |
"\<And>h t A P. h : {x:A. t : {y:List(A).P(x$y)}} \<Longrightarrow> h$t : {x:List(A).P(x)}" |
|
20140 | 385 |
by (assumption | rule SubtypeI canTs icanTs | erule SubtypeE)+ |
386 |
||
58977 | 387 |
lemma letT: "\<lbrakk>f(t):B; \<not>t=bot\<rbrakk> \<Longrightarrow> let x be t in f(x) : B" |
20140 | 388 |
apply (erule letB [THEN ssubst]) |
389 |
apply assumption |
|
390 |
done |
|
391 |
||
58977 | 392 |
lemma applyT2: "\<lbrakk>a:A; f : Pi(A,B)\<rbrakk> \<Longrightarrow> f ` a : B(a)" |
20140 | 393 |
apply (erule applyT) |
394 |
apply assumption |
|
395 |
done |
|
396 |
||
58977 | 397 |
lemma rcall_lemma1: "\<lbrakk>a:A; a:A \<Longrightarrow> P(a)\<rbrakk> \<Longrightarrow> a : {x:A. P(x)}" |
20140 | 398 |
by blast |
399 |
||
58977 | 400 |
lemma rcall_lemma2: "\<lbrakk>a:{x:A. Q(x)}; \<lbrakk>a:A; Q(a)\<rbrakk> \<Longrightarrow> P(a)\<rbrakk> \<Longrightarrow> a : {x:A. P(x)}" |
20140 | 401 |
by blast |
402 |
||
403 |
lemmas rcall_lemmas = asm_rl rcall_lemma1 SubtypeD1 rcall_lemma2 |
|
404 |
||
405 |
||
406 |
subsection {* Typechecking *} |
|
407 |
||
408 |
ML {* |
|
409 |
local |
|
410 |
||
411 |
val type_rls = |
|
27221
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
412 |
@{thms canTs} @ @{thms icanTs} @ @{thms applyT2} @ @{thms ncanTs} @ @{thms incanTs} @ |
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
413 |
@{thms precTs} @ @{thms letrecTs} @ @{thms letT} @ @{thms Subtype_canTs}; |
20140 | 414 |
|
56245 | 415 |
fun bvars (Const(@{const_name Pure.all},_) $ Abs(s,_,t)) l = bvars t (s::l) |
20140 | 416 |
| bvars _ l = l |
417 |
||
56245 | 418 |
fun get_bno l n (Const(@{const_name Pure.all},_) $ Abs(s,_,t)) = get_bno (s::l) n t |
38500 | 419 |
| get_bno l n (Const(@{const_name Trueprop},_) $ t) = get_bno l n t |
420 |
| get_bno l n (Const(@{const_name Ball},_) $ _ $ Abs(s,_,t)) = get_bno (s::l) (n+1) t |
|
421 |
| get_bno l n (Const(@{const_name mem},_) $ t $ _) = get_bno l n t |
|
20140 | 422 |
| get_bno l n (t $ s) = get_bno l n t |
423 |
| get_bno l n (Bound m) = (m-length(l),n) |
|
424 |
||
425 |
(* Not a great way of identifying induction hypothesis! *) |
|
29269
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
wenzelm
parents:
29264
diff
changeset
|
426 |
fun could_IH x = Term.could_unify(x,hd (prems_of @{thm rcallT})) orelse |
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
wenzelm
parents:
29264
diff
changeset
|
427 |
Term.could_unify(x,hd (prems_of @{thm rcall2T})) orelse |
5c25a2012975
moved term order operations to structure TermOrd (cf. Pure/term_ord.ML);
wenzelm
parents:
29264
diff
changeset
|
428 |
Term.could_unify(x,hd (prems_of @{thm rcall3T})) |
20140 | 429 |
|
430 |
fun IHinst tac rls = SUBGOAL (fn (Bi,i) => |
|
431 |
let val bvs = bvars Bi [] |
|
33317 | 432 |
val ihs = filter could_IH (Logic.strip_assums_hyp Bi) |
20140 | 433 |
val rnames = map (fn x=> |
434 |
let val (a,b) = get_bno [] 0 x |
|
42364 | 435 |
in (nth bvs a, b) end) ihs |
20140 | 436 |
fun try_IHs [] = no_tac |
42364 | 437 |
| try_IHs ((x,y)::xs) = tac [(("g", 0), x)] (nth rls (y - 1)) i ORELSE (try_IHs xs) |
20140 | 438 |
in try_IHs rnames end) |
439 |
||
440 |
fun is_rigid_prog t = |
|
58976 | 441 |
(case (Logic.strip_assums_concl t) of |
442 |
(Const(@{const_name Trueprop},_) $ (Const(@{const_name mem},_) $ a $ _)) => |
|
443 |
null (Term.add_vars a []) |
|
444 |
| _ => false) |
|
445 |
||
20140 | 446 |
in |
447 |
||
27221
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
448 |
fun rcall_tac ctxt i = |
27239 | 449 |
let fun tac ps rl i = res_inst_tac ctxt ps rl i THEN atac i |
27221
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
450 |
in IHinst tac @{thms rcallTs} i end |
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
451 |
THEN eresolve_tac @{thms rcall_lemmas} i |
20140 | 452 |
|
58957 | 453 |
fun raw_step_tac ctxt prems i = |
454 |
ares_tac (prems@type_rls) i ORELSE |
|
455 |
rcall_tac ctxt i ORELSE |
|
456 |
ematch_tac ctxt [@{thm SubtypeE}] i ORELSE |
|
457 |
match_tac ctxt [@{thm SubtypeI}] i |
|
20140 | 458 |
|
27221
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
459 |
fun tc_step_tac ctxt prems = SUBGOAL (fn (Bi,i) => |
58976 | 460 |
if is_rigid_prog Bi then raw_step_tac ctxt prems i else no_tac) |
20140 | 461 |
|
27221
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
462 |
fun typechk_tac ctxt rls i = SELECT_GOAL (REPEAT_FIRST (tc_step_tac ctxt rls)) i |
20140 | 463 |
|
464 |
||
465 |
(*** Clean up Correctness Condictions ***) |
|
466 |
||
27221
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
467 |
fun clean_ccs_tac ctxt = |
27239 | 468 |
let fun tac ps rl i = eres_inst_tac ctxt ps rl i THEN atac i in |
27221
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
469 |
TRY (REPEAT_FIRST (IHinst tac @{thms hyprcallTs} ORELSE' |
51798 | 470 |
eresolve_tac ([asm_rl, @{thm SubtypeE}] @ @{thms rmIHs}) ORELSE' |
471 |
hyp_subst_tac ctxt)) |
|
27221
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
472 |
end |
20140 | 473 |
|
27221
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
474 |
fun gen_ccs_tac ctxt rls i = |
31328dc30196
proper context for tactics derived from res_inst_tac;
wenzelm
parents:
27208
diff
changeset
|
475 |
SELECT_GOAL (REPEAT_FIRST (tc_step_tac ctxt rls) THEN clean_ccs_tac ctxt) i |
17456 | 476 |
|
0 | 477 |
end |
20140 | 478 |
*} |
479 |
||
58971 | 480 |
method_setup typechk = {* |
481 |
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (typechk_tac ctxt ths)) |
|
482 |
*} |
|
483 |
||
484 |
method_setup clean_ccs = {* |
|
485 |
Scan.succeed (SIMPLE_METHOD o clean_ccs_tac) |
|
486 |
*} |
|
487 |
||
488 |
method_setup gen_ccs = {* |
|
489 |
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (gen_ccs_tac ctxt ths)) |
|
490 |
*} |
|
491 |
||
20140 | 492 |
|
493 |
subsection {* Evaluation *} |
|
494 |
||
57945
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
wenzelm
parents:
57521
diff
changeset
|
495 |
named_theorems eval "evaluation rules" |
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
wenzelm
parents:
57521
diff
changeset
|
496 |
|
20140 | 497 |
ML {* |
32282
853ef99c04cc
FOCUS_PREMS as full replacement for METAHYPS, where the conclusion may still contain schematic variables;
wenzelm
parents:
32211
diff
changeset
|
498 |
fun eval_tac ths = |
57945
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
wenzelm
parents:
57521
diff
changeset
|
499 |
Subgoal.FOCUS_PREMS (fn {context = ctxt, prems, ...} => |
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
wenzelm
parents:
57521
diff
changeset
|
500 |
let val eval_rules = Named_Theorems.get ctxt @{named_theorems eval} |
cacb00a569e0
prefer 'named_theorems' over Named_Thms, with subtle change of semantics due to visual order vs. internal reverse order;
wenzelm
parents:
57521
diff
changeset
|
501 |
in DEPTH_SOLVE_1 (resolve_tac (ths @ prems @ rev eval_rules) 1) end) |
47432 | 502 |
*} |
20140 | 503 |
|
47432 | 504 |
method_setup eval = {* |
505 |
Attrib.thms >> (fn ths => fn ctxt => SIMPLE_METHOD' (CHANGED o eval_tac ths ctxt)) |
|
20140 | 506 |
*} |
507 |
||
508 |
||
509 |
lemmas eval_rls [eval] = trueV falseV pairV lamV caseVtrue caseVfalse caseVpair caseVlam |
|
510 |
||
511 |
lemma applyV [eval]: |
|
512 |
assumes "f ---> lam x. b(x)" |
|
513 |
and "b(a) ---> c" |
|
514 |
shows "f ` a ---> c" |
|
41526 | 515 |
unfolding apply_def by (eval assms) |
20140 | 516 |
|
517 |
lemma letV: |
|
518 |
assumes 1: "t ---> a" |
|
519 |
and 2: "f(a) ---> c" |
|
520 |
shows "let x be t in f(x) ---> c" |
|
521 |
apply (unfold let_def) |
|
522 |
apply (rule 1 [THEN canonical]) |
|
523 |
apply (tactic {* |
|
26391 | 524 |
REPEAT (DEPTH_SOLVE_1 (resolve_tac (@{thms assms} @ @{thms eval_rls}) 1 ORELSE |
525 |
etac @{thm substitute} 1)) *}) |
|
20140 | 526 |
done |
527 |
||
58977 | 528 |
lemma fixV: "f(fix(f)) ---> c \<Longrightarrow> fix(f) ---> c" |
20140 | 529 |
apply (unfold fix_def) |
530 |
apply (rule applyV) |
|
531 |
apply (rule lamV) |
|
532 |
apply assumption |
|
533 |
done |
|
534 |
||
535 |
lemma letrecV: |
|
58977 | 536 |
"h(t,\<lambda>y. letrec g x be h(x,g) in g(y)) ---> c \<Longrightarrow> |
20140 | 537 |
letrec g x be h(x,g) in g(t) ---> c" |
538 |
apply (unfold letrec_def) |
|
539 |
apply (assumption | rule fixV applyV lamV)+ |
|
540 |
done |
|
541 |
||
542 |
lemmas [eval] = letV letrecV fixV |
|
543 |
||
544 |
lemma V_rls [eval]: |
|
545 |
"true ---> true" |
|
546 |
"false ---> false" |
|
58977 | 547 |
"\<And>b c t u. \<lbrakk>b--->true; t--->c\<rbrakk> \<Longrightarrow> if b then t else u ---> c" |
548 |
"\<And>b c t u. \<lbrakk>b--->false; u--->c\<rbrakk> \<Longrightarrow> if b then t else u ---> c" |
|
549 |
"\<And>a b. <a,b> ---> <a,b>" |
|
550 |
"\<And>a b c t h. \<lbrakk>t ---> <a,b>; h(a,b) ---> c\<rbrakk> \<Longrightarrow> split(t,h) ---> c" |
|
20140 | 551 |
"zero ---> zero" |
58977 | 552 |
"\<And>n. succ(n) ---> succ(n)" |
553 |
"\<And>c n t u. \<lbrakk>n ---> zero; t ---> c\<rbrakk> \<Longrightarrow> ncase(n,t,u) ---> c" |
|
554 |
"\<And>c n t u x. \<lbrakk>n ---> succ(x); u(x) ---> c\<rbrakk> \<Longrightarrow> ncase(n,t,u) ---> c" |
|
555 |
"\<And>c n t u. \<lbrakk>n ---> zero; t ---> c\<rbrakk> \<Longrightarrow> nrec(n,t,u) ---> c" |
|
556 |
"\<And>c n t u x. \<lbrakk>n--->succ(x); u(x,nrec(x,t,u))--->c\<rbrakk> \<Longrightarrow> nrec(n,t,u)--->c" |
|
20140 | 557 |
"[] ---> []" |
58977 | 558 |
"\<And>h t. h$t ---> h$t" |
559 |
"\<And>c l t u. \<lbrakk>l ---> []; t ---> c\<rbrakk> \<Longrightarrow> lcase(l,t,u) ---> c" |
|
560 |
"\<And>c l t u x xs. \<lbrakk>l ---> x$xs; u(x,xs) ---> c\<rbrakk> \<Longrightarrow> lcase(l,t,u) ---> c" |
|
561 |
"\<And>c l t u. \<lbrakk>l ---> []; t ---> c\<rbrakk> \<Longrightarrow> lrec(l,t,u) ---> c" |
|
562 |
"\<And>c l t u x xs. \<lbrakk>l--->x$xs; u(x,xs,lrec(xs,t,u))--->c\<rbrakk> \<Longrightarrow> lrec(l,t,u)--->c" |
|
20140 | 563 |
unfolding data_defs by eval+ |
564 |
||
565 |
||
566 |
subsection {* Factorial *} |
|
567 |
||
36319 | 568 |
schematic_lemma |
58977 | 569 |
"letrec f n be ncase(n,succ(zero),\<lambda>x. nrec(n,zero,\<lambda>y g. nrec(f(x),g,\<lambda>z h. succ(h)))) |
20140 | 570 |
in f(succ(succ(zero))) ---> ?a" |
571 |
by eval |
|
572 |
||
36319 | 573 |
schematic_lemma |
58977 | 574 |
"letrec f n be ncase(n,succ(zero),\<lambda>x. nrec(n,zero,\<lambda>y g. nrec(f(x),g,\<lambda>z h. succ(h)))) |
20140 | 575 |
in f(succ(succ(succ(zero)))) ---> ?a" |
576 |
by eval |
|
577 |
||
578 |
subsection {* Less Than Or Equal *} |
|
579 |
||
36319 | 580 |
schematic_lemma |
58977 | 581 |
"letrec f p be split(p,\<lambda>m n. ncase(m,true,\<lambda>x. ncase(n,false,\<lambda>y. f(<x,y>)))) |
20140 | 582 |
in f(<succ(zero), succ(zero)>) ---> ?a" |
583 |
by eval |
|
584 |
||
36319 | 585 |
schematic_lemma |
58977 | 586 |
"letrec f p be split(p,\<lambda>m n. ncase(m,true,\<lambda>x. ncase(n,false,\<lambda>y. f(<x,y>)))) |
20140 | 587 |
in f(<succ(zero), succ(succ(succ(succ(zero))))>) ---> ?a" |
588 |
by eval |
|
589 |
||
36319 | 590 |
schematic_lemma |
58977 | 591 |
"letrec f p be split(p,\<lambda>m n. ncase(m,true,\<lambda>x. ncase(n,false,\<lambda>y. f(<x,y>)))) |
20140 | 592 |
in f(<succ(succ(succ(succ(succ(zero))))), succ(succ(succ(succ(zero))))>) ---> ?a" |
593 |
by eval |
|
594 |
||
595 |
||
596 |
subsection {* Reverse *} |
|
597 |
||
36319 | 598 |
schematic_lemma |
58977 | 599 |
"letrec id l be lcase(l,[],\<lambda>x xs. x$id(xs)) |
20140 | 600 |
in id(zero$succ(zero)$[]) ---> ?a" |
601 |
by eval |
|
602 |
||
36319 | 603 |
schematic_lemma |
58977 | 604 |
"letrec rev l be lcase(l,[],\<lambda>x xs. lrec(rev(xs),x$[],\<lambda>y ys g. y$g)) |
20140 | 605 |
in rev(zero$succ(zero)$(succ((lam x. x)`succ(zero)))$([])) ---> ?a" |
606 |
by eval |
|
607 |
||
608 |
end |