src/HOL/Analysis/Complex_Transcendental.thy
author paulson <lp15@cam.ac.uk>
Tue, 26 Jun 2018 14:51:18 +0100
changeset 68499 d4312962161a
parent 68493 143b4cc8fc74
child 68517 6b5f15387353
permissions -rw-r--r--
Rationalisation of complex transcendentals, esp the Arg function
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
     1
section \<open>Complex Transcendental Functions\<close>
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     2
61711
21d7910d6816 Theory of homotopic paths (from HOL Light), plus comments and minor refinements
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
     3
text\<open>By John Harrison et al.  Ported from HOL Light by L C Paulson (2015)\<close>
21d7910d6816 Theory of homotopic paths (from HOL Light), plus comments and minor refinements
paulson <lp15@cam.ac.uk>
parents: 61694
diff changeset
     4
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
     5
theory Complex_Transcendental
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
     6
imports
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
     7
  Complex_Analysis_Basics
63594
bd218a9320b5 HOL-Multivariate_Analysis: rename theories for more descriptive names
hoelzl
parents: 63589
diff changeset
     8
  Summation_Tests
66453
cc19f7ca2ed6 session-qualified theory imports: isabelle imports -U -i -d '~~/src/Benchmarks' -a;
wenzelm
parents: 66447
diff changeset
     9
   "HOL-Library.Periodic_Fun"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    10
begin
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    11
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    12
(* TODO: Figure out what to do with Möbius transformations *)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    13
definition "moebius a b c d = (\<lambda>z. (a*z+b) / (c*z+d :: 'a :: field))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    14
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    15
lemma moebius_inverse:
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    16
  assumes "a * d \<noteq> b * c" "c * z + d \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    17
  shows   "moebius d (-b) (-c) a (moebius a b c d z) = z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    18
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    19
  from assms have "(-c) * moebius a b c d z + a \<noteq> 0" unfolding moebius_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    20
    by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    21
  with assms show ?thesis
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    22
    unfolding moebius_def by (simp add: moebius_def divide_simps) (simp add: algebra_simps)?
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    23
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    24
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    25
lemma moebius_inverse':
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    26
  assumes "a * d \<noteq> b * c" "c * z - a \<noteq> 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    27
  shows   "moebius a b c d (moebius d (-b) (-c) a z) = z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    28
  using assms moebius_inverse[of d a "-b" "-c" z]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    29
  by (auto simp: algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
    30
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    31
lemma cmod_add_real_less:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    32
  assumes "Im z \<noteq> 0" "r\<noteq>0"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    33
    shows "cmod (z + r) < cmod z + \<bar>r\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    34
proof (cases z)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    35
  case (Complex x y)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    36
  have "r * x / \<bar>r\<bar> < sqrt (x*x + y*y)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    37
    apply (rule real_less_rsqrt)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    38
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    39
    apply (simp add: Complex power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    40
    using not_real_square_gt_zero by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    41
  then show ?thesis using assms Complex
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
    42
    apply (simp add: cmod_def)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    43
    apply (rule power2_less_imp_less, auto)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    44
    apply (simp add: power2_eq_square field_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    45
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    46
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    47
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
    48
lemma cmod_diff_real_less: "Im z \<noteq> 0 \<Longrightarrow> x\<noteq>0 \<Longrightarrow> cmod (z - x) < cmod z + \<bar>x\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    49
  using cmod_add_real_less [of z "-x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    50
  by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    51
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    52
lemma cmod_square_less_1_plus:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    53
  assumes "Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    54
    shows "(cmod z)\<^sup>2 < 1 + cmod (1 - z\<^sup>2)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
    55
proof (cases "Im z = 0 \<or> Re z = 0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
    56
  case True
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
    57
  with assms abs_square_less_1 show ?thesis
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
    58
    by (force simp add: Re_power2 Im_power2 cmod_def)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
    59
next
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
    60
  case False
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
    61
  with cmod_diff_real_less [of "1 - z\<^sup>2" "1"] show ?thesis
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
    62
    by (simp add: norm_power Im_power2)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
    63
qed
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
    64
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
    65
subsection\<open>The Exponential Function is Differentiable and Continuous\<close>
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    66
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
    67
lemma norm_exp_i_times [simp]: "norm (exp(\<i> * of_real y)) = 1"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
    68
  by simp
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
    69
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
    70
lemma norm_exp_imaginary: "norm(exp z) = 1 \<Longrightarrow> Re z = 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
    71
  by simp
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
    72
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    73
lemma field_differentiable_within_exp: "exp field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    74
  using DERIV_exp field_differentiable_at_within field_differentiable_def by blast
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    75
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    76
lemma continuous_within_exp:
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    77
  fixes z::"'a::{real_normed_field,banach}"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    78
  shows "continuous (at z within s) exp"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    79
by (simp add: continuous_at_imp_continuous_within)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    80
62381
a6479cb85944 New and revised material for (multivariate) analysis
paulson <lp15@cam.ac.uk>
parents: 62131
diff changeset
    81
lemma holomorphic_on_exp [holomorphic_intros]: "exp holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
    82
  by (simp add: field_differentiable_within_exp holomorphic_on_def)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    83
66480
4b8d1df8933b HOL-Analysis: Convergent FPS and infinite sums
Manuel Eberl <eberlm@in.tum.de>
parents: 66466
diff changeset
    84
lemma holomorphic_on_exp' [holomorphic_intros]:
4b8d1df8933b HOL-Analysis: Convergent FPS and infinite sums
Manuel Eberl <eberlm@in.tum.de>
parents: 66466
diff changeset
    85
  "f holomorphic_on s \<Longrightarrow> (\<lambda>x. exp (f x)) holomorphic_on s"
4b8d1df8933b HOL-Analysis: Convergent FPS and infinite sums
Manuel Eberl <eberlm@in.tum.de>
parents: 66466
diff changeset
    86
  using holomorphic_on_compose[OF _ holomorphic_on_exp] by (simp add: o_def)
4b8d1df8933b HOL-Analysis: Convergent FPS and infinite sums
Manuel Eberl <eberlm@in.tum.de>
parents: 66466
diff changeset
    87
67968
a5ad4c015d1c removed dots at the end of (sub)titles
nipkow
parents: 67706
diff changeset
    88
subsection\<open>Euler and de Moivre formulas\<close>
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
    89
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
    90
text\<open>The sine series times @{term i}\<close>
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
    91
lemma sin_i_eq: "(\<lambda>n. (\<i> * sin_coeff n) * z^n) sums (\<i> * sin z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    92
proof -
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    93
  have "(\<lambda>n. \<i> * sin_coeff n *\<^sub>R z^n) sums (\<i> * sin z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    94
    using sin_converges sums_mult by blast
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    95
  then show ?thesis
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    96
    by (simp add: scaleR_conv_of_real field_simps)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    97
qed
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
    98
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
    99
theorem exp_Euler: "exp(\<i> * z) = cos(z) + \<i> * sin(z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   100
proof -
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   101
  have "(\<lambda>n. (cos_coeff n + \<i> * sin_coeff n) * z^n) = (\<lambda>n. (\<i> * z) ^ n /\<^sub>R (fact n))"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   102
  proof
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   103
    fix n
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   104
    show "(cos_coeff n + \<i> * sin_coeff n) * z^n = (\<i> * z) ^ n /\<^sub>R (fact n)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   105
      by (auto simp: cos_coeff_def sin_coeff_def scaleR_conv_of_real field_simps elim!: evenE oddE)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   106
  qed
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   107
  also have "... sums (exp (\<i> * z))"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   108
    by (rule exp_converges)
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   109
  finally have "(\<lambda>n. (cos_coeff n + \<i> * sin_coeff n) * z^n) sums (exp (\<i> * z))" .
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   110
  moreover have "(\<lambda>n. (cos_coeff n + \<i> * sin_coeff n) * z^n) sums (cos z + \<i> * sin z)"
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
   111
    using sums_add [OF cos_converges [of z] sin_i_eq [of z]]
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   112
    by (simp add: field_simps scaleR_conv_of_real)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   113
  ultimately show ?thesis
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   114
    using sums_unique2 by blast
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   115
qed
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   116
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   117
corollary exp_minus_Euler: "exp(-(\<i> * z)) = cos(z) - \<i> * sin(z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   118
  using exp_Euler [of "-z"]
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   119
  by simp
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   120
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   121
lemma sin_exp_eq: "sin z = (exp(\<i> * z) - exp(-(\<i> * z))) / (2*\<i>)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   122
  by (simp add: exp_Euler exp_minus_Euler)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   123
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   124
lemma sin_exp_eq': "sin z = \<i> * (exp(-(\<i> * z)) - exp(\<i> * z)) / 2"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   125
  by (simp add: exp_Euler exp_minus_Euler)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   126
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   127
lemma cos_exp_eq:  "cos z = (exp(\<i> * z) + exp(-(\<i> * z))) / 2"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   128
  by (simp add: exp_Euler exp_minus_Euler)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   129
67578
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   130
subsection\<open>Relationships between real and complex trigonometric and hyperbolic functions\<close>
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   131
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   132
lemma real_sin_eq [simp]: "Re(sin(of_real x)) = sin x"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   133
  by (simp add: sin_of_real)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   134
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   135
lemma real_cos_eq [simp]: "Re(cos(of_real x)) = cos x"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   136
  by (simp add: cos_of_real)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   137
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   138
lemma DeMoivre: "(cos z + \<i> * sin z) ^ n = cos(n * z) + \<i> * sin(n * z)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   139
  by (metis exp_Euler [symmetric] exp_of_nat_mult mult.left_commute)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   140
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   141
lemma exp_cnj: "cnj (exp z) = exp (cnj z)"
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   142
proof -
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   143
  have "(\<lambda>n. cnj (z ^ n /\<^sub>R (fact n))) = (\<lambda>n. (cnj z)^n /\<^sub>R (fact n))"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   144
    by auto
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   145
  also have "... sums (exp (cnj z))"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   146
    by (rule exp_converges)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   147
  finally have "(\<lambda>n. cnj (z ^ n /\<^sub>R (fact n))) sums (exp (cnj z))" .
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   148
  moreover have "(\<lambda>n. cnj (z ^ n /\<^sub>R (fact n))) sums (cnj (exp z))"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   149
    by (metis exp_converges sums_cnj)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   150
  ultimately show ?thesis
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   151
    using sums_unique2
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   152
    by blast
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   153
qed
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   154
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   155
lemma cnj_sin: "cnj(sin z) = sin(cnj z)"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   156
  by (simp add: sin_exp_eq exp_cnj field_simps)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   157
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   158
lemma cnj_cos: "cnj(cos z) = cos(cnj z)"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   159
  by (simp add: cos_exp_eq exp_cnj field_simps)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   160
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   161
lemma field_differentiable_at_sin: "sin field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   162
  using DERIV_sin field_differentiable_def by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   163
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   164
lemma field_differentiable_within_sin: "sin field_differentiable (at z within S)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   165
  by (simp add: field_differentiable_at_sin field_differentiable_at_within)
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   166
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   167
lemma field_differentiable_at_cos: "cos field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   168
  using DERIV_cos field_differentiable_def by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   169
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   170
lemma field_differentiable_within_cos: "cos field_differentiable (at z within S)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   171
  by (simp add: field_differentiable_at_cos field_differentiable_at_within)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   172
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   173
lemma holomorphic_on_sin: "sin holomorphic_on S"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   174
  by (simp add: field_differentiable_within_sin holomorphic_on_def)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   175
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   176
lemma holomorphic_on_cos: "cos holomorphic_on S"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
   177
  by (simp add: field_differentiable_within_cos holomorphic_on_def)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   178
67968
a5ad4c015d1c removed dots at the end of (sub)titles
nipkow
parents: 67706
diff changeset
   179
subsection\<open>Get a nice real/imaginary separation in Euler's formula\<close>
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   180
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   181
lemma Euler: "exp(z) = of_real(exp(Re z)) *
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   182
              (of_real(cos(Im z)) + \<i> * of_real(sin(Im z)))"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   183
by (cases z) (simp add: exp_add exp_Euler cos_of_real exp_of_real sin_of_real Complex_eq)
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   184
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   185
lemma Re_sin: "Re(sin z) = sin(Re z) * (exp(Im z) + exp(-(Im z))) / 2"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   186
  by (simp add: sin_exp_eq field_simps Re_divide Im_exp)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   187
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   188
lemma Im_sin: "Im(sin z) = cos(Re z) * (exp(Im z) - exp(-(Im z))) / 2"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   189
  by (simp add: sin_exp_eq field_simps Im_divide Re_exp)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   190
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   191
lemma Re_cos: "Re(cos z) = cos(Re z) * (exp(Im z) + exp(-(Im z))) / 2"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   192
  by (simp add: cos_exp_eq field_simps Re_divide Re_exp)
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   193
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   194
lemma Im_cos: "Im(cos z) = sin(Re z) * (exp(-(Im z)) - exp(Im z)) / 2"
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
   195
  by (simp add: cos_exp_eq field_simps Im_divide Im_exp)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   196
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   197
lemma Re_sin_pos: "0 < Re z \<Longrightarrow> Re z < pi \<Longrightarrow> Re (sin z) > 0"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   198
  by (auto simp: Re_sin Im_sin add_pos_pos sin_gt_zero)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   199
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   200
lemma Im_sin_nonneg: "Re z = 0 \<Longrightarrow> 0 \<le> Im z \<Longrightarrow> 0 \<le> Im (sin z)"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   201
  by (simp add: Re_sin Im_sin algebra_simps)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   202
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   203
lemma Im_sin_nonneg2: "Re z = pi \<Longrightarrow> Im z \<le> 0 \<Longrightarrow> 0 \<le> Im (sin z)"
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   204
  by (simp add: Re_sin Im_sin algebra_simps)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   205
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   206
subsection\<open>More on the Polar Representation of Complex Numbers\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   207
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   208
lemma exp_Complex: "exp(Complex r t) = of_real(exp r) * Complex (cos t) (sin t)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   209
  by (simp add: Complex_eq exp_add exp_Euler exp_of_real sin_of_real cos_of_real)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   210
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   211
lemma exp_eq_1: "exp z = 1 \<longleftrightarrow> Re(z) = 0 \<and> (\<exists>n::int. Im(z) = of_int (2 * n) * pi)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   212
                 (is "?lhs = ?rhs")
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   213
proof
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   214
  assume "exp z = 1"
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   215
  then have "Re z = 0"
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   216
    by (metis exp_eq_one_iff norm_exp_eq_Re norm_one)
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   217
  with \<open>?lhs\<close> show ?rhs
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   218
    by (metis Re_exp complex_Re_of_int cos_one_2pi_int exp_zero mult.commute mult_numeral_1 numeral_One of_int_mult of_int_numeral)
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   219
next
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   220
  assume ?rhs then show ?lhs
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   221
    using Im_exp Re_exp complex_eq_iff
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   222
    by (simp add: cos_one_2pi_int cos_one_sin_zero mult.commute)
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   223
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   224
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   225
lemma exp_eq: "exp w = exp z \<longleftrightarrow> (\<exists>n::int. w = z + (of_int (2 * n) * pi) * \<i>)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   226
                (is "?lhs = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   227
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   228
  have "exp w = exp z \<longleftrightarrow> exp (w-z) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   229
    by (simp add: exp_diff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   230
  also have "... \<longleftrightarrow> (Re w = Re z \<and> (\<exists>n::int. Im w - Im z = of_int (2 * n) * pi))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   231
    by (simp add: exp_eq_1)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   232
  also have "... \<longleftrightarrow> ?rhs"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   233
    by (auto simp: algebra_simps intro!: complex_eqI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   234
  finally show ?thesis .
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   235
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   236
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   237
lemma exp_complex_eqI: "\<bar>Im w - Im z\<bar> < 2*pi \<Longrightarrow> exp w = exp z \<Longrightarrow> w = z"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   238
  by (auto simp: exp_eq abs_mult)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   239
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   240
lemma exp_integer_2pi:
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60809
diff changeset
   241
  assumes "n \<in> \<int>"
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   242
  shows "exp((2 * n * pi) * \<i>) = 1"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   243
proof -
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   244
  have "exp((2 * n * pi) * \<i>) = exp 0"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   245
    using assms unfolding Ints_def exp_eq by auto
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   246
  also have "... = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   247
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   248
  finally show ?thesis .
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   249
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   250
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   251
lemma exp_plus_2pin [simp]: "exp (z + \<i> * (of_int n * (of_real pi * 2))) = exp z"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   252
  by (simp add: exp_eq)
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   253
66466
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   254
lemma exp_integer_2pi_plus1:
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   255
  assumes "n \<in> \<int>"
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   256
  shows "exp(((2 * n + 1) * pi) * \<i>) = - 1"
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   257
proof -
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   258
  from assms obtain n' where [simp]: "n = of_int n'"
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   259
    by (auto simp: Ints_def)
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   260
  have "exp(((2 * n + 1) * pi) * \<i>) = exp (pi * \<i>)"
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   261
    using assms by (subst exp_eq) (auto intro!: exI[of _ n'] simp: algebra_simps)
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   262
  also have "... = - 1"
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   263
    by simp
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   264
  finally show ?thesis .
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   265
qed
aec5d9c88d69 More lemmas for HOL-Analysis
Manuel Eberl <eberlm@in.tum.de>
parents: 66453
diff changeset
   266
64287
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   267
lemma inj_on_exp_pi:
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   268
  fixes z::complex shows "inj_on exp (ball z pi)"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   269
proof (clarsimp simp: inj_on_def exp_eq)
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   270
  fix y n
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   271
  assume "dist z (y + 2 * of_int n * of_real pi * \<i>) < pi"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   272
         "dist z y < pi"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   273
  then have "dist y (y + 2 * of_int n * of_real pi * \<i>) < pi+pi"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   274
    using dist_commute_lessI dist_triangle_less_add by blast
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   275
  then have "norm (2 * of_int n * of_real pi * \<i>) < 2*pi"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   276
    by (simp add: dist_norm)
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   277
  then show "n = 0"
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   278
    by (auto simp: norm_mult)
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   279
qed
d85d88722745 more from moretop.ml
paulson <lp15@cam.ac.uk>
parents: 64267
diff changeset
   280
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   281
lemma sin_cos_eq_iff: "sin y = sin x \<and> cos y = cos x \<longleftrightarrow> (\<exists>n::int. y = x + 2 * pi * n)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   282
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   283
  { assume "sin y = sin x" "cos y = cos x"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   284
    then have "cos (y-x) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   285
      using cos_add [of y "-x"] by simp
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   286
    then have "\<exists>n::int. y-x = 2 * pi * n"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   287
      using cos_one_2pi_int by auto }
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   288
  then show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   289
  apply (auto simp: sin_add cos_add)
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   290
  apply (metis add.commute diff_add_cancel)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   291
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   292
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   293
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   294
lemma exp_i_ne_1:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   295
  assumes "0 < x" "x < 2*pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   296
  shows "exp(\<i> * of_real x) \<noteq> 1"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   297
proof
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   298
  assume "exp (\<i> * of_real x) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   299
  then have "exp (\<i> * of_real x) = exp 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   300
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   301
  then obtain n where "\<i> * of_real x = (of_int (2 * n) * pi) * \<i>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   302
    by (simp only: Ints_def exp_eq) auto
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   303
  then have "of_real x = (of_int (2 * n) * pi)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   304
    by (metis complex_i_not_zero mult.commute mult_cancel_left of_real_eq_iff real_scaleR_def scaleR_conv_of_real)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   305
  then have "x = (of_int (2 * n) * pi)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   306
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   307
  then show False using assms
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   308
    by (cases n) (auto simp: zero_less_mult_iff mult_less_0_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   309
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   310
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   311
lemma sin_eq_0:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   312
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   313
  shows "sin z = 0 \<longleftrightarrow> (\<exists>n::int. z = of_real(n * pi))"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   314
  by (simp add: sin_exp_eq exp_eq)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   315
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   316
lemma cos_eq_0:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   317
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   318
  shows "cos z = 0 \<longleftrightarrow> (\<exists>n::int. z = of_real(n * pi) + of_real pi/2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   319
  using sin_eq_0 [of "z - of_real pi/2"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   320
  by (simp add: sin_diff algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   321
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   322
lemma cos_eq_1:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   323
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   324
  shows "cos z = 1 \<longleftrightarrow> (\<exists>n::int. z = of_real(2 * n * pi))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   325
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   326
  have "cos z = cos (2*(z/2))"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   327
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   328
  also have "... = 1 - 2 * sin (z/2) ^ 2"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   329
    by (simp only: cos_double_sin)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   330
  finally have [simp]: "cos z = 1 \<longleftrightarrow> sin (z/2) = 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   331
    by simp
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   332
  show ?thesis
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   333
    by (auto simp: sin_eq_0)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   334
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   335
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   336
lemma csin_eq_1:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   337
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   338
  shows "sin z = 1 \<longleftrightarrow> (\<exists>n::int. z = of_real(2 * n * pi) + of_real pi/2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   339
  using cos_eq_1 [of "z - of_real pi/2"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   340
  by (simp add: cos_diff algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   341
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   342
lemma csin_eq_minus1:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   343
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   344
  shows "sin z = -1 \<longleftrightarrow> (\<exists>n::int. z = of_real(2 * n * pi) + 3/2*pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   345
        (is "_ = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   346
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   347
  have "sin z = -1 \<longleftrightarrow> sin (-z) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   348
    by (simp add: equation_minus_iff)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   349
  also have "... \<longleftrightarrow> (\<exists>n::int. -z = of_real(2 * n * pi) + of_real pi/2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   350
    by (simp only: csin_eq_1)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   351
  also have "... \<longleftrightarrow> (\<exists>n::int. z = - of_real(2 * n * pi) - of_real pi/2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   352
    apply (rule iff_exI)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   353
    by (metis (no_types) is_num_normalize(8) minus_minus of_real_def real_vector.scale_minus_left uminus_add_conv_diff)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   354
  also have "... = ?rhs"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   355
    apply safe
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   356
    apply (rule_tac [2] x="-(x+1)" in exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   357
    apply (rule_tac x="-(x+1)" in exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   358
    apply (simp_all add: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   359
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   360
  finally show ?thesis .
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   361
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   362
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   363
lemma ccos_eq_minus1:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   364
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   365
  shows "cos z = -1 \<longleftrightarrow> (\<exists>n::int. z = of_real(2 * n * pi) + pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   366
  using csin_eq_1 [of "z - of_real pi/2"]
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   367
  by (simp add: sin_diff algebra_simps equation_minus_iff)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   368
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   369
lemma sin_eq_1: "sin x = 1 \<longleftrightarrow> (\<exists>n::int. x = (2 * n + 1 / 2) * pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   370
                (is "_ = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   371
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   372
  have "sin x = 1 \<longleftrightarrow> sin (complex_of_real x) = 1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   373
    by (metis of_real_1 one_complex.simps(1) real_sin_eq sin_of_real)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   374
  also have "... \<longleftrightarrow> (\<exists>n::int. complex_of_real x = of_real(2 * n * pi) + of_real pi/2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   375
    by (simp only: csin_eq_1)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   376
  also have "... \<longleftrightarrow> (\<exists>n::int. x = of_real(2 * n * pi) + of_real pi/2)"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   377
    by (rule iff_exI) (auto simp: algebra_simps intro: injD [OF inj_of_real [where 'a = complex]])
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   378
  also have "... = ?rhs"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   379
    by (auto simp: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   380
  finally show ?thesis .
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   381
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   382
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   383
lemma sin_eq_minus1: "sin x = -1 \<longleftrightarrow> (\<exists>n::int. x = (2*n + 3/2) * pi)"  (is "_ = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   384
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   385
  have "sin x = -1 \<longleftrightarrow> sin (complex_of_real x) = -1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   386
    by (metis Re_complex_of_real of_real_def scaleR_minus1_left sin_of_real)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   387
  also have "... \<longleftrightarrow> (\<exists>n::int. complex_of_real x = of_real(2 * n * pi) + 3/2*pi)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   388
    by (simp only: csin_eq_minus1)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   389
  also have "... \<longleftrightarrow> (\<exists>n::int. x = of_real(2 * n * pi) + 3/2*pi)"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   390
    by (rule iff_exI) (auto simp: algebra_simps intro: injD [OF inj_of_real [where 'a = complex]])
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   391
  also have "... = ?rhs"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   392
    by (auto simp: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   393
  finally show ?thesis .
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   394
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   395
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   396
lemma cos_eq_minus1: "cos x = -1 \<longleftrightarrow> (\<exists>n::int. x = (2*n + 1) * pi)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   397
                      (is "_ = ?rhs")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   398
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   399
  have "cos x = -1 \<longleftrightarrow> cos (complex_of_real x) = -1"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   400
    by (metis Re_complex_of_real of_real_def scaleR_minus1_left cos_of_real)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   401
  also have "... \<longleftrightarrow> (\<exists>n::int. complex_of_real x = of_real(2 * n * pi) + pi)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   402
    by (simp only: ccos_eq_minus1)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   403
  also have "... \<longleftrightarrow> (\<exists>n::int. x = of_real(2 * n * pi) + pi)"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   404
    by (rule iff_exI) (auto simp: algebra_simps intro: injD [OF inj_of_real [where 'a = complex]])
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   405
  also have "... = ?rhs"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   406
    by (auto simp: algebra_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   407
  finally show ?thesis .
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   408
qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   409
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
   410
lemma dist_exp_i_1: "norm(exp(\<i> * of_real t) - 1) = 2 * \<bar>sin(t / 2)\<bar>"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   411
  apply (simp add: exp_Euler cmod_def power2_diff sin_of_real cos_of_real algebra_simps)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   412
  using cos_double_sin [of "t/2"]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   413
  apply (simp add: real_sqrt_mult)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   414
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   415
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   416
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   417
lemma complex_sin_eq:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   418
  fixes w :: complex
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   419
  shows "sin w = sin z \<longleftrightarrow> (\<exists>n \<in> \<int>. w = z + of_real(2*n*pi) \<or> w = -z + of_real((2*n + 1)*pi))"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   420
        (is "?lhs = ?rhs")
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   421
proof
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   422
  assume ?lhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   423
  then have "sin w - sin z = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   424
    by (auto simp: algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   425
  then have "sin ((w - z) / 2)*cos ((w + z) / 2) = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   426
    by (auto simp: sin_diff_sin)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   427
  then consider "sin ((w - z) / 2) = 0" | "cos ((w + z) / 2) = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   428
    using mult_eq_0_iff by blast
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   429
  then show ?rhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   430
  proof cases
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   431
    case 1
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   432
    then show ?thesis
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   433
      by (simp add: sin_eq_0 algebra_simps) (metis Ints_of_int of_real_of_int_eq)
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   434
  next
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   435
    case 2
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   436
    then show ?thesis
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   437
      by (simp add: cos_eq_0 algebra_simps) (metis Ints_of_int of_real_of_int_eq)
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   438
  qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   439
next
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   440
  assume ?rhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   441
  then obtain n::int where w: "w = z + of_real (2* of_int n*pi) \<or>
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   442
                               w = -z + of_real ((2* of_int n + 1)*pi)"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   443
    using Ints_cases by blast
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   444
  then show ?lhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   445
    using Periodic_Fun.sin.plus_of_int [of z n]
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   446
    apply (auto simp: algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   447
    by (metis (no_types, hide_lams) add_diff_cancel_left add_diff_cancel_left' add_minus_cancel
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   448
              mult.commute sin.plus_of_int sin_minus sin_plus_pi)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   449
qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   450
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   451
lemma complex_cos_eq:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   452
  fixes w :: complex
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   453
  shows "cos w = cos z \<longleftrightarrow> (\<exists>n \<in> \<int>. w = z + of_real(2*n*pi) \<or> w = -z + of_real(2*n*pi))"
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   454
        (is "?lhs = ?rhs")
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   455
proof
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   456
  assume ?lhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   457
  then have "cos w - cos z = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   458
    by (auto simp: algebra_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   459
  then have "sin ((w + z) / 2) * sin ((z - w) / 2) = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   460
    by (auto simp: cos_diff_cos)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   461
  then consider "sin ((w + z) / 2) = 0" | "sin ((z - w) / 2) = 0"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   462
    using mult_eq_0_iff by blast
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   463
  then show ?rhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   464
  proof cases
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   465
    case 1
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   466
    then show ?thesis
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   467
      apply (simp add: sin_eq_0 algebra_simps)
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   468
      by (metis Ints_of_int of_real_of_int_eq)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   469
  next
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   470
    case 2
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   471
    then show ?thesis
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   472
      apply (clarsimp simp: sin_eq_0 algebra_simps)
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   473
      by (metis Ints_of_int add_minus_cancel distrib_right mult_of_int_commute mult_zero_right of_int_0 of_int_add of_real_of_int_eq)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   474
  qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   475
next
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   476
  assume ?rhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   477
  then obtain n::int where w: "w = z + of_real (2* of_int n*pi) \<or>
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   478
                               w = -z + of_real(2*n*pi)"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   479
    using Ints_cases  by (metis of_int_mult of_int_numeral)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   480
  then show ?lhs
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   481
    using Periodic_Fun.cos.plus_of_int [of z n]
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   482
    apply (simp add: algebra_simps)
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   483
    by (metis cos.plus_of_int cos_minus minus_add_cancel mult.commute)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   484
qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   485
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   486
lemma sin_eq:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   487
   "sin x = sin y \<longleftrightarrow> (\<exists>n \<in> \<int>. x = y + 2*n*pi \<or> x = -y + (2*n + 1)*pi)"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   488
  using complex_sin_eq [of x y]
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   489
  by (simp only: sin_of_real Re_complex_of_real of_real_add [symmetric] of_real_minus [symmetric] of_real_mult [symmetric] of_real_eq_iff)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   490
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   491
lemma cos_eq:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   492
   "cos x = cos y \<longleftrightarrow> (\<exists>n \<in> \<int>. x = y + 2*n*pi \<or> x = -y + 2*n*pi)"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   493
  using complex_cos_eq [of x y]
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   494
  by (simp only: cos_of_real Re_complex_of_real of_real_add [symmetric] of_real_minus [symmetric] of_real_mult [symmetric] of_real_eq_iff)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
   495
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   496
lemma sinh_complex:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   497
  fixes z :: complex
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   498
  shows "(exp z - inverse (exp z)) / 2 = -\<i> * sin(\<i> * z)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   499
  by (simp add: sin_exp_eq divide_simps exp_minus)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   500
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
   501
lemma sin_i_times:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   502
  fixes z :: complex
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   503
  shows "sin(\<i> * z) = \<i> * ((exp z - inverse (exp z)) / 2)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   504
  using sinh_complex by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   505
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   506
lemma sinh_real:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   507
  fixes x :: real
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   508
  shows "of_real((exp x - inverse (exp x)) / 2) = -\<i> * sin(\<i> * of_real x)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   509
  by (simp add: exp_of_real sin_i_times)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   510
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   511
lemma cosh_complex:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   512
  fixes z :: complex
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   513
  shows "(exp z + inverse (exp z)) / 2 = cos(\<i> * z)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   514
  by (simp add: cos_exp_eq divide_simps exp_minus exp_of_real)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   515
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   516
lemma cosh_real:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   517
  fixes x :: real
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
   518
  shows "of_real((exp x + inverse (exp x)) / 2) = cos(\<i> * of_real x)"
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   519
  by (simp add: cos_exp_eq divide_simps exp_minus exp_of_real)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   520
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
   521
lemmas cos_i_times = cosh_complex [symmetric]
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   522
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   523
lemma norm_cos_squared:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   524
    "norm(cos z) ^ 2 = cos(Re z) ^ 2 + (exp(Im z) - inverse(exp(Im z))) ^ 2 / 4"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   525
  apply (cases z)
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   526
  apply (simp add: cos_add cmod_power2 cos_of_real sin_of_real Complex_eq)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
   527
  apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide power_divide)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   528
  apply (simp only: left_diff_distrib [symmetric] power_mult_distrib sin_squared_eq)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   529
  apply (simp add: power2_eq_square algebra_simps divide_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   530
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   531
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   532
lemma norm_sin_squared:
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   533
    "norm(sin z) ^ 2 = (exp(2 * Im z) + inverse(exp(2 * Im z)) - 2 * cos(2 * Re z)) / 4"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   534
  apply (cases z)
65274
db2de50de28e Removed [simp] status for Complex_eq. Also tidied some proofs
paulson <lp15@cam.ac.uk>
parents: 65064
diff changeset
   535
  apply (simp add: sin_add cmod_power2 cos_of_real sin_of_real cos_double_cos exp_double Complex_eq)
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
   536
  apply (simp add: cos_exp_eq sin_exp_eq exp_minus exp_of_real Re_divide Im_divide power_divide)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   537
  apply (simp only: left_diff_distrib [symmetric] power_mult_distrib cos_squared_eq)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   538
  apply (simp add: power2_eq_square algebra_simps divide_simps)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   539
  done
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   540
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   541
lemma exp_uminus_Im: "exp (- Im z) \<le> exp (cmod z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   542
  using abs_Im_le_cmod linear order_trans by fastforce
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   543
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   544
lemma norm_cos_le:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   545
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   546
  shows "norm(cos z) \<le> exp(norm z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   547
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   548
  have "Im z \<le> cmod z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   549
    using abs_Im_le_cmod abs_le_D1 by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   550
  with exp_uminus_Im show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   551
    apply (simp add: cos_exp_eq norm_divide)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   552
    apply (rule order_trans [OF norm_triangle_ineq], simp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   553
    apply (metis add_mono exp_le_cancel_iff mult_2_right)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   554
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   555
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   556
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   557
lemma norm_cos_plus1_le:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   558
  fixes z::complex
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   559
  shows "norm(1 + cos z) \<le> 2 * exp(norm z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   560
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   561
  have mono: "\<And>u w z::real. (1 \<le> w | 1 \<le> z) \<Longrightarrow> (w \<le> u & z \<le> u) \<Longrightarrow> 2 + w + z \<le> 4 * u"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   562
      by arith
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   563
  have *: "Im z \<le> cmod z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   564
    using abs_Im_le_cmod abs_le_D1 by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   565
  have triangle3: "\<And>x y z. norm(x + y + z) \<le> norm(x) + norm(y) + norm(z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   566
    by (simp add: norm_add_rule_thm)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   567
  have "norm(1 + cos z) = cmod (1 + (exp (\<i> * z) + exp (- (\<i> * z))) / 2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   568
    by (simp add: cos_exp_eq)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   569
  also have "... = cmod ((2 + exp (\<i> * z) + exp (- (\<i> * z))) / 2)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   570
    by (simp add: field_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   571
  also have "... = cmod (2 + exp (\<i> * z) + exp (- (\<i> * z))) / 2"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   572
    by (simp add: norm_divide)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   573
  finally show ?thesis
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   574
    by (metis exp_eq_one_iff exp_le_cancel_iff mult_2 norm_cos_le norm_ge_zero norm_one norm_triangle_mono)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   575
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   576
67578
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   577
lemma sinh_conv_sin: "sinh z = -\<i> * sin (\<i>*z)"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   578
  by (simp add: sinh_field_def sin_i_times exp_minus)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   579
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   580
lemma cosh_conv_cos: "cosh z = cos (\<i>*z)"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   581
  by (simp add: cosh_field_def cos_i_times exp_minus)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   582
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   583
lemma tanh_conv_tan: "tanh z = -\<i> * tan (\<i>*z)"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   584
  by (simp add: tanh_def sinh_conv_sin cosh_conv_cos tan_def)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   585
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   586
lemma sin_conv_sinh: "sin z = -\<i> * sinh (\<i>*z)"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   587
  by (simp add: sinh_conv_sin)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   588
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   589
lemma cos_conv_cosh: "cos z = cosh (\<i>*z)"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   590
  by (simp add: cosh_conv_cos)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   591
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   592
lemma tan_conv_tanh: "tan z = -\<i> * tanh (\<i>*z)"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   593
  by (simp add: tan_def sin_conv_sinh cos_conv_cosh tanh_def)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   594
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   595
lemma sinh_complex_eq_iff:
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   596
  "sinh (z :: complex) = sinh w \<longleftrightarrow>
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   597
      (\<exists>n\<in>\<int>. z = w - 2 * \<i> * of_real n * of_real pi \<or>
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   598
              z = -(2 * complex_of_real n + 1) * \<i> * complex_of_real pi - w)" (is "_ = ?rhs")
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   599
proof -
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   600
  have "sinh z = sinh w \<longleftrightarrow> sin (\<i> * z) = sin (\<i> * w)"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   601
    by (simp add: sinh_conv_sin)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   602
  also have "\<dots> \<longleftrightarrow> ?rhs"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   603
    by (subst complex_sin_eq) (force simp: field_simps complex_eq_iff)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   604
  finally show ?thesis .
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   605
qed
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   606
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
   607
67968
a5ad4c015d1c removed dots at the end of (sub)titles
nipkow
parents: 67706
diff changeset
   608
subsection\<open>Taylor series for complex exponential, sine and cosine\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   609
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   610
declare power_Suc [simp del]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   611
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   612
lemma Taylor_exp_field:
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   613
  fixes z::"'a::{banach,real_normed_field}"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   614
  shows "norm (exp z - (\<Sum>i\<le>n. z ^ i / fact i)) \<le> exp (norm z) * (norm z ^ Suc n) / fact n"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   615
proof (rule field_taylor[of _ n "\<lambda>k. exp" "exp (norm z)" 0 z, simplified])
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   616
  show "convex (closed_segment 0 z)"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   617
    by (rule convex_closed_segment [of 0 z])
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   618
next
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   619
  fix k x
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   620
  assume "x \<in> closed_segment 0 z" "k \<le> n"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   621
  show "(exp has_field_derivative exp x) (at x within closed_segment 0 z)"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   622
    using DERIV_exp DERIV_subset by blast
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   623
next
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   624
  fix x
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   625
  assume x: "x \<in> closed_segment 0 z"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   626
  have "norm (exp x) \<le> exp (norm x)"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   627
    by (rule norm_exp)
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   628
  also have "norm x \<le> norm z"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   629
    using x by (auto simp: closed_segment_def intro!: mult_left_le_one_le)
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   630
  finally show "norm (exp x) \<le> exp (norm z)"
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   631
    by simp
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   632
qed auto
66252
b73f94b366b7 some generalizations complex=>real_normed_field
immler
parents: 65719
diff changeset
   633
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   634
lemma Taylor_exp:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   635
  "norm(exp z - (\<Sum>k\<le>n. z ^ k / (fact k))) \<le> exp\<bar>Re z\<bar> * (norm z) ^ (Suc n) / (fact n)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   636
proof (rule complex_taylor [of _ n "\<lambda>k. exp" "exp\<bar>Re z\<bar>" 0 z, simplified])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   637
  show "convex (closed_segment 0 z)"
61518
ff12606337e9 new lemmas about topology, etc., for Cauchy integral formula
paulson
parents: 61426
diff changeset
   638
    by (rule convex_closed_segment [of 0 z])
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   639
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   640
  fix k x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   641
  assume "x \<in> closed_segment 0 z" "k \<le> n"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   642
  show "(exp has_field_derivative exp x) (at x within closed_segment 0 z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   643
    using DERIV_exp DERIV_subset by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   644
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   645
  fix x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   646
  assume "x \<in> closed_segment 0 z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   647
  then show "Re x \<le> \<bar>Re z\<bar>"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   648
    apply (clarsimp simp: closed_segment_def scaleR_conv_of_real)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   649
    by (meson abs_ge_self abs_ge_zero linear mult_left_le_one_le mult_nonneg_nonpos order_trans)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   650
qed auto
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   651
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   652
lemma
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   653
  assumes "0 \<le> u" "u \<le> 1"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   654
  shows cmod_sin_le_exp: "cmod (sin (u *\<^sub>R z)) \<le> exp \<bar>Im z\<bar>"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   655
    and cmod_cos_le_exp: "cmod (cos (u *\<^sub>R z)) \<le> exp \<bar>Im z\<bar>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   656
proof -
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   657
  have mono: "\<And>u w z::real. w \<le> u \<Longrightarrow> z \<le> u \<Longrightarrow> (w + z)/2 \<le> u"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   658
    by simp
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   659
  have *: "(cmod (exp (\<i> * (u * z))) + cmod (exp (- (\<i> * (u * z)))) ) / 2 \<le> exp \<bar>Im z\<bar>"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   660
  proof (rule mono)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   661
    show "cmod (exp (\<i> * (u * z))) \<le> exp \<bar>Im z\<bar>"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   662
      apply (simp add: abs_if mult_left_le_one_le assms not_less)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   663
      by (meson assms(1) mult_nonneg_nonneg neg_le_0_iff_le order_trans)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   664
    show "cmod (exp (- (\<i> * (u * z)))) \<le> exp \<bar>Im z\<bar>"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   665
      apply (simp add: abs_if mult_left_le_one_le assms)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   666
      by (meson \<open>0 \<le> u\<close> less_eq_real_def mult_nonneg_nonpos neg_0_le_iff_le order_trans)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   667
  qed
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   668
  have "cmod (sin (u *\<^sub>R z)) = cmod (exp (\<i> * (u * z)) - exp (- (\<i> * (u * z)))) / 2"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   669
    by (auto simp: scaleR_conv_of_real norm_mult norm_power sin_exp_eq norm_divide)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   670
  also have "... \<le> (cmod (exp (\<i> * (u * z))) + cmod (exp (- (\<i> * (u * z)))) ) / 2"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   671
    by (intro divide_right_mono norm_triangle_ineq4) simp
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   672
  also have "... \<le> exp \<bar>Im z\<bar>"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   673
    by (rule *)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   674
  finally show "cmod (sin (u *\<^sub>R z)) \<le> exp \<bar>Im z\<bar>" .
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   675
  have "cmod (cos (u *\<^sub>R z)) = cmod (exp (\<i> * (u * z)) + exp (- (\<i> * (u * z)))) / 2"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   676
    by (auto simp: scaleR_conv_of_real norm_mult norm_power cos_exp_eq norm_divide)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   677
  also have "... \<le> (cmod (exp (\<i> * (u * z))) + cmod (exp (- (\<i> * (u * z)))) ) / 2"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   678
    by (intro divide_right_mono norm_triangle_ineq) simp
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   679
  also have "... \<le> exp \<bar>Im z\<bar>"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   680
    by (rule *)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   681
  finally show "cmod (cos (u *\<^sub>R z)) \<le> exp \<bar>Im z\<bar>" .
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   682
qed
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   683
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   684
lemma Taylor_sin:
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   685
  "norm(sin z - (\<Sum>k\<le>n. complex_of_real (sin_coeff k) * z ^ k))
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   686
   \<le> exp\<bar>Im z\<bar> * (norm z) ^ (Suc n) / (fact n)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   687
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   688
  have mono: "\<And>u w z::real. w \<le> u \<Longrightarrow> z \<le> u \<Longrightarrow> w + z \<le> u*2"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   689
      by arith
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   690
  have *: "cmod (sin z -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   691
                 (\<Sum>i\<le>n. (-1) ^ (i div 2) * (if even i then sin 0 else cos 0) * z ^ i / (fact i)))
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   692
           \<le> exp \<bar>Im z\<bar> * cmod z ^ Suc n / (fact n)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
   693
  proof (rule complex_taylor [of "closed_segment 0 z" n
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
   694
                                 "\<lambda>k x. (-1)^(k div 2) * (if even k then sin x else cos x)"
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
   695
                                 "exp\<bar>Im z\<bar>" 0 z,  simplified])
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   696
    fix k x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   697
    show "((\<lambda>x. (- 1) ^ (k div 2) * (if even k then sin x else cos x)) has_field_derivative
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   698
            (- 1) ^ (Suc k div 2) * (if odd k then sin x else cos x))
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   699
            (at x within closed_segment 0 z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   700
      apply (auto simp: power_Suc)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   701
      apply (intro derivative_eq_intros | simp)+
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   702
      done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   703
  next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   704
    fix x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   705
    assume "x \<in> closed_segment 0 z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   706
    then show "cmod ((- 1) ^ (Suc n div 2) * (if odd n then sin x else cos x)) \<le> exp \<bar>Im z\<bar>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   707
      by (auto simp: closed_segment_def norm_mult norm_power cmod_sin_le_exp cmod_cos_le_exp)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   708
  qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   709
  have **: "\<And>k. complex_of_real (sin_coeff k) * z ^ k
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   710
            = (-1)^(k div 2) * (if even k then sin 0 else cos 0) * z^k / of_nat (fact k)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   711
    by (auto simp: sin_coeff_def elim!: oddE)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   712
  show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   713
    apply (rule order_trans [OF _ *])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   714
    apply (simp add: **)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   715
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   716
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   717
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   718
lemma Taylor_cos:
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   719
  "norm(cos z - (\<Sum>k\<le>n. complex_of_real (cos_coeff k) * z ^ k))
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   720
   \<le> exp\<bar>Im z\<bar> * (norm z) ^ Suc n / (fact n)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   721
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   722
  have mono: "\<And>u w z::real. w \<le> u \<Longrightarrow> z \<le> u \<Longrightarrow> w + z \<le> u*2"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   723
      by arith
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   724
  have *: "cmod (cos z -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   725
                 (\<Sum>i\<le>n. (-1) ^ (Suc i div 2) * (if even i then cos 0 else sin 0) * z ^ i / (fact i)))
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   726
           \<le> exp \<bar>Im z\<bar> * cmod z ^ Suc n / (fact n)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   727
  proof (rule complex_taylor [of "closed_segment 0 z" n "\<lambda>k x. (-1)^(Suc k div 2) * (if even k then cos x else sin x)" "exp\<bar>Im z\<bar>" 0 z,
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   728
simplified])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   729
    fix k x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   730
    assume "x \<in> closed_segment 0 z" "k \<le> n"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   731
    show "((\<lambda>x. (- 1) ^ (Suc k div 2) * (if even k then cos x else sin x)) has_field_derivative
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   732
            (- 1) ^ Suc (k div 2) * (if odd k then cos x else sin x))
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   733
             (at x within closed_segment 0 z)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   734
      apply (auto simp: power_Suc)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   735
      apply (intro derivative_eq_intros | simp)+
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   736
      done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   737
  next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   738
    fix x
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   739
    assume "x \<in> closed_segment 0 z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   740
    then show "cmod ((- 1) ^ Suc (n div 2) * (if odd n then cos x else sin x)) \<le> exp \<bar>Im z\<bar>"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   741
      by (auto simp: closed_segment_def norm_mult norm_power cmod_sin_le_exp cmod_cos_le_exp)
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
   742
  qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   743
  have **: "\<And>k. complex_of_real (cos_coeff k) * z ^ k
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   744
            = (-1)^(Suc k div 2) * (if even k then cos 0 else sin 0) * z^k / of_nat (fact k)"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   745
    by (auto simp: cos_coeff_def elim!: evenE)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   746
  show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   747
    apply (rule order_trans [OF _ *])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   748
    apply (simp add: **)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   749
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   750
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   751
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
   752
declare power_Suc [simp]
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   753
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
   754
text\<open>32-bit Approximation to e\<close>
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
   755
lemma e_approx_32: "\<bar>exp(1) - 5837465777 / 2147483648\<bar> \<le> (inverse(2 ^ 32)::real)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   756
  using Taylor_exp [of 1 14] exp_le
64267
b9a1486e79be setsum -> sum
nipkow
parents: 64240
diff changeset
   757
  apply (simp add: sum_distrib_right in_Reals_norm Re_exp atMost_nat_numeral fact_numeral)
66611
c375b64a6c24 adapted to better linear arith
nipkow
parents: 66480
diff changeset
   758
  apply (simp only: pos_le_divide_eq [symmetric])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   759
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
   760
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   761
lemma e_less_272: "exp 1 < (272/100::real)"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   762
  using e_approx_32
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
   763
  by (simp add: abs_if split: if_split_asm)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   764
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   765
lemma ln_272_gt_1: "ln (272/100) > (1::real)"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   766
  by (metis e_less_272 exp_less_cancel_iff exp_ln_iff less_trans ln_exp)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   767
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   768
text\<open>Apparently redundant. But many arguments involve integers.\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   769
lemma ln3_gt_1: "ln 3 > (1::real)"
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
   770
  by (simp add: less_trans [OF ln_272_gt_1])
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
   771
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   772
subsection\<open>The argument of a complex number (HOL Light version)\<close>
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   773
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   774
definition is_Arg :: "[complex,real] \<Rightarrow> bool"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   775
  where "is_Arg z r \<equiv> z = of_real(norm z) * exp(\<i> * of_real r)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   776
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   777
definition Arg2pi :: "complex \<Rightarrow> real"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   778
  where "Arg2pi z \<equiv> if z = 0 then 0 else THE t. 0 \<le> t \<and> t < 2*pi \<and> is_Arg z t"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   779
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   780
text\<open>This function returns the angle of a complex number from its representation in polar coordinates.
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   781
Due to periodicity, its range is arbitrary. @{term Arg2pi} follows HOL Light in adopting the interval $[0,2\pi)$.
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   782
But we have the same periodicity issue with logarithms, and it is usual to adopt the same interval
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   783
for the complex logarithm and argument functions. Further on down, we shall define both functions for the interval $(-\pi,\pi]$.
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   784
The present version is provided for compatibility.\<close>
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   785
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   786
lemma Arg2pi_0 [simp]: "Arg2pi(0) = 0"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   787
  by (simp add: Arg2pi_def)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   788
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   789
lemma Arg2pi_unique_lemma:
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   790
  assumes z:  "is_Arg z t"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   791
      and z': "is_Arg z t'"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   792
      and t:  "0 \<le> t"  "t < 2*pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   793
      and t': "0 \<le> t'" "t' < 2*pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   794
      and nz: "z \<noteq> 0"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   795
  shows "t' = t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   796
proof -
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   797
  have [dest]: "\<And>x y z::real. x\<ge>0 \<Longrightarrow> x+y < z \<Longrightarrow> y<z"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   798
    by arith
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   799
  have "of_real (cmod z) * exp (\<i> * of_real t') = of_real (cmod z) * exp (\<i> * of_real t)"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   800
    by (metis z z' is_Arg_def)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   801
  then have "exp (\<i> * of_real t') = exp (\<i> * of_real t)"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   802
    by (metis nz mult_left_cancel mult_zero_left z is_Arg_def)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   803
  then have "sin t' = sin t \<and> cos t' = cos t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   804
    apply (simp add: exp_Euler sin_of_real cos_of_real)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   805
    by (metis Complex_eq complex.sel)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
   806
  then obtain n::int where n: "t' = t + 2 * n * pi"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   807
    by (auto simp: sin_cos_eq_iff)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   808
  then have "n=0"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   809
    by (cases n) (use t t' in \<open>auto simp: mult_less_0_iff algebra_simps\<close>)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   810
  then show "t' = t"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   811
    by (simp add: n)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   812
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   813
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   814
lemma Arg2pi: "0 \<le> Arg2pi z \<and> Arg2pi z < 2*pi \<and> is_Arg z (Arg2pi z)"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   815
proof (cases "z=0")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   816
  case True then show ?thesis
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   817
    by (simp add: Arg2pi_def is_Arg_def)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   818
next
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   819
  case False
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   820
  obtain t where t: "0 \<le> t" "t < 2*pi"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   821
             and ReIm: "Re z / cmod z = cos t" "Im z / cmod z = sin t"
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   822
    using sincos_total_2pi [OF complex_unit_circle [OF False]]
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   823
    by blast
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   824
  have z: "is_Arg z t"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   825
    unfolding is_Arg_def
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   826
    apply (rule complex_eqI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   827
    using t False ReIm
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   828
    apply (auto simp: exp_Euler sin_of_real cos_of_real divide_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   829
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   830
  show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   831
    apply (simp add: Arg2pi_def False)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   832
    apply (rule theI [where a=t])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   833
    using t z False
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   834
    apply (auto intro: Arg2pi_unique_lemma)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   835
    done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   836
qed
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   837
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   838
corollary
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   839
  shows Arg2pi_ge_0: "0 \<le> Arg2pi z"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   840
    and Arg2pi_lt_2pi: "Arg2pi z < 2*pi"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   841
    and Arg2pi_eq: "z = of_real(norm z) * exp(\<i> * of_real(Arg2pi z))"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   842
  using Arg2pi is_Arg_def by auto
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   843
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   844
lemma complex_norm_eq_1_exp: "norm z = 1 \<longleftrightarrow> exp(\<i> * of_real (Arg2pi z)) = z"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   845
  by (metis Arg2pi_eq cis_conv_exp mult.left_neutral norm_cis of_real_1)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   846
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   847
lemma Arg2pi_unique: "\<lbrakk>of_real r * exp(\<i> * of_real a) = z; 0 < r; 0 \<le> a; a < 2*pi\<rbrakk> \<Longrightarrow> Arg2pi z = a"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   848
  by (rule Arg2pi_unique_lemma [unfolded is_Arg_def, OF _ Arg2pi_eq]) (use Arg2pi [of z] in \<open>auto simp: norm_mult\<close>)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   849
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   850
lemma Arg2pi_minus: "z \<noteq> 0 \<Longrightarrow> Arg2pi (-z) = (if Arg2pi z < pi then Arg2pi z + pi else Arg2pi z - pi)"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   851
  apply (rule Arg2pi_unique [of "norm z"])
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   852
  apply (rule complex_eqI)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   853
  using Arg2pi_ge_0 [of z] Arg2pi_eq [of z] Arg2pi_lt_2pi [of z]
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   854
  apply (auto simp: Re_exp Im_exp cos_diff sin_diff cis_conv_exp [symmetric])
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   855
  apply (metis Re_rcis Im_rcis rcis_def)+
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   856
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   857
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   858
lemma Arg2pi_times_of_real [simp]:
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   859
  assumes "0 < r" shows "Arg2pi (of_real r * z) = Arg2pi z"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   860
proof (cases "z=0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   861
  case False
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   862
  show ?thesis
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   863
    by (rule Arg2pi_unique [of "r * norm z"]) (use Arg2pi False assms is_Arg_def in auto)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   864
qed auto
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   865
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   866
lemma Arg2pi_times_of_real2 [simp]: "0 < r \<Longrightarrow> Arg2pi (z * of_real r) = Arg2pi z"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   867
  by (metis Arg2pi_times_of_real mult.commute)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   868
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   869
lemma Arg2pi_divide_of_real [simp]: "0 < r \<Longrightarrow> Arg2pi (z / of_real r) = Arg2pi z"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   870
  by (metis Arg2pi_times_of_real2 less_numeral_extra(3) nonzero_eq_divide_eq of_real_eq_0_iff)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   871
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   872
lemma Arg2pi_le_pi: "Arg2pi z \<le> pi \<longleftrightarrow> 0 \<le> Im z"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   873
proof (cases "z=0")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   874
  case False
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   875
  have "0 \<le> Im z \<longleftrightarrow> 0 \<le> Im (of_real (cmod z) * exp (\<i> * complex_of_real (Arg2pi z)))"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   876
    by (metis Arg2pi_eq)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   877
  also have "... = (0 \<le> Im (exp (\<i> * complex_of_real (Arg2pi z))))"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   878
    using False  by (simp add: zero_le_mult_iff)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   879
  also have "... \<longleftrightarrow> Arg2pi z \<le> pi"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   880
    by (simp add: Im_exp) (metis Arg2pi_ge_0 Arg2pi_lt_2pi sin_lt_zero sin_ge_zero not_le)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   881
  finally show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   882
    by blast
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   883
qed auto
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   884
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   885
lemma Arg2pi_lt_pi: "0 < Arg2pi z \<and> Arg2pi z < pi \<longleftrightarrow> 0 < Im z"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   886
proof (cases "z=0")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   887
  case False
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   888
  have "0 < Im z \<longleftrightarrow> 0 < Im (of_real (cmod z) * exp (\<i> * complex_of_real (Arg2pi z)))"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   889
    by (metis Arg2pi_eq)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   890
  also have "... = (0 < Im (exp (\<i> * complex_of_real (Arg2pi z))))"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   891
    using False by (simp add: zero_less_mult_iff)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   892
  also have "... \<longleftrightarrow> 0 < Arg2pi z \<and> Arg2pi z < pi"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   893
    using Arg2pi_ge_0 Arg2pi_lt_2pi sin_le_zero sin_gt_zero
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   894
    apply (auto simp: Im_exp)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   895
    using le_less apply fastforce
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   896
    using not_le by blast
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   897
  finally show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   898
    by blast
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   899
qed auto
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   900
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   901
lemma Arg2pi_eq_0: "Arg2pi z = 0 \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re z"
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   902
proof (cases "z=0")
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   903
  case False
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   904
  have "z \<in> \<real> \<and> 0 \<le> Re z \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re (of_real (cmod z) * exp (\<i> * complex_of_real (Arg2pi z)))"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   905
    by (metis Arg2pi_eq)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   906
  also have "... \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re (exp (\<i> * complex_of_real (Arg2pi z)))"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   907
    using False  by (simp add: zero_le_mult_iff)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   908
  also have "... \<longleftrightarrow> Arg2pi z = 0"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   909
  proof -
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   910
    have [simp]: "Arg2pi z = 0 \<Longrightarrow> z \<in> \<real>"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   911
      using Arg2pi_eq [of z] by (auto simp: Reals_def)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   912
    moreover have "\<lbrakk>z \<in> \<real>; 0 \<le> cos (Arg2pi z)\<rbrakk> \<Longrightarrow> Arg2pi z = 0"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   913
      by (metis Arg2pi_lt_pi Arg2pi_ge_0 Arg2pi_le_pi cos_pi complex_is_Real_iff leD less_linear less_minus_one_simps(2) minus_minus neg_less_eq_nonneg order_refl)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   914
    ultimately show ?thesis
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   915
      by (auto simp: Re_exp)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   916
  qed
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   917
  finally show ?thesis
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   918
    by blast
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   919
qed auto
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   920
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   921
corollary Arg2pi_gt_0:
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   922
  assumes "z \<notin> \<real>\<^sub>\<ge>\<^sub>0"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   923
    shows "Arg2pi z > 0"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   924
  using Arg2pi_eq_0 Arg2pi_ge_0 assms dual_order.strict_iff_order
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   925
  unfolding nonneg_Reals_def by fastforce
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   926
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   927
lemma Arg2pi_of_real: "Arg2pi(of_real x) = 0 \<longleftrightarrow> 0 \<le> x"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   928
  by (simp add: Arg2pi_eq_0)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   929
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   930
lemma Arg2pi_eq_pi: "Arg2pi z = pi \<longleftrightarrow> z \<in> \<real> \<and> Re z < 0"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   931
    using Arg2pi_le_pi [of z] Arg2pi_lt_pi [of z] Arg2pi_eq_0 [of z] Arg2pi_ge_0 [of z] 
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   932
    by (fastforce simp: complex_is_Real_iff)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   933
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   934
lemma Arg2pi_eq_0_pi: "Arg2pi z = 0 \<or> Arg2pi z = pi \<longleftrightarrow> z \<in> \<real>"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   935
  using Arg2pi_eq_0 Arg2pi_eq_pi not_le by auto
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   936
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   937
lemma Arg2pi_real: "z \<in> \<real> \<Longrightarrow> Arg2pi z = (if 0 \<le> Re z then 0 else pi)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   938
  using Arg2pi_eq_0 Arg2pi_eq_0_pi by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   939
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   940
lemma Arg2pi_inverse: "Arg2pi(inverse z) = (if z \<in> \<real> then Arg2pi z else 2*pi - Arg2pi z)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   941
proof (cases "z=0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   942
  case False
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   943
  show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   944
    apply (rule Arg2pi_unique [of "inverse (norm z)"])
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   945
    using Arg2pi_eq False Arg2pi_ge_0 [of z] Arg2pi_lt_2pi [of z] Arg2pi_eq_0 [of z]
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   946
    by (auto simp: Arg2pi_real in_Reals_norm exp_diff field_simps)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   947
qed auto
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   948
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   949
lemma Arg2pi_eq_iff:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   950
  assumes "w \<noteq> 0" "z \<noteq> 0"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   951
     shows "Arg2pi w = Arg2pi z \<longleftrightarrow> (\<exists>x. 0 < x & w = of_real x * z)"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   952
  using assms Arg2pi_eq [of z] Arg2pi_eq [of w]
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   953
  apply auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   954
  apply (rule_tac x="norm w / norm z" in exI)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   955
  apply (simp add: divide_simps)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   956
  by (metis mult.commute mult.left_commute)
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   957
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   958
lemma Arg2pi_inverse_eq_0: "Arg2pi(inverse z) = 0 \<longleftrightarrow> Arg2pi z = 0"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   959
  by (metis Arg2pi_eq_0 Arg2pi_inverse inverse_inverse_eq)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   960
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   961
lemma Arg2pi_divide:
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   962
  assumes "w \<noteq> 0" "z \<noteq> 0" "Arg2pi w \<le> Arg2pi z"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   963
    shows "Arg2pi(z / w) = Arg2pi z - Arg2pi w"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   964
  apply (rule Arg2pi_unique [of "norm(z / w)"])
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   965
  using assms Arg2pi_eq Arg2pi_ge_0 [of w] Arg2pi_lt_2pi [of z]
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
   966
  apply (auto simp: exp_diff norm_divide field_simps)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   967
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   968
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   969
lemma Arg2pi_le_div_sum:
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   970
  assumes "w \<noteq> 0" "z \<noteq> 0" "Arg2pi w \<le> Arg2pi z"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   971
    shows "Arg2pi z = Arg2pi w + Arg2pi(z / w)"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   972
  by (simp add: Arg2pi_divide assms)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   973
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   974
lemma Arg2pi_le_div_sum_eq:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   975
  assumes "w \<noteq> 0" "z \<noteq> 0"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   976
    shows "Arg2pi w \<le> Arg2pi z \<longleftrightarrow> Arg2pi z = Arg2pi w + Arg2pi(z / w)"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   977
  using assms by (auto simp: Arg2pi_ge_0 intro: Arg2pi_le_div_sum)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   978
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   979
lemma Arg2pi_diff:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   980
  assumes "w \<noteq> 0" "z \<noteq> 0"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   981
    shows "Arg2pi w - Arg2pi z = (if Arg2pi z \<le> Arg2pi w then Arg2pi(w / z) else Arg2pi(w/z) - 2*pi)"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   982
  using assms Arg2pi_divide Arg2pi_inverse [of "w/z"] Arg2pi_eq_0_pi
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
   983
  by (force simp add: Arg2pi_ge_0 Arg2pi_divide not_le split: if_split_asm)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   984
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   985
lemma Arg2pi_add:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   986
  assumes "w \<noteq> 0" "z \<noteq> 0"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   987
    shows "Arg2pi w + Arg2pi z = (if Arg2pi w + Arg2pi z < 2*pi then Arg2pi(w * z) else Arg2pi(w * z) + 2*pi)"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   988
  using assms Arg2pi_diff [of "w*z" z] Arg2pi_le_div_sum_eq [of z "w*z"]
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   989
  apply (auto simp: Arg2pi_ge_0 Arg2pi_divide not_le)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   990
  apply (metis Arg2pi_lt_2pi add.commute)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   991
  apply (metis (no_types) Arg2pi add.commute diff_0 diff_add_cancel diff_less_eq diff_minus_eq_add not_less)
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   992
  done
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   993
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   994
lemma Arg2pi_times:
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   995
  assumes "w \<noteq> 0" "z \<noteq> 0"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   996
    shows "Arg2pi (w * z) = (if Arg2pi w + Arg2pi z < 2*pi then Arg2pi w + Arg2pi z
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   997
                            else (Arg2pi w + Arg2pi z) - 2*pi)"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
   998
  using Arg2pi_add [OF assms]
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
   999
  by auto
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
  1000
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1001
lemma Arg2pi_cnj_eq_inverse: "z\<noteq>0 \<Longrightarrow> Arg2pi (cnj z) = Arg2pi (inverse z)"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1002
  apply (simp add: Arg2pi_eq_iff divide_simps complex_norm_square [symmetric] mult.commute)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1003
  by (metis of_real_power zero_less_norm_iff zero_less_power)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1004
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1005
lemma Arg2pi_cnj: "Arg2pi(cnj z) = (if z \<in> \<real> then Arg2pi z else 2*pi - Arg2pi z)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1006
proof (cases "z=0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1007
  case False
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1008
  then show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1009
    by (simp add: Arg2pi_cnj_eq_inverse Arg2pi_inverse)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1010
qed auto
59746
ddae5727c5a9 new HOL Light material about exp, sin, cos
paulson <lp15@cam.ac.uk>
parents: 59745
diff changeset
  1011
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1012
lemma Arg2pi_exp: "0 \<le> Im z \<Longrightarrow> Im z < 2*pi \<Longrightarrow> Arg2pi(exp z) = Im z"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1013
  by (rule Arg2pi_unique [of "exp(Re z)"]) (auto simp: exp_eq_polar)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  1014
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  1015
lemma complex_split_polar:
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  1016
  obtains r a::real where "z = complex_of_real r * (cos a + \<i> * sin a)" "0 \<le> r" "0 \<le> a" "a < 2*pi"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1017
  using Arg2pi cis.ctr cis_conv_exp unfolding Complex_eq is_Arg_def by fastforce
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1018
61806
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
  1019
lemma Re_Im_le_cmod: "Im w * sin \<phi> + Re w * cos \<phi> \<le> cmod w"
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
  1020
proof (cases w rule: complex_split_polar)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
  1021
  case (1 r a) with sin_cos_le1 [of a \<phi>] show ?thesis
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
  1022
    apply (simp add: norm_mult cmod_unit_one)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
  1023
    by (metis (no_types, hide_lams) abs_le_D1 distrib_left mult.commute mult.left_commute mult_left_le)
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
  1024
qed
d2e62ae01cd8 Cauchy's integral formula for circles. Starting to fix eventually_mono.
paulson <lp15@cam.ac.uk>
parents: 61762
diff changeset
  1025
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1026
subsection\<open>Analytic properties of tangent function\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1027
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1028
lemma cnj_tan: "cnj(tan z) = tan(cnj z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1029
  by (simp add: cnj_cos cnj_sin tan_def)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1030
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1031
lemma field_differentiable_at_tan: "~(cos z = 0) \<Longrightarrow> tan field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1032
  unfolding field_differentiable_def
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1033
  using DERIV_tan by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1034
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1035
lemma field_differentiable_within_tan: "~(cos z = 0)
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1036
         \<Longrightarrow> tan field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1037
  using field_differentiable_at_tan field_differentiable_at_within by blast
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1038
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1039
lemma continuous_within_tan: "~(cos z = 0) \<Longrightarrow> continuous (at z within s) tan"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1040
  using continuous_at_imp_continuous_within isCont_tan by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1041
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1042
lemma continuous_on_tan [continuous_intros]: "(\<And>z. z \<in> s \<Longrightarrow> ~(cos z = 0)) \<Longrightarrow> continuous_on s tan"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1043
  by (simp add: continuous_at_imp_continuous_on)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1044
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1045
lemma holomorphic_on_tan: "(\<And>z. z \<in> s \<Longrightarrow> ~(cos z = 0)) \<Longrightarrow> tan holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1046
  by (simp add: field_differentiable_within_tan holomorphic_on_def)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1047
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1048
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1049
subsection\<open>Complex logarithms (the conventional principal value)\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1050
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1051
instantiation complex :: ln
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1052
begin
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1053
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1054
definition ln_complex :: "complex \<Rightarrow> complex"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1055
  where "ln_complex \<equiv> \<lambda>z. THE w. exp w = z & -pi < Im(w) & Im(w) \<le> pi"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1056
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1057
text\<open>NOTE: within this scope, the constant Ln is not yet available!\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1058
lemma
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1059
  assumes "z \<noteq> 0"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1060
    shows exp_Ln [simp]:  "exp(ln z) = z"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1061
      and mpi_less_Im_Ln: "-pi < Im(ln z)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1062
      and Im_Ln_le_pi:    "Im(ln z) \<le> pi"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1063
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1064
  obtain \<psi> where z: "z / (cmod z) = Complex (cos \<psi>) (sin \<psi>)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1065
    using complex_unimodular_polar [of "z / (norm z)"] assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1066
    by (auto simp: norm_divide divide_simps)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1067
  obtain \<phi> where \<phi>: "- pi < \<phi>" "\<phi> \<le> pi" "sin \<phi> = sin \<psi>" "cos \<phi> = cos \<psi>"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1068
    using sincos_principal_value [of "\<psi>"] assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1069
    by (auto simp: norm_divide divide_simps)
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1070
  have "exp(ln z) = z & -pi < Im(ln z) & Im(ln z) \<le> pi" unfolding ln_complex_def
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1071
    apply (rule theI [where a = "Complex (ln(norm z)) \<phi>"])
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1072
    using z assms \<phi>
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  1073
    apply (auto simp: field_simps exp_complex_eqI exp_eq_polar cis.code)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1074
    done
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1075
  then show "exp(ln z) = z" "-pi < Im(ln z)" "Im(ln z) \<le> pi"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1076
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1077
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1078
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1079
lemma Ln_exp [simp]:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1080
  assumes "-pi < Im(z)" "Im(z) \<le> pi"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1081
    shows "ln(exp z) = z"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1082
  apply (rule exp_complex_eqI)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1083
  using assms mpi_less_Im_Ln  [of "exp z"] Im_Ln_le_pi [of "exp z"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1084
  apply auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1085
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1086
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1087
subsection\<open>Relation to Real Logarithm\<close>
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1088
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1089
lemma Ln_of_real:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1090
  assumes "0 < z"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1091
    shows "ln(of_real z::complex) = of_real(ln z)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1092
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1093
  have "ln(of_real (exp (ln z))::complex) = ln (exp (of_real (ln z)))"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1094
    by (simp add: exp_of_real)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1095
  also have "... = of_real(ln z)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1096
    using assms by (subst Ln_exp) auto
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1097
  finally show ?thesis
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1098
    using assms by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1099
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1100
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1101
corollary Ln_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> Re z > 0 \<Longrightarrow> ln z \<in> \<real>"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1102
  by (auto simp: Ln_of_real elim: Reals_cases)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1103
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1104
corollary Im_Ln_of_real [simp]: "r > 0 \<Longrightarrow> Im (ln (of_real r)) = 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1105
  by (simp add: Ln_of_real)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1106
61070
b72a990adfe2 prefer symbols;
wenzelm
parents: 60809
diff changeset
  1107
lemma cmod_Ln_Reals [simp]: "z \<in> \<real> \<Longrightarrow> 0 < Re z \<Longrightarrow> cmod (ln z) = norm (ln (Re z))"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1108
  using Ln_of_real by force
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1109
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1110
lemma Ln_Reals_eq: "\<lbrakk>x \<in> \<real>; Re x > 0\<rbrakk> \<Longrightarrow> ln x = of_real (ln (Re x))"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1111
  using Ln_of_real by force
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1112
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1113
lemma Ln_1 [simp]: "ln 1 = (0::complex)"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1114
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1115
  have "ln (exp 0) = (0::complex)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1116
    by (simp add: del: exp_zero)
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1117
  then show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1118
    by simp
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1119
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1120
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1121
65585
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1122
lemma Ln_eq_zero_iff [simp]: "x \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> ln x = 0 \<longleftrightarrow> x = 1" for x::complex
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1123
  by auto (metis exp_Ln exp_zero nonpos_Reals_zero_I)
a043de9ad41e Some fixes related to compactE_image
paulson <lp15@cam.ac.uk>
parents: 65583
diff changeset
  1124
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1125
instance
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1126
  by intro_classes (rule ln_complex_def Ln_1)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1127
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1128
end
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1129
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1130
abbreviation Ln :: "complex \<Rightarrow> complex"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1131
  where "Ln \<equiv> ln"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1132
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1133
lemma Ln_eq_iff: "w \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> (Ln w = Ln z \<longleftrightarrow> w = z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1134
  by (metis exp_Ln)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1135
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1136
lemma Ln_unique: "exp(z) = w \<Longrightarrow> -pi < Im(z) \<Longrightarrow> Im(z) \<le> pi \<Longrightarrow> Ln w = z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1137
  using Ln_exp by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1138
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1139
lemma Re_Ln [simp]: "z \<noteq> 0 \<Longrightarrow> Re(Ln z) = ln(norm z)"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  1140
  by (metis exp_Ln ln_exp norm_exp_eq_Re)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1141
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1142
corollary ln_cmod_le:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1143
  assumes z: "z \<noteq> 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1144
    shows "ln (cmod z) \<le> cmod (Ln z)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1145
  using norm_exp [of "Ln z", simplified exp_Ln [OF z]]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1146
  by (metis Re_Ln complex_Re_le_cmod z)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1147
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1148
proposition exists_complex_root:
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1149
  fixes z :: complex
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1150
  assumes "n \<noteq> 0"  obtains w where "z = w ^ n"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1151
proof (cases "z=0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1152
  case False
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1153
  then show ?thesis
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1154
    by (rule_tac w = "exp(Ln z / n)" in that) (simp add: assms exp_of_nat_mult [symmetric])
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1155
qed (use assms in auto)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1156
62843
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1157
corollary exists_complex_root_nonzero:
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1158
  fixes z::complex
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1159
  assumes "z \<noteq> 0" "n \<noteq> 0"
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1160
  obtains w where "w \<noteq> 0" "z = w ^ n"
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1161
  by (metis exists_complex_root [of n z] assms power_0_left)
313d3b697c9a Mostly renaming (from HOL Light to Isabelle conventions), with a couple of new results
paulson <lp15@cam.ac.uk>
parents: 62534
diff changeset
  1162
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1163
subsection\<open>The Unwinding Number and the Ln-product Formula\<close>
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1164
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1165
text\<open>Note that in this special case the unwinding number is -1, 0 or 1.\<close>
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1166
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1167
definition unwinding :: "complex \<Rightarrow> complex" where
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1168
   "unwinding(z) = (z - Ln(exp z)) / (of_real(2*pi) * \<i>)"
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1169
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1170
lemma unwinding_2pi: "(2*pi) * \<i> * unwinding(z) = z - Ln(exp z)"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1171
  by (simp add: unwinding_def)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1172
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1173
lemma Ln_times_unwinding:
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1174
    "w \<noteq> 0 \<Longrightarrow> z \<noteq> 0 \<Longrightarrow> Ln(w * z) = Ln(w) + Ln(z) - (2*pi) * \<i> * unwinding(Ln w + Ln z)"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1175
  using unwinding_2pi by (simp add: exp_add)
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1176
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1177
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1178
subsection\<open>Derivative of Ln away from the branch cut\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1179
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1180
lemma
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1181
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1182
    shows has_field_derivative_Ln: "(Ln has_field_derivative inverse(z)) (at z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1183
      and Im_Ln_less_pi:           "Im (Ln z) < pi"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1184
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1185
  have znz: "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1186
    using assms by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1187
  then have "Im (Ln z) \<noteq> pi"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1188
    by (metis (no_types) Im_exp Ln_in_Reals assms complex_nonpos_Reals_iff complex_is_Real_iff exp_Ln mult_zero_right not_less pi_neq_zero sin_pi znz)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1189
  then show *: "Im (Ln z) < pi" using assms Im_Ln_le_pi
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1190
    by (simp add: le_neq_trans znz)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1191
  have "(exp has_field_derivative z) (at (Ln z))"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1192
    by (metis znz DERIV_exp exp_Ln)
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1193
  then show "(Ln has_field_derivative inverse(z)) (at z)"
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 67976
diff changeset
  1194
    apply (rule has_field_derivative_inverse_strong_x
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 67976
diff changeset
  1195
              [where S = "{w. -pi < Im(w) \<and> Im(w) < pi}"])
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1196
    using znz *
68255
009f783d1bac small clean-up of Complex_Analysis_Basics
paulson <lp15@cam.ac.uk>
parents: 67976
diff changeset
  1197
    apply (auto simp: continuous_on_exp [OF continuous_on_id] open_Collect_conj open_halfspace_Im_gt open_halfspace_Im_lt mpi_less_Im_Ln)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1198
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1199
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1200
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1201
declare has_field_derivative_Ln [derivative_intros]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1202
declare has_field_derivative_Ln [THEN DERIV_chain2, derivative_intros]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1203
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1204
lemma field_differentiable_at_Ln: "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> Ln field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1205
  using field_differentiable_def has_field_derivative_Ln by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1206
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1207
lemma field_differentiable_within_Ln: "z \<notin> \<real>\<^sub>\<le>\<^sub>0
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1208
         \<Longrightarrow> Ln field_differentiable (at z within S)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1209
  using field_differentiable_at_Ln field_differentiable_within_subset by blast
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1210
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1211
lemma continuous_at_Ln: "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> continuous (at z) Ln"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1212
  by (simp add: field_differentiable_imp_continuous_at field_differentiable_within_Ln)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1213
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1214
lemma isCont_Ln' [simp]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1215
   "\<lbrakk>isCont f z; f z \<notin> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. Ln (f x)) z"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1216
  by (blast intro: isCont_o2 [OF _ continuous_at_Ln])
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  1217
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1218
lemma continuous_within_Ln: "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> continuous (at z within S) Ln"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1219
  using continuous_at_Ln continuous_at_imp_continuous_within by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1220
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1221
lemma continuous_on_Ln [continuous_intros]: "(\<And>z. z \<in> S \<Longrightarrow> z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> continuous_on S Ln"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1222
  by (simp add: continuous_at_imp_continuous_on continuous_within_Ln)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1223
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1224
lemma continuous_on_Ln' [continuous_intros]:
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1225
  "continuous_on S f \<Longrightarrow> (\<And>z. z \<in> S \<Longrightarrow> f z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> continuous_on S (\<lambda>x. Ln (f x))"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1226
  by (rule continuous_on_compose2[OF continuous_on_Ln, of "UNIV - nonpos_Reals" S f]) auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1227
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1228
lemma holomorphic_on_Ln [holomorphic_intros]: "(\<And>z. z \<in> S \<Longrightarrow> z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> Ln holomorphic_on S"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1229
  by (simp add: field_differentiable_within_Ln holomorphic_on_def)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1230
67371
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1231
lemma tendsto_Ln [tendsto_intros]:
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1232
  fixes L F
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1233
  assumes "(f \<longlongrightarrow> L) F" "L \<notin> \<real>\<^sub>\<le>\<^sub>0"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1234
  shows   "((\<lambda>x. Ln (f x)) \<longlongrightarrow> Ln L) F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1235
proof -
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1236
  have "nhds L \<ge> filtermap f F"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1237
    using assms(1) by (simp add: filterlim_def)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1238
  moreover have "\<forall>\<^sub>F y in nhds L. y \<in> - \<real>\<^sub>\<le>\<^sub>0"
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1239
    using eventually_nhds_in_open[of "- \<real>\<^sub>\<le>\<^sub>0" L] assms by (auto simp: open_Compl)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1240
  ultimately have "\<forall>\<^sub>F y in filtermap f F. y \<in> - \<real>\<^sub>\<le>\<^sub>0" by (rule filter_leD)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1241
  moreover have "continuous_on (-\<real>\<^sub>\<le>\<^sub>0) Ln" by (rule continuous_on_Ln) auto
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1242
  ultimately show ?thesis using continuous_on_tendsto_compose[of "- \<real>\<^sub>\<le>\<^sub>0" Ln f L F] assms
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1243
    by (simp add: eventually_filtermap)
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1244
qed
2d9cf74943e1 moved in some material from Euler-MacLaurin
paulson <lp15@cam.ac.uk>
parents: 67278
diff changeset
  1245
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1246
lemma divide_ln_mono:
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1247
  fixes x y::real
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1248
  assumes "3 \<le> x" "x \<le> y"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1249
  shows "x / ln x \<le> y / ln y"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1250
proof (rule exE [OF complex_mvt_line [of x y "\<lambda>z. z / Ln z" "\<lambda>z. 1/(Ln z) - 1/(Ln z)^2"]];
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1251
    clarsimp simp add: closed_segment_Reals closed_segment_eq_real_ivl assms)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1252
  show "\<And>u. \<lbrakk>x \<le> u; u \<le> y\<rbrakk> \<Longrightarrow> ((\<lambda>z. z / Ln z) has_field_derivative 1 / Ln u - 1 / (Ln u)\<^sup>2) (at u)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1253
    using \<open>3 \<le> x\<close> by (force intro!: derivative_eq_intros simp: field_simps power_eq_if)
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1254
  show "x / ln x \<le> y / ln y"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1255
    if "Re (y / Ln y) - Re (x / Ln x) = (Re (1 / Ln u) - Re (1 / (Ln u)\<^sup>2)) * (y - x)"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1256
    and x: "x \<le> u" "u \<le> y" for u
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1257
  proof -
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1258
    have eq: "y / ln y = (1 / ln u - 1 / (ln u)\<^sup>2) * (y - x) + x / ln x"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1259
      using that \<open>3 \<le> x\<close> by (auto simp: Ln_Reals_eq in_Reals_norm group_add_class.diff_eq_eq)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1260
    show ?thesis
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1261
      using exp_le \<open>3 \<le> x\<close> x by (simp add: eq) (simp add: power_eq_if divide_simps ln_ge_iff)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1262
  qed
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  1263
qed
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1264
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1265
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1266
subsection\<open>Quadrant-type results for Ln\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1267
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1268
lemma cos_lt_zero_pi: "pi/2 < x \<Longrightarrow> x < 3*pi/2 \<Longrightarrow> cos x < 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1269
  using cos_minus_pi cos_gt_zero_pi [of "x-pi"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1270
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1271
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1272
lemma Re_Ln_pos_lt:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1273
  assumes "z \<noteq> 0"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1274
    shows "\<bar>Im(Ln z)\<bar> < pi/2 \<longleftrightarrow> 0 < Re(z)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1275
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1276
  { fix w
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1277
    assume "w = Ln z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1278
    then have w: "Im w \<le> pi" "- pi < Im w"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1279
      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1280
      by auto
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1281
    then have "\<bar>Im w\<bar> < pi/2 \<longleftrightarrow> 0 < Re(exp w)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1282
      using cos_lt_zero_pi [of "-(Im w)"] cos_lt_zero_pi [of "(Im w)"]
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1283
      apply (auto simp: Re_exp zero_less_mult_iff cos_gt_zero_pi abs_if split: if_split_asm)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1284
      apply (metis cos_minus cos_pi_half divide_minus_left less_irrefl linorder_neqE_linordered_idom nonzero_mult_div_cancel_right zero_neq_numeral)+
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1285
      done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1286
  }
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1287
  then show ?thesis using assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1288
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1289
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1290
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1291
lemma Re_Ln_pos_le:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1292
  assumes "z \<noteq> 0"
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1293
    shows "\<bar>Im(Ln z)\<bar> \<le> pi/2 \<longleftrightarrow> 0 \<le> Re(z)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1294
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1295
  { fix w
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1296
    assume "w = Ln z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1297
    then have w: "Im w \<le> pi" "- pi < Im w"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1298
      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1299
      by auto
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1300
    then have "\<bar>Im w\<bar> \<le> pi/2 \<longleftrightarrow> 0 \<le> Re(exp w)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1301
      apply (auto simp: Re_exp zero_le_mult_iff cos_ge_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1302
      using cos_lt_zero_pi [of "- (Im w)"] cos_lt_zero_pi [of "(Im w)"] not_le
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  1303
      apply (auto simp: abs_if split: if_split_asm)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1304
      done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1305
  }
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1306
  then show ?thesis using assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1307
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1308
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1309
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1310
lemma Im_Ln_pos_lt:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1311
  assumes "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1312
    shows "0 < Im(Ln z) \<and> Im(Ln z) < pi \<longleftrightarrow> 0 < Im(z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1313
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1314
  { fix w
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1315
    assume "w = Ln z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1316
    then have w: "Im w \<le> pi" "- pi < Im w"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1317
      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1318
      by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1319
    then have "0 < Im w \<and> Im w < pi \<longleftrightarrow> 0 < Im(exp w)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1320
      using sin_gt_zero [of "- (Im w)"] sin_gt_zero [of "(Im w)"]
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1321
      apply (simp add: Im_exp zero_less_mult_iff)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1322
      using less_linear apply fastforce
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1323
      done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1324
  }
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1325
  then show ?thesis using assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1326
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1327
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1328
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1329
lemma Im_Ln_pos_le:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1330
  assumes "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1331
    shows "0 \<le> Im(Ln z) \<and> Im(Ln z) \<le> pi \<longleftrightarrow> 0 \<le> Im(z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1332
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1333
  { fix w
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1334
    assume "w = Ln z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1335
    then have w: "Im w \<le> pi" "- pi < Im w"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1336
      using Im_Ln_le_pi [of z]  mpi_less_Im_Ln [of z]  assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1337
      by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1338
    then have "0 \<le> Im w \<and> Im w \<le> pi \<longleftrightarrow> 0 \<le> Im(exp w)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1339
      using sin_ge_zero [of "- (Im w)"] sin_ge_zero [of "(Im w)"]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1340
      apply (auto simp: Im_exp zero_le_mult_iff sin_ge_zero)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1341
      apply (metis not_le not_less_iff_gr_or_eq pi_not_less_zero sin_eq_0_pi)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1342
      done }
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1343
  then show ?thesis using assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1344
    by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1345
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1346
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  1347
lemma Re_Ln_pos_lt_imp: "0 < Re(z) \<Longrightarrow> \<bar>Im(Ln z)\<bar> < pi/2"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1348
  by (metis Re_Ln_pos_lt less_irrefl zero_complex.simps(1))
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1349
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1350
lemma Im_Ln_pos_lt_imp: "0 < Im(z) \<Longrightarrow> 0 < Im(Ln z) \<and> Im(Ln z) < pi"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1351
  by (metis Im_Ln_pos_lt not_le order_refl zero_complex.simps(2))
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1352
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1353
text\<open>A reference to the set of positive real numbers\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1354
lemma Im_Ln_eq_0: "z \<noteq> 0 \<Longrightarrow> (Im(Ln z) = 0 \<longleftrightarrow> 0 < Re(z) \<and> Im(z) = 0)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1355
by (metis Im_complex_of_real Im_exp Ln_in_Reals Re_Ln_pos_lt Re_Ln_pos_lt_imp
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1356
          Re_complex_of_real complex_is_Real_iff exp_Ln exp_of_real pi_gt_zero)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1357
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1358
lemma Im_Ln_eq_pi: "z \<noteq> 0 \<Longrightarrow> (Im(Ln z) = pi \<longleftrightarrow> Re(z) < 0 \<and> Im(z) = 0)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1359
by (metis Im_Ln_eq_0 Im_Ln_pos_le Im_Ln_pos_lt add.left_neutral complex_eq less_eq_real_def
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1360
    mult_zero_right not_less_iff_gr_or_eq pi_ge_zero pi_neq_zero rcis_zero_arg rcis_zero_mod)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1361
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1362
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1363
subsection\<open>More Properties of Ln\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1364
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1365
lemma cnj_Ln: assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0" shows "cnj(Ln z) = Ln(cnj z)"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1366
proof (cases "z=0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1367
  case False
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1368
  show ?thesis
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1369
  proof (rule exp_complex_eqI)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1370
    have "\<bar>Im (cnj (Ln z)) - Im (Ln (cnj z))\<bar> \<le> \<bar>Im (cnj (Ln z))\<bar> + \<bar>Im (Ln (cnj z))\<bar>"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1371
      by (rule abs_triangle_ineq4)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1372
    also have "... < pi + pi"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1373
    proof -
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1374
      have "\<bar>Im (cnj (Ln z))\<bar> < pi"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1375
        by (simp add: False Im_Ln_less_pi abs_if assms minus_less_iff mpi_less_Im_Ln)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1376
      moreover have "\<bar>Im (Ln (cnj z))\<bar> \<le> pi"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1377
        by (meson abs_le_iff complex_cnj_zero_iff less_eq_real_def minus_less_iff  False Im_Ln_le_pi mpi_less_Im_Ln)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1378
      ultimately show ?thesis
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1379
        by simp
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1380
    qed
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1381
    finally show "\<bar>Im (cnj (Ln z)) - Im (Ln (cnj z))\<bar> < 2 * pi"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1382
      by simp
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1383
    show "exp (cnj (Ln z)) = exp (Ln (cnj z))"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1384
      by (metis False complex_cnj_zero_iff exp_Ln exp_cnj)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1385
  qed
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1386
qed (use assms in auto)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1387
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1388
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1389
lemma Ln_inverse: assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0" shows "Ln(inverse z) = -(Ln z)"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1390
proof (cases "z=0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1391
  case False
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1392
  show ?thesis
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1393
  proof (rule exp_complex_eqI)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1394
    have "\<bar>Im (Ln (inverse z)) - Im (- Ln z)\<bar> \<le> \<bar>Im (Ln (inverse z))\<bar> + \<bar>Im (- Ln z)\<bar>"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1395
      by (rule abs_triangle_ineq4)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1396
    also have "... < pi + pi"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1397
    proof -
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1398
      have "\<bar>Im (Ln (inverse z))\<bar> < pi"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1399
        by (simp add: False Im_Ln_less_pi abs_if assms minus_less_iff mpi_less_Im_Ln)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1400
      moreover have "\<bar>Im (- Ln z)\<bar> \<le> pi"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1401
        using False Im_Ln_le_pi mpi_less_Im_Ln by fastforce
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1402
      ultimately show ?thesis
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1403
        by simp
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1404
    qed
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1405
    finally show "\<bar>Im (Ln (inverse z)) - Im (- Ln z)\<bar> < 2 * pi"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1406
      by simp
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1407
    show "exp (Ln (inverse z)) = exp (- Ln z)"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1408
      by (simp add: False exp_minus)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1409
  qed
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1410
qed (use assms in auto)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1411
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1412
lemma Ln_minus1 [simp]: "Ln(-1) = \<i> * pi"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1413
  apply (rule exp_complex_eqI)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1414
  using Im_Ln_le_pi [of "-1"] mpi_less_Im_Ln [of "-1"] cis_conv_exp cis_pi
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1415
  apply (auto simp: abs_if)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1416
  done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1417
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1418
lemma Ln_ii [simp]: "Ln \<i> = \<i> * of_real pi/2"
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1419
  using Ln_exp [of "\<i> * (of_real pi/2)"]
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1420
  unfolding exp_Euler
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1421
  by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1422
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1423
lemma Ln_minus_ii [simp]: "Ln(-\<i>) = - (\<i> * pi/2)"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1424
proof -
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1425
  have  "Ln(-\<i>) = Ln(inverse \<i>)"    by simp
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1426
  also have "... = - (Ln \<i>)"         using Ln_inverse by blast
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1427
  also have "... = - (\<i> * pi/2)"     by simp
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1428
  finally show ?thesis .
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1429
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1430
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1431
lemma Ln_times:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1432
  assumes "w \<noteq> 0" "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1433
    shows "Ln(w * z) =
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1434
           (if Im(Ln w + Ln z) \<le> -pi then (Ln(w) + Ln(z)) + \<i> * of_real(2*pi)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1435
            else if Im(Ln w + Ln z) > pi then (Ln(w) + Ln(z)) - \<i> * of_real(2*pi)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1436
            else Ln(w) + Ln(z))"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1437
  using pi_ge_zero Im_Ln_le_pi [of w] Im_Ln_le_pi [of z]
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1438
  using assms mpi_less_Im_Ln [of w] mpi_less_Im_Ln [of z]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1439
  by (auto simp: exp_add exp_diff sin_double cos_double exp_Euler intro!: Ln_unique)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1440
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1441
corollary Ln_times_simple:
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1442
    "\<lbrakk>w \<noteq> 0; z \<noteq> 0; -pi < Im(Ln w) + Im(Ln z); Im(Ln w) + Im(Ln z) \<le> pi\<rbrakk>
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1443
         \<Longrightarrow> Ln(w * z) = Ln(w) + Ln(z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1444
  by (simp add: Ln_times)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1445
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1446
corollary Ln_times_of_real:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1447
    "\<lbrakk>r > 0; z \<noteq> 0\<rbrakk> \<Longrightarrow> Ln(of_real r * z) = ln r + Ln(z)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1448
  using mpi_less_Im_Ln Im_Ln_le_pi
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1449
  by (force simp: Ln_times)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1450
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1451
corollary Ln_divide_of_real:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1452
    "\<lbrakk>r > 0; z \<noteq> 0\<rbrakk> \<Longrightarrow> Ln(z / of_real r) = Ln(z) - ln r"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1453
using Ln_times_of_real [of "inverse r" z]
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1454
by (simp add: ln_inverse Ln_of_real mult.commute divide_inverse of_real_inverse [symmetric]
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1455
         del: of_real_inverse)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1456
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1457
corollary Ln_prod:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1458
  fixes f :: "'a \<Rightarrow> complex"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1459
  assumes "finite A" "\<And>x. x \<in> A \<Longrightarrow> f x \<noteq> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1460
  shows "\<exists>n. Ln (prod f A) = (\<Sum>x \<in> A. Ln (f x) + (of_int (n x) * (2 * pi)) * \<i>)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1461
  using assms
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1462
proof (induction A)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1463
  case (insert x A)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1464
  then obtain n where n: "Ln (prod f A) = (\<Sum>x\<in>A. Ln (f x) + of_real (of_int (n x) * (2 * pi)) * \<i>)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1465
    by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1466
  define D where "D \<equiv> Im (Ln (f x)) + Im (Ln (prod f A))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1467
  define q::int where "q \<equiv> (if D \<le> -pi then 1 else if D > pi then -1 else 0)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1468
  have "prod f A \<noteq> 0" "f x \<noteq> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1469
    by (auto simp: insert.hyps insert.prems)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1470
  with insert.hyps pi_ge_zero show ?case
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1471
    by (rule_tac x="n(x:=q)" in exI) (force simp: Ln_times q_def D_def n intro!: sum.cong)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1472
qed auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1473
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1474
lemma Ln_minus:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1475
  assumes "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1476
    shows "Ln(-z) = (if Im(z) \<le> 0 \<and> ~(Re(z) < 0 \<and> Im(z) = 0)
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1477
                     then Ln(z) + \<i> * pi
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1478
                     else Ln(z) - \<i> * pi)" (is "_ = ?rhs")
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1479
  using Im_Ln_le_pi [of z] mpi_less_Im_Ln [of z] assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1480
        Im_Ln_eq_pi [of z] Im_Ln_pos_lt [of z]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1481
    by (fastforce simp: exp_add exp_diff exp_Euler intro!: Ln_unique)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1482
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1483
lemma Ln_inverse_if:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1484
  assumes "z \<noteq> 0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1485
    shows "Ln (inverse z) = (if z \<in> \<real>\<^sub>\<le>\<^sub>0 then -(Ln z) + \<i> * 2 * complex_of_real pi else -(Ln z))"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1486
proof (cases "z \<in> \<real>\<^sub>\<le>\<^sub>0")
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1487
  case False then show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1488
    by (simp add: Ln_inverse)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1489
next
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1490
  case True
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1491
  then have z: "Im z = 0" "Re z < 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1492
    using assms
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1493
    apply (auto simp: complex_nonpos_Reals_iff)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1494
    by (metis complex_is_Real_iff le_imp_less_or_eq of_real_0 of_real_Re)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1495
  have "Ln(inverse z) = Ln(- (inverse (-z)))"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1496
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1497
  also have "... = Ln (inverse (-z)) + \<i> * complex_of_real pi"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1498
    using assms z
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1499
    apply (simp add: Ln_minus)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1500
    apply (simp add: field_simps)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1501
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1502
  also have "... = - Ln (- z) + \<i> * complex_of_real pi"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1503
    apply (subst Ln_inverse)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1504
    using z by (auto simp add: complex_nonneg_Reals_iff)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1505
  also have "... = - (Ln z) + \<i> * 2 * complex_of_real pi"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1506
    by (subst Ln_minus) (use assms z in auto)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1507
  finally show ?thesis by (simp add: True)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1508
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1509
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1510
lemma Ln_times_ii:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1511
  assumes "z \<noteq> 0"
63589
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1512
    shows  "Ln(\<i> * z) = (if 0 \<le> Re(z) | Im(z) < 0
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1513
                          then Ln(z) + \<i> * of_real pi/2
58aab4745e85 more symbols;
wenzelm
parents: 63556
diff changeset
  1514
                          else Ln(z) - \<i> * of_real(3 * pi/2))"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1515
  using Im_Ln_le_pi [of z] mpi_less_Im_Ln [of z] assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1516
        Im_Ln_eq_pi [of z] Im_Ln_pos_lt [of z] Re_Ln_pos_le [of z]
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  1517
  by (simp add: Ln_times) auto
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1518
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 65585
diff changeset
  1519
lemma Ln_of_nat [simp]: "0 < n \<Longrightarrow> Ln (of_nat n) = of_real (ln (of_nat n))"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1520
  by (subst of_real_of_nat_eq[symmetric], subst Ln_of_real[symmetric]) simp_all
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1521
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1522
lemma Ln_of_nat_over_of_nat:
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1523
  assumes "m > 0" "n > 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1524
  shows   "Ln (of_nat m / of_nat n) = of_real (ln (of_nat m) - ln (of_nat n))"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1525
proof -
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1526
  have "of_nat m / of_nat n = (of_real (of_nat m / of_nat n) :: complex)" by simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1527
  also from assms have "Ln ... = of_real (ln (of_nat m / of_nat n))"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1528
    by (simp add: Ln_of_real[symmetric])
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1529
  also from assms have "... = of_real (ln (of_nat m) - ln (of_nat n))"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1530
    by (simp add: ln_div)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1531
  finally show ?thesis .
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1532
qed
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1533
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1534
lemma Ln_measurable [measurable]: "Ln \<in> measurable borel borel"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1535
proof -
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1536
  have *: "Ln (-of_real x) = of_real (ln x) + \<i> * pi" if "x > 0" for x
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1537
    using that by (subst Ln_minus) (auto simp: Ln_of_real)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1538
  have **: "Ln (of_real x) = of_real (ln (-x)) + \<i> * pi" if "x < 0" for x
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1539
    using *[of "-x"] that by simp
67976
75b94eb58c3d Analysis builds using set_borel_measurable_def, etc.
paulson <lp15@cam.ac.uk>
parents: 67968
diff changeset
  1540
  have cont: "(\<lambda>x. indicat_real (- \<real>\<^sub>\<le>\<^sub>0) x *\<^sub>R Ln x) \<in> borel_measurable borel"
67278
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1541
    by (intro borel_measurable_continuous_on_indicator continuous_intros) auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1542
  have "(\<lambda>x. if x \<in> \<real>\<^sub>\<le>\<^sub>0 then ln (-Re x) + \<i> * pi else indicator (-\<real>\<^sub>\<le>\<^sub>0) x *\<^sub>R Ln x) \<in> borel \<rightarrow>\<^sub>M borel"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1543
    (is "?f \<in> _") by (rule measurable_If_set[OF _ cont]) auto
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1544
  hence "(\<lambda>x. if x = 0 then Ln 0 else ?f x) \<in> borel \<rightarrow>\<^sub>M borel" by measurable
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1545
  also have "(\<lambda>x. if x = 0 then Ln 0 else ?f x) = Ln"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1546
    by (auto simp: fun_eq_iff ** nonpos_Reals_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1547
  finally show ?thesis .
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1548
qed
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1549
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1550
lemma powr_complex_measurable [measurable]:
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1551
  assumes [measurable]: "f \<in> measurable M borel" "g \<in> measurable M borel"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1552
  shows   "(\<lambda>x. f x powr g x :: complex) \<in> measurable M borel"
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1553
  using assms by (simp add: powr_def)
c60e3d615b8c Removed Analysis/ex/Circle_Area; replaced by more general Analysis/Ball_Volume
eberlm <eberlm@in.tum.de>
parents: 67268
diff changeset
  1554
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1555
subsection\<open>The Argument of a Complex Number\<close>
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1556
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1557
definition Arg :: "complex \<Rightarrow> real" where "Arg z \<equiv> (if z = 0 then 0 else Im (Ln z))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1558
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1559
text\<open>Finally the Argument is defined for the same interval as the complex logarithm: $(-\pi,\pi]$.\<close>
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1560
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1561
lemma Arg_unique_lemma:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1562
  assumes z:  "is_Arg z t"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1563
      and z': "is_Arg z t'"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1564
      and t:  "- pi < t"  "t \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1565
      and t': "- pi < t'" "t' \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1566
      and nz: "z \<noteq> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1567
    shows "t' = t"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1568
  using Arg2pi_unique_lemma [of "- (inverse z)"]
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1569
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1570
  have "pi - t' = pi - t"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1571
  proof (rule Arg2pi_unique_lemma [of "- (inverse z)"])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1572
    have "- (inverse z) = - (inverse (of_real(norm z) * exp(\<i> * t)))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1573
      by (metis is_Arg_def z)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1574
    also have "... = (cmod (- inverse z)) * exp (\<i> * (pi - t))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1575
      by (auto simp: field_simps exp_diff norm_divide)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1576
    finally show "is_Arg (- inverse z) (pi - t)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1577
      unfolding is_Arg_def .
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1578
    have "- (inverse z) = - (inverse (of_real(norm z) * exp(\<i> * t')))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1579
      by (metis is_Arg_def z')
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1580
    also have "... = (cmod (- inverse z)) * exp (\<i> * (pi - t'))"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1581
      by (auto simp: field_simps exp_diff norm_divide)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1582
    finally show "is_Arg (- inverse z) (pi - t')"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1583
      unfolding is_Arg_def .
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1584
  qed (use assms in auto)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1585
  then show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1586
    by simp
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1587
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1588
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1589
lemma
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1590
  assumes "z \<noteq> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1591
  shows mpi_less_Arg: "-pi < Arg z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1592
    and Arg_le_pi: "Arg z \<le> pi"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1593
    and Arg_eq: "z = of_real(norm z) * exp(\<i> * Arg z)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1594
  using assms exp_Ln exp_eq_polar
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1595
  by (auto simp: mpi_less_Im_Ln Im_Ln_le_pi Arg_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1596
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1597
lemma complex_norm_eq_1_exp_eq: "norm z = 1 \<longleftrightarrow> exp(\<i> * (Arg z)) = z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1598
  by (metis Arg_eq exp_not_eq_zero exp_zero mult.left_neutral norm_zero of_real_1 norm_exp_i_times)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1599
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1600
lemma Arg_unique: "\<lbrakk>of_real r * exp(\<i> * a) = z; 0 < r; -pi < a; a \<le> pi\<rbrakk> \<Longrightarrow> Arg z = a"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1601
  by (rule Arg_unique_lemma [unfolded is_Arg_def, OF _ Arg_eq])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1602
     (use mpi_less_Arg Arg_le_pi in \<open>auto simp: norm_mult\<close>)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1603
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1604
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1605
lemma Arg_minus:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1606
  assumes "z \<noteq> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1607
  shows "Arg (-z) = (if Arg z \<le> 0 then Arg z + pi else Arg z - pi)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1608
proof -
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1609
  have [simp]: "cmod z * cos (Arg z) = Re z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1610
    using assms Arg_eq [of z] by (metis Re_exp exp_Ln norm_exp_eq_Re Arg_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1611
  have [simp]: "cmod z * sin (Arg z) = Im z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1612
    using assms Arg_eq [of z] by (metis Im_exp exp_Ln norm_exp_eq_Re Arg_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1613
  show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1614
    apply (rule Arg_unique [of "norm z"])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1615
       apply (rule complex_eqI)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1616
    using mpi_less_Arg [of z] Arg_le_pi [of z] assms
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1617
        apply (auto simp: Re_exp Im_exp cos_diff sin_diff cis_conv_exp [symmetric])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1618
    done
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1619
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1620
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1621
lemma Arg_times_of_real [simp]:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1622
  assumes "0 < r" shows "Arg (of_real r * z) = Arg z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1623
proof (cases "z=0")
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1624
  case True
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1625
  then show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1626
    by (simp add: Arg_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1627
next
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1628
  case False
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1629
  with Arg_eq assms show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1630
  by (auto simp: mpi_less_Arg Arg_le_pi intro!:  Arg_unique [of "r * norm z"])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1631
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1632
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1633
lemma Arg_times_of_real2 [simp]: "0 < r \<Longrightarrow> Arg (z * of_real r) = Arg z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1634
  by (metis Arg_times_of_real mult.commute)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1635
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1636
lemma Arg_divide_of_real [simp]: "0 < r \<Longrightarrow> Arg (z / of_real r) = Arg z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1637
  by (metis Arg_times_of_real2 less_numeral_extra(3) nonzero_eq_divide_eq of_real_eq_0_iff)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1638
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1639
lemma Arg_less_0: "0 \<le> Arg z \<longleftrightarrow> 0 \<le> Im z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1640
  using Im_Ln_le_pi Im_Ln_pos_le
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1641
  by (simp add: Arg_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1642
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1643
lemma Arg_eq_pi: "Arg z = pi \<longleftrightarrow> Re z < 0 \<and> Im z = 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1644
  by (auto simp: Arg_def Im_Ln_eq_pi)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1645
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1646
lemma Arg_lt_pi: "0 < Arg z \<and> Arg z < pi \<longleftrightarrow> 0 < Im z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1647
  using Arg_less_0 [of z] Im_Ln_pos_lt
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1648
  by (auto simp: order.order_iff_strict Arg_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1649
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1650
lemma Arg_eq_0: "Arg z = 0 \<longleftrightarrow> z \<in> \<real> \<and> 0 \<le> Re z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1651
  using complex_is_Real_iff
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1652
  by (simp add: Arg_def Im_Ln_eq_0) (metis less_eq_real_def of_real_Re of_real_def scale_zero_left)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1653
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1654
corollary Arg_ne_0: assumes "z \<notin> \<real>\<^sub>\<ge>\<^sub>0" shows "Arg z \<noteq> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1655
  using assms by (auto simp: nonneg_Reals_def Arg_eq_0)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1656
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1657
lemma Arg_of_real: "Arg(of_real x) = 0 \<longleftrightarrow> 0 \<le> x"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1658
  by (simp add: Arg_eq_0)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1659
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1660
lemma Arg_eq_pi_iff: "Arg z = pi \<longleftrightarrow> z \<in> \<real> \<and> Re z < 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1661
proof (cases "z=0")
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1662
  case False
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1663
  then show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1664
    using Arg_eq_0 [of "-z"] Arg_eq_pi complex_is_Real_iff by blast
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1665
qed (simp add: Arg_def)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1666
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1667
lemma Arg_eq_0_pi: "Arg z = 0 \<or> Arg z = pi \<longleftrightarrow> z \<in> \<real>"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1668
  using Arg_eq_pi_iff Arg_eq_0 by force
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1669
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1670
lemma Arg_real: "z \<in> \<real> \<Longrightarrow> Arg z = (if 0 \<le> Re z then 0 else pi)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1671
  using Arg_eq_0 Arg_eq_0_pi by auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1672
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1673
lemma Arg_inverse: "Arg(inverse z) = (if z \<in> \<real> then Arg z else - Arg z)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1674
proof (cases "z \<in> \<real>")
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1675
  case True
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1676
  then show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1677
    by simp (metis Arg2pi_inverse Arg2pi_real Arg_real Reals_inverse)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1678
next
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1679
  case False
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1680
  then have "Arg z < pi" "z \<noteq> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1681
    using Arg_def Arg_eq_0_pi Arg_le_pi by fastforce+
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1682
  then show ?thesis
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1683
    apply (simp add: False)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1684
    apply (rule Arg_unique [of "inverse (norm z)"])
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1685
    using False mpi_less_Arg [of z] Arg_eq [of z]
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1686
    apply (auto simp: exp_minus field_simps)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1687
    done
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1688
qed
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1689
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1690
lemma Arg_eq_iff:
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1691
  assumes "w \<noteq> 0" "z \<noteq> 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1692
     shows "Arg w = Arg z \<longleftrightarrow> (\<exists>x. 0 < x \<and> w = of_real x * z)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1693
  using assms Arg_eq [of z] Arg_eq [of w]
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1694
  apply auto
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1695
  apply (rule_tac x="norm w / norm z" in exI)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1696
  apply (simp add: divide_simps)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1697
  by (metis mult.commute mult.left_commute)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1698
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1699
lemma Arg_inverse_eq_0: "Arg(inverse z) = 0 \<longleftrightarrow> Arg z = 0"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1700
  by (metis Arg_eq_0 Arg_inverse inverse_inverse_eq)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1701
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1702
lemma Arg_cnj_eq_inverse: "z\<noteq>0 \<Longrightarrow> Arg (cnj z) = Arg (inverse z)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1703
  apply (simp add: Arg_eq_iff divide_simps complex_norm_square [symmetric] mult.commute)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1704
  by (metis of_real_power zero_less_norm_iff zero_less_power)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1705
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1706
lemma Arg_cnj: "Arg(cnj z) = (if z \<in> \<real> then Arg z else - Arg z)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1707
  by (metis Arg_cnj_eq_inverse Arg_inverse Reals_0 complex_cnj_zero)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1708
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1709
lemma Arg_exp: "-pi < Im z \<Longrightarrow> Im z \<le> pi \<Longrightarrow> Arg(exp z) = Im z"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1710
  by (rule Arg_unique [of "exp(Re z)"]) (auto simp: exp_eq_polar)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1711
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1712
lemma Ln_Arg: "z\<noteq>0 \<Longrightarrow> Ln(z) = ln(norm z) + \<i> * Arg(z)"
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1713
  by (metis Arg_def Re_Ln complex_eq)
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1714
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1715
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  1716
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1717
subsection\<open>Relation between Ln and Arg2pi, and hence continuity of Arg2pi\<close>
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1718
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1719
lemma Arg2pi_Ln:
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1720
  assumes "0 < Arg2pi z" shows "Arg2pi z = Im(Ln(-z)) + pi"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1721
proof (cases "z = 0")
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1722
  case True
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1723
  with assms show ?thesis
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1724
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1725
next
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1726
  case False
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1727
  then have "z / of_real(norm z) = exp(\<i> * of_real(Arg2pi z))"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1728
    using Arg2pi [of z]
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1729
    by (metis is_Arg_def abs_norm_cancel nonzero_mult_div_cancel_left norm_of_real zero_less_norm_iff)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1730
  then have "- z / of_real(norm z) = exp (\<i> * (of_real (Arg2pi z) - pi))"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1731
    using cis_conv_exp cis_pi
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1732
    by (auto simp: exp_diff algebra_simps)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1733
  then have "ln (- z / of_real(norm z)) = ln (exp (\<i> * (of_real (Arg2pi z) - pi)))"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1734
    by simp
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1735
  also have "... = \<i> * (of_real(Arg2pi z) - pi)"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1736
    using Arg2pi [of z] assms pi_not_less_zero
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1737
    by auto
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1738
  finally have "Arg2pi z =  Im (Ln (- z / of_real (cmod z))) + pi"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1739
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1740
  also have "... = Im (Ln (-z) - ln (cmod z)) + pi"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1741
    by (metis diff_0_right minus_diff_eq zero_less_norm_iff Ln_divide_of_real False)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1742
  also have "... = Im (Ln (-z)) + pi"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1743
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1744
  finally show ?thesis .
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1745
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1746
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1747
lemma continuous_at_Arg2pi:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1748
  assumes "z \<notin> \<real>\<^sub>\<ge>\<^sub>0"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1749
    shows "continuous (at z) Arg2pi"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1750
proof -
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1751
  have *: "isCont (\<lambda>z. Im (Ln (- z)) + pi) z"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1752
    by (rule Complex.isCont_Im isCont_Ln' continuous_intros | simp add: assms complex_is_Real_iff)+
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1753
  have [simp]: "Im x \<noteq> 0 \<Longrightarrow> Im (Ln (- x)) + pi = Arg2pi x" for x
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1754
    using Arg2pi_Ln  by (simp add: Arg2pi_gt_0 complex_nonneg_Reals_iff)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1755
  consider "Re z < 0" | "Im z \<noteq> 0" using assms
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1756
    using complex_nonneg_Reals_iff not_le by blast
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1757
  then have [simp]: "(\<lambda>z. Im (Ln (- z)) + pi) \<midarrow>z\<rightarrow> Arg2pi z"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  1758
    using "*" by (simp add: Arg2pi_Ln Arg2pi_gt_0 assms continuous_within) 
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1759
  show ?thesis
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1760
    unfolding continuous_at
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1761
  proof (rule Lim_transform_within_open)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1762
    show "\<And>x. \<lbrakk>x \<in> - \<real>\<^sub>\<ge>\<^sub>0; x \<noteq> z\<rbrakk> \<Longrightarrow> Im (Ln (- x)) + pi = Arg2pi x"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1763
      by (auto simp add: Arg2pi_Ln [OF Arg2pi_gt_0] complex_nonneg_Reals_iff)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1764
  qed (use assms in auto)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1765
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1766
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1767
lemma Ln_series:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1768
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1769
  assumes "norm z < 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1770
  shows   "(\<lambda>n. (-1)^Suc n / of_nat n * z^n) sums ln (1 + z)" (is "(\<lambda>n. ?f n * z^n) sums _")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1771
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1772
  let ?F = "\<lambda>z. \<Sum>n. ?f n * z^n" and ?F' = "\<lambda>z. \<Sum>n. diffs ?f n * z^n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1773
  have r: "conv_radius ?f = 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1774
    by (intro conv_radius_ratio_limit_nonzero[of _ 1])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1775
       (simp_all add: norm_divide LIMSEQ_Suc_n_over_n del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1776
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1777
  have "\<exists>c. \<forall>z\<in>ball 0 1. ln (1 + z) - ?F z = c"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1778
  proof (rule has_field_derivative_zero_constant)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1779
    fix z :: complex assume z': "z \<in> ball 0 1"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1780
    hence z: "norm z < 1" by simp
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
  1781
    define t :: complex where "t = of_real (1 + norm z) / 2"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1782
    from z have t: "norm z < norm t" "norm t < 1" unfolding t_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1783
      by (simp_all add: field_simps norm_divide del: of_real_add)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1784
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1785
    have "Re (-z) \<le> norm (-z)" by (rule complex_Re_le_cmod)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1786
    also from z have "... < 1" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1787
    finally have "((\<lambda>z. ln (1 + z)) has_field_derivative inverse (1+z)) (at z)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1788
      by (auto intro!: derivative_eq_intros simp: complex_nonpos_Reals_iff)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1789
    moreover have "(?F has_field_derivative ?F' z) (at z)" using t r
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1790
      by (intro termdiffs_strong[of _ t] summable_in_conv_radius) simp_all
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1791
    ultimately have "((\<lambda>z. ln (1 + z) - ?F z) has_field_derivative (inverse (1 + z) - ?F' z))
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1792
                       (at z within ball 0 1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1793
      by (intro derivative_intros) (simp_all add: at_within_open[OF z'])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1794
    also have "(\<lambda>n. of_nat n * ?f n * z ^ (n - Suc 0)) sums ?F' z" using t r
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1795
      by (intro diffs_equiv termdiff_converges[OF t(1)] summable_in_conv_radius) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1796
    from sums_split_initial_segment[OF this, of 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1797
      have "(\<lambda>i. (-z) ^ i) sums ?F' z" by (simp add: power_minus[of z] del: of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1798
    hence "?F' z = inverse (1 + z)" using z by (simp add: sums_iff suminf_geometric divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1799
    also have "inverse (1 + z) - inverse (1 + z) = 0" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1800
    finally show "((\<lambda>z. ln (1 + z) - ?F z) has_field_derivative 0) (at z within ball 0 1)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1801
  qed simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1802
  then obtain c where c: "\<And>z. z \<in> ball 0 1 \<Longrightarrow> ln (1 + z) - ?F z = c" by blast
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1803
  from c[of 0] have "c = 0" by (simp only: powser_zero) simp
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1804
  with c[of z] assms have "ln (1 + z) = ?F z" by simp
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1805
  moreover have "summable (\<lambda>n. ?f n * z^n)" using assms r
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1806
    by (intro summable_in_conv_radius) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1807
  ultimately show ?thesis by (simp add: sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1808
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1809
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1810
lemma Ln_series': "cmod z < 1 \<Longrightarrow> (\<lambda>n. - ((-z)^n) / of_nat n) sums ln (1 + z)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1811
  by (drule Ln_series) (simp add: power_minus')
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1812
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  1813
lemma ln_series':
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1814
  assumes "abs (x::real) < 1"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1815
  shows   "(\<lambda>n. - ((-x)^n) / of_nat n) sums ln (1 + x)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1816
proof -
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1817
  from assms have "(\<lambda>n. - ((-of_real x)^n) / of_nat n) sums ln (1 + complex_of_real x)"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1818
    by (intro Ln_series') simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1819
  also have "(\<lambda>n. - ((-of_real x)^n) / of_nat n) = (\<lambda>n. complex_of_real (- ((-x)^n) / of_nat n))"
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1820
    by (rule ext) simp
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  1821
  also from assms have "ln (1 + complex_of_real x) = of_real (ln (1 + x))"
63721
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1822
    by (subst Ln_of_real [symmetric]) simp_all
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1823
  finally show ?thesis by (subst (asm) sums_of_real_iff)
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1824
qed
492bb53c3420 More analysis lemmas
Manuel Eberl <eberlm@in.tum.de>
parents: 63627
diff changeset
  1825
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1826
lemma Ln_approx_linear:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1827
  fixes z :: complex
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1828
  assumes "norm z < 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1829
  shows   "norm (ln (1 + z) - z) \<le> norm z^2 / (1 - norm z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1830
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1831
  let ?f = "\<lambda>n. (-1)^Suc n / of_nat n"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1832
  from assms have "(\<lambda>n. ?f n * z^n) sums ln (1 + z)" using Ln_series by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1833
  moreover have "(\<lambda>n. (if n = 1 then 1 else 0) * z^n) sums z" using powser_sums_if[of 1] by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1834
  ultimately have "(\<lambda>n. (?f n - (if n = 1 then 1 else 0)) * z^n) sums (ln (1 + z) - z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1835
    by (subst left_diff_distrib, intro sums_diff) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1836
  from sums_split_initial_segment[OF this, of "Suc 1"]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1837
    have "(\<lambda>i. (-(z^2)) * inverse (2 + of_nat i) * (- z)^i) sums (Ln (1 + z) - z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1838
    by (simp add: power2_eq_square mult_ac power_minus[of z] divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1839
  hence "(Ln (1 + z) - z) = (\<Sum>i. (-(z^2)) * inverse (of_nat (i+2)) * (-z)^i)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1840
    by (simp add: sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1841
  also have A: "summable (\<lambda>n. norm z^2 * (inverse (real_of_nat (Suc (Suc n))) * cmod z ^ n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1842
    by (rule summable_mult, rule summable_comparison_test_ev[OF _ summable_geometric[of "norm z"]])
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1843
       (auto simp: assms field_simps intro!: always_eventually)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  1844
  hence "norm (\<Sum>i. (-(z^2)) * inverse (of_nat (i+2)) * (-z)^i) \<le>
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1845
             (\<Sum>i. norm (-(z^2) * inverse (of_nat (i+2)) * (-z)^i))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1846
    by (intro summable_norm)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1847
       (auto simp: norm_power norm_inverse norm_mult mult_ac simp del: of_nat_add of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1848
  also have "norm ((-z)^2 * (-z)^i) * inverse (of_nat (i+2)) \<le> norm ((-z)^2 * (-z)^i) * 1" for i
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1849
    by (intro mult_left_mono) (simp_all add: divide_simps)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1850
  hence "(\<Sum>i. norm (-(z^2) * inverse (of_nat (i+2)) * (-z)^i))
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1851
         \<le> (\<Sum>i. norm (-(z^2) * (-z)^i))"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1852
    using A assms
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1853
    apply (simp_all only: norm_power norm_inverse norm_divide norm_mult)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1854
    apply (intro suminf_le summable_mult summable_geometric)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1855
    apply (auto simp: norm_power field_simps simp del: of_nat_add of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1856
    done
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1857
  also have "... = norm z^2 * (\<Sum>i. norm z^i)" using assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1858
    by (subst suminf_mult [symmetric]) (auto intro!: summable_geometric simp: norm_mult norm_power)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1859
  also have "(\<Sum>i. norm z^i) = inverse (1 - norm z)" using assms
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1860
    by (subst suminf_geometric) (simp_all add: divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1861
  also have "norm z^2 * ... = norm z^2 / (1 - norm z)" by (simp add: divide_inverse)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1862
  finally show ?thesis .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1863
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1864
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  1865
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1866
text\<open>Relation between Arg2pi and arctangent in upper halfplane\<close>
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1867
lemma Arg2pi_arctan_upperhalf:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1868
  assumes "0 < Im z"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1869
    shows "Arg2pi z = pi/2 - arctan(Re z / Im z)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1870
proof (cases "z = 0")
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1871
  case False
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1872
  show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1873
  proof (rule Arg2pi_unique [of "norm z"])
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1874
    show "(cmod z) * exp (\<i> * (pi / 2 - arctan (Re z / Im z))) = z"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1875
      apply (auto simp: exp_Euler cos_diff sin_diff)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1876
      using assms norm_complex_def [of z, symmetric]
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1877
      apply (simp add: sin_of_real cos_of_real sin_arctan cos_arctan field_simps real_sqrt_divide)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1878
      apply (metis complex_eq)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1879
      done
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1880
  qed (use False arctan [of "Re z / Im z"] in auto)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1881
qed (use assms in auto)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1882
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1883
lemma Arg2pi_eq_Im_Ln:
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1884
  assumes "0 \<le> Im z" "0 < Re z"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1885
    shows "Arg2pi z = Im (Ln z)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1886
proof (cases "Im z = 0")
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1887
  case True then show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1888
    using Arg2pi_eq_0 Ln_in_Reals assms(2) complex_is_Real_iff by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1889
next
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1890
  case False
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1891
  then have *: "Arg2pi z > 0"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1892
    using Arg2pi_gt_0 complex_is_Real_iff by blast
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1893
  then have "z \<noteq> 0"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1894
    by auto
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1895
  with * assms False show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1896
    by (subst Arg2pi_Ln) (auto simp: Ln_minus)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1897
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1898
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1899
lemma continuous_within_upperhalf_Arg2pi:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1900
  assumes "z \<noteq> 0"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1901
    shows "continuous (at z within {z. 0 \<le> Im z}) Arg2pi"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1902
proof (cases "z \<in> \<real>\<^sub>\<ge>\<^sub>0")
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1903
  case False then show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1904
    using continuous_at_Arg2pi continuous_at_imp_continuous_within by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1905
next
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1906
  case True
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1907
  then have z: "z \<in> \<real>" "0 < Re z"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1908
    using assms  by (auto simp: complex_nonneg_Reals_iff complex_is_Real_iff complex_neq_0)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1909
  then have [simp]: "Arg2pi z = 0" "Im (Ln z) = 0"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1910
    by (auto simp: Arg2pi_eq_0 Im_Ln_eq_0 assms complex_is_Real_iff)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1911
  show ?thesis
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1912
  proof (clarsimp simp add: continuous_within Lim_within dist_norm)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1913
    fix e::real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1914
    assume "0 < e"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1915
    moreover have "continuous (at z) (\<lambda>x. Im (Ln x))"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1916
      using z by (simp add: continuous_at_Ln complex_nonpos_Reals_iff)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1917
    ultimately
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1918
    obtain d where d: "d>0" "\<And>x. x \<noteq> z \<Longrightarrow> cmod (x - z) < d \<Longrightarrow> \<bar>Im (Ln x)\<bar> < e"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1919
      by (auto simp: continuous_within Lim_within dist_norm)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1920
    { fix x
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1921
      assume "cmod (x - z) < Re z / 2"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1922
      then have "\<bar>Re x - Re z\<bar> < Re z / 2"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1923
        by (metis le_less_trans abs_Re_le_cmod minus_complex.simps(1))
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1924
      then have "0 < Re x"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1925
        using z by linarith
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1926
    }
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1927
    then show "\<exists>d>0. \<forall>x. 0 \<le> Im x \<longrightarrow> x \<noteq> z \<and> cmod (x - z) < d \<longrightarrow> \<bar>Arg2pi x\<bar> < e"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1928
      apply (rule_tac x="min d (Re z / 2)" in exI)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1929
      using z d
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1930
      apply (auto simp: Arg2pi_eq_Im_Ln)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1931
      done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1932
  qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1933
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1934
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1935
lemma continuous_on_upperhalf_Arg2pi: "continuous_on ({z. 0 \<le> Im z} - {0}) Arg2pi"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  1936
  unfolding continuous_on_eq_continuous_within
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1937
  by (metis DiffE Diff_subset continuous_within_subset continuous_within_upperhalf_Arg2pi insertCI)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1938
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1939
lemma open_Arg2pi2pi_less_Int:
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1940
  assumes "0 \<le> s" "t \<le> 2*pi"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1941
    shows "open ({y. s < Arg2pi y} \<inter> {y. Arg2pi y < t})"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1942
proof -
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1943
  have 1: "continuous_on (UNIV - \<real>\<^sub>\<ge>\<^sub>0) Arg2pi"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1944
    using continuous_at_Arg2pi continuous_at_imp_continuous_within
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1945
    by (auto simp: continuous_on_eq_continuous_within)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1946
  have 2: "open (UNIV - \<real>\<^sub>\<ge>\<^sub>0 :: complex set)"  by (simp add: open_Diff)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1947
  have "open ({z. s < z} \<inter> {z. z < t})"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1948
    using open_lessThan [of t] open_greaterThan [of s]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1949
    by (metis greaterThan_def lessThan_def open_Int)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1950
  moreover have "{y. s < Arg2pi y} \<inter> {y. Arg2pi y < t} \<subseteq> - \<real>\<^sub>\<ge>\<^sub>0"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1951
    using assms by (auto simp: Arg2pi_real complex_nonneg_Reals_iff complex_is_Real_iff)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1952
  ultimately show ?thesis
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  1953
    using continuous_imp_open_vimage [OF 1 2, of  "{z. Re z > s} \<inter> {z. Re z < t}"]
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1954
    by auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1955
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1956
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1957
lemma open_Arg2pi2pi_gt: "open {z. t < Arg2pi z}"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1958
proof (cases "t < 0")
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1959
  case True then have "{z. t < Arg2pi z} = UNIV"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1960
    using Arg2pi_ge_0 less_le_trans by auto
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1961
  then show ?thesis
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1962
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1963
next
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1964
  case False then show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1965
    using open_Arg2pi2pi_less_Int [of t "2*pi"] Arg2pi_lt_2pi
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1966
    by auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1967
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1968
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1969
lemma closed_Arg2pi2pi_le: "closed {z. Arg2pi z \<le> t}"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  1970
  using open_Arg2pi2pi_gt [of t]
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  1971
  by (simp add: closed_def Set.Collect_neg_eq [symmetric] not_le)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1972
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  1973
subsection\<open>Complex Powers\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1974
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1975
lemma powr_to_1 [simp]: "z powr 1 = (z::complex)"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1976
  by (simp add: powr_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1977
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1978
lemma powr_nat:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1979
  fixes n::nat and z::complex shows "z powr n = (if z = 0 then 0 else z^n)"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1980
  by (simp add: exp_of_nat_mult powr_def)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1981
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1982
lemma norm_powr_real: "w \<in> \<real> \<Longrightarrow> 0 < Re w \<Longrightarrow> norm(w powr z) = exp(Re z * ln(Re w))"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  1983
  apply (simp add: powr_def)
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  1984
  using Im_Ln_eq_0 complex_is_Real_iff norm_complex_def  by auto
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  1985
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1986
lemma powr_complexpow [simp]:
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1987
  fixes x::complex shows "x \<noteq> 0 \<Longrightarrow> x powr (of_nat n) = x^n"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1988
  by (induct n) (auto simp: ac_simps powr_add)
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1989
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1990
lemma powr_complexnumeral [simp]:
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1991
  fixes x::complex shows "x \<noteq> 0 \<Longrightarrow> x powr (numeral n) = x ^ (numeral n)"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1992
  by (metis of_nat_numeral powr_complexpow)
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  1993
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1994
lemma cnj_powr:
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1995
  assumes "Im a = 0 \<Longrightarrow> Re a \<ge> 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1996
  shows   "cnj (a powr b) = cnj a powr cnj b"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1997
proof (cases "a = 0")
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  1998
  case False
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  1999
  with assms have "a \<notin> \<real>\<^sub>\<le>\<^sub>0" by (auto simp: complex_eq_iff complex_nonpos_Reals_iff)
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2000
  with False show ?thesis by (simp add: powr_def exp_cnj cnj_Ln)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2001
qed simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2002
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2003
lemma powr_real_real:
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2004
  assumes "w \<in> \<real>" "z \<in> \<real>" "0 < Re w"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2005
  shows "w powr z = exp(Re z * ln(Re w))"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2006
proof -
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2007
  have "w \<noteq> 0"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2008
    using assms by auto
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2009
  with assms show ?thesis
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2010
    by (simp add: powr_def Ln_Reals_eq of_real_exp)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2011
qed
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2012
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2013
lemma powr_of_real:
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2014
  fixes x::real and y::real
63296
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2015
  shows "0 \<le> x \<Longrightarrow> of_real x powr (of_real y::complex) = of_real (x powr y)"
3951a15a05d1 Integral form of Gamma function
eberlm
parents: 63295
diff changeset
  2016
  by (simp_all add: powr_def exp_eq_polar)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2017
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2018
lemma powr_of_int:
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2019
  fixes z::complex and n::int
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2020
  assumes "z\<noteq>(0::complex)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2021
  shows "z powr of_int n = (if n\<ge>0 then z^nat n else inverse (z^nat (-n)))"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2022
  by (metis assms not_le of_int_of_nat powr_complexpow powr_minus)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2023
67135
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2024
lemma powr_Reals_eq: "\<lbrakk>x \<in> \<real>; y \<in> \<real>; Re x \<ge> 0\<rbrakk> \<Longrightarrow> x powr y = of_real (Re x powr Re y)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2025
  by (metis of_real_Re powr_of_real)
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2026
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2027
lemma norm_powr_real_mono:
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2028
    "\<lbrakk>w \<in> \<real>; 1 < Re w\<rbrakk>
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2029
     \<Longrightarrow> cmod(w powr z1) \<le> cmod(w powr z2) \<longleftrightarrow> Re z1 \<le> Re z2"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2030
  by (auto simp: powr_def algebra_simps Reals_def Ln_of_real)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2031
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2032
lemma powr_times_real:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2033
    "\<lbrakk>x \<in> \<real>; y \<in> \<real>; 0 \<le> Re x; 0 \<le> Re y\<rbrakk>
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2034
           \<Longrightarrow> (x * y) powr z = x powr z * y powr z"
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  2035
  by (auto simp: Reals_def powr_def Ln_times exp_add algebra_simps less_eq_real_def Ln_of_real)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2036
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2037
lemma Re_powr_le: "r \<in> \<real>\<^sub>\<ge>\<^sub>0 \<Longrightarrow> Re (r powr z) \<le> Re r powr Re z"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2038
  by (auto simp: powr_def nonneg_Reals_def order_trans [OF complex_Re_le_cmod])
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2039
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2040
lemma
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2041
  fixes w::complex
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2042
  shows Reals_powr [simp]: "\<lbrakk>w \<in> \<real>\<^sub>\<ge>\<^sub>0; z \<in> \<real>\<rbrakk> \<Longrightarrow> w powr z \<in> \<real>"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2043
  and nonneg_Reals_powr [simp]: "\<lbrakk>w \<in> \<real>\<^sub>\<ge>\<^sub>0; z \<in> \<real>\<rbrakk> \<Longrightarrow> w powr z \<in> \<real>\<^sub>\<ge>\<^sub>0"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2044
  by (auto simp: nonneg_Reals_def Reals_def powr_of_real)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2045
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2046
lemma powr_neg_real_complex:
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2047
  shows   "(- of_real x) powr a = (-1) powr (of_real (sgn x) * a) * of_real x powr (a :: complex)"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2048
proof (cases "x = 0")
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2049
  assume x: "x \<noteq> 0"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2050
  hence "(-x) powr a = exp (a * ln (-of_real x))" by (simp add: powr_def)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2051
  also from x have "ln (-of_real x) = Ln (of_real x) + of_real (sgn x) * pi * \<i>"
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2052
    by (simp add: Ln_minus Ln_of_real)
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  2053
  also from x have "exp (a * ...) = cis pi powr (of_real (sgn x) * a) * of_real x powr a"
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2054
    by (simp add: powr_def exp_add algebra_simps Ln_of_real cis_conv_exp)
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2055
  also note cis_pi
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2056
  finally show ?thesis by simp
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2057
qed simp_all
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2058
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2059
lemma has_field_derivative_powr:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2060
  fixes z :: complex
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2061
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2062
  shows "((\<lambda>z. z powr s) has_field_derivative (s * z powr (s - 1))) (at z)"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2063
proof (cases "z=0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2064
  case False
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2065
  show ?thesis
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2066
    unfolding powr_def
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2067
  proof (rule DERIV_transform_at)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2068
    show "((\<lambda>z. exp (s * Ln z)) has_field_derivative s * (if z = 0 then 0 else exp ((s - 1) * Ln z)))
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2069
           (at z)"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2070
      apply (intro derivative_eq_intros | simp add: assms)+
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2071
      by (simp add: False divide_complex_def exp_diff left_diff_distrib')
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2072
  qed (use False in auto)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2073
qed (use assms in auto)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2074
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2075
declare has_field_derivative_powr[THEN DERIV_chain2, derivative_intros]
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2076
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2077
lemma has_field_derivative_powr_of_int:
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  2078
  fixes z :: complex
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2079
  assumes gderiv:"(g has_field_derivative gd) (at z within s)" and "g z\<noteq>0"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2080
  shows "((\<lambda>z. g z powr of_int n) has_field_derivative (n * g z powr (of_int n - 1) * gd)) (at z within s)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2081
proof -
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2082
  define dd where "dd = of_int n * g z powr (of_int (n - 1)) * gd"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2083
  obtain e where "e>0" and e_dist:"\<forall>y\<in>s. dist z y < e \<longrightarrow> g y \<noteq> 0"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2084
    using DERIV_continuous[OF gderiv,THEN continuous_within_avoid] \<open>g z\<noteq>0\<close> by auto
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2085
  have ?thesis when "n\<ge>0"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2086
  proof -
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2087
    define dd' where "dd' = of_int n * g z ^ (nat n - 1) * gd"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2088
    have "dd=dd'"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2089
    proof (cases "n=0")
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2090
      case False
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2091
      then have "n-1 \<ge>0" using \<open>n\<ge>0\<close> by auto
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2092
      then have "g z powr (of_int (n - 1)) = g z ^ (nat n - 1)"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  2093
        using powr_of_int[OF \<open>g z\<noteq>0\<close>,of "n-1"] by (simp add: nat_diff_distrib')
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2094
      then show ?thesis unfolding dd_def dd'_def by simp
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2095
    qed (simp add:dd_def dd'_def)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2096
    then have "((\<lambda>z. g z powr of_int n) has_field_derivative dd) (at z within s)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2097
                \<longleftrightarrow> ((\<lambda>z. g z powr of_int n) has_field_derivative dd') (at z within s)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2098
      by simp
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2099
    also have "... \<longleftrightarrow> ((\<lambda>z. g z ^ nat n) has_field_derivative dd') (at z within s)"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2100
    proof (rule has_field_derivative_cong_eventually)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2101
      show "\<forall>\<^sub>F x in at z within s. g x powr of_int n = g x ^ nat n"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2102
        unfolding eventually_at
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2103
        apply (rule exI[where x=e])
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2104
        using powr_of_int that \<open>e>0\<close> e_dist by (simp add: dist_commute)
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2105
    qed (use powr_of_int \<open>g z\<noteq>0\<close> that in simp)
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2106
    also have "..." unfolding dd'_def using gderiv that
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2107
      by (auto intro!: derivative_eq_intros)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2108
    finally have "((\<lambda>z. g z powr of_int n) has_field_derivative dd) (at z within s)" .
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2109
    then show ?thesis unfolding dd_def by simp
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2110
  qed
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2111
  moreover have ?thesis when "n<0"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2112
  proof -
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2113
    define dd' where "dd' = of_int n / g z ^ (nat (1 - n)) * gd"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2114
    have "dd=dd'"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2115
    proof -
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2116
      have "g z powr of_int (n - 1) = inverse (g z ^ nat (1-n))"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2117
        using powr_of_int[OF \<open>g z\<noteq>0\<close>,of "n-1"] that by auto
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2118
      then show ?thesis
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2119
        unfolding dd_def dd'_def by (simp add: divide_inverse)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2120
    qed
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2121
    then have "((\<lambda>z. g z powr of_int n) has_field_derivative dd) (at z within s)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2122
                \<longleftrightarrow> ((\<lambda>z. g z powr of_int n) has_field_derivative dd') (at z within s)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2123
      by simp
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2124
    also have "... \<longleftrightarrow> ((\<lambda>z. inverse (g z ^ nat (-n))) has_field_derivative dd') (at z within s)"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2125
    proof (rule has_field_derivative_cong_eventually)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2126
      show "\<forall>\<^sub>F x in at z within s. g x powr of_int n = inverse (g x ^ nat (- n))"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2127
         unfolding eventually_at
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2128
        apply (rule exI[where x=e])
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2129
        using powr_of_int that \<open>e>0\<close> e_dist by (simp add: dist_commute)
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2130
    qed (use powr_of_int \<open>g z\<noteq>0\<close> that in simp)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2131
    also have "..."
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2132
    proof -
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2133
      have "nat (- n) + nat (1 - n) - Suc 0 = nat (- n) + nat (- n)"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2134
        by auto
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2135
      then show ?thesis
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2136
        unfolding dd'_def using gderiv that \<open>g z\<noteq>0\<close>
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2137
        by (auto intro!: derivative_eq_intros simp add:divide_simps power_add[symmetric])
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2138
    qed
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2139
    finally have "((\<lambda>z. g z powr of_int n) has_field_derivative dd) (at z within s)" .
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2140
    then show ?thesis unfolding dd_def by simp
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2141
  qed
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2142
  ultimately show ?thesis by force
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2143
qed
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2144
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2145
lemma field_differentiable_powr_of_int:
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  2146
  fixes z :: complex
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2147
  assumes gderiv:"g field_differentiable (at z within s)" and "g z\<noteq>0"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2148
  shows "(\<lambda>z. g z powr of_int n) field_differentiable (at z within s)"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2149
using has_field_derivative_powr_of_int assms(2) field_differentiable_def gderiv by blast
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2150
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2151
lemma holomorphic_on_powr_of_int [holomorphic_intros]:
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2152
  assumes "f holomorphic_on s" "\<forall>z\<in>s. f z\<noteq>0"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2153
  shows "(\<lambda>z. (f z) powr of_int n) holomorphic_on s"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2154
proof (cases "n\<ge>0")
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2155
  case True
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2156
  then have "?thesis \<longleftrightarrow> (\<lambda>z. (f z) ^ nat n) holomorphic_on s"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2157
    apply (rule_tac holomorphic_cong)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2158
    using assms(2) by (auto simp add:powr_of_int)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2159
  moreover have "(\<lambda>z. (f z) ^ nat n) holomorphic_on s"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  2160
    using assms(1) by (auto intro:holomorphic_intros)
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2161
  ultimately show ?thesis by auto
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2162
next
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2163
  case False
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2164
  then have "?thesis \<longleftrightarrow> (\<lambda>z. inverse (f z) ^ nat (-n)) holomorphic_on s"
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2165
    apply (rule_tac holomorphic_cong)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2166
    using assms(2) by (auto simp add:powr_of_int power_inverse)
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2167
  moreover have "(\<lambda>z. inverse (f z) ^ nat (-n)) holomorphic_on s"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  2168
    using assms by (auto intro!:holomorphic_intros)
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2169
  ultimately show ?thesis by auto
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67578
diff changeset
  2170
qed
61524
f2e51e704a96 added many small lemmas about setsum/setprod/powr/...
eberlm
parents: 61518
diff changeset
  2171
65578
e4997c181cce New material from PNT proof, as well as more default [simp] declarations. Also removed duplicate theorems about geometric series
paulson <lp15@cam.ac.uk>
parents: 65274
diff changeset
  2172
lemma has_field_derivative_powr_right [derivative_intros]:
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2173
    "w \<noteq> 0 \<Longrightarrow> ((\<lambda>z. w powr z) has_field_derivative Ln w * w powr z) (at z)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2174
  unfolding powr_def by (intro derivative_eq_intros | simp)+
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2175
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2176
lemma field_differentiable_powr_right [derivative_intros]:
62533
bc25f3916a99 new material to Blochj's theorem, as well as supporting lemmas
paulson <lp15@cam.ac.uk>
parents: 62393
diff changeset
  2177
  fixes w::complex
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2178
  shows "w \<noteq> 0 \<Longrightarrow> (\<lambda>z. w powr z) field_differentiable (at z)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2179
using field_differentiable_def has_field_derivative_powr_right by blast
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2180
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  2181
lemma holomorphic_on_powr_right [holomorphic_intros]:
67268
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2182
  assumes "f holomorphic_on s"
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2183
  shows "(\<lambda>z. w powr (f z)) holomorphic_on s"
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2184
proof (cases "w = 0")
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2185
  case False
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2186
  with assms show ?thesis
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2187
    unfolding holomorphic_on_def field_differentiable_def
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2188
    by (metis (full_types) DERIV_chain' has_field_derivative_powr_right)
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2189
qed simp
67268
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2190
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2191
lemma holomorphic_on_divide_gen [holomorphic_intros]:
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2192
  assumes f: "f holomorphic_on s" and g: "g holomorphic_on s" and 0: "\<And>z z'. \<lbrakk>z \<in> s; z' \<in> s\<rbrakk> \<Longrightarrow> g z = 0 \<longleftrightarrow> g z' = 0"
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2193
shows "(\<lambda>z. f z / g z) holomorphic_on s"
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2194
proof (cases "\<exists>z\<in>s. g z = 0")
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2195
  case True
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2196
  with 0 have "g z = 0" if "z \<in> s" for z
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2197
    using that by blast
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2198
  then show ?thesis
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2199
    using g holomorphic_transform by auto
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2200
next
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2201
  case False
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2202
  with 0 have "g z \<noteq> 0" if "z \<in> s" for z
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2203
    using that by blast
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2204
  with holomorphic_on_divide show ?thesis
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2205
    using f g by blast
bdf25939a550 new/improved theories involving convergence; better pretty-printing for bounded quantifiers and sum/product
paulson <lp15@cam.ac.uk>
parents: 67135
diff changeset
  2206
qed
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2207
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2208
lemma norm_powr_real_powr:
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2209
  "w \<in> \<real> \<Longrightarrow> 0 \<le> Re w \<Longrightarrow> cmod (w powr z) = Re w powr Re z"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2210
  by (metis dual_order.order_iff_strict norm_powr_real norm_zero of_real_0 of_real_Re powr_def)
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2211
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2212
lemma tendsto_powr_complex:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2213
  fixes f g :: "_ \<Rightarrow> complex"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2214
  assumes a: "a \<notin> \<real>\<^sub>\<le>\<^sub>0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2215
  assumes f: "(f \<longlongrightarrow> a) F" and g: "(g \<longlongrightarrow> b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2216
  shows   "((\<lambda>z. f z powr g z) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2217
proof -
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2218
  from a have [simp]: "a \<noteq> 0" by auto
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2219
  from f g a have "((\<lambda>z. exp (g z * ln (f z))) \<longlongrightarrow> a powr b) F" (is ?P)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2220
    by (auto intro!: tendsto_intros simp: powr_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2221
  also {
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2222
    have "eventually (\<lambda>z. z \<noteq> 0) (nhds a)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2223
      by (intro t1_space_nhds) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2224
    with f have "eventually (\<lambda>z. f z \<noteq> 0) F" using filterlim_iff by blast
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2225
  }
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2226
  hence "?P \<longleftrightarrow> ((\<lambda>z. f z powr g z) \<longlongrightarrow> a powr b) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2227
    by (intro tendsto_cong refl) (simp_all add: powr_def mult_ac)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2228
  finally show ?thesis .
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2229
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2230
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2231
lemma tendsto_powr_complex_0:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2232
  fixes f g :: "'a \<Rightarrow> complex"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2233
  assumes f: "(f \<longlongrightarrow> 0) F" and g: "(g \<longlongrightarrow> b) F" and b: "Re b > 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2234
  shows   "((\<lambda>z. f z powr g z) \<longlongrightarrow> 0) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2235
proof (rule tendsto_norm_zero_cancel)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2236
  define h where
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2237
    "h = (\<lambda>z. if f z = 0 then 0 else exp (Re (g z) * ln (cmod (f z)) + abs (Im (g z)) * pi))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2238
  {
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2239
    fix z :: 'a assume z: "f z \<noteq> 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2240
    define c where "c = abs (Im (g z)) * pi"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2241
    from mpi_less_Im_Ln[OF z] Im_Ln_le_pi[OF z]
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2242
      have "abs (Im (Ln (f z))) \<le> pi" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2243
    from mult_left_mono[OF this, of "abs (Im (g z))"]
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2244
      have "abs (Im (g z) * Im (ln (f z))) \<le> c" by (simp add: abs_mult c_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2245
    hence "-Im (g z) * Im (ln (f z)) \<le> c" by simp
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2246
    hence "norm (f z powr g z) \<le> h z" by (simp add: powr_def field_simps h_def c_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2247
  }
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2248
  hence le: "norm (f z powr g z) \<le> h z" for z by (cases "f x = 0") (simp_all add: h_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2249
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2250
  have g': "(g \<longlongrightarrow> b) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2251
    by (rule tendsto_mono[OF _ g]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2252
  have "((\<lambda>x. norm (f x)) \<longlongrightarrow> 0) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2253
    by (subst tendsto_norm_zero_iff, rule tendsto_mono[OF _ f]) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2254
  moreover {
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2255
    have "filterlim (\<lambda>x. norm (f x)) (principal {0<..}) (principal {z. f z \<noteq> 0})"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2256
      by (auto simp: filterlim_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2257
    hence "filterlim (\<lambda>x. norm (f x)) (principal {0<..})
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2258
             (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2259
      by (rule filterlim_mono) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2260
  }
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2261
  ultimately have norm: "filterlim (\<lambda>x. norm (f x)) (at_right 0) (inf F (principal {z. f z \<noteq> 0}))"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2262
    by (simp add: filterlim_inf at_within_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2263
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2264
  have A: "LIM x inf F (principal {z. f z \<noteq> 0}). Re (g x) * -ln (cmod (f x)) :> at_top"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2265
    by (rule filterlim_tendsto_pos_mult_at_top tendsto_intros g' b
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2266
          filterlim_compose[OF filterlim_uminus_at_top_at_bot] filterlim_compose[OF ln_at_0] norm)+
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2267
  have B: "LIM x inf F (principal {z. f z \<noteq> 0}).
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2268
          -\<bar>Im (g x)\<bar> * pi + -(Re (g x) * ln (cmod (f x))) :> at_top"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2269
    by (rule filterlim_tendsto_add_at_top tendsto_intros g')+ (insert A, simp_all)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2270
  have C: "(h \<longlongrightarrow> 0) F" unfolding h_def
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2271
    by (intro filterlim_If tendsto_const filterlim_compose[OF exp_at_bot])
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2272
       (insert B, auto simp: filterlim_uminus_at_bot algebra_simps)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2273
  show "((\<lambda>x. norm (f x powr g x)) \<longlongrightarrow> 0) F"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2274
    by (rule Lim_null_comparison[OF always_eventually C]) (insert le, auto)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2275
qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2276
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2277
lemma tendsto_powr_complex' [tendsto_intros]:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2278
  fixes f g :: "_ \<Rightarrow> complex"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2279
  assumes "a \<notin> \<real>\<^sub>\<le>\<^sub>0 \<or> (a = 0 \<and> Re b > 0)" and "(f \<longlongrightarrow> a) F" "(g \<longlongrightarrow> b) F"
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2280
  shows   "((\<lambda>z. f z powr g z) \<longlongrightarrow> a powr b) F"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2281
  using assms tendsto_powr_complex tendsto_powr_complex_0 by fastforce
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2282
67135
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2283
lemma tendsto_neg_powr_complex_of_real:
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2284
  assumes "filterlim f at_top F" and "Re s < 0"
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2285
  shows   "((\<lambda>x. complex_of_real (f x) powr s) \<longlongrightarrow> 0) F"
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2286
proof -
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2287
  have "((\<lambda>x. norm (complex_of_real (f x) powr s)) \<longlongrightarrow> 0) F"
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2288
  proof (rule Lim_transform_eventually)
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2289
    from assms(1) have "eventually (\<lambda>x. f x \<ge> 0) F"
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2290
      by (auto simp: filterlim_at_top)
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2291
    thus "eventually (\<lambda>x. f x powr Re s = norm (of_real (f x) powr s)) F"
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2292
      by eventually_elim (simp add: norm_powr_real_powr)
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2293
    from assms show "((\<lambda>x. f x powr Re s) \<longlongrightarrow> 0) F"
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2294
      by (intro tendsto_neg_powr)
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2295
  qed
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2296
  thus ?thesis by (simp add: tendsto_norm_zero_iff)
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2297
qed
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2298
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2299
lemma tendsto_neg_powr_complex_of_nat:
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2300
  assumes "filterlim f at_top F" and "Re s < 0"
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2301
  shows   "((\<lambda>x. of_nat (f x) powr s) \<longlongrightarrow> 0) F"
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2302
proof -
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2303
  have "((\<lambda>x. of_real (real (f x)) powr s) \<longlongrightarrow> 0) F" using assms(2)
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2304
    by (intro filterlim_compose[OF _ tendsto_neg_powr_complex_of_real]
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2305
              filterlim_compose[OF _ assms(1)] filterlim_real_sequentially filterlim_ident) auto
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2306
  thus ?thesis by simp
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2307
qed
1a94352812f4 Moved material from AFP to Analysis/Number_Theory
Manuel Eberl <eberlm@in.tum.de>
parents: 66827
diff changeset
  2308
63295
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2309
lemma continuous_powr_complex:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2310
  assumes "f (netlimit F) \<notin> \<real>\<^sub>\<le>\<^sub>0" "continuous F f" "continuous F g"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2311
  shows   "continuous F (\<lambda>z. f z powr g z :: complex)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2312
  using assms unfolding continuous_def by (intro tendsto_powr_complex) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2313
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2314
lemma isCont_powr_complex [continuous_intros]:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2315
  assumes "f z \<notin> \<real>\<^sub>\<le>\<^sub>0" "isCont f z" "isCont g z"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2316
  shows   "isCont (\<lambda>z. f z powr g z :: complex) z"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2317
  using assms unfolding isCont_def by (intro tendsto_powr_complex) simp_all
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2318
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2319
lemma continuous_on_powr_complex [continuous_intros]:
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2320
  assumes "A \<subseteq> {z. Re (f z) \<ge> 0 \<or> Im (f z) \<noteq> 0}"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2321
  assumes "\<And>z. z \<in> A \<Longrightarrow> f z = 0 \<Longrightarrow> Re (g z) > 0"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2322
  assumes "continuous_on A f" "continuous_on A g"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2323
  shows   "continuous_on A (\<lambda>z. f z powr g z)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2324
  unfolding continuous_on_def
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2325
proof
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2326
  fix z assume z: "z \<in> A"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2327
  show "((\<lambda>z. f z powr g z) \<longlongrightarrow> f z powr g z) (at z within A)"
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2328
  proof (cases "f z = 0")
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2329
    case False
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2330
    from assms(1,2) z have "Re (f z) \<ge> 0 \<or> Im (f z) \<noteq> 0" "f z = 0 \<longrightarrow> Re (g z) > 0" by auto
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2331
    with assms(3,4) z show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2332
      by (intro tendsto_powr_complex')
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2333
         (auto elim!: nonpos_Reals_cases simp: complex_eq_iff continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2334
  next
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2335
    case True
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2336
    with assms z show ?thesis
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2337
      by (auto intro!: tendsto_powr_complex_0 simp: continuous_on_def)
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2338
  qed
52792bb9126e Facts about HK integration, complex powers, Gamma function
eberlm
parents: 63092
diff changeset
  2339
qed
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2340
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2341
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2342
subsection\<open>Some Limits involving Logarithms\<close>
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  2343
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2344
lemma lim_Ln_over_power:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2345
  fixes s::complex
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2346
  assumes "0 < Re s"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2347
    shows "(\<lambda>n. Ln (of_nat n) / of_nat n powr s) \<longlonglongrightarrow> 0"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2348
proof (simp add: lim_sequentially dist_norm, clarify)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  2349
  fix e::real
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2350
  assume e: "0 < e"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2351
  have "\<exists>xo>0. \<forall>x\<ge>xo. 0 < e * 2 + (e * Re s * 2 - 2) * x + e * (Re s)\<^sup>2 * x\<^sup>2"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2352
  proof (rule_tac x="2/(e * (Re s)\<^sup>2)" in exI, safe)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2353
    show "0 < 2 / (e * (Re s)\<^sup>2)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2354
      using e assms by (simp add: field_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2355
  next
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2356
    fix x::real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2357
    assume x: "2 / (e * (Re s)\<^sup>2) \<le> x"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2358
    have "2 / (e * (Re s)\<^sup>2) > 0"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2359
      using e assms by simp
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2360
    with x have "x > 0"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2361
      by linarith
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2362
    then have "x * 2 \<le> e * (x\<^sup>2 * (Re s)\<^sup>2)"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2363
      using e assms x by (auto simp: power2_eq_square field_simps)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2364
    also have "... < e * (2 + (x * (Re s * 2) + x\<^sup>2 * (Re s)\<^sup>2))"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2365
      using e assms \<open>x > 0\<close>
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2366
      by (auto simp: power2_eq_square field_simps add_pos_pos)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2367
    finally show "0 < e * 2 + (e * Re s * 2 - 2) * x + e * (Re s)\<^sup>2 * x\<^sup>2"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2368
      by (auto simp: algebra_simps)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2369
  qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2370
  then have "\<exists>xo>0. \<forall>x\<ge>xo. x / e < 1 + (Re s * x) + (1/2) * (Re s * x)^2"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2371
    using e  by (simp add: field_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2372
  then have "\<exists>xo>0. \<forall>x\<ge>xo. x / e < exp (Re s * x)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2373
    using assms
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2374
    by (force intro: less_le_trans [OF _ exp_lower_taylor_quadratic])
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2375
  then obtain xo where "xo > 0" and xo: "\<And>x. x \<ge> xo \<Longrightarrow> x < e * exp (Re s * x)"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2376
    using e  by (auto simp: field_simps)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2377
  have "norm (Ln (of_nat n) / of_nat n powr s) < e" if "n \<ge> nat \<lceil>exp xo\<rceil>" for n
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2378
    using e xo [of "ln n"] that
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2379
    apply (auto simp: norm_divide norm_powr_real divide_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2380
    apply (metis exp_less_mono exp_ln not_le of_nat_0_less_iff)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2381
    done
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  2382
  then show "\<exists>no. \<forall>n\<ge>no. norm (Ln (of_nat n) / of_nat n powr s) < e"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2383
    by blast
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2384
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2385
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2386
lemma lim_Ln_over_n: "((\<lambda>n. Ln(of_nat n) / of_nat n) \<longlongrightarrow> 0) sequentially"
65587
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 65585
diff changeset
  2387
  using lim_Ln_over_power [of 1] by simp
16a8991ab398 New material (and some tidying) purely in the Analysis directory
paulson <lp15@cam.ac.uk>
parents: 65585
diff changeset
  2388
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2389
lemma lim_ln_over_power:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2390
  fixes s :: real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2391
  assumes "0 < s"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2392
    shows "((\<lambda>n. ln n / (n powr s)) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2393
  using lim_Ln_over_power [of "of_real s", THEN filterlim_sequentially_Suc [THEN iffD2]] assms
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2394
  apply (subst filterlim_sequentially_Suc [symmetric])
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2395
  apply (simp add: lim_sequentially dist_norm Ln_Reals_eq norm_powr_real_powr norm_divide)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2396
  done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2397
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2398
lemma lim_ln_over_n: "((\<lambda>n. ln(real_of_nat n) / of_nat n) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2399
  using lim_ln_over_power [of 1, THEN filterlim_sequentially_Suc [THEN iffD2]]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2400
  apply (subst filterlim_sequentially_Suc [symmetric])
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  2401
  apply (simp add: lim_sequentially dist_norm)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2402
  done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2403
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2404
lemma lim_1_over_complex_power:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2405
  assumes "0 < Re s"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2406
  shows "(\<lambda>n. 1 / of_nat n powr s) \<longlonglongrightarrow> 0"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2407
proof (rule Lim_null_comparison)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2408
  have "\<forall>n>0. 3 \<le> n \<longrightarrow> 1 \<le> ln (real_of_nat n)"
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2409
    using ln_272_gt_1
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2410
    by (force intro: order_trans [of _ "ln (272/100)"])
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2411
  then show "\<forall>\<^sub>F x in sequentially. cmod (1 / of_nat x powr s) \<le> cmod (Ln (of_nat x) / of_nat x powr s)"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2412
    by (auto simp: norm_divide divide_simps eventually_sequentially)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2413
  show "(\<lambda>n. cmod (Ln (of_nat n) / of_nat n powr s)) \<longlonglongrightarrow> 0"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2414
    using lim_Ln_over_power [OF assms] by (metis tendsto_norm_zero_iff)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2415
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2416
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2417
lemma lim_1_over_real_power:
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2418
  fixes s :: real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2419
  assumes "0 < s"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2420
    shows "((\<lambda>n. 1 / (of_nat n powr s)) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2421
  using lim_1_over_complex_power [of "of_real s", THEN filterlim_sequentially_Suc [THEN iffD2]] assms
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2422
  apply (subst filterlim_sequentially_Suc [symmetric])
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2423
  apply (simp add: lim_sequentially dist_norm)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  2424
  apply (simp add: Ln_Reals_eq norm_powr_real_powr norm_divide)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2425
  done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2426
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2427
lemma lim_1_over_Ln: "((\<lambda>n. 1 / Ln(of_nat n)) \<longlongrightarrow> 0) sequentially"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2428
proof (clarsimp simp add: lim_sequentially dist_norm norm_divide divide_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2429
  fix r::real
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2430
  assume "0 < r"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2431
  have ir: "inverse (exp (inverse r)) > 0"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2432
    by simp
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2433
  obtain n where n: "1 < of_nat n * inverse (exp (inverse r))"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2434
    using ex_less_of_nat_mult [of _ 1, OF ir]
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2435
    by auto
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2436
  then have "exp (inverse r) < of_nat n"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2437
    by (simp add: divide_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2438
  then have "ln (exp (inverse r)) < ln (of_nat n)"
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2439
    by (metis exp_gt_zero less_trans ln_exp ln_less_cancel_iff)
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2440
  with \<open>0 < r\<close> have "1 < r * ln (real_of_nat n)"
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2441
    by (simp add: field_simps)
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2442
  moreover have "n > 0" using n
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2443
    using neq0_conv by fastforce
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2444
  ultimately show "\<exists>no. \<forall>k. Ln (of_nat k) \<noteq> 0 \<longrightarrow> no \<le> k \<longrightarrow> 1 < r * cmod (Ln (of_nat k))"
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2445
    using n \<open>0 < r\<close>
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2446
    by (rule_tac x=n in exI) (force simp: divide_simps intro: less_le_trans)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2447
qed
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2448
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61969
diff changeset
  2449
lemma lim_1_over_ln: "((\<lambda>n. 1 / ln(real_of_nat n)) \<longlongrightarrow> 0) sequentially"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63040
diff changeset
  2450
  using lim_1_over_Ln [THEN filterlim_sequentially_Suc [THEN iffD2]]
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2451
  apply (subst filterlim_sequentially_Suc [symmetric])
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2452
  apply (simp add: lim_sequentially dist_norm)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  2453
  apply (simp add: Ln_Reals_eq norm_powr_real_powr norm_divide)
60150
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2454
  done
bd773c47ad0b New material about complex transcendental functions (especially Ln, Arg) and polynomials
paulson <lp15@cam.ac.uk>
parents: 60141
diff changeset
  2455
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2456
lemma lim_ln1_over_ln: "(\<lambda>n. ln(Suc n) / ln n) \<longlonglongrightarrow> 1"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2457
proof (rule Lim_transform_eventually)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2458
  have "(\<lambda>n. ln(1 + 1/n) / ln n) \<longlonglongrightarrow> 0"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2459
  proof (rule Lim_transform_bound)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2460
    show "(inverse o real) \<longlonglongrightarrow> 0"
66827
c94531b5007d Divided Topology_Euclidean_Space in two, creating new theory Connected. Also deleted some duplicate / variant theorems
paulson <lp15@cam.ac.uk>
parents: 66793
diff changeset
  2461
      by (metis comp_def lim_inverse_n tendsto_explicit)
65719
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2462
    show "\<forall>\<^sub>F n in sequentially. norm (ln (1 + 1 / n) / ln n) \<le> norm ((inverse \<circ> real) n)"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2463
    proof
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2464
      fix n::nat
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2465
      assume n: "3 \<le> n"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2466
      then have "ln 3 \<le> ln n" and ln0: "0 \<le> ln n"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2467
        by auto
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2468
      with ln3_gt_1 have "1/ ln n \<le> 1"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2469
        by (simp add: divide_simps)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2470
      moreover have "ln (1 + 1 / real n) \<le> 1/n"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2471
        by (simp add: ln_add_one_self_le_self)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2472
      ultimately have "ln (1 + 1 / real n) * (1 / ln n) \<le> (1/n) * 1"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2473
        by (intro mult_mono) (use n in auto)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2474
      then show "norm (ln (1 + 1 / n) / ln n) \<le> norm ((inverse \<circ> real) n)"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2475
        by (simp add: field_simps ln0)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2476
      qed
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2477
  qed
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2478
  then show "(\<lambda>n. 1 + ln(1 + 1/n) / ln n) \<longlonglongrightarrow> 1"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2479
    by (metis (full_types) add.right_neutral tendsto_add_const_iff)
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2480
  show "\<forall>\<^sub>F k in sequentially. 1 + ln (1 + 1 / k) / ln k = ln(Suc k) / ln k"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2481
    by (simp add: divide_simps ln_div eventually_sequentiallyI [of 2])
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2482
qed
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2483
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2484
lemma lim_ln_over_ln1: "(\<lambda>n. ln n / ln(Suc n)) \<longlonglongrightarrow> 1"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2485
proof -
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2486
  have "(\<lambda>n. inverse (ln(Suc n) / ln n)) \<longlonglongrightarrow> inverse 1"
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2487
    by (rule tendsto_inverse [OF lim_ln1_over_ln]) auto
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2488
  then show ?thesis
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2489
    by simp
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2490
qed
7c57d79d61b7 A few more new lemmas
paulson <lp15@cam.ac.uk>
parents: 65587
diff changeset
  2491
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  2492
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2493
subsection\<open>Relation between Square Root and exp/ln, hence its derivative\<close>
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2494
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2495
lemma csqrt_exp_Ln:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2496
  assumes "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2497
    shows "csqrt z = exp(Ln(z) / 2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2498
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2499
  have "(exp (Ln z / 2))\<^sup>2 = (exp (Ln z))"
64240
eabf80376aab more standardized names
haftmann
parents: 63918
diff changeset
  2500
    by (metis exp_double nonzero_mult_div_cancel_left times_divide_eq_right zero_neq_numeral)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2501
  also have "... = z"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2502
    using assms exp_Ln by blast
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2503
  finally have "csqrt z = csqrt ((exp (Ln z / 2))\<^sup>2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2504
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2505
  also have "... = exp (Ln z / 2)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2506
    apply (subst csqrt_square)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2507
    using cos_gt_zero_pi [of "(Im (Ln z) / 2)"] Im_Ln_le_pi mpi_less_Im_Ln assms
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2508
    apply (auto simp: Re_exp Im_exp zero_less_mult_iff zero_le_mult_iff, fastforce+)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2509
    done
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2510
  finally show ?thesis using assms csqrt_square
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2511
    by simp
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2512
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2513
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2514
lemma csqrt_inverse:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2515
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2516
    shows "csqrt (inverse z) = inverse (csqrt z)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2517
proof (cases "z=0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2518
  case False
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2519
  then show ?thesis
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2520
    using assms csqrt_exp_Ln Ln_inverse exp_minus
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2521
    by (simp add: csqrt_exp_Ln Ln_inverse exp_minus)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2522
qed auto
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2523
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2524
lemma cnj_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2525
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2526
    shows "cnj(csqrt z) = csqrt(cnj z)"
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2527
proof (cases "z=0")
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2528
  case False
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2529
  then show ?thesis
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2530
     by (simp add: assms cnj_Ln csqrt_exp_Ln exp_cnj)
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2531
qed auto
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2532
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2533
lemma has_field_derivative_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2534
  assumes "z \<notin> \<real>\<^sub>\<le>\<^sub>0"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2535
    shows "(csqrt has_field_derivative inverse(2 * csqrt z)) (at z)"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2536
proof -
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2537
  have z: "z \<noteq> 0"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2538
    using assms by auto
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2539
  then have *: "inverse z = inverse (2*z) * 2"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2540
    by (simp add: divide_simps)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2541
  have [simp]: "exp (Ln z / 2) * inverse z = inverse (csqrt z)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2542
    by (simp add: z field_simps csqrt_exp_Ln [symmetric]) (metis power2_csqrt power2_eq_square)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2543
  have "Im z = 0 \<Longrightarrow> 0 < Re z"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2544
    using assms complex_nonpos_Reals_iff not_less by blast
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2545
  with z have "((\<lambda>z. exp (Ln z / 2)) has_field_derivative inverse (2 * csqrt z)) (at z)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2546
    by (force intro: derivative_eq_intros * simp add: assms)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2547
  then show ?thesis
68257
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2548
  proof (rule DERIV_transform_at)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2549
    show "\<And>x. dist x z < cmod z \<Longrightarrow> exp (Ln x / 2) = csqrt x"
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2550
      by (metis csqrt_exp_Ln dist_0_norm less_irrefl)
e6e131577536 small tidy-up of Complex_Transcendental
paulson <lp15@cam.ac.uk>
parents: 68255
diff changeset
  2551
  qed (use z in auto)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2552
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2553
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2554
lemma field_differentiable_at_csqrt:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2555
    "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> csqrt field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2556
  using field_differentiable_def has_field_derivative_csqrt by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2557
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2558
lemma field_differentiable_within_csqrt:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2559
    "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> csqrt field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2560
  using field_differentiable_at_csqrt field_differentiable_within_subset by blast
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2561
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2562
lemma continuous_at_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2563
    "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> continuous (at z) csqrt"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2564
  by (simp add: field_differentiable_within_csqrt field_differentiable_imp_continuous_at)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2565
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2566
corollary isCont_csqrt' [simp]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2567
   "\<lbrakk>isCont f z; f z \<notin> \<real>\<^sub>\<le>\<^sub>0\<rbrakk> \<Longrightarrow> isCont (\<lambda>x. csqrt (f x)) z"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2568
  by (blast intro: isCont_o2 [OF _ continuous_at_csqrt])
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59751
diff changeset
  2569
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2570
lemma continuous_within_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2571
    "z \<notin> \<real>\<^sub>\<le>\<^sub>0 \<Longrightarrow> continuous (at z within s) csqrt"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2572
  by (simp add: field_differentiable_imp_continuous_at field_differentiable_within_csqrt)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2573
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2574
lemma continuous_on_csqrt [continuous_intros]:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2575
    "(\<And>z. z \<in> s \<Longrightarrow> z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> continuous_on s csqrt"
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2576
  by (simp add: continuous_at_imp_continuous_on continuous_within_csqrt)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2577
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2578
lemma holomorphic_on_csqrt:
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2579
    "(\<And>z. z \<in> s \<Longrightarrow> z \<notin> \<real>\<^sub>\<le>\<^sub>0) \<Longrightarrow> csqrt holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2580
  by (simp add: field_differentiable_within_csqrt holomorphic_on_def)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2581
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2582
lemma continuous_within_closed_nontrivial:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2583
    "closed s \<Longrightarrow> a \<notin> s ==> continuous (at a within s) f"
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2584
  using open_Compl
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2585
  by (force simp add: continuous_def eventually_at_topological filterlim_iff open_Collect_neg)
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2586
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2587
lemma continuous_within_csqrt_posreal:
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2588
    "continuous (at z within (\<real> \<inter> {w. 0 \<le> Re(w)})) csqrt"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2589
proof (cases "z \<in> \<real>\<^sub>\<le>\<^sub>0")
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2590
  case True
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2591
  have *: "\<And>e. \<lbrakk>0 < e\<rbrakk>
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2592
         \<Longrightarrow> \<forall>x'\<in>\<real> \<inter> {w. 0 \<le> Re w}. cmod x' < e^2 \<longrightarrow> cmod (csqrt x') < e"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2593
    by (auto simp: Reals_def real_less_lsqrt)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2594
  have "Im z = 0" "Re z < 0 \<or> z = 0"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2595
    using True cnj.code complex_cnj_zero_iff  by (auto simp: Complex_eq complex_nonpos_Reals_iff) fastforce
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2596
  with * show ?thesis
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2597
    apply (auto simp: continuous_within_closed_nontrivial [OF closed_Real_halfspace_Re_ge])
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2598
    apply (auto simp: continuous_within_eps_delta)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2599
    using zero_less_power by blast
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2600
next
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2601
  case False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2602
    then show ?thesis   by (blast intro: continuous_within_csqrt)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2603
qed
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  2604
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2605
subsection\<open>Complex arctangent\<close>
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2606
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2607
text\<open>The branch cut gives standard bounds in the real case.\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2608
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2609
definition Arctan :: "complex \<Rightarrow> complex" where
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2610
    "Arctan \<equiv> \<lambda>z. (\<i>/2) * Ln((1 - \<i>*z) / (1 + \<i>*z))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2611
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2612
lemma Arctan_def_moebius: "Arctan z = \<i>/2 * Ln (moebius (-\<i>) 1 \<i> 1 z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2613
  by (simp add: Arctan_def moebius_def add_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2614
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2615
lemma Ln_conv_Arctan:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2616
  assumes "z \<noteq> -1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2617
  shows   "Ln z = -2*\<i> * Arctan (moebius 1 (- 1) (- \<i>) (- \<i>) z)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2618
proof -
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2619
  have "Arctan (moebius 1 (- 1) (- \<i>) (- \<i>) z) =
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2620
             \<i>/2 * Ln (moebius (- \<i>) 1 \<i> 1 (moebius 1 (- 1) (- \<i>) (- \<i>) z))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2621
    by (simp add: Arctan_def_moebius)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2622
  also from assms have "\<i> * z \<noteq> \<i> * (-1)" by (subst mult_left_cancel) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2623
  hence "\<i> * z - -\<i> \<noteq> 0" by (simp add: eq_neg_iff_add_eq_0)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2624
  from moebius_inverse'[OF _ this, of 1 1]
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2625
    have "moebius (- \<i>) 1 \<i> 1 (moebius 1 (- 1) (- \<i>) (- \<i>) z) = z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2626
  finally show ?thesis by (simp add: field_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2627
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2628
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2629
lemma Arctan_0 [simp]: "Arctan 0 = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2630
  by (simp add: Arctan_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2631
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2632
lemma Im_complex_div_lemma: "Im((1 - \<i>*z) / (1 + \<i>*z)) = 0 \<longleftrightarrow> Re z = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2633
  by (auto simp: Im_complex_div_eq_0 algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2634
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2635
lemma Re_complex_div_lemma: "0 < Re((1 - \<i>*z) / (1 + \<i>*z)) \<longleftrightarrow> norm z < 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2636
  by (simp add: Re_complex_div_gt_0 algebra_simps cmod_def power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2637
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2638
lemma tan_Arctan:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2639
  assumes "z\<^sup>2 \<noteq> -1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2640
    shows [simp]:"tan(Arctan z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2641
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2642
  have "1 + \<i>*z \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2643
    by (metis assms complex_i_mult_minus i_squared minus_unique power2_eq_square power2_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2644
  moreover
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2645
  have "1 - \<i>*z \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2646
    by (metis assms complex_i_mult_minus i_squared power2_eq_square power2_minus right_minus_eq)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2647
  ultimately
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2648
  show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2649
    by (simp add: Arctan_def tan_def sin_exp_eq cos_exp_eq exp_minus csqrt_exp_Ln [symmetric]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2650
                  divide_simps power2_eq_square [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2651
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2652
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2653
lemma Arctan_tan [simp]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2654
  assumes "\<bar>Re z\<bar> < pi/2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2655
    shows "Arctan(tan z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2656
proof -
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2657
  have ge_pi2: "\<And>n::int. \<bar>of_int (2*n + 1) * pi/2\<bar> \<ge> pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2658
    by (case_tac n rule: int_cases) (auto simp: abs_mult)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2659
  have "exp (\<i>*z)*exp (\<i>*z) = -1 \<longleftrightarrow> exp (2*\<i>*z) = -1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2660
    by (metis distrib_right exp_add mult_2)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2661
  also have "... \<longleftrightarrow> exp (2*\<i>*z) = exp (\<i>*pi)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2662
    using cis_conv_exp cis_pi by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2663
  also have "... \<longleftrightarrow> exp (2*\<i>*z - \<i>*pi) = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2664
    by (metis (no_types) diff_add_cancel diff_minus_eq_add exp_add exp_minus_inverse mult.commute)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2665
  also have "... \<longleftrightarrow> Re(\<i>*2*z - \<i>*pi) = 0 \<and> (\<exists>n::int. Im(\<i>*2*z - \<i>*pi) = of_int (2 * n) * pi)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2666
    by (simp add: exp_eq_1)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2667
  also have "... \<longleftrightarrow> Im z = 0 \<and> (\<exists>n::int. 2 * Re z = of_int (2*n + 1) * pi)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2668
    by (simp add: algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2669
  also have "... \<longleftrightarrow> False"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2670
    using assms ge_pi2
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2671
    apply (auto simp: algebra_simps)
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61524
diff changeset
  2672
    by (metis abs_mult_pos not_less of_nat_less_0_iff of_nat_numeral)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2673
  finally have *: "exp (\<i>*z)*exp (\<i>*z) + 1 \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2674
    by (auto simp: add.commute minus_unique)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2675
  show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2676
    using assms *
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2677
    apply (simp add: Arctan_def tan_def sin_exp_eq cos_exp_eq exp_minus divide_simps
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2678
                     i_times_eq_iff power2_eq_square [symmetric])
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2679
    apply (rule Ln_unique)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2680
    apply (auto simp: divide_simps exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2681
    apply (simp add: algebra_simps exp_double [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2682
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2683
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2684
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2685
lemma
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2686
  assumes "Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1"
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2687
  shows Re_Arctan_bounds: "\<bar>Re(Arctan z)\<bar> < pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2688
    and has_field_derivative_Arctan: "(Arctan has_field_derivative inverse(1 + z\<^sup>2)) (at z)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2689
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2690
  have nz0: "1 + \<i>*z \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2691
    using assms
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  2692
    by (metis abs_one add_diff_cancel_left' complex_i_mult_minus diff_0 i_squared imaginary_unit.simps
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2693
                less_asym neg_equal_iff_equal)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2694
  have "z \<noteq> -\<i>" using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2695
    by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2696
  then have zz: "1 + z * z \<noteq> 0"
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2697
    by (metis abs_one assms i_squared imaginary_unit.simps less_irrefl minus_unique square_eq_iff)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2698
  have nz1: "1 - \<i>*z \<noteq> 0"
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  2699
    using assms by (force simp add: i_times_eq_iff)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2700
  have nz2: "inverse (1 + \<i>*z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2701
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2702
    by (metis Im_complex_div_lemma Re_complex_div_lemma cmod_eq_Im divide_complex_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2703
              less_irrefl mult_zero_right zero_complex.simps(1) zero_complex.simps(2))
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2704
  have nzi: "((1 - \<i>*z) * inverse (1 + \<i>*z)) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2705
    using nz1 nz2 by auto
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2706
  have "Im ((1 - \<i>*z) / (1 + \<i>*z)) = 0 \<Longrightarrow> 0 < Re ((1 - \<i>*z) / (1 + \<i>*z))"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2707
    apply (simp add: divide_complex_def)
62390
842917225d56 more canonical names
nipkow
parents: 62131
diff changeset
  2708
    apply (simp add: divide_simps split: if_split_asm)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2709
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2710
    apply (auto simp: algebra_simps abs_square_less_1 [unfolded power2_eq_square])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2711
    done
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2712
  then have *: "((1 - \<i>*z) / (1 + \<i>*z)) \<notin> \<real>\<^sub>\<le>\<^sub>0"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2713
    by (auto simp add: complex_nonpos_Reals_iff)
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2714
  show "\<bar>Re(Arctan z)\<bar> < pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2715
    unfolding Arctan_def divide_complex_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2716
    using mpi_less_Im_Ln [OF nzi]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2717
    apply (auto simp: abs_if intro!: Im_Ln_less_pi * [unfolded divide_complex_def])
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2718
    done
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2719
  show "(Arctan has_field_derivative inverse(1 + z\<^sup>2)) (at z)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2720
    unfolding Arctan_def scaleR_conv_of_real
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2721
    apply (intro derivative_eq_intros | simp add: nz0 *)+
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2722
    using nz0 nz1 zz
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2723
    apply (simp add: algebra_simps divide_simps power2_eq_square)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2724
    apply algebra
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2725
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2726
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2727
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2728
lemma field_differentiable_at_Arctan: "(Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> Arctan field_differentiable at z"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2729
  using has_field_derivative_Arctan
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2730
  by (auto simp: field_differentiable_def)
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2731
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2732
lemma field_differentiable_within_Arctan:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2733
    "(Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> Arctan field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2734
  using field_differentiable_at_Arctan field_differentiable_at_within by blast
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2735
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2736
declare has_field_derivative_Arctan [derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2737
declare has_field_derivative_Arctan [THEN DERIV_chain2, derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2738
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2739
lemma continuous_at_Arctan:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2740
    "(Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> continuous (at z) Arctan"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2741
  by (simp add: field_differentiable_imp_continuous_at field_differentiable_within_Arctan)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2742
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2743
lemma continuous_within_Arctan:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2744
    "(Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> continuous (at z within s) Arctan"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2745
  using continuous_at_Arctan continuous_at_imp_continuous_within by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2746
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2747
lemma continuous_on_Arctan [continuous_intros]:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2748
    "(\<And>z. z \<in> s \<Longrightarrow> Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> continuous_on s Arctan"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2749
  by (auto simp: continuous_at_imp_continuous_on continuous_within_Arctan)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2750
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2751
lemma holomorphic_on_Arctan:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2752
    "(\<And>z. z \<in> s \<Longrightarrow> Re z = 0 \<Longrightarrow> \<bar>Im z\<bar> < 1) \<Longrightarrow> Arctan holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2753
  by (simp add: field_differentiable_within_Arctan holomorphic_on_def)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2754
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2755
lemma Arctan_series:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2756
  assumes z: "norm (z :: complex) < 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2757
  defines "g \<equiv> \<lambda>n. if odd n then -\<i>*\<i>^n / n else 0"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2758
  defines "h \<equiv> \<lambda>z n. (-1)^n / of_nat (2*n+1) * (z::complex)^(2*n+1)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2759
  shows   "(\<lambda>n. g n * z^n) sums Arctan z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2760
  and     "h z sums Arctan z"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2761
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
  2762
  define G where [abs_def]: "G z = (\<Sum>n. g n * z^n)" for z
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2763
  have summable: "summable (\<lambda>n. g n * u^n)" if "norm u < 1" for u
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2764
  proof (cases "u = 0")
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2765
    assume u: "u \<noteq> 0"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2766
    have "(\<lambda>n. ereal (norm (h u n) / norm (h u (Suc n)))) = (\<lambda>n. ereal (inverse (norm u)^2) *
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2767
              ereal ((2 + inverse (real (Suc n))) / (2 - inverse (real (Suc n)))))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2768
    proof
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2769
      fix n
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2770
      have "ereal (norm (h u n) / norm (h u (Suc n))) =
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2771
             ereal (inverse (norm u)^2) * ereal (((2*Suc n+1) / (Suc n)) /
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2772
                 ((2*Suc n-1) / (Suc n)))"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2773
      by (simp add: h_def norm_mult norm_power norm_divide divide_simps
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2774
                    power2_eq_square eval_nat_numeral del: of_nat_add of_nat_Suc)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2775
      also have "of_nat (2*Suc n+1) / of_nat (Suc n) = (2::real) + inverse (real (Suc n))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2776
        by (auto simp: divide_simps simp del: of_nat_Suc) simp_all?
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2777
      also have "of_nat (2*Suc n-1) / of_nat (Suc n) = (2::real) - inverse (real (Suc n))"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2778
        by (auto simp: divide_simps simp del: of_nat_Suc) simp_all?
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2779
      finally show "ereal (norm (h u n) / norm (h u (Suc n))) = ereal (inverse (norm u)^2) *
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2780
              ereal ((2 + inverse (real (Suc n))) / (2 - inverse (real (Suc n))))" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2781
    qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2782
    also have "\<dots> \<longlonglongrightarrow> ereal (inverse (norm u)^2) * ereal ((2 + 0) / (2 - 0))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2783
      by (intro tendsto_intros LIMSEQ_inverse_real_of_nat) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2784
    finally have "liminf (\<lambda>n. ereal (cmod (h u n) / cmod (h u (Suc n)))) = inverse (norm u)^2"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2785
      by (intro lim_imp_Liminf) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2786
    moreover from power_strict_mono[OF that, of 2] u have "inverse (norm u)^2 > 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2787
      by (simp add: divide_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2788
    ultimately have A: "liminf (\<lambda>n. ereal (cmod (h u n) / cmod (h u (Suc n)))) > 1" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2789
    from u have "summable (h u)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2790
      by (intro summable_norm_cancel[OF ratio_test_convergence[OF _ A]])
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2791
         (auto simp: h_def norm_divide norm_mult norm_power simp del: of_nat_Suc
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2792
               intro!: mult_pos_pos divide_pos_pos always_eventually)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2793
    thus "summable (\<lambda>n. g n * u^n)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2794
      by (subst summable_mono_reindex[of "\<lambda>n. 2*n+1", symmetric])
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 66252
diff changeset
  2795
         (auto simp: power_mult strict_mono_def g_def h_def elim!: oddE)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2796
  qed (simp add: h_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2797
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2798
  have "\<exists>c. \<forall>u\<in>ball 0 1. Arctan u - G u = c"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2799
  proof (rule has_field_derivative_zero_constant)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2800
    fix u :: complex assume "u \<in> ball 0 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2801
    hence u: "norm u < 1" by (simp add: dist_0_norm)
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
  2802
    define K where "K = (norm u + 1) / 2"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2803
    from u and abs_Im_le_cmod[of u] have Im_u: "\<bar>Im u\<bar> < 1" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2804
    from u have K: "0 \<le> K" "norm u < K" "K < 1" by (simp_all add: K_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2805
    hence "(G has_field_derivative (\<Sum>n. diffs g n * u ^ n)) (at u)" unfolding G_def
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2806
      by (intro termdiffs_strong[of _ "of_real K"] summable) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2807
    also have "(\<lambda>n. diffs g n * u^n) = (\<lambda>n. if even n then (\<i>*u)^n else 0)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2808
      by (intro ext) (simp_all del: of_nat_Suc add: g_def diffs_def power_mult_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2809
    also have "suminf \<dots> = (\<Sum>n. (-(u^2))^n)"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2810
      by (subst suminf_mono_reindex[of "\<lambda>n. 2*n", symmetric])
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 66252
diff changeset
  2811
         (auto elim!: evenE simp: strict_mono_def power_mult power_mult_distrib)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2812
    also from u have "norm u^2 < 1^2" by (intro power_strict_mono) simp_all
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2813
    hence "(\<Sum>n. (-(u^2))^n) = inverse (1 + u^2)"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2814
      by (subst suminf_geometric) (simp_all add: norm_power inverse_eq_divide)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2815
    finally have "(G has_field_derivative inverse (1 + u\<^sup>2)) (at u)" .
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2816
    from DERIV_diff[OF has_field_derivative_Arctan this] Im_u u
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2817
      show "((\<lambda>u. Arctan u - G u) has_field_derivative 0) (at u within ball 0 1)"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2818
      by (simp_all add: at_within_open[OF _ open_ball])
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2819
  qed simp_all
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2820
  then obtain c where c: "\<And>u. norm u < 1 \<Longrightarrow> Arctan u - G u = c" by auto
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2821
  from this[of 0] have "c = 0" by (simp add: G_def g_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2822
  with c z have "Arctan z = G z" by simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2823
  with summable[OF z] show "(\<lambda>n. g n * z^n) sums Arctan z" unfolding G_def by (simp add: sums_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2824
  thus "h z sums Arctan z" by (subst (asm) sums_mono_reindex[of "\<lambda>n. 2*n+1", symmetric])
66447
a1f5c5c26fa6 Replaced subseq with strict_mono
eberlm <eberlm@in.tum.de>
parents: 66252
diff changeset
  2825
                              (auto elim!: oddE simp: strict_mono_def power_mult g_def h_def)
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2826
qed
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2827
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2828
text \<open>A quickly-converging series for the logarithm, based on the arctangent.\<close>
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2829
lemma ln_series_quadratic:
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2830
  assumes x: "x > (0::real)"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2831
  shows "(\<lambda>n. (2*((x - 1) / (x + 1)) ^ (2*n+1) / of_nat (2*n+1))) sums ln x"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2832
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62843
diff changeset
  2833
  define y :: complex where "y = of_real ((x-1)/(x+1))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2834
  from x have x': "complex_of_real x \<noteq> of_real (-1)"  by (subst of_real_eq_iff) auto
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2835
  from x have "\<bar>x - 1\<bar> < \<bar>x + 1\<bar>" by linarith
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2836
  hence "norm (complex_of_real (x - 1) / complex_of_real (x + 1)) < 1"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2837
    by (simp add: norm_divide del: of_real_add of_real_diff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2838
  hence "norm (\<i> * y) < 1" unfolding y_def by (subst norm_mult) simp
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2839
  hence "(\<lambda>n. (-2*\<i>) * ((-1)^n / of_nat (2*n+1) * (\<i>*y)^(2*n+1))) sums ((-2*\<i>) * Arctan (\<i>*y))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2840
    by (intro Arctan_series sums_mult) simp_all
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2841
  also have "(\<lambda>n. (-2*\<i>) * ((-1)^n / of_nat (2*n+1) * (\<i>*y)^(2*n+1))) =
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2842
                 (\<lambda>n. (-2*\<i>) * ((-1)^n * (\<i>*y*(-y\<^sup>2)^n)/of_nat (2*n+1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2843
    by (intro ext) (simp_all add: power_mult power_mult_distrib)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2844
  also have "\<dots> = (\<lambda>n. 2*y* ((-1) * (-y\<^sup>2))^n/of_nat (2*n+1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2845
    by (intro ext, subst power_mult_distrib) (simp add: algebra_simps power_mult)
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  2846
  also have "\<dots> = (\<lambda>n. 2*y^(2*n+1) / of_nat (2*n+1))"
62049
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2847
    by (subst power_add, subst power_mult) (simp add: mult_ac)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2848
  also have "\<dots> = (\<lambda>n. of_real (2*((x-1)/(x+1))^(2*n+1) / of_nat (2*n+1)))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2849
    by (intro ext) (simp add: y_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2850
  also have "\<i> * y = (of_real x - 1) / (-\<i> * (of_real x + 1))"
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2851
    by (subst divide_divide_eq_left [symmetric]) (simp add: y_def)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2852
  also have "\<dots> = moebius 1 (-1) (-\<i>) (-\<i>) (of_real x)" by (simp add: moebius_def algebra_simps)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2853
  also from x' have "-2*\<i>*Arctan \<dots> = Ln (of_real x)" by (intro Ln_conv_Arctan [symmetric]) simp_all
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2854
  also from x have "\<dots> = ln x" by (rule Ln_of_real)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2855
  finally show ?thesis by (subst (asm) sums_of_real_iff)
b0f941e207cf Added lots of material on infinite sums, convergence radii, harmonic numbers, Gamma function
eberlm
parents: 61973
diff changeset
  2856
qed
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2857
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  2858
subsection \<open>Real arctangent\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2859
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2860
lemma Im_Arctan_of_real [simp]: "Im (Arctan (of_real x)) = 0"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2861
proof -
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2862
  have ne: "1 + x\<^sup>2 \<noteq> 0"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2863
    by (metis power_one sum_power2_eq_zero_iff zero_neq_one)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2864
  have "Re (Ln ((1 - \<i> * x) * inverse (1 + \<i> * x))) = 0"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2865
    apply (rule norm_exp_imaginary)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2866
    apply (subst exp_Ln)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2867
    using ne apply (simp_all add: cmod_def complex_eq_iff)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2868
    apply (auto simp: divide_simps)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2869
    apply algebra
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2870
    done
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2871
  then show ?thesis
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2872
    unfolding Arctan_def divide_complex_def by (simp add: complex_eq_iff)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2873
qed
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2874
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2875
lemma arctan_eq_Re_Arctan: "arctan x = Re (Arctan (of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2876
proof (rule arctan_unique)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2877
  show "- (pi / 2) < Re (Arctan (complex_of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2878
    apply (simp add: Arctan_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2879
    apply (rule Im_Ln_less_pi)
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  2880
    apply (auto simp: Im_complex_div_lemma complex_nonpos_Reals_iff)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2881
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2882
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2883
  have *: " (1 - \<i>*x) / (1 + \<i>*x) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2884
    by (simp add: divide_simps) ( simp add: complex_eq_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2885
  show "Re (Arctan (complex_of_real x)) < pi / 2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2886
    using mpi_less_Im_Ln [OF *]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2887
    by (simp add: Arctan_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2888
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2889
  have "tan (Re (Arctan (of_real x))) = Re (tan (Arctan (of_real x)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2890
    apply (auto simp: tan_def Complex.Re_divide Re_sin Re_cos Im_sin Im_cos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2891
    apply (simp add: field_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2892
    by (simp add: power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2893
  also have "... = x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2894
    apply (subst tan_Arctan, auto)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2895
    by (metis diff_0_right minus_diff_eq mult_zero_left not_le of_real_1 of_real_eq_iff of_real_minus of_real_power power2_eq_square real_minus_mult_self_le zero_less_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2896
  finally show "tan (Re (Arctan (complex_of_real x))) = x" .
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2897
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2898
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2899
lemma Arctan_of_real: "Arctan (of_real x) = of_real (arctan x)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2900
  unfolding arctan_eq_Re_Arctan divide_complex_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2901
  by (simp add: complex_eq_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2902
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2903
lemma Arctan_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> Arctan z \<in> \<real>"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2904
  by (metis Reals_cases Reals_of_real Arctan_of_real)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2905
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2906
declare arctan_one [simp]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2907
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2908
lemma arctan_less_pi4_pos: "x < 1 \<Longrightarrow> arctan x < pi/4"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2909
  by (metis arctan_less_iff arctan_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2910
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2911
lemma arctan_less_pi4_neg: "-1 < x \<Longrightarrow> -(pi/4) < arctan x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2912
  by (metis arctan_less_iff arctan_minus arctan_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2913
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2914
lemma arctan_less_pi4: "\<bar>x\<bar> < 1 \<Longrightarrow> \<bar>arctan x\<bar> < pi/4"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2915
  by (metis abs_less_iff arctan_less_pi4_pos arctan_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2916
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2917
lemma arctan_le_pi4: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> \<bar>arctan x\<bar> \<le> pi/4"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2918
  by (metis abs_le_iff arctan_le_iff arctan_minus arctan_one)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2919
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2920
lemma abs_arctan: "\<bar>arctan x\<bar> = arctan \<bar>x\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2921
  by (simp add: abs_if arctan_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2922
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2923
lemma arctan_add_raw:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2924
  assumes "\<bar>arctan x + arctan y\<bar> < pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2925
    shows "arctan x + arctan y = arctan((x + y) / (1 - x * y))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2926
proof (rule arctan_unique [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2927
  show 12: "- (pi / 2) < arctan x + arctan y" "arctan x + arctan y < pi / 2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2928
    using assms by linarith+
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2929
  show "tan (arctan x + arctan y) = (x + y) / (1 - x * y)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2930
    using cos_gt_zero_pi [OF 12]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2931
    by (simp add: arctan tan_add)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2932
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2933
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2934
lemma arctan_inverse:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2935
  assumes "0 < x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2936
    shows "arctan(inverse x) = pi/2 - arctan x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2937
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2938
  have "arctan(inverse x) = arctan(inverse(tan(arctan x)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2939
    by (simp add: arctan)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2940
  also have "... = arctan (tan (pi / 2 - arctan x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2941
    by (simp add: tan_cot)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2942
  also have "... = pi/2 - arctan x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2943
  proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2944
    have "0 < pi - arctan x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2945
    using arctan_ubound [of x] pi_gt_zero by linarith
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2946
    with assms show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2947
      by (simp add: Transcendental.arctan_tan)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2948
  qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2949
  finally show ?thesis .
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2950
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2951
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2952
lemma arctan_add_small:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2953
  assumes "\<bar>x * y\<bar> < 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2954
    shows "(arctan x + arctan y = arctan((x + y) / (1 - x * y)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2955
proof (cases "x = 0 \<or> y = 0")
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2956
  case True then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2957
    by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2958
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2959
  case False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2960
  then have *: "\<bar>arctan x\<bar> < pi / 2 - \<bar>arctan y\<bar>" using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2961
    apply (auto simp add: abs_arctan arctan_inverse [symmetric] arctan_less_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2962
    apply (simp add: divide_simps abs_mult)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2963
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2964
  show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2965
    apply (rule arctan_add_raw)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2966
    using * by linarith
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2967
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2968
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2969
lemma abs_arctan_le:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2970
  fixes x::real shows "\<bar>arctan x\<bar> \<le> \<bar>x\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2971
proof -
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2972
  have 1: "\<And>x. x \<in> \<real> \<Longrightarrow> cmod (inverse (1 + x\<^sup>2)) \<le> 1"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2973
    by (simp add: norm_divide divide_simps in_Reals_norm complex_is_Real_iff power2_eq_square)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2974
  have "cmod (Arctan w - Arctan z) \<le> 1 * cmod (w-z)" if "w \<in> \<real>" "z \<in> \<real>" for w z
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2975
    apply (rule field_differentiable_bound [OF convex_Reals, of Arctan _ 1])
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2976
       apply (rule has_field_derivative_at_within [OF has_field_derivative_Arctan])
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2977
    using 1 that apply (auto simp: Reals_def)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  2978
    done
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2979
  then have "cmod (Arctan (of_real x) - Arctan 0) \<le> 1 * cmod (of_real x -0)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2980
    using Reals_0 Reals_of_real by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2981
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2982
    by (simp add: Arctan_of_real)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2983
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2984
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2985
lemma arctan_le_self: "0 \<le> x \<Longrightarrow> arctan x \<le> x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2986
  by (metis abs_arctan_le abs_of_nonneg zero_le_arctan_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2987
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  2988
lemma abs_tan_ge: "\<bar>x\<bar> < pi/2 \<Longrightarrow> \<bar>x\<bar> \<le> \<bar>tan x\<bar>"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2989
  by (metis abs_arctan_le abs_less_iff arctan_tan minus_less_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  2990
63556
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2991
lemma arctan_bounds:
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2992
  assumes "0 \<le> x" "x < 1"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2993
  shows arctan_lower_bound:
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2994
    "(\<Sum>k<2 * n. (- 1) ^ k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1))) \<le> arctan x"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2995
    (is "(\<Sum>k<_. (- 1)^ k * ?a k) \<le> _")
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2996
    and arctan_upper_bound:
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2997
    "arctan x \<le> (\<Sum>k<2 * n + 1. (- 1) ^ k * (1 / real (k * 2 + 1) * x ^ (k * 2 + 1)))"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2998
proof -
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  2999
  have tendsto_zero: "?a \<longlonglongrightarrow> 0"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3000
  proof (rule tendsto_eq_rhs)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3001
    show "(\<lambda>k. 1 / real (k * 2 + 1) * x ^ (k * 2 + 1)) \<longlonglongrightarrow> 0 * 0"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3002
      using assms
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3003
      by (intro tendsto_mult real_tendsto_divide_at_top)
63556
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3004
        (auto simp: filterlim_real_sequentially filterlim_sequentially_iff_filterlim_real
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3005
          intro!: real_tendsto_divide_at_top tendsto_power_zero filterlim_real_sequentially
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3006
          tendsto_eq_intros filterlim_at_top_mult_tendsto_pos filterlim_tendsto_add_at_top)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3007
  qed simp
63556
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3008
  have nonneg: "0 \<le> ?a n" for n
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3009
    by (force intro!: divide_nonneg_nonneg mult_nonneg_nonneg zero_le_power assms)
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3010
  have le: "?a (Suc n) \<le> ?a n" for n
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3011
    by (rule mult_mono[OF _ power_decreasing]) (auto simp: divide_simps assms less_imp_le)
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3012
  from summable_Leibniz'(4)[of ?a, OF tendsto_zero nonneg le, of n]
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3013
    summable_Leibniz'(2)[of ?a, OF tendsto_zero nonneg le, of n]
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3014
    assms
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3015
  show "(\<Sum>k<2*n. (- 1)^ k * ?a k) \<le> arctan x" "arctan x \<le> (\<Sum>k<2 * n + 1. (- 1)^ k * ?a k)"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3016
    by (auto simp: arctan_series)
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3017
qed
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3018
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3019
subsection \<open>Bounds on pi using real arctangent\<close>
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3020
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3021
lemma pi_machin: "pi = 16 * arctan (1 / 5) - 4 * arctan (1 / 239)"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3022
  using machin by simp
63556
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3023
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3024
lemma pi_approx: "3.141592653588 \<le> pi" "pi \<le> 3.1415926535899"
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3025
  unfolding pi_machin
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3026
  using arctan_bounds[of "1/5"   4]
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3027
        arctan_bounds[of "1/239" 4]
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3028
  by (simp_all add: eval_nat_numeral)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3029
65583
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  3030
corollary pi_gt3: "pi > 3"
8d53b3bebab4 Further new material. The simprule status of some exp and ln identities was reverted.
paulson <lp15@cam.ac.uk>
parents: 65578
diff changeset
  3031
  using pi_approx by simp
63556
36e9732988ce numerical bounds on pi
immler
parents: 63492
diff changeset
  3032
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3033
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3034
subsection\<open>Inverse Sine\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3035
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3036
definition Arcsin :: "complex \<Rightarrow> complex" where
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3037
   "Arcsin \<equiv> \<lambda>z. -\<i> * Ln(\<i> * z + csqrt(1 - z\<^sup>2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3038
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3039
lemma Arcsin_body_lemma: "\<i> * z + csqrt(1 - z\<^sup>2) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3040
  using power2_csqrt [of "1 - z\<^sup>2"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3041
  apply auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3042
  by (metis complex_i_mult_minus diff_add_cancel diff_minus_eq_add diff_self mult.assoc mult.left_commute numeral_One power2_csqrt power2_eq_square zero_neq_numeral)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3043
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3044
lemma Arcsin_range_lemma: "\<bar>Re z\<bar> < 1 \<Longrightarrow> 0 < Re(\<i> * z + csqrt(1 - z\<^sup>2))"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3045
  using Complex.cmod_power2 [of z, symmetric]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3046
  by (simp add: real_less_rsqrt algebra_simps Re_power2 cmod_square_less_1_plus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3047
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3048
lemma Re_Arcsin: "Re(Arcsin z) = Im (Ln (\<i> * z + csqrt(1 - z\<^sup>2)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3049
  by (simp add: Arcsin_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3050
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3051
lemma Im_Arcsin: "Im(Arcsin z) = - ln (cmod (\<i> * z + csqrt (1 - z\<^sup>2)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3052
  by (simp add: Arcsin_def Arcsin_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3053
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3054
lemma one_minus_z2_notin_nonpos_Reals:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3055
  assumes "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3056
  shows "1 - z\<^sup>2 \<notin> \<real>\<^sub>\<le>\<^sub>0"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3057
  using assms
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3058
  apply (auto simp: complex_nonpos_Reals_iff Re_power2 Im_power2)
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3059
  using power2_less_0 [of "Im z"] apply force
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3060
  using abs_square_less_1 not_le by blast
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3061
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3062
lemma isCont_Arcsin_lemma:
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3063
  assumes le0: "Re (\<i> * z + csqrt (1 - z\<^sup>2)) \<le> 0" and "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3064
    shows False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3065
proof (cases "Im z = 0")
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3066
  case True
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3067
  then show ?thesis
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3068
    using assms by (fastforce simp: cmod_def abs_square_less_1 [symmetric])
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3069
next
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3070
  case False
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3071
  have leim: "(cmod (1 - z\<^sup>2) + (1 - Re (z\<^sup>2))) / 2 \<le> (Im z)\<^sup>2"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3072
    using le0 sqrt_le_D by fastforce
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3073
  have neq: "(cmod z)\<^sup>2 \<noteq> 1 + cmod (1 - z\<^sup>2)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3074
  proof (clarsimp simp add: cmod_def)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3075
    assume "(Re z)\<^sup>2 + (Im z)\<^sup>2 = 1 + sqrt ((1 - Re (z\<^sup>2))\<^sup>2 + (Im (z\<^sup>2))\<^sup>2)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3076
    then have "((Re z)\<^sup>2 + (Im z)\<^sup>2 - 1)\<^sup>2 = ((1 - Re (z\<^sup>2))\<^sup>2 + (Im (z\<^sup>2))\<^sup>2)"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3077
      by simp
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3078
    then show False using False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3079
      by (simp add: power2_eq_square algebra_simps)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3080
  qed
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3081
  moreover have 2: "(Im z)\<^sup>2 = (1 + ((Im z)\<^sup>2 + cmod (1 - z\<^sup>2)) - (Re z)\<^sup>2) / 2"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3082
    using leim cmod_power2 [of z] norm_triangle_ineq2 [of "z^2" 1]
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3083
    by (simp add: norm_power Re_power2 norm_minus_commute [of 1])
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3084
  ultimately show False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3085
    by (simp add: Re_power2 Im_power2 cmod_power2)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3086
qed
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3087
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3088
lemma isCont_Arcsin:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3089
  assumes "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3090
    shows "isCont Arcsin z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3091
proof -
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3092
  have 1: "\<i> * z + csqrt (1 - z\<^sup>2) \<notin> \<real>\<^sub>\<le>\<^sub>0"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3093
    by (metis isCont_Arcsin_lemma assms complex_nonpos_Reals_iff)
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3094
  have 2: "1 - z\<^sup>2 \<notin> \<real>\<^sub>\<le>\<^sub>0"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3095
    by (simp add: one_minus_z2_notin_nonpos_Reals assms)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3096
  show ?thesis
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3097
    using assms unfolding Arcsin_def by (intro isCont_Ln' isCont_csqrt' continuous_intros 1 2)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3098
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3099
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3100
lemma isCont_Arcsin' [simp]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3101
  shows "isCont f z \<Longrightarrow> (Im (f z) = 0 \<Longrightarrow> \<bar>Re (f z)\<bar> < 1) \<Longrightarrow> isCont (\<lambda>x. Arcsin (f x)) z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3102
  by (blast intro: isCont_o2 [OF _ isCont_Arcsin])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3103
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3104
lemma sin_Arcsin [simp]: "sin(Arcsin z) = z"
60141
833adf7db7d8 New material, mostly about limits. Consolidation.
paulson <lp15@cam.ac.uk>
parents: 60020
diff changeset
  3105
proof -
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3106
  have "\<i>*z*2 + csqrt (1 - z\<^sup>2)*2 = 0 \<longleftrightarrow> (\<i>*z)*2 + csqrt (1 - z\<^sup>2)*2 = 0"
67443
3abf6a722518 standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents: 67371
diff changeset
  3107
    by (simp add: algebra_simps)  \<comment> \<open>Cancelling a factor of 2\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3108
  moreover have "... \<longleftrightarrow> (\<i>*z) + csqrt (1 - z\<^sup>2) = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3109
    by (metis Arcsin_body_lemma distrib_right no_zero_divisors zero_neq_numeral)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3110
  ultimately show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3111
    apply (simp add: sin_exp_eq Arcsin_def Arcsin_body_lemma exp_minus divide_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3112
    apply (simp add: algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3113
    apply (simp add: power2_eq_square [symmetric] algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3114
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3115
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3116
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3117
lemma Re_eq_pihalf_lemma:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3118
    "\<bar>Re z\<bar> = pi/2 \<Longrightarrow> Im z = 0 \<Longrightarrow>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3119
      Re ((exp (\<i>*z) + inverse (exp (\<i>*z))) / 2) = 0 \<and> 0 \<le> Im ((exp (\<i>*z) + inverse (exp (\<i>*z))) / 2)"
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  3120
  apply (simp add: cos_i_times [symmetric] Re_cos Im_cos abs_if del: eq_divide_eq_numeral1)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3121
  by (metis cos_minus cos_pi_half)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3122
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3123
lemma Re_less_pihalf_lemma:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3124
  assumes "\<bar>Re z\<bar> < pi / 2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3125
    shows "0 < Re ((exp (\<i>*z) + inverse (exp (\<i>*z))) / 2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3126
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3127
  have "0 < cos (Re z)" using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3128
    using cos_gt_zero_pi by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3129
  then show ?thesis
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  3130
    by (simp add: cos_i_times [symmetric] Re_cos Im_cos add_pos_pos)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3131
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3132
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3133
lemma Arcsin_sin:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3134
    assumes "\<bar>Re z\<bar> < pi/2 \<or> (\<bar>Re z\<bar> = pi/2 \<and> Im z = 0)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3135
      shows "Arcsin(sin z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3136
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3137
  have "Arcsin(sin z) = - (\<i> * Ln (csqrt (1 - (\<i> * (exp (\<i>*z) - inverse (exp (\<i>*z))))\<^sup>2 / 4) - (inverse (exp (\<i>*z)) - exp (\<i>*z)) / 2))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3138
    by (simp add: sin_exp_eq Arcsin_def exp_minus power_divide)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3139
  also have "... = - (\<i> * Ln (csqrt (((exp (\<i>*z) + inverse (exp (\<i>*z)))/2)\<^sup>2) - (inverse (exp (\<i>*z)) - exp (\<i>*z)) / 2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3140
    by (simp add: field_simps power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3141
  also have "... = - (\<i> * Ln (((exp (\<i>*z) + inverse (exp (\<i>*z)))/2) - (inverse (exp (\<i>*z)) - exp (\<i>*z)) / 2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3142
    apply (subst csqrt_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3143
    using assms Re_eq_pihalf_lemma Re_less_pihalf_lemma
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3144
    apply auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3145
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3146
  also have "... =  - (\<i> * Ln (exp (\<i>*z)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3147
    by (simp add: field_simps power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3148
  also have "... = z"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3149
    using assms by (auto simp: abs_if simp del: eq_divide_eq_numeral1 split: if_split_asm)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3150
  finally show ?thesis .
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3151
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3152
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3153
lemma Arcsin_unique:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3154
    "\<lbrakk>sin z = w; \<bar>Re z\<bar> < pi/2 \<or> (\<bar>Re z\<bar> = pi/2 \<and> Im z = 0)\<rbrakk> \<Longrightarrow> Arcsin w = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3155
  by (metis Arcsin_sin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3156
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3157
lemma Arcsin_0 [simp]: "Arcsin 0 = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3158
  by (metis Arcsin_sin norm_zero pi_half_gt_zero real_norm_def sin_zero zero_complex.simps(1))
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3159
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3160
lemma Arcsin_1 [simp]: "Arcsin 1 = pi/2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3161
  by (metis Arcsin_sin Im_complex_of_real Re_complex_of_real numeral_One of_real_numeral pi_half_ge_zero real_sqrt_abs real_sqrt_pow2 real_sqrt_power sin_of_real sin_pi_half)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3162
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3163
lemma Arcsin_minus_1 [simp]: "Arcsin(-1) = - (pi/2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3164
  by (metis Arcsin_1 Arcsin_sin Im_complex_of_real Re_complex_of_real abs_of_nonneg of_real_minus pi_half_ge_zero power2_minus real_sqrt_abs sin_Arcsin sin_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3165
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3166
lemma has_field_derivative_Arcsin:
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3167
  assumes "Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3168
    shows "(Arcsin has_field_derivative inverse(cos(Arcsin z))) (at z)"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3169
proof -
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3170
  have "(sin (Arcsin z))\<^sup>2 \<noteq> 1"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3171
    using assms one_minus_z2_notin_nonpos_Reals by force
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3172
  then have "cos (Arcsin z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3173
    by (metis diff_0_right power_zero_numeral sin_squared_eq)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3174
  then show ?thesis
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3175
    by (rule has_field_derivative_inverse_basic [OF DERIV_sin _ _ open_ball [of z 1]]) (auto intro: isCont_Arcsin assms)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3176
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3177
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3178
declare has_field_derivative_Arcsin [derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3179
declare has_field_derivative_Arcsin [THEN DERIV_chain2, derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3180
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3181
lemma field_differentiable_at_Arcsin:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3182
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arcsin field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3183
  using field_differentiable_def has_field_derivative_Arcsin by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3184
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3185
lemma field_differentiable_within_Arcsin:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3186
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arcsin field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3187
  using field_differentiable_at_Arcsin field_differentiable_within_subset by blast
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3188
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3189
lemma continuous_within_Arcsin:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3190
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> continuous (at z within s) Arcsin"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3191
  using continuous_at_imp_continuous_within isCont_Arcsin by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3192
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3193
lemma continuous_on_Arcsin [continuous_intros]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3194
    "(\<And>z. z \<in> s \<Longrightarrow> Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> continuous_on s Arcsin"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3195
  by (simp add: continuous_at_imp_continuous_on)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3196
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3197
lemma holomorphic_on_Arcsin: "(\<And>z. z \<in> s \<Longrightarrow> Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arcsin holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3198
  by (simp add: field_differentiable_within_Arcsin holomorphic_on_def)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3199
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3200
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3201
subsection\<open>Inverse Cosine\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3202
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3203
definition Arccos :: "complex \<Rightarrow> complex" where
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3204
   "Arccos \<equiv> \<lambda>z. -\<i> * Ln(z + \<i> * csqrt(1 - z\<^sup>2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3205
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3206
lemma Arccos_range_lemma: "\<bar>Re z\<bar> < 1 \<Longrightarrow> 0 < Im(z + \<i> * csqrt(1 - z\<^sup>2))"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3207
  using Arcsin_range_lemma [of "-z"]  by simp
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3208
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3209
lemma Arccos_body_lemma: "z + \<i> * csqrt(1 - z\<^sup>2) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3210
  using Arcsin_body_lemma [of z]
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3211
  by (metis Arcsin_body_lemma complex_i_mult_minus diff_minus_eq_add power2_minus right_minus_eq)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3212
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3213
lemma Re_Arccos: "Re(Arccos z) = Im (Ln (z + \<i> * csqrt(1 - z\<^sup>2)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3214
  by (simp add: Arccos_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3215
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3216
lemma Im_Arccos: "Im(Arccos z) = - ln (cmod (z + \<i> * csqrt (1 - z\<^sup>2)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3217
  by (simp add: Arccos_def Arccos_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3218
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3219
text\<open>A very tricky argument to find!\<close>
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3220
lemma isCont_Arccos_lemma:
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3221
  assumes eq0: "Im (z + \<i> * csqrt (1 - z\<^sup>2)) = 0" and "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3222
    shows False
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3223
proof (cases "Im z = 0")
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3224
  case True
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3225
  then show ?thesis
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3226
    using assms by (fastforce simp add: cmod_def abs_square_less_1 [symmetric])
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3227
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3228
  case False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3229
  have Imz: "Im z = - sqrt ((1 + ((Im z)\<^sup>2 + cmod (1 - z\<^sup>2)) - (Re z)\<^sup>2) / 2)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3230
    using eq0 abs_Re_le_cmod [of "1-z\<^sup>2"]
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3231
    by (simp add: Re_power2 algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3232
  have "(cmod z)\<^sup>2 - 1 \<noteq> cmod (1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3233
  proof (clarsimp simp add: cmod_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3234
    assume "(Re z)\<^sup>2 + (Im z)\<^sup>2 - 1 = sqrt ((1 - Re (z\<^sup>2))\<^sup>2 + (Im (z\<^sup>2))\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3235
    then have "((Re z)\<^sup>2 + (Im z)\<^sup>2 - 1)\<^sup>2 = ((1 - Re (z\<^sup>2))\<^sup>2 + (Im (z\<^sup>2))\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3236
      by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3237
    then show False using False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3238
      by (simp add: power2_eq_square algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3239
  qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3240
  moreover have "(Im z)\<^sup>2 = ((1 + ((Im z)\<^sup>2 + cmod (1 - z\<^sup>2)) - (Re z)\<^sup>2) / 2)"
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3241
    apply (subst Imz)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3242
    using abs_Re_le_cmod [of "1-z\<^sup>2"]
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3243
    apply (simp add: Re_power2)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3244
    done
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3245
  ultimately show False
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3246
    by (simp add: cmod_power2)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3247
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3248
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3249
lemma isCont_Arccos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3250
  assumes "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3251
    shows "isCont Arccos z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3252
proof -
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3253
  have "z + \<i> * csqrt (1 - z\<^sup>2) \<notin> \<real>\<^sub>\<le>\<^sub>0"
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3254
    by (metis complex_nonpos_Reals_iff isCont_Arccos_lemma assms)
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3255
  with assms show ?thesis
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3256
    apply (simp add: Arccos_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3257
    apply (rule isCont_Ln' isCont_csqrt' continuous_intros)+
62131
1baed43f453e nonneg_Reals, nonpos_Reals, Cauchy integral formula, etc.
paulson
parents: 62087
diff changeset
  3258
    apply (simp_all add: one_minus_z2_notin_nonpos_Reals assms)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3259
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3260
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3261
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3262
lemma isCont_Arccos' [simp]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3263
  shows "isCont f z \<Longrightarrow> (Im (f z) = 0 \<Longrightarrow> \<bar>Re (f z)\<bar> < 1) \<Longrightarrow> isCont (\<lambda>x. Arccos (f x)) z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3264
  by (blast intro: isCont_o2 [OF _ isCont_Arccos])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3265
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3266
lemma cos_Arccos [simp]: "cos(Arccos z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3267
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3268
  have "z*2 + \<i> * (2 * csqrt (1 - z\<^sup>2)) = 0 \<longleftrightarrow> z*2 + \<i> * csqrt (1 - z\<^sup>2)*2 = 0"
67443
3abf6a722518 standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents: 67371
diff changeset
  3269
    by (simp add: algebra_simps)  \<comment> \<open>Cancelling a factor of 2\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3270
  moreover have "... \<longleftrightarrow> z + \<i> * csqrt (1 - z\<^sup>2) = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3271
    by (metis distrib_right mult_eq_0_iff zero_neq_numeral)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3272
  ultimately show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3273
    apply (simp add: cos_exp_eq Arccos_def Arccos_body_lemma exp_minus field_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3274
    apply (simp add: power2_eq_square [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3275
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3276
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3277
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3278
lemma Arccos_cos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3279
    assumes "0 < Re z & Re z < pi \<or>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3280
             Re z = 0 & 0 \<le> Im z \<or>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3281
             Re z = pi & Im z \<le> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3282
      shows "Arccos(cos z) = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3283
proof -
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3284
  have *: "((\<i> - (exp (\<i> * z))\<^sup>2 * \<i>) / (2 * exp (\<i> * z))) = sin z"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3285
    by (simp add: sin_exp_eq exp_minus field_simps power2_eq_square)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3286
  have "1 - (exp (\<i> * z) + inverse (exp (\<i> * z)))\<^sup>2 / 4 = ((\<i> - (exp (\<i> * z))\<^sup>2 * \<i>) / (2 * exp (\<i> * z)))\<^sup>2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3287
    by (simp add: field_simps power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3288
  then have "Arccos(cos z) = - (\<i> * Ln ((exp (\<i> * z) + inverse (exp (\<i> * z))) / 2 +
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3289
                           \<i> * csqrt (((\<i> - (exp (\<i> * z))\<^sup>2 * \<i>) / (2 * exp (\<i> * z)))\<^sup>2)))"
61694
6571c78c9667 Removed some legacy theorems; minor adjustments to simplification rules; new material on homotopic paths
paulson <lp15@cam.ac.uk>
parents: 61649
diff changeset
  3290
    by (simp add: cos_exp_eq Arccos_def exp_minus power_divide)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3291
  also have "... = - (\<i> * Ln ((exp (\<i> * z) + inverse (exp (\<i> * z))) / 2 +
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3292
                              \<i> * ((\<i> - (exp (\<i> * z))\<^sup>2 * \<i>) / (2 * exp (\<i> * z)))))"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3293
    apply (subst csqrt_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3294
    using assms Re_sin_pos [of z] Im_sin_nonneg [of z] Im_sin_nonneg2 [of z]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3295
    apply (auto simp: * Re_sin Im_sin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3296
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3297
  also have "... =  - (\<i> * Ln (exp (\<i>*z)))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3298
    by (simp add: field_simps power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3299
  also have "... = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3300
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3301
    apply (subst Complex_Transcendental.Ln_exp, auto)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3302
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3303
  finally show ?thesis .
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3304
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3305
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3306
lemma Arccos_unique:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3307
    "\<lbrakk>cos z = w;
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3308
      0 < Re z \<and> Re z < pi \<or>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3309
      Re z = 0 \<and> 0 \<le> Im z \<or>
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3310
      Re z = pi \<and> Im z \<le> 0\<rbrakk> \<Longrightarrow> Arccos w = z"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3311
  using Arccos_cos by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3312
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3313
lemma Arccos_0 [simp]: "Arccos 0 = pi/2"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3314
  by (rule Arccos_unique) auto
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3315
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3316
lemma Arccos_1 [simp]: "Arccos 1 = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3317
  by (rule Arccos_unique) auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3318
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3319
lemma Arccos_minus1: "Arccos(-1) = pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3320
  by (rule Arccos_unique) auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3321
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3322
lemma has_field_derivative_Arccos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3323
  assumes "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3324
    shows "(Arccos has_field_derivative - inverse(sin(Arccos z))) (at z)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3325
proof -
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3326
  have "x\<^sup>2 \<noteq> -1" for x::real
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3327
    by (sos "((R<1 + (([~1] * A=0) + (R<1 * (R<1 * [x__]^2)))))")
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3328
  with assms have "(cos (Arccos z))\<^sup>2 \<noteq> 1"
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3329
    by (auto simp: complex_eq_iff Re_power2 Im_power2 abs_square_eq_1)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3330
  then have "- sin (Arccos z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3331
    by (metis cos_squared_eq diff_0_right mult_zero_left neg_0_equal_iff_equal power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3332
  then have "(Arccos has_field_derivative inverse(- sin(Arccos z))) (at z)"
68281
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3333
    by (rule has_field_derivative_inverse_basic [OF DERIV_cos _ _ open_ball [of z 1]])
faa4b49d1b34 more small tidying
paulson <lp15@cam.ac.uk>
parents: 68257
diff changeset
  3334
       (auto intro: isCont_Arccos assms)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3335
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3336
    by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3337
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3338
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3339
declare has_field_derivative_Arcsin [derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3340
declare has_field_derivative_Arcsin [THEN DERIV_chain2, derivative_intros]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3341
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3342
lemma field_differentiable_at_Arccos:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3343
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arccos field_differentiable at z"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3344
  using field_differentiable_def has_field_derivative_Arccos by blast
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3345
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3346
lemma field_differentiable_within_Arccos:
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3347
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arccos field_differentiable (at z within s)"
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3348
  using field_differentiable_at_Arccos field_differentiable_within_subset by blast
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3349
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3350
lemma continuous_within_Arccos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3351
    "(Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> continuous (at z within s) Arccos"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3352
  using continuous_at_imp_continuous_within isCont_Arccos by blast
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3353
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3354
lemma continuous_on_Arccos [continuous_intros]:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3355
    "(\<And>z. z \<in> s \<Longrightarrow> Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> continuous_on s Arccos"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3356
  by (simp add: continuous_at_imp_continuous_on)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3357
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3358
lemma holomorphic_on_Arccos: "(\<And>z. z \<in> s \<Longrightarrow> Im z = 0 \<Longrightarrow> \<bar>Re z\<bar> < 1) \<Longrightarrow> Arccos holomorphic_on s"
62534
6855b348e828 complex_differentiable -> field_differentiable, etc. (making these theorems also available for type real)
paulson <lp15@cam.ac.uk>
parents: 62533
diff changeset
  3359
  by (simp add: field_differentiable_within_Arccos holomorphic_on_def)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3360
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3361
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3362
subsection\<open>Upper and Lower Bounds for Inverse Sine and Cosine\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3363
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3364
lemma Arcsin_bounds: "\<bar>Re z\<bar> < 1 \<Longrightarrow> \<bar>Re(Arcsin z)\<bar> < pi/2"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3365
  unfolding Re_Arcsin
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3366
  by (blast intro: Re_Ln_pos_lt_imp Arcsin_range_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3367
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3368
lemma Arccos_bounds: "\<bar>Re z\<bar> < 1 \<Longrightarrow> 0 < Re(Arccos z) \<and> Re(Arccos z) < pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3369
  unfolding Re_Arccos
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3370
  by (blast intro!: Im_Ln_pos_lt_imp Arccos_range_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3371
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3372
lemma Re_Arccos_bounds: "-pi < Re(Arccos z) \<and> Re(Arccos z) \<le> pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3373
  unfolding Re_Arccos
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3374
  by (blast intro!: mpi_less_Im_Ln Im_Ln_le_pi Arccos_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3375
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3376
lemma Re_Arccos_bound: "\<bar>Re(Arccos z)\<bar> \<le> pi"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
  3377
  by (meson Re_Arccos_bounds abs_le_iff less_eq_real_def minus_less_iff)
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3378
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3379
lemma Im_Arccos_bound: "\<bar>Im (Arccos w)\<bar> \<le> cmod w"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3380
proof -
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3381
  have "(Im (Arccos w))\<^sup>2 \<le> (cmod (cos (Arccos w)))\<^sup>2 - (cos (Re (Arccos w)))\<^sup>2"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3382
    using norm_cos_squared [of "Arccos w"] real_le_abs_sinh [of "Im (Arccos w)"]
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3383
    apply (simp only: abs_le_square_iff)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3384
    apply (simp add: divide_simps)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3385
    done
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3386
  also have "... \<le> (cmod w)\<^sup>2"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3387
    by (auto simp: cmod_power2)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3388
  finally show ?thesis
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  3389
    using abs_le_square_iff by force
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3390
qed
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  3391
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3392
lemma Re_Arcsin_bounds: "-pi < Re(Arcsin z) & Re(Arcsin z) \<le> pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3393
  unfolding Re_Arcsin
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3394
  by (blast intro!: mpi_less_Im_Ln Im_Ln_le_pi Arcsin_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3395
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3396
lemma Re_Arcsin_bound: "\<bar>Re(Arcsin z)\<bar> \<le> pi"
61649
268d88ec9087 Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
paulson <lp15@cam.ac.uk>
parents: 61610
diff changeset
  3397
  by (meson Re_Arcsin_bounds abs_le_iff less_eq_real_def minus_less_iff)
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  3398
64773
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3399
lemma norm_Arccos_bounded:
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3400
  fixes w :: complex
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3401
  shows "norm (Arccos w) \<le> pi + norm w"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3402
proof -
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3403
  have Re: "(Re (Arccos w))\<^sup>2 \<le> pi\<^sup>2" "(Im (Arccos w))\<^sup>2 \<le> (cmod w)\<^sup>2"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3404
    using Re_Arccos_bound [of w] Im_Arccos_bound [of w] abs_le_square_iff by force+
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3405
  have "Arccos w \<bullet> Arccos w \<le> pi\<^sup>2 + (cmod w)\<^sup>2"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3406
    using Re by (simp add: dot_square_norm cmod_power2 [of "Arccos w"])
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3407
  then have "cmod (Arccos w) \<le> pi + cmod (cos (Arccos w))"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3408
    apply (simp add: norm_le_square)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3409
    by (metis dot_square_norm norm_ge_zero norm_le_square pi_ge_zero triangle_lemma)
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3410
  then show "cmod (Arccos w) \<le> pi + cmod w"
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3411
    by auto
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3412
qed
223b2ebdda79 Many new theorems, and more tidying
paulson <lp15@cam.ac.uk>
parents: 64593
diff changeset
  3413
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3414
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3415
subsection\<open>Interrelations between Arcsin and Arccos\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3416
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3417
lemma cos_Arcsin_nonzero:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3418
  assumes "z\<^sup>2 \<noteq> 1" shows "cos(Arcsin z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3419
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3420
  have eq: "(\<i> * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = z\<^sup>2 * (z\<^sup>2 - 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3421
    by (simp add: power_mult_distrib algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3422
  have "\<i> * z * (csqrt (1 - z\<^sup>2)) \<noteq> z\<^sup>2 - 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3423
  proof
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3424
    assume "\<i> * z * (csqrt (1 - z\<^sup>2)) = z\<^sup>2 - 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3425
    then have "(\<i> * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = (z\<^sup>2 - 1)\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3426
      by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3427
    then have "z\<^sup>2 * (z\<^sup>2 - 1) = (z\<^sup>2 - 1)*(z\<^sup>2 - 1)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3428
      using eq power2_eq_square by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3429
    then show False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3430
      using assms by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3431
  qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3432
  then have "1 + \<i> * z * (csqrt (1 - z * z)) \<noteq> z\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3433
    by (metis add_minus_cancel power2_eq_square uminus_add_conv_diff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3434
  then have "2*(1 + \<i> * z * (csqrt (1 - z * z))) \<noteq> 2*z\<^sup>2"  (*FIXME cancel_numeral_factor*)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3435
    by (metis mult_cancel_left zero_neq_numeral)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3436
  then have "(\<i> * z + csqrt (1 - z\<^sup>2))\<^sup>2 \<noteq> -1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3437
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3438
    apply (auto simp: power2_sum)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3439
    apply (simp add: power2_eq_square algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3440
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3441
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3442
    apply (simp add: cos_exp_eq Arcsin_def exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3443
    apply (simp add: divide_simps Arcsin_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3444
    apply (metis add.commute minus_unique power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3445
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3446
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3447
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3448
lemma sin_Arccos_nonzero:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3449
  assumes "z\<^sup>2 \<noteq> 1" shows "sin(Arccos z) \<noteq> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3450
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3451
  have eq: "(\<i> * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = -(z\<^sup>2) * (1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3452
    by (simp add: power_mult_distrib algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3453
  have "\<i> * z * (csqrt (1 - z\<^sup>2)) \<noteq> 1 - z\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3454
  proof
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3455
    assume "\<i> * z * (csqrt (1 - z\<^sup>2)) = 1 - z\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3456
    then have "(\<i> * z * (csqrt (1 - z\<^sup>2)))\<^sup>2 = (1 - z\<^sup>2)\<^sup>2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3457
      by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3458
    then have "-(z\<^sup>2) * (1 - z\<^sup>2) = (1 - z\<^sup>2)*(1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3459
      using eq power2_eq_square by auto
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3460
    then have "-(z\<^sup>2) = (1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3461
      using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3462
      by (metis add.commute add.right_neutral diff_add_cancel mult_right_cancel)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3463
    then show False
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3464
      using assms by simp
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3465
  qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3466
  then have "z\<^sup>2 + \<i> * z * (csqrt (1 - z\<^sup>2)) \<noteq> 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3467
    by (simp add: algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3468
  then have "2*(z\<^sup>2 + \<i> * z * (csqrt (1 - z\<^sup>2))) \<noteq> 2*1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3469
    by (metis mult_cancel_left2 zero_neq_numeral)  (*FIXME cancel_numeral_factor*)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3470
  then have "(z + \<i> * csqrt (1 - z\<^sup>2))\<^sup>2 \<noteq> 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3471
    using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3472
    apply (auto simp: Power.comm_semiring_1_class.power2_sum power_mult_distrib)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3473
    apply (simp add: power2_eq_square algebra_simps)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3474
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3475
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3476
    apply (simp add: sin_exp_eq Arccos_def exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3477
    apply (simp add: divide_simps Arccos_body_lemma)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3478
    apply (simp add: power2_eq_square)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3479
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3480
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3481
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3482
lemma cos_sin_csqrt:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3483
  assumes "0 < cos(Re z)  \<or>  cos(Re z) = 0 \<and> Im z * sin(Re z) \<le> 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3484
    shows "cos z = csqrt(1 - (sin z)\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3485
  apply (rule csqrt_unique [THEN sym])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3486
  apply (simp add: cos_squared_eq)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3487
  using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3488
  apply (auto simp: Re_cos Im_cos add_pos_pos mult_le_0_iff zero_le_mult_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3489
  done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3490
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3491
lemma sin_cos_csqrt:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3492
  assumes "0 < sin(Re z)  \<or>  sin(Re z) = 0 \<and> 0 \<le> Im z * cos(Re z)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3493
    shows "sin z = csqrt(1 - (cos z)\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3494
  apply (rule csqrt_unique [THEN sym])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3495
  apply (simp add: sin_squared_eq)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3496
  using assms
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3497
  apply (auto simp: Re_sin Im_sin add_pos_pos mult_le_0_iff zero_le_mult_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3498
  done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3499
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3500
lemma Arcsin_Arccos_csqrt_pos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3501
    "(0 < Re z | Re z = 0 & 0 \<le> Im z) \<Longrightarrow> Arcsin z = Arccos(csqrt(1 - z\<^sup>2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3502
  by (simp add: Arcsin_def Arccos_def Complex.csqrt_square add.commute)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3503
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3504
lemma Arccos_Arcsin_csqrt_pos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3505
    "(0 < Re z | Re z = 0 & 0 \<le> Im z) \<Longrightarrow> Arccos z = Arcsin(csqrt(1 - z\<^sup>2))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3506
  by (simp add: Arcsin_def Arccos_def Complex.csqrt_square add.commute)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3507
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3508
lemma sin_Arccos:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3509
    "0 < Re z | Re z = 0 & 0 \<le> Im z \<Longrightarrow> sin(Arccos z) = csqrt(1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3510
  by (simp add: Arccos_Arcsin_csqrt_pos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3511
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3512
lemma cos_Arcsin:
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3513
    "0 < Re z | Re z = 0 & 0 \<le> Im z \<Longrightarrow> cos(Arcsin z) = csqrt(1 - z\<^sup>2)"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3514
  by (simp add: Arcsin_Arccos_csqrt_pos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3515
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3516
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3517
subsection\<open>Relationship with Arcsin on the Real Numbers\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3518
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3519
lemma Im_Arcsin_of_real:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3520
  assumes "\<bar>x\<bar> \<le> 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3521
    shows "Im (Arcsin (of_real x)) = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3522
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3523
  have "csqrt (1 - (of_real x)\<^sup>2) = (if x^2 \<le> 1 then sqrt (1 - x^2) else \<i> * sqrt (x^2 - 1))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3524
    by (simp add: of_real_sqrt del: csqrt_of_real_nonneg)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3525
  then have "cmod (\<i> * of_real x + csqrt (1 - (of_real x)\<^sup>2))^2 = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3526
    using assms abs_square_le_1
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3527
    by (force simp add: Complex.cmod_power2)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3528
  then have "cmod (\<i> * of_real x + csqrt (1 - (of_real x)\<^sup>2)) = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3529
    by (simp add: norm_complex_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3530
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3531
    by (simp add: Im_Arcsin exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3532
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3533
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3534
corollary Arcsin_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> \<bar>Re z\<bar> \<le> 1 \<Longrightarrow> Arcsin z \<in> \<real>"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3535
  by (metis Im_Arcsin_of_real Re_complex_of_real Reals_cases complex_is_Real_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3536
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3537
lemma arcsin_eq_Re_Arcsin:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3538
  assumes "\<bar>x\<bar> \<le> 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3539
    shows "arcsin x = Re (Arcsin (of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3540
unfolding arcsin_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3541
proof (rule the_equality, safe)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3542
  show "- (pi / 2) \<le> Re (Arcsin (complex_of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3543
    using Re_Ln_pos_le [OF Arcsin_body_lemma, of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3544
    by (auto simp: Complex.in_Reals_norm Re_Arcsin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3545
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3546
  show "Re (Arcsin (complex_of_real x)) \<le> pi / 2"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3547
    using Re_Ln_pos_le [OF Arcsin_body_lemma, of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3548
    by (auto simp: Complex.in_Reals_norm Re_Arcsin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3549
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3550
  show "sin (Re (Arcsin (complex_of_real x))) = x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3551
    using Re_sin [of "Arcsin (of_real x)"] Arcsin_body_lemma [of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3552
    by (simp add: Im_Arcsin_of_real assms)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3553
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3554
  fix x'
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3555
  assume "- (pi / 2) \<le> x'" "x' \<le> pi / 2" "x = sin x'"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3556
  then show "x' = Re (Arcsin (complex_of_real (sin x')))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3557
    apply (simp add: sin_of_real [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3558
    apply (subst Arcsin_sin)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3559
    apply (auto simp: )
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3560
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3561
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3562
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3563
lemma of_real_arcsin: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> of_real(arcsin x) = Arcsin(of_real x)"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3564
  by (metis Im_Arcsin_of_real add.right_neutral arcsin_eq_Re_Arcsin complex_eq mult_zero_right of_real_0)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3565
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3566
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3567
subsection\<open>Relationship with Arccos on the Real Numbers\<close>
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3568
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3569
lemma Im_Arccos_of_real:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3570
  assumes "\<bar>x\<bar> \<le> 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3571
    shows "Im (Arccos (of_real x)) = 0"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3572
proof -
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3573
  have "csqrt (1 - (of_real x)\<^sup>2) = (if x^2 \<le> 1 then sqrt (1 - x^2) else \<i> * sqrt (x^2 - 1))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3574
    by (simp add: of_real_sqrt del: csqrt_of_real_nonneg)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3575
  then have "cmod (of_real x + \<i> * csqrt (1 - (of_real x)\<^sup>2))^2 = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3576
    using assms abs_square_le_1
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3577
    by (force simp add: Complex.cmod_power2)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3578
  then have "cmod (of_real x + \<i> * csqrt (1 - (of_real x)\<^sup>2)) = 1"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3579
    by (simp add: norm_complex_def)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3580
  then show ?thesis
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3581
    by (simp add: Im_Arccos exp_minus)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3582
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3583
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3584
corollary Arccos_in_Reals [simp]: "z \<in> \<real> \<Longrightarrow> \<bar>Re z\<bar> \<le> 1 \<Longrightarrow> Arccos z \<in> \<real>"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3585
  by (metis Im_Arccos_of_real Re_complex_of_real Reals_cases complex_is_Real_iff)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3586
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3587
lemma arccos_eq_Re_Arccos:
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3588
  assumes "\<bar>x\<bar> \<le> 1"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3589
    shows "arccos x = Re (Arccos (of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3590
unfolding arccos_def
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3591
proof (rule the_equality, safe)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3592
  show "0 \<le> Re (Arccos (complex_of_real x))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3593
    using Im_Ln_pos_le [OF Arccos_body_lemma, of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3594
    by (auto simp: Complex.in_Reals_norm Re_Arccos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3595
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3596
  show "Re (Arccos (complex_of_real x)) \<le> pi"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3597
    using Im_Ln_pos_le [OF Arccos_body_lemma, of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3598
    by (auto simp: Complex.in_Reals_norm Re_Arccos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3599
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3600
  show "cos (Re (Arccos (complex_of_real x))) = x"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3601
    using Re_cos [of "Arccos (of_real x)"] Arccos_body_lemma [of "of_real x"]
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3602
    by (simp add: Im_Arccos_of_real assms)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3603
next
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3604
  fix x'
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3605
  assume "0 \<le> x'" "x' \<le> pi" "x = cos x'"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3606
  then show "x' = Re (Arccos (complex_of_real (cos x')))"
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3607
    apply (simp add: cos_of_real [symmetric])
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3608
    apply (subst Arccos_cos)
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3609
    apply (auto simp: )
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3610
    done
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3611
qed
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3612
61945
1135b8de26c3 more symbols;
wenzelm
parents: 61942
diff changeset
  3613
lemma of_real_arccos: "\<bar>x\<bar> \<le> 1 \<Longrightarrow> of_real(arccos x) = Arccos(of_real x)"
59870
68d6b6aa4450 HOL Light Libraries for complex Arctan, Arcsin, Arccos
paulson <lp15@cam.ac.uk>
parents: 59862
diff changeset
  3614
  by (metis Im_Arccos_of_real add.right_neutral arccos_eq_Re_Arccos complex_eq mult_zero_right of_real_0)
59751
916c0f6c83e3 New material for complex sin, cos, tan, Ln, also some reorganisation
paulson <lp15@cam.ac.uk>
parents: 59746
diff changeset
  3615
67968
a5ad4c015d1c removed dots at the end of (sub)titles
nipkow
parents: 67706
diff changeset
  3616
subsection\<open>Some interrelationships among the real inverse trig functions\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3617
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3618
lemma arccos_arctan:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3619
  assumes "-1 < x" "x < 1"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3620
    shows "arccos x = pi/2 - arctan(x / sqrt(1 - x\<^sup>2))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3621
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3622
  have "arctan(x / sqrt(1 - x\<^sup>2)) - (pi/2 - arccos x) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3623
  proof (rule sin_eq_0_pi)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3624
    show "- pi < arctan (x / sqrt (1 - x\<^sup>2)) - (pi / 2 - arccos x)"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3625
      using arctan_lbound [of "x / sqrt(1 - x\<^sup>2)"]  arccos_bounded [of x] assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3626
      by (simp add: algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3627
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3628
    show "arctan (x / sqrt (1 - x\<^sup>2)) - (pi / 2 - arccos x) < pi"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3629
      using arctan_ubound [of "x / sqrt(1 - x\<^sup>2)"]  arccos_bounded [of x] assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3630
      by (simp add: algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3631
  next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3632
    show "sin (arctan (x / sqrt (1 - x\<^sup>2)) - (pi / 2 - arccos x)) = 0"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3633
      using assms
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3634
      by (simp add: algebra_simps sin_diff cos_add sin_arccos sin_arctan cos_arctan
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3635
                    power2_eq_square square_eq_1_iff)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3636
  qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3637
  then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3638
    by simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3639
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3640
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3641
lemma arcsin_plus_arccos:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3642
  assumes "-1 \<le> x" "x \<le> 1"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3643
    shows "arcsin x + arccos x = pi/2"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3644
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3645
  have "arcsin x = pi/2 - arccos x"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3646
    apply (rule sin_inj_pi)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3647
    using assms arcsin [OF assms] arccos [OF assms]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3648
    apply (auto simp: algebra_simps sin_diff)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3649
    done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3650
  then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3651
    by (simp add: algebra_simps)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3652
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3653
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3654
lemma arcsin_arccos_eq: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin x = pi/2 - arccos x"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3655
  using arcsin_plus_arccos by force
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3656
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3657
lemma arccos_arcsin_eq: "-1 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos x = pi/2 - arcsin x"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3658
  using arcsin_plus_arccos by force
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3659
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3660
lemma arcsin_arctan: "-1 < x \<Longrightarrow> x < 1 \<Longrightarrow> arcsin x = arctan(x / sqrt(1 - x\<^sup>2))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3661
  by (simp add: arccos_arctan arcsin_arccos_eq)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3662
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
  3663
lemma csqrt_1_diff_eq: "csqrt (1 - (of_real x)\<^sup>2) = (if x^2 \<le> 1 then sqrt (1 - x^2) else \<i> * sqrt (x^2 - 1))"
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3664
  by ( simp add: of_real_sqrt del: csqrt_of_real_nonneg)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3665
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3666
lemma arcsin_arccos_sqrt_pos: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arcsin x = arccos(sqrt(1 - x\<^sup>2))"
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  3667
  apply (simp add: abs_square_le_1 arcsin_eq_Re_Arcsin arccos_eq_Re_Arccos)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3668
  apply (subst Arcsin_Arccos_csqrt_pos)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
  3669
  apply (auto simp: power_le_one csqrt_1_diff_eq)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3670
  done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3671
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3672
lemma arcsin_arccos_sqrt_neg: "-1 \<le> x \<Longrightarrow> x \<le> 0 \<Longrightarrow> arcsin x = -arccos(sqrt(1 - x\<^sup>2))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3673
  using arcsin_arccos_sqrt_pos [of "-x"]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3674
  by (simp add: arcsin_minus)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3675
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3676
lemma arccos_arcsin_sqrt_pos: "0 \<le> x \<Longrightarrow> x \<le> 1 \<Longrightarrow> arccos x = arcsin(sqrt(1 - x\<^sup>2))"
61762
d50b993b4fb9 Removal of redundant lemmas (diff_less_iff, diff_le_iff) and of the abbreviation Exp. Addition of some new material.
paulson <lp15@cam.ac.uk>
parents: 61711
diff changeset
  3677
  apply (simp add: abs_square_le_1 arcsin_eq_Re_Arcsin arccos_eq_Re_Arccos)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3678
  apply (subst Arccos_Arcsin_csqrt_pos)
60162
645058aa9d6f tidying some messy proofs
paulson <lp15@cam.ac.uk>
parents: 60150
diff changeset
  3679
  apply (auto simp: power_le_one csqrt_1_diff_eq)
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3680
  done
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3681
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3682
lemma arccos_arcsin_sqrt_neg: "-1 \<le> x \<Longrightarrow> x \<le> 0 \<Longrightarrow> arccos x = pi - arcsin(sqrt(1 - x\<^sup>2))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3683
  using arccos_arcsin_sqrt_pos [of "-x"]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3684
  by (simp add: arccos_minus)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3685
67968
a5ad4c015d1c removed dots at the end of (sub)titles
nipkow
parents: 67706
diff changeset
  3686
subsection\<open>Continuity results for arcsin and arccos\<close>
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3687
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3688
lemma continuous_on_Arcsin_real [continuous_intros]:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3689
    "continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} Arcsin"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3690
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3691
  have "continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} (\<lambda>x. complex_of_real (arcsin (Re x))) =
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3692
        continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} (\<lambda>x. complex_of_real (Re (Arcsin (of_real (Re x)))))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3693
    by (rule continuous_on_cong [OF refl]) (simp add: arcsin_eq_Re_Arcsin)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3694
  also have "... = ?thesis"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3695
    by (rule continuous_on_cong [OF refl]) simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3696
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3697
    using continuous_on_arcsin [OF continuous_on_Re [OF continuous_on_id], of "{w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}"]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3698
          continuous_on_of_real
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3699
    by fastforce
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3700
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3701
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3702
lemma continuous_within_Arcsin_real:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3703
    "continuous (at z within {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}) Arcsin"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3704
proof (cases "z \<in> {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3705
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3706
    using continuous_on_Arcsin_real continuous_on_eq_continuous_within
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3707
    by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3708
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3709
  case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3710
  with closed_real_abs_le [of 1] show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3711
    by (rule continuous_within_closed_nontrivial)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3712
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3713
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3714
lemma continuous_on_Arccos_real:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3715
    "continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} Arccos"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3716
proof -
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3717
  have "continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} (\<lambda>x. complex_of_real (arccos (Re x))) =
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3718
        continuous_on {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1} (\<lambda>x. complex_of_real (Re (Arccos (of_real (Re x)))))"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3719
    by (rule continuous_on_cong [OF refl]) (simp add: arccos_eq_Re_Arccos)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3720
  also have "... = ?thesis"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3721
    by (rule continuous_on_cong [OF refl]) simp
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3722
  finally show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3723
    using continuous_on_arccos [OF continuous_on_Re [OF continuous_on_id], of "{w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}"]
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3724
          continuous_on_of_real
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3725
    by fastforce
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3726
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3727
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3728
lemma continuous_within_Arccos_real:
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3729
    "continuous (at z within {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}) Arccos"
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3730
proof (cases "z \<in> {w \<in> \<real>. \<bar>Re w\<bar> \<le> 1}")
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3731
  case True then show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3732
    using continuous_on_Arccos_real continuous_on_eq_continuous_within
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3733
    by blast
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3734
next
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3735
  case False
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3736
  with closed_real_abs_le [of 1] show ?thesis
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3737
    by (rule continuous_within_closed_nontrivial)
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3738
qed
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3739
67578
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
  3740
lemma sinh_ln_complex: "x \<noteq> 0 \<Longrightarrow> sinh (ln x :: complex) = (x - inverse x) / 2"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
  3741
  by (simp add: sinh_def exp_minus scaleR_conv_of_real exp_of_real)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
  3742
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
  3743
lemma cosh_ln_complex: "x \<noteq> 0 \<Longrightarrow> cosh (ln x :: complex) = (x + inverse x) / 2"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
  3744
  by (simp add: cosh_def exp_minus scaleR_conv_of_real)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
  3745
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
  3746
lemma tanh_ln_complex: "x \<noteq> 0 \<Longrightarrow> tanh (ln x :: complex) = (x ^ 2 - 1) / (x ^ 2 + 1)"
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
  3747
  by (simp add: tanh_def sinh_ln_complex cosh_ln_complex divide_simps power2_eq_square)
6a9a0f2bb9b4 Some lemmas about complex sinh/cosh/tanh
Manuel Eberl <eberlm@in.tum.de>
parents: 67443
diff changeset
  3748
60017
b785d6d06430 Overloading of ln and powr, but "approximation" no longer works for powr. Code generation also fails due to type ambiguity in scala.
paulson <lp15@cam.ac.uk>
parents: 59870
diff changeset
  3749
60420
884f54e01427 isabelle update_cartouches;
wenzelm
parents: 60162
diff changeset
  3750
subsection\<open>Roots of unity\<close>
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3751
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3752
lemma complex_root_unity:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3753
  fixes j::nat
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3754
  assumes "n \<noteq> 0"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3755
    shows "exp(2 * of_real pi * \<i> * of_nat j / of_nat n)^n = 1"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3756
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3757
  have *: "of_nat j * (complex_of_real pi * 2) = complex_of_real (2 * real j * pi)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3758
    by (simp add: of_real_numeral)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3759
  then show ?thesis
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3760
    apply (simp add: exp_of_nat_mult [symmetric] mult_ac exp_Euler)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3761
    apply (simp only: * cos_of_real sin_of_real)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3762
    apply (simp add: )
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3763
    done
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3764
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3765
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3766
lemma complex_root_unity_eq:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3767
  fixes j::nat and k::nat
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3768
  assumes "1 \<le> n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3769
    shows "(exp(2 * of_real pi * \<i> * of_nat j / of_nat n) = exp(2 * of_real pi * \<i> * of_nat k / of_nat n)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3770
           \<longleftrightarrow> j mod n = k mod n)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3771
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3772
    have "(\<exists>z::int. \<i> * (of_nat j * (of_real pi * 2)) =
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3773
               \<i> * (of_nat k * (of_real pi * 2)) + \<i> * (of_int z * (of_nat n * (of_real pi * 2)))) \<longleftrightarrow>
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3774
          (\<exists>z::int. of_nat j * (\<i> * (of_real pi * 2)) =
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3775
              (of_nat k + of_nat n * of_int z) * (\<i> * (of_real pi * 2)))"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3776
      by (simp add: algebra_simps)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3777
    also have "... \<longleftrightarrow> (\<exists>z::int. of_nat j = of_nat k + of_nat n * (of_int z :: complex))"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3778
      by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3779
    also have "... \<longleftrightarrow> (\<exists>z::int. of_nat j = of_nat k + of_nat n * z)"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3780
      apply (rule HOL.iff_exI)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3781
      apply (auto simp: )
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3782
      using of_int_eq_iff apply fastforce
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3783
      by (metis of_int_add of_int_mult of_int_of_nat_eq)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3784
    also have "... \<longleftrightarrow> int j mod int n = int k mod int n"
64593
50c715579715 reoriented congruence rules in non-explosive direction
haftmann
parents: 64508
diff changeset
  3785
      by (auto simp: mod_eq_dvd_iff dvd_def algebra_simps)
60020
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3786
    also have "... \<longleftrightarrow> j mod n = k mod n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3787
      by (metis of_nat_eq_iff zmod_int)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3788
    finally have "(\<exists>z. \<i> * (of_nat j * (of_real pi * 2)) =
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3789
             \<i> * (of_nat k * (of_real pi * 2)) + \<i> * (of_int z * (of_nat n * (of_real pi * 2)))) \<longleftrightarrow> j mod n = k mod n" .
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3790
   note * = this
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3791
  show ?thesis
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3792
    using assms
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3793
    by (simp add: exp_eq divide_simps mult_ac of_real_numeral *)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3794
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3795
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3796
corollary bij_betw_roots_unity:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3797
    "bij_betw (\<lambda>j. exp(2 * of_real pi * \<i> * of_nat j / of_nat n))
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3798
              {..<n}  {exp(2 * of_real pi * \<i> * of_nat j / of_nat n) | j. j < n}"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3799
  by (auto simp: bij_betw_def inj_on_def complex_root_unity_eq)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3800
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3801
lemma complex_root_unity_eq_1:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3802
  fixes j::nat and k::nat
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3803
  assumes "1 \<le> n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3804
    shows "exp(2 * of_real pi * \<i> * of_nat j / of_nat n) = 1 \<longleftrightarrow> n dvd j"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3805
proof -
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3806
  have "1 = exp(2 * of_real pi * \<i> * (of_nat n / of_nat n))"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3807
    using assms by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3808
  then have "exp(2 * of_real pi * \<i> * (of_nat j / of_nat n)) = 1 \<longleftrightarrow> j mod n = n mod n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3809
     using complex_root_unity_eq [of n j n] assms
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3810
     by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3811
  then show ?thesis
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3812
    by auto
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3813
qed
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3814
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3815
lemma finite_complex_roots_unity_explicit:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3816
     "finite {exp(2 * of_real pi * \<i> * of_nat j / of_nat n) | j::nat. j < n}"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3817
by simp
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3818
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3819
lemma card_complex_roots_unity_explicit:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3820
     "card {exp(2 * of_real pi * \<i> * of_nat j / of_nat n) | j::nat. j < n} = n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3821
  by (simp add:  Finite_Set.bij_betw_same_card [OF bij_betw_roots_unity, symmetric])
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3822
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3823
lemma complex_roots_unity:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3824
  assumes "1 \<le> n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3825
    shows "{z::complex. z^n = 1} = {exp(2 * of_real pi * \<i> * of_nat j / of_nat n) | j::nat. j < n}"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3826
  apply (rule Finite_Set.card_seteq [symmetric])
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3827
  using assms
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3828
  apply (auto simp: card_complex_roots_unity_explicit finite_roots_unity complex_root_unity card_roots_unity)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3829
  done
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3830
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3831
lemma card_complex_roots_unity: "1 \<le> n \<Longrightarrow> card {z::complex. z^n = 1} = n"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3832
  by (simp add: card_complex_roots_unity_explicit complex_roots_unity)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3833
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3834
lemma complex_not_root_unity:
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3835
    "1 \<le> n \<Longrightarrow> \<exists>u::complex. norm u = 1 \<and> u^n \<noteq> 1"
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3836
  apply (rule_tac x="exp (of_real pi * \<i> * of_real (1 / n))" in exI)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3837
  apply (auto simp: Re_complex_div_eq_0 exp_of_nat_mult [symmetric] mult_ac exp_Euler)
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3838
  done
065ecea354d0 Complex roots of unity. Better definition of ln for complex numbers. Used [code del] to stop code generation for powr.
paulson <lp15@cam.ac.uk>
parents: 60017
diff changeset
  3839
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3840
subsection\<open> Formulation of loop homotopy in terms of maps out of type complex\<close>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3841
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3842
lemma homotopic_circlemaps_imp_homotopic_loops:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3843
  assumes "homotopic_with (\<lambda>h. True) (sphere 0 1) S f g"
64508
874555896035 more symbols;
wenzelm
parents: 64394
diff changeset
  3844
   shows "homotopic_loops S (f \<circ> exp \<circ> (\<lambda>t. 2 * of_real pi * of_real t * \<i>))
874555896035 more symbols;
wenzelm
parents: 64394
diff changeset
  3845
                            (g \<circ> exp \<circ> (\<lambda>t. 2 * of_real pi * of_real t * \<i>))"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3846
proof -
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3847
  have "homotopic_with (\<lambda>f. True) {z. cmod z = 1} S f g"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3848
    using assms by (auto simp: sphere_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3849
  moreover have "continuous_on {0..1} (exp \<circ> (\<lambda>t. 2 * of_real pi * of_real t * \<i>))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3850
     by (intro continuous_intros)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3851
  moreover have "(exp \<circ> (\<lambda>t. 2 * of_real pi * of_real t * \<i>)) ` {0..1} \<subseteq> {z. cmod z = 1}"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3852
    by (auto simp: norm_mult)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3853
  ultimately
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3854
  show ?thesis
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3855
    apply (simp add: homotopic_loops_def comp_assoc)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3856
    apply (rule homotopic_with_compose_continuous_right)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3857
      apply (auto simp: pathstart_def pathfinish_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3858
    done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3859
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3860
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3861
lemma homotopic_loops_imp_homotopic_circlemaps:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3862
  assumes "homotopic_loops S p q"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3863
    shows "homotopic_with (\<lambda>h. True) (sphere 0 1) S
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3864
                          (p \<circ> (\<lambda>z. (Arg2pi z / (2 * pi))))
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3865
                          (q \<circ> (\<lambda>z. (Arg2pi z / (2 * pi))))"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3866
proof -
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3867
  obtain h where conth: "continuous_on ({0..1::real} \<times> {0..1}) h"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3868
             and him: "h ` ({0..1} \<times> {0..1}) \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3869
             and h0: "(\<forall>x. h (0, x) = p x)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3870
             and h1: "(\<forall>x. h (1, x) = q x)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3871
             and h01: "(\<forall>t\<in>{0..1}. h (t, 1) = h (t, 0)) "
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3872
    using assms
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3873
    by (auto simp: homotopic_loops_def sphere_def homotopic_with_def pathstart_def pathfinish_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3874
  define j where "j \<equiv> \<lambda>z. if 0 \<le> Im (snd z)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3875
                          then h (fst z, Arg2pi (snd z) / (2 * pi))
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3876
                          else h (fst z, 1 - Arg2pi (cnj (snd z)) / (2 * pi))"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3877
  have Arg2pi_eq: "1 - Arg2pi (cnj y) / (2 * pi) = Arg2pi y / (2 * pi) \<or> Arg2pi y = 0 \<and> Arg2pi (cnj y) = 0" if "cmod y = 1" for y
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3878
    using that Arg2pi_eq_0_pi Arg2pi_eq_pi by (force simp: Arg2pi_cnj divide_simps)
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3879
  show ?thesis
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3880
  proof (simp add: homotopic_with; intro conjI ballI exI)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3881
    show "continuous_on ({0..1} \<times> sphere 0 1) (\<lambda>w. h (fst w, Arg2pi (snd w) / (2 * pi)))"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3882
    proof (rule continuous_on_eq)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3883
      show j: "j x = h (fst x, Arg2pi (snd x) / (2 * pi))" if "x \<in> {0..1} \<times> sphere 0 1" for x
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3884
        using Arg2pi_eq that h01 by (force simp: j_def)
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3885
      have eq:  "S = S \<inter> (UNIV \<times> {z. 0 \<le> Im z}) \<union> S \<inter> (UNIV \<times> {z. Im z \<le> 0})" for S :: "(real*complex)set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3886
        by auto
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3887
      have c1: "continuous_on ({0..1} \<times> sphere 0 1 \<inter> UNIV \<times> {z. 0 \<le> Im z}) (\<lambda>x. h (fst x, Arg2pi (snd x) / (2 * pi)))"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3888
        apply (intro continuous_intros continuous_on_compose2 [OF conth]  continuous_on_compose2 [OF continuous_on_upperhalf_Arg2pi])
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3889
            apply (auto simp: Arg2pi)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3890
        apply (meson Arg2pi_lt_2pi linear not_le)
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3891
        done
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3892
      have c2: "continuous_on ({0..1} \<times> sphere 0 1 \<inter> UNIV \<times> {z. Im z \<le> 0}) (\<lambda>x. h (fst x, 1 - Arg2pi (cnj (snd x)) / (2 * pi)))"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3893
        apply (intro continuous_intros continuous_on_compose2 [OF conth]  continuous_on_compose2 [OF continuous_on_upperhalf_Arg2pi])
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3894
            apply (auto simp: Arg2pi)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3895
        apply (meson Arg2pi_lt_2pi linear not_le)
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3896
        done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3897
      show "continuous_on ({0..1} \<times> sphere 0 1) j"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3898
        apply (simp add: j_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3899
        apply (subst eq)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3900
        apply (rule continuous_on_cases_local)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3901
            apply (simp_all add: eq [symmetric] closedin_closed_Int closed_Times closed_halfspace_Im_le closed_halfspace_Im_ge c1 c2)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3902
        using Arg2pi_eq h01
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3903
        by force
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3904
    qed
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3905
    have "(\<lambda>w. h (fst w, Arg2pi (snd w) / (2 * pi))) ` ({0..1} \<times> sphere 0 1) \<subseteq> h ` ({0..1} \<times> {0..1})"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3906
      by (auto simp: Arg2pi_ge_0 Arg2pi_lt_2pi less_imp_le)
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3907
    also have "... \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3908
      using him by blast
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3909
    finally show "(\<lambda>w. h (fst w, Arg2pi (snd w) / (2 * pi))) ` ({0..1} \<times> sphere 0 1) \<subseteq> S" .
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3910
  qed (auto simp: h0 h1)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3911
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3912
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3913
lemma simply_connected_homotopic_loops:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3914
  "simply_connected S \<longleftrightarrow>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3915
       (\<forall>p q. homotopic_loops S p p \<and> homotopic_loops S q q \<longrightarrow> homotopic_loops S p q)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3916
unfolding simply_connected_def using homotopic_loops_refl by metis
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3917
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3918
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3919
lemma simply_connected_eq_homotopic_circlemaps1:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3920
  fixes f :: "complex \<Rightarrow> 'a::topological_space" and g :: "complex \<Rightarrow> 'a"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3921
  assumes S: "simply_connected S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3922
      and contf: "continuous_on (sphere 0 1) f" and fim: "f ` (sphere 0 1) \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3923
      and contg: "continuous_on (sphere 0 1) g" and gim: "g ` (sphere 0 1) \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3924
    shows "homotopic_with (\<lambda>h. True) (sphere 0 1) S f g"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3925
proof -
64508
874555896035 more symbols;
wenzelm
parents: 64394
diff changeset
  3926
  have "homotopic_loops S (f \<circ> exp \<circ> (\<lambda>t. of_real(2 * pi * t) * \<i>)) (g \<circ> exp \<circ> (\<lambda>t. of_real(2 * pi *  t) * \<i>))"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3927
    apply (rule S [unfolded simply_connected_homotopic_loops, rule_format])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3928
    apply (simp add: homotopic_circlemaps_imp_homotopic_loops homotopic_with_refl contf fim contg gim)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3929
    done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3930
  then show ?thesis
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3931
    apply (rule homotopic_with_eq [OF homotopic_loops_imp_homotopic_circlemaps])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3932
      apply (auto simp: o_def complex_norm_eq_1_exp mult.commute)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3933
    done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3934
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3935
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3936
lemma simply_connected_eq_homotopic_circlemaps2a:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3937
  fixes h :: "complex \<Rightarrow> 'a::topological_space"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3938
  assumes conth: "continuous_on (sphere 0 1) h" and him: "h ` (sphere 0 1) \<subseteq> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3939
      and hom: "\<And>f g::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3940
                \<lbrakk>continuous_on (sphere 0 1) f; f ` (sphere 0 1) \<subseteq> S;
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3941
                continuous_on (sphere 0 1) g; g ` (sphere 0 1) \<subseteq> S\<rbrakk>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3942
                \<Longrightarrow> homotopic_with (\<lambda>h. True) (sphere 0 1) S f g"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3943
            shows "\<exists>a. homotopic_with (\<lambda>h. True) (sphere 0 1) S h (\<lambda>x. a)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3944
    apply (rule_tac x="h 1" in exI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3945
    apply (rule hom)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3946
    using assms
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3947
    by (auto simp: continuous_on_const)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3948
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3949
lemma simply_connected_eq_homotopic_circlemaps2b:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3950
  fixes S :: "'a::real_normed_vector set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3951
  assumes "\<And>f g::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3952
                \<lbrakk>continuous_on (sphere 0 1) f; f ` (sphere 0 1) \<subseteq> S;
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3953
                continuous_on (sphere 0 1) g; g ` (sphere 0 1) \<subseteq> S\<rbrakk>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3954
                \<Longrightarrow> homotopic_with (\<lambda>h. True) (sphere 0 1) S f g"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3955
  shows "path_connected S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3956
proof (clarsimp simp add: path_connected_eq_homotopic_points)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3957
  fix a b
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3958
  assume "a \<in> S" "b \<in> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3959
  then show "homotopic_loops S (linepath a a) (linepath b b)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3960
    using homotopic_circlemaps_imp_homotopic_loops [OF assms [of "\<lambda>x. a" "\<lambda>x. b"]]
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3961
    by (auto simp: o_def continuous_on_const linepath_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3962
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3963
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3964
lemma simply_connected_eq_homotopic_circlemaps3:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3965
  fixes h :: "complex \<Rightarrow> 'a::real_normed_vector"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3966
  assumes "path_connected S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3967
      and hom: "\<And>f::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3968
                  \<lbrakk>continuous_on (sphere 0 1) f; f `(sphere 0 1) \<subseteq> S\<rbrakk>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3969
                  \<Longrightarrow> \<exists>a. homotopic_with (\<lambda>h. True) (sphere 0 1) S f (\<lambda>x. a)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3970
    shows "simply_connected S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3971
proof (clarsimp simp add: simply_connected_eq_contractible_loop_some assms)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3972
  fix p
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3973
  assume p: "path p" "path_image p \<subseteq> S" "pathfinish p = pathstart p"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3974
  then have "homotopic_loops S p p"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3975
    by (simp add: homotopic_loops_refl)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3976
  then obtain a where homp: "homotopic_with (\<lambda>h. True) (sphere 0 1) S (p \<circ> (\<lambda>z. Arg2pi z / (2 * pi))) (\<lambda>x. a)"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3977
    by (metis homotopic_with_imp_subset2 homotopic_loops_imp_homotopic_circlemaps homotopic_with_imp_continuous hom)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3978
  show "\<exists>a. a \<in> S \<and> homotopic_loops S p (linepath a a)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3979
  proof (intro exI conjI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3980
    show "a \<in> S"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3981
      using homotopic_with_imp_subset2 [OF homp]
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3982
      by (metis dist_0_norm image_subset_iff mem_sphere norm_one)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3983
    have teq: "\<And>t. \<lbrakk>0 \<le> t; t \<le> 1\<rbrakk>
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3984
               \<Longrightarrow> t = Arg2pi (exp (2 * of_real pi * of_real t * \<i>)) / (2 * pi) \<or> t=1 \<and> Arg2pi (exp (2 * of_real pi * of_real t * \<i>)) = 0"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3985
      apply (rule disjCI)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3986
      using Arg2pi_of_real [of 1] apply (auto simp: Arg2pi_exp)
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3987
      done
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  3988
    have "homotopic_loops S p (p \<circ> (\<lambda>z. Arg2pi z / (2 * pi)) \<circ> exp \<circ> (\<lambda>t. 2 * complex_of_real pi * complex_of_real t * \<i>))"
64394
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3989
      apply (rule homotopic_loops_eq [OF p])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3990
      using p teq apply (fastforce simp: pathfinish_def pathstart_def)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3991
      done
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3992
    then
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3993
    show "homotopic_loops S p (linepath a a)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3994
      by (simp add: linepath_refl  homotopic_loops_trans [OF _ homotopic_circlemaps_imp_homotopic_loops [OF homp, simplified K_record_comp]])
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3995
  qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3996
qed
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3997
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3998
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  3999
proposition simply_connected_eq_homotopic_circlemaps:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4000
  fixes S :: "'a::real_normed_vector set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4001
  shows "simply_connected S \<longleftrightarrow>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4002
         (\<forall>f g::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4003
              continuous_on (sphere 0 1) f \<and> f ` (sphere 0 1) \<subseteq> S \<and>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4004
              continuous_on (sphere 0 1) g \<and> g ` (sphere 0 1) \<subseteq> S
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4005
              \<longrightarrow> homotopic_with (\<lambda>h. True) (sphere 0 1) S f g)"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4006
  apply (rule iffI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4007
   apply (blast elim: dest: simply_connected_eq_homotopic_circlemaps1)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4008
  by (simp add: simply_connected_eq_homotopic_circlemaps2a simply_connected_eq_homotopic_circlemaps2b simply_connected_eq_homotopic_circlemaps3)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4009
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4010
proposition simply_connected_eq_contractible_circlemap:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4011
  fixes S :: "'a::real_normed_vector set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4012
  shows "simply_connected S \<longleftrightarrow>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4013
         path_connected S \<and>
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4014
         (\<forall>f::complex \<Rightarrow> 'a.
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4015
              continuous_on (sphere 0 1) f \<and> f `(sphere 0 1) \<subseteq> S
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4016
              \<longrightarrow> (\<exists>a. homotopic_with (\<lambda>h. True) (sphere 0 1) S f (\<lambda>x. a)))"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4017
  apply (rule iffI)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4018
   apply (simp add: simply_connected_eq_homotopic_circlemaps1 simply_connected_eq_homotopic_circlemaps2a simply_connected_eq_homotopic_circlemaps2b)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4019
  using simply_connected_eq_homotopic_circlemaps3 by blast
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4020
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4021
corollary homotopy_eqv_simple_connectedness:
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4022
  fixes S :: "'a::real_normed_vector set" and T :: "'b::real_normed_vector set"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4023
  shows "S homotopy_eqv T \<Longrightarrow> simply_connected S \<longleftrightarrow> simply_connected T"
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4024
  by (simp add: simply_connected_eq_homotopic_circlemaps homotopy_eqv_homotopic_triviality)
141e1ed8d5a0 more new material
paulson <lp15@cam.ac.uk>
parents: 64287
diff changeset
  4025
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4026
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4027
subsection\<open>Homeomorphism of simple closed curves to circles\<close>
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4028
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4029
proposition homeomorphic_simple_path_image_circle:
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4030
  fixes a :: complex and \<gamma> :: "real \<Rightarrow> 'a::t2_space"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4031
  assumes "simple_path \<gamma>" and loop: "pathfinish \<gamma> = pathstart \<gamma>" and "0 < r"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4032
  shows "(path_image \<gamma>) homeomorphic sphere a r"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4033
proof -
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4034
  have "homotopic_loops (path_image \<gamma>) \<gamma> \<gamma>"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4035
    by (simp add: assms homotopic_loops_refl simple_path_imp_path)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4036
  then have hom: "homotopic_with (\<lambda>h. True) (sphere 0 1) (path_image \<gamma>)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4037
               (\<gamma> \<circ> (\<lambda>z. Arg2pi z / (2*pi))) (\<gamma> \<circ> (\<lambda>z. Arg2pi z / (2*pi)))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4038
    by (rule homotopic_loops_imp_homotopic_circlemaps)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4039
  have "\<exists>g. homeomorphism (sphere 0 1) (path_image \<gamma>) (\<gamma> \<circ> (\<lambda>z. Arg2pi z / (2*pi))) g"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4040
  proof (rule homeomorphism_compact)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4041
    show "continuous_on (sphere 0 1) (\<gamma> \<circ> (\<lambda>z. Arg2pi z / (2*pi)))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4042
      using hom homotopic_with_imp_continuous by blast
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4043
    show "inj_on (\<gamma> \<circ> (\<lambda>z. Arg2pi z / (2*pi))) (sphere 0 1)"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4044
    proof
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4045
      fix x y
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4046
      assume xy: "x \<in> sphere 0 1" "y \<in> sphere 0 1"
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4047
         and eq: "(\<gamma> \<circ> (\<lambda>z. Arg2pi z / (2*pi))) x = (\<gamma> \<circ> (\<lambda>z. Arg2pi z / (2*pi))) y"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4048
      then have "(Arg2pi x / (2*pi)) = (Arg2pi y / (2*pi))"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4049
      proof -
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4050
        have "(Arg2pi x / (2*pi)) \<in> {0..1}" "(Arg2pi y / (2*pi)) \<in> {0..1}"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4051
          using Arg2pi_ge_0 Arg2pi_lt_2pi dual_order.strict_iff_order by fastforce+
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4052
        with eq show ?thesis
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4053
          using \<open>simple_path \<gamma>\<close> Arg2pi_lt_2pi unfolding simple_path_def o_def
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4054
          by (metis eq_divide_eq_1 not_less_iff_gr_or_eq)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4055
      qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4056
      with xy show "x = y"
68499
d4312962161a Rationalisation of complex transcendentals, esp the Arg function
paulson <lp15@cam.ac.uk>
parents: 68493
diff changeset
  4057
        by (metis is_Arg_def Arg2pi Arg2pi_0 dist_0_norm divide_cancel_right dual_order.strict_iff_order mem_sphere)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4058
    qed
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4059
    have "\<And>z. cmod z = 1 \<Longrightarrow> \<exists>x\<in>{0..1}. \<gamma> (Arg2pi z / (2*pi)) = \<gamma> x"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4060
       by (metis Arg2pi_ge_0 Arg2pi_lt_2pi atLeastAtMost_iff divide_less_eq_1 less_eq_real_def zero_less_mult_iff pi_gt_zero zero_le_divide_iff zero_less_numeral)
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4061
     moreover have "\<exists>z\<in>sphere 0 1. \<gamma> x = \<gamma> (Arg2pi z / (2*pi))" if "0 \<le> x" "x \<le> 1" for x
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4062
     proof (cases "x=1")
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4063
       case True
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4064
       then show ?thesis
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4065
         apply (rule_tac x=1 in bexI)
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4066
         apply (metis loop Arg2pi_of_real divide_eq_0_iff of_real_1 pathfinish_def pathstart_def \<open>0 \<le> x\<close>, auto)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4067
         done
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4068
     next
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4069
       case False
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4070
       then have *: "(Arg2pi (exp (\<i>*(2* of_real pi* of_real x))) / (2*pi)) = x"
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4071
         using that by (auto simp: Arg2pi_exp divide_simps)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4072
       show ?thesis
65064
a4abec71279a Renamed ii to imaginary_unit in order to free up ii as a variable name. Also replaced some legacy def commands
paulson <lp15@cam.ac.uk>
parents: 65036
diff changeset
  4073
         by (rule_tac x="exp(\<i> * of_real(2*pi*x))" in bexI) (auto simp: *)
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4074
    qed
68493
143b4cc8fc74 Renaming Arg -> Arg2pi
paulson <lp15@cam.ac.uk>
parents: 68281
diff changeset
  4075
    ultimately show "(\<gamma> \<circ> (\<lambda>z. Arg2pi z / (2*pi))) ` sphere 0 1 = path_image \<gamma>"
64790
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4076
      by (auto simp: path_image_def image_iff)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4077
    qed auto
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4078
    then have "path_image \<gamma> homeomorphic sphere (0::complex) 1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4079
      using homeomorphic_def homeomorphic_sym by blast
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4080
  also have "... homeomorphic sphere a r"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4081
    by (simp add: assms homeomorphic_spheres)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4082
  finally show ?thesis .
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4083
qed
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4084
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4085
lemma homeomorphic_simple_path_images:
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4086
  fixes \<gamma>1 :: "real \<Rightarrow> 'a::t2_space" and \<gamma>2 :: "real \<Rightarrow> 'b::t2_space"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4087
  assumes "simple_path \<gamma>1" and loop: "pathfinish \<gamma>1 = pathstart \<gamma>1"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4088
  assumes "simple_path \<gamma>2" and loop: "pathfinish \<gamma>2 = pathstart \<gamma>2"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4089
  shows "(path_image \<gamma>1) homeomorphic (path_image \<gamma>2)"
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4090
  by (meson assms homeomorphic_simple_path_image_circle homeomorphic_sym homeomorphic_trans loop pi_gt_zero)
ed38f9a834d8 New theory of arcwise connected sets and other new material
paulson <lp15@cam.ac.uk>
parents: 64773
diff changeset
  4091
59745
390476a0ef13 new file for complex transcendental functions
paulson <lp15@cam.ac.uk>
parents:
diff changeset
  4092
end