author  nipkow 
Wed, 14 May 2003 10:22:09 +0200  
changeset 14025  d9b155757dc8 
parent 13937  e9d57517c9b1 
child 14026  c031a330a03f 
permissions  rwrr 
3981  1 
(* Title: HOL/Map.thy 
2 
ID: $Id$ 

3 
Author: Tobias Nipkow, based on a theory by David von Oheimb 

13908  4 
Copyright 19972003 TU Muenchen 
3981  5 

6 
The datatype of `maps' (written ~=>); strongly resembles maps in VDM. 

7 
*) 

8 

13914  9 
header {* Maps *} 
10 

13908  11 
theory Map = List: 
3981  12 

13908  13 
types ('a,'b) "~=>" = "'a => 'b option" (infixr 0) 
3981  14 

15 
consts 

5300  16 
chg_map :: "('b => 'b) => 'a => ('a ~=> 'b) => ('a ~=> 'b)" 
14025  17 
map_add:: "('a ~=> 'b) => ('a ~=> 'b) => ('a ~=> 'b)" (infixl "++" 100) 
5300  18 
dom :: "('a ~=> 'b) => 'a set" 
19 
ran :: "('a ~=> 'b) => 'b set" 

20 
map_of :: "('a * 'b)list => 'a ~=> 'b" 

21 
map_upds:: "('a ~=> 'b) => 'a list => 'b list => 

13910  22 
('a ~=> 'b)" ("_/'(_[>]_/')" [900,0,0]900) 
23 
map_le :: "('a ~=> 'b) => ('a ~=> 'b) => bool" (infix "\<subseteq>\<^sub>m" 50) 

24 

5300  25 
syntax 
13890  26 
empty :: "'a ~=> 'b" 
5300  27 
map_upd :: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)" 
13910  28 
("_/'(_/>_')" [900,0,0]900) 
3981  29 

12114
a8e860c86252
eliminated old "symbols" syntax, use "xsymbols" instead;
wenzelm
parents:
10137
diff
changeset

30 
syntax (xsymbols) 
13908  31 
"~=>" :: "[type, type] => type" (infixr "\<leadsto>" 0) 
5300  32 
map_upd :: "('a ~=> 'b) => 'a => 'b => ('a ~=> 'b)" 
13908  33 
("_/'(_/\<mapsto>/_')" [900,0,0]900) 
5300  34 
map_upds :: "('a ~=> 'b) => 'a list => 'b list => ('a ~=> 'b)" 
13908  35 
("_/'(_/[\<mapsto>]/_')" [900,0,0]900) 
5300  36 

37 
translations 

13890  38 
"empty" => "_K None" 
39 
"empty" <= "%x. None" 

5300  40 

41 
"m(a>b)" == "m(a:=Some b)" 

3981  42 

43 
defs 

13908  44 
chg_map_def: "chg_map f a m == case m a of None => m  Some b => m(a>f b)" 
3981  45 

14025  46 
map_add_def: "m1++m2 == %x. case m2 x of None => m1 x  Some y => Some y" 
47 

48 
map_upds_def: "m(xs [>] ys) == m ++ map_of (rev(zip xs ys))" 

3981  49 

13908  50 
dom_def: "dom(m) == {a. m a ~= None}" 
14025  51 
ran_def: "ran(m) == {b. EX a. m a = Some b}" 
3981  52 

13910  53 
map_le_def: "m1 \<subseteq>\<^sub>m m2 == ALL a : dom m1. m1 a = m2 a" 
54 

5183  55 
primrec 
56 
"map_of [] = empty" 

5300  57 
"map_of (p#ps) = (map_of ps)(fst p > snd p)" 
58 

13908  59 

13937  60 
subsection {* empty *} 
13908  61 

13910  62 
lemma empty_upd_none[simp]: "empty(x := None) = empty" 
13908  63 
apply (rule ext) 
64 
apply (simp (no_asm)) 

65 
done 

13910  66 

13908  67 

68 
(* FIXME: what is this sum_case nonsense?? *) 

13910  69 
lemma sum_case_empty_empty[simp]: "sum_case empty empty = empty" 
13908  70 
apply (rule ext) 
71 
apply (simp (no_asm) split add: sum.split) 

72 
done 

73 

13937  74 
subsection {* map\_upd *} 
13908  75 

76 
lemma map_upd_triv: "t k = Some x ==> t(k>x) = t" 

77 
apply (rule ext) 

78 
apply (simp (no_asm_simp)) 

79 
done 

80 

13910  81 
lemma map_upd_nonempty[simp]: "t(k>x) ~= empty" 
13908  82 
apply safe 
83 
apply (drule_tac x = "k" in fun_cong) 

84 
apply (simp (no_asm_use)) 

85 
done 

86 

87 
lemma finite_range_updI: "finite (range f) ==> finite (range (f(a>b)))" 

88 
apply (unfold image_def) 

89 
apply (simp (no_asm_use) add: full_SetCompr_eq) 

90 
apply (rule finite_subset) 

91 
prefer 2 apply (assumption) 

92 
apply auto 

93 
done 

94 

95 

96 
(* FIXME: what is this sum_case nonsense?? *) 

13937  97 
subsection {* sum\_case and empty/map\_upd *} 
13908  98 

13910  99 
lemma sum_case_map_upd_empty[simp]: 
100 
"sum_case (m(k>y)) empty = (sum_case m empty)(Inl k>y)" 

13908  101 
apply (rule ext) 
102 
apply (simp (no_asm) split add: sum.split) 

103 
done 

104 

13910  105 
lemma sum_case_empty_map_upd[simp]: 
106 
"sum_case empty (m(k>y)) = (sum_case empty m)(Inr k>y)" 

13908  107 
apply (rule ext) 
108 
apply (simp (no_asm) split add: sum.split) 

109 
done 

110 

13910  111 
lemma sum_case_map_upd_map_upd[simp]: 
112 
"sum_case (m1(k1>y1)) (m2(k2>y2)) = (sum_case (m1(k1>y1)) m2)(Inr k2>y2)" 

13908  113 
apply (rule ext) 
114 
apply (simp (no_asm) split add: sum.split) 

115 
done 

116 

117 

13937  118 
subsection {* chg\_map *} 
13908  119 

13910  120 
lemma chg_map_new[simp]: "m a = None ==> chg_map f a m = m" 
13908  121 
apply (unfold chg_map_def) 
122 
apply auto 

123 
done 

124 

13910  125 
lemma chg_map_upd[simp]: "m a = Some b ==> chg_map f a m = m(a>f b)" 
13908  126 
apply (unfold chg_map_def) 
127 
apply auto 

128 
done 

129 

130 

13937  131 
subsection {* map\_of *} 
13908  132 

133 
lemma map_of_SomeD [rule_format (no_asm)]: "map_of xs k = Some y > (k,y):set xs" 

134 
apply (induct_tac "xs") 

135 
apply auto 

136 
done 

137 

138 
lemma map_of_mapk_SomeI [rule_format (no_asm)]: "inj f ==> map_of t k = Some x > 

139 
map_of (map (split (%k. Pair (f k))) t) (f k) = Some x" 

140 
apply (induct_tac "t") 

141 
apply (auto simp add: inj_eq) 

142 
done 

143 

144 
lemma weak_map_of_SomeI [rule_format (no_asm)]: "(k, x) : set l > (? x. map_of l k = Some x)" 

145 
apply (induct_tac "l") 

146 
apply auto 

147 
done 

148 

149 
lemma map_of_filter_in: 

150 
"[ map_of xs k = Some z; P k z ] ==> map_of (filter (split P) xs) k = Some z" 

151 
apply (rule mp) 

152 
prefer 2 apply (assumption) 

153 
apply (erule thin_rl) 

154 
apply (induct_tac "xs") 

155 
apply auto 

156 
done 

157 

158 
lemma finite_range_map_of: "finite (range (map_of l))" 

159 
apply (induct_tac "l") 

160 
apply (simp_all (no_asm) add: image_constant) 

161 
apply (rule finite_subset) 

162 
prefer 2 apply (assumption) 

163 
apply auto 

164 
done 

165 

166 
lemma map_of_map: "map_of (map (%(a,b). (a,f b)) xs) x = option_map f (map_of xs x)" 

167 
apply (induct_tac "xs") 

168 
apply auto 

169 
done 

170 

171 

13937  172 
subsection {* option\_map related *} 
13908  173 

13910  174 
lemma option_map_o_empty[simp]: "option_map f o empty = empty" 
13908  175 
apply (rule ext) 
176 
apply (simp (no_asm)) 

177 
done 

178 

13910  179 
lemma option_map_o_map_upd[simp]: 
180 
"option_map f o m(a>b) = (option_map f o m)(a>f b)" 

13908  181 
apply (rule ext) 
182 
apply (simp (no_asm)) 

183 
done 

184 

185 

13937  186 
subsection {* ++ *} 
13908  187 

14025  188 
lemma map_add_empty[simp]: "m ++ empty = m" 
189 
apply (unfold map_add_def) 

13908  190 
apply (simp (no_asm)) 
191 
done 

192 

14025  193 
lemma empty_map_add[simp]: "empty ++ m = m" 
194 
apply (unfold map_add_def) 

13908  195 
apply (rule ext) 
196 
apply (simp split add: option.split) 

197 
done 

198 

14025  199 
lemma map_add_assoc[simp]: "m1 ++ (m2 ++ m3) = (m1 ++ m2) ++ m3" 
200 
apply(rule ext) 

201 
apply(simp add: map_add_def split:option.split) 

202 
done 

203 

204 
lemma map_add_Some_iff: 

13908  205 
"((m ++ n) k = Some x) = (n k = Some x  n k = None & m k = Some x)" 
14025  206 
apply (unfold map_add_def) 
13908  207 
apply (simp (no_asm) split add: option.split) 
208 
done 

209 

14025  210 
lemmas map_add_SomeD = map_add_Some_iff [THEN iffD1, standard] 
211 
declare map_add_SomeD [dest!] 

13908  212 

14025  213 
lemma map_add_find_right[simp]: "!!xx. n k = Some xx ==> (m ++ n) k = Some xx" 
214 
apply (subst map_add_Some_iff) 

13908  215 
apply fast 
216 
done 

217 

14025  218 
lemma map_add_None [iff]: "((m ++ n) k = None) = (n k = None & m k = None)" 
219 
apply (unfold map_add_def) 

13908  220 
apply (simp (no_asm) split add: option.split) 
221 
done 

222 

14025  223 
lemma map_add_upd[simp]: "f ++ g(x>y) = (f ++ g)(x>y)" 
224 
apply (unfold map_add_def) 

13908  225 
apply (rule ext) 
226 
apply auto 

227 
done 

228 

14025  229 
lemma map_of_append[simp]: "map_of (xs@ys) = map_of ys ++ map_of xs" 
230 
apply (unfold map_add_def) 

13908  231 
apply (induct_tac "xs") 
232 
apply (simp (no_asm)) 

233 
apply (rule ext) 

234 
apply (simp (no_asm_simp) split add: option.split) 

235 
done 

236 

237 
declare fun_upd_apply [simp del] 

14025  238 
lemma finite_range_map_of_map_add: 
239 
"finite (range f) ==> finite (range (f ++ map_of l))" 

13908  240 
apply (induct_tac "l") 
241 
apply auto 

242 
apply (erule finite_range_updI) 

243 
done 

244 
declare fun_upd_apply [simp] 

245 

246 

14025  247 
subsection {* map\_upds *} 
248 

249 
lemma map_upds_Nil1[simp]: "m([] [>] bs) = m" 

250 
by(simp add:map_upds_def) 

251 

252 
lemma map_upds_Nil2[simp]: "m(as [>] []) = m" 

253 
by(simp add:map_upds_def) 

254 

255 
lemma map_upds_Cons[simp]: "m(a#as [>] b#bs) = (m(a>b))(as[>]bs)" 

256 
by(simp add:map_upds_def) 

257 

258 

259 
lemma map_upd_upds_conv_if: "!!x y ys f. 

260 
(f(x>y))(xs [>] ys) = 

261 
(if x : set(take (length ys) xs) then f(xs [>] ys) 

262 
else (f(xs [>] ys))(x>y))" 

263 
apply(induct xs) 

264 
apply simp 

265 
apply(case_tac ys) 

266 
apply(auto split:split_if simp:fun_upd_twist) 

267 
done 

268 

269 
lemma map_upds_twist [simp]: 

270 
"a ~: set as ==> m(a>b)(as[>]bs) = m(as[>]bs)(a>b)" 

271 
apply(insert set_take_subset) 

272 
apply (fastsimp simp add: map_upd_upds_conv_if) 

273 
done 

274 

275 
lemma map_upds_apply_nontin[simp]: 

276 
"!!ys. x ~: set xs ==> (f(xs[>]ys)) x = f x" 

277 
apply(induct xs) 

278 
apply simp 

279 
apply(case_tac ys) 

280 
apply(auto simp: map_upd_upds_conv_if) 

281 
done 

282 

13937  283 
subsection {* dom *} 
13908  284 

285 
lemma domI: "m a = Some b ==> a : dom m" 

286 
apply (unfold dom_def) 

287 
apply auto 

288 
done 

289 

290 
lemma domD: "a : dom m ==> ? b. m a = Some b" 

291 
apply (unfold dom_def) 

292 
apply auto 

293 
done 

294 

13910  295 
lemma domIff[iff]: "(a : dom m) = (m a ~= None)" 
13908  296 
apply (unfold dom_def) 
297 
apply auto 

298 
done 

299 
declare domIff [simp del] 

300 

13910  301 
lemma dom_empty[simp]: "dom empty = {}" 
13908  302 
apply (unfold dom_def) 
303 
apply (simp (no_asm)) 

304 
done 

305 

13910  306 
lemma dom_fun_upd[simp]: 
307 
"dom(f(x := y)) = (if y=None then dom f  {x} else insert x (dom f))" 

308 
by (simp add:dom_def) blast 

13908  309 

13937  310 
lemma dom_map_of: "dom(map_of xys) = {x. \<exists>y. (x,y) : set xys}" 
311 
apply(induct xys) 

312 
apply(auto simp del:fun_upd_apply) 

313 
done 

314 

13908  315 
lemma finite_dom_map_of: "finite (dom (map_of l))" 
316 
apply (unfold dom_def) 

317 
apply (induct_tac "l") 

318 
apply (auto simp add: insert_Collect [symmetric]) 

319 
done 

320 

14025  321 
lemma dom_map_upds[simp]: 
322 
"!!m ys. dom(m(xs[>]ys)) = set(take (length ys) xs) Un dom m" 

323 
apply(induct xs) 

324 
apply simp 

325 
apply(case_tac ys) 

326 
apply auto 

327 
done 

13910  328 

14025  329 
lemma dom_map_add[simp]: "dom(m++n) = dom n Un dom m" 
13908  330 
apply (unfold dom_def) 
331 
apply auto 

332 
done 

13910  333 

334 
lemma dom_overwrite[simp]: 

335 
"dom(f(gA)) = (dom f  {a. a : A  dom g}) Un {a. a : A Int dom g}" 

336 
by(auto simp add: dom_def overwrite_def) 

13908  337 

13937  338 
subsection {* ran *} 
13908  339 

13910  340 
lemma ran_empty[simp]: "ran empty = {}" 
13908  341 
apply (unfold ran_def) 
342 
apply (simp (no_asm)) 

343 
done 

344 

13910  345 
lemma ran_map_upd[simp]: "m a = None ==> ran(m(a>b)) = insert b (ran m)" 
13908  346 
apply (unfold ran_def) 
347 
apply auto 

348 
apply (subgoal_tac "~ (aa = a) ") 

349 
apply auto 

350 
done 

13910  351 

13937  352 
subsection {* map\_le *} 
13910  353 

13912  354 
lemma map_le_empty [simp]: "empty \<subseteq>\<^sub>m g" 
13910  355 
by(simp add:map_le_def) 
356 

357 
lemma map_le_upd[simp]: "f \<subseteq>\<^sub>m g ==> f(a := b) \<subseteq>\<^sub>m g(a := b)" 

358 
by(fastsimp simp add:map_le_def) 

359 

360 
lemma map_le_upds[simp]: 

361 
"!!f g bs. f \<subseteq>\<^sub>m g ==> f(as [>] bs) \<subseteq>\<^sub>m g(as [>] bs)" 

14025  362 
apply(induct as) 
363 
apply simp 

364 
apply(case_tac bs) 

365 
apply auto 

366 
done 

13908  367 

3981  368 
end 