author | wenzelm |
Wed, 22 Feb 2006 22:18:33 +0100 | |
changeset 19122 | e1b6a5071348 |
parent 17782 | b3846df9d643 |
child 19761 | 5cd82054c2c6 |
permissions | -rw-r--r-- |
17441 | 1 |
(* Title: CTT/CTT.thy |
0 | 2 |
ID: $Id$ |
3 |
Author: Lawrence C Paulson, Cambridge University Computer Laboratory |
|
4 |
Copyright 1993 University of Cambridge |
|
5 |
*) |
|
6 |
||
17441 | 7 |
header {* Constructive Type Theory *} |
0 | 8 |
|
17441 | 9 |
theory CTT |
10 |
imports Pure |
|
11 |
begin |
|
12 |
||
13 |
typedecl i |
|
14 |
typedecl t |
|
15 |
typedecl o |
|
0 | 16 |
|
17 |
consts |
|
18 |
(*Types*) |
|
17441 | 19 |
F :: "t" |
20 |
T :: "t" (*F is empty, T contains one element*) |
|
0 | 21 |
contr :: "i=>i" |
22 |
tt :: "i" |
|
23 |
(*Natural numbers*) |
|
24 |
N :: "t" |
|
25 |
succ :: "i=>i" |
|
26 |
rec :: "[i, i, [i,i]=>i] => i" |
|
27 |
(*Unions*) |
|
17441 | 28 |
inl :: "i=>i" |
29 |
inr :: "i=>i" |
|
0 | 30 |
when :: "[i, i=>i, i=>i]=>i" |
31 |
(*General Sum and Binary Product*) |
|
32 |
Sum :: "[t, i=>t]=>t" |
|
17441 | 33 |
fst :: "i=>i" |
34 |
snd :: "i=>i" |
|
0 | 35 |
split :: "[i, [i,i]=>i] =>i" |
36 |
(*General Product and Function Space*) |
|
37 |
Prod :: "[t, i=>t]=>t" |
|
14765 | 38 |
(*Types*) |
39 |
"+" :: "[t,t]=>t" (infixr 40) |
|
0 | 40 |
(*Equality type*) |
41 |
Eq :: "[t,i,i]=>t" |
|
42 |
eq :: "i" |
|
43 |
(*Judgements*) |
|
44 |
Type :: "t => prop" ("(_ type)" [10] 5) |
|
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
45 |
Eqtype :: "[t,t]=>prop" ("(_ =/ _)" [10,10] 5) |
0 | 46 |
Elem :: "[i, t]=>prop" ("(_ /: _)" [10,10] 5) |
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
47 |
Eqelem :: "[i,i,t]=>prop" ("(_ =/ _ :/ _)" [10,10,10] 5) |
0 | 48 |
Reduce :: "[i,i]=>prop" ("Reduce[_,_]") |
49 |
(*Types*) |
|
14765 | 50 |
|
0 | 51 |
(*Functions*) |
52 |
lambda :: "(i => i) => i" (binder "lam " 10) |
|
53 |
"`" :: "[i,i]=>i" (infixl 60) |
|
54 |
(*Natural numbers*) |
|
55 |
"0" :: "i" ("0") |
|
56 |
(*Pairing*) |
|
57 |
pair :: "[i,i]=>i" ("(1<_,/_>)") |
|
58 |
||
14765 | 59 |
syntax |
60 |
"@PROD" :: "[idt,t,t]=>t" ("(3PROD _:_./ _)" 10) |
|
61 |
"@SUM" :: "[idt,t,t]=>t" ("(3SUM _:_./ _)" 10) |
|
62 |
"@-->" :: "[t,t]=>t" ("(_ -->/ _)" [31,30] 30) |
|
63 |
"@*" :: "[t,t]=>t" ("(_ */ _)" [51,50] 50) |
|
64 |
||
0 | 65 |
translations |
66 |
"PROD x:A. B" => "Prod(A, %x. B)" |
|
17782 | 67 |
"A --> B" => "Prod(A, %_. B)" |
0 | 68 |
"SUM x:A. B" => "Sum(A, %x. B)" |
17782 | 69 |
"A * B" => "Sum(A, %_. B)" |
0 | 70 |
|
17441 | 71 |
print_translation {* |
72 |
[("Prod", dependent_tr' ("@PROD", "@-->")), |
|
73 |
("Sum", dependent_tr' ("@SUM", "@*"))] |
|
74 |
*} |
|
75 |
||
76 |
||
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
77 |
syntax (xsymbols) |
17441 | 78 |
"@-->" :: "[t,t]=>t" ("(_ \<longrightarrow>/ _)" [31,30] 30) |
79 |
"@*" :: "[t,t]=>t" ("(_ \<times>/ _)" [51,50] 50) |
|
80 |
Elem :: "[i, t]=>prop" ("(_ /\<in> _)" [10,10] 5) |
|
81 |
Eqelem :: "[i,i,t]=>prop" ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) |
|
82 |
"@SUM" :: "[idt,t,t] => t" ("(3\<Sigma> _\<in>_./ _)" 10) |
|
83 |
"@PROD" :: "[idt,t,t] => t" ("(3\<Pi> _\<in>_./ _)" 10) |
|
84 |
"lam " :: "[idts, i] => i" ("(3\<lambda>\<lambda>_./ _)" 10) |
|
10467
e6e7205e9e91
x-symbol support for Pi, Sigma, -->, : (membership)
paulson
parents:
3837
diff
changeset
|
85 |
|
14565 | 86 |
syntax (HTML output) |
17441 | 87 |
"@*" :: "[t,t]=>t" ("(_ \<times>/ _)" [51,50] 50) |
88 |
Elem :: "[i, t]=>prop" ("(_ /\<in> _)" [10,10] 5) |
|
89 |
Eqelem :: "[i,i,t]=>prop" ("(2_ =/ _ \<in>/ _)" [10,10,10] 5) |
|
90 |
"@SUM" :: "[idt,t,t] => t" ("(3\<Sigma> _\<in>_./ _)" 10) |
|
91 |
"@PROD" :: "[idt,t,t] => t" ("(3\<Pi> _\<in>_./ _)" 10) |
|
92 |
"lam " :: "[idts, i] => i" ("(3\<lambda>\<lambda>_./ _)" 10) |
|
14565 | 93 |
|
17441 | 94 |
axioms |
0 | 95 |
|
96 |
(*Reduction: a weaker notion than equality; a hack for simplification. |
|
97 |
Reduce[a,b] means either that a=b:A for some A or else that "a" and "b" |
|
98 |
are textually identical.*) |
|
99 |
||
100 |
(*does not verify a:A! Sound because only trans_red uses a Reduce premise |
|
101 |
No new theorems can be proved about the standard judgements.*) |
|
17441 | 102 |
refl_red: "Reduce[a,a]" |
103 |
red_if_equal: "a = b : A ==> Reduce[a,b]" |
|
104 |
trans_red: "[| a = b : A; Reduce[b,c] |] ==> a = c : A" |
|
0 | 105 |
|
106 |
(*Reflexivity*) |
|
107 |
||
17441 | 108 |
refl_type: "A type ==> A = A" |
109 |
refl_elem: "a : A ==> a = a : A" |
|
0 | 110 |
|
111 |
(*Symmetry*) |
|
112 |
||
17441 | 113 |
sym_type: "A = B ==> B = A" |
114 |
sym_elem: "a = b : A ==> b = a : A" |
|
0 | 115 |
|
116 |
(*Transitivity*) |
|
117 |
||
17441 | 118 |
trans_type: "[| A = B; B = C |] ==> A = C" |
119 |
trans_elem: "[| a = b : A; b = c : A |] ==> a = c : A" |
|
0 | 120 |
|
17441 | 121 |
equal_types: "[| a : A; A = B |] ==> a : B" |
122 |
equal_typesL: "[| a = b : A; A = B |] ==> a = b : B" |
|
0 | 123 |
|
124 |
(*Substitution*) |
|
125 |
||
17441 | 126 |
subst_type: "[| a : A; !!z. z:A ==> B(z) type |] ==> B(a) type" |
127 |
subst_typeL: "[| a = c : A; !!z. z:A ==> B(z) = D(z) |] ==> B(a) = D(c)" |
|
0 | 128 |
|
17441 | 129 |
subst_elem: "[| a : A; !!z. z:A ==> b(z):B(z) |] ==> b(a):B(a)" |
130 |
subst_elemL: |
|
0 | 131 |
"[| a=c : A; !!z. z:A ==> b(z)=d(z) : B(z) |] ==> b(a)=d(c) : B(a)" |
132 |
||
133 |
||
134 |
(*The type N -- natural numbers*) |
|
135 |
||
17441 | 136 |
NF: "N type" |
137 |
NI0: "0 : N" |
|
138 |
NI_succ: "a : N ==> succ(a) : N" |
|
139 |
NI_succL: "a = b : N ==> succ(a) = succ(b) : N" |
|
0 | 140 |
|
17441 | 141 |
NE: |
142 |
"[| p: N; a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] |
|
3837 | 143 |
==> rec(p, a, %u v. b(u,v)) : C(p)" |
0 | 144 |
|
17441 | 145 |
NEL: |
146 |
"[| p = q : N; a = c : C(0); |
|
147 |
!!u v. [| u: N; v: C(u) |] ==> b(u,v) = d(u,v): C(succ(u)) |] |
|
3837 | 148 |
==> rec(p, a, %u v. b(u,v)) = rec(q,c,d) : C(p)" |
0 | 149 |
|
17441 | 150 |
NC0: |
151 |
"[| a: C(0); !!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] |
|
3837 | 152 |
==> rec(0, a, %u v. b(u,v)) = a : C(0)" |
0 | 153 |
|
17441 | 154 |
NC_succ: |
155 |
"[| p: N; a: C(0); |
|
156 |
!!u v. [| u: N; v: C(u) |] ==> b(u,v): C(succ(u)) |] ==> |
|
3837 | 157 |
rec(succ(p), a, %u v. b(u,v)) = b(p, rec(p, a, %u v. b(u,v))) : C(succ(p))" |
0 | 158 |
|
159 |
(*The fourth Peano axiom. See page 91 of Martin-Lof's book*) |
|
17441 | 160 |
zero_ne_succ: |
0 | 161 |
"[| a: N; 0 = succ(a) : N |] ==> 0: F" |
162 |
||
163 |
||
164 |
(*The Product of a family of types*) |
|
165 |
||
17441 | 166 |
ProdF: "[| A type; !!x. x:A ==> B(x) type |] ==> PROD x:A. B(x) type" |
0 | 167 |
|
17441 | 168 |
ProdFL: |
169 |
"[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> |
|
3837 | 170 |
PROD x:A. B(x) = PROD x:C. D(x)" |
0 | 171 |
|
17441 | 172 |
ProdI: |
3837 | 173 |
"[| A type; !!x. x:A ==> b(x):B(x)|] ==> lam x. b(x) : PROD x:A. B(x)" |
0 | 174 |
|
17441 | 175 |
ProdIL: |
176 |
"[| A type; !!x. x:A ==> b(x) = c(x) : B(x)|] ==> |
|
3837 | 177 |
lam x. b(x) = lam x. c(x) : PROD x:A. B(x)" |
0 | 178 |
|
17441 | 179 |
ProdE: "[| p : PROD x:A. B(x); a : A |] ==> p`a : B(a)" |
180 |
ProdEL: "[| p=q: PROD x:A. B(x); a=b : A |] ==> p`a = q`b : B(a)" |
|
0 | 181 |
|
17441 | 182 |
ProdC: |
183 |
"[| a : A; !!x. x:A ==> b(x) : B(x)|] ==> |
|
3837 | 184 |
(lam x. b(x)) ` a = b(a) : B(a)" |
0 | 185 |
|
17441 | 186 |
ProdC2: |
3837 | 187 |
"p : PROD x:A. B(x) ==> (lam x. p`x) = p : PROD x:A. B(x)" |
0 | 188 |
|
189 |
||
190 |
(*The Sum of a family of types*) |
|
191 |
||
17441 | 192 |
SumF: "[| A type; !!x. x:A ==> B(x) type |] ==> SUM x:A. B(x) type" |
193 |
SumFL: |
|
3837 | 194 |
"[| A = C; !!x. x:A ==> B(x) = D(x) |] ==> SUM x:A. B(x) = SUM x:C. D(x)" |
0 | 195 |
|
17441 | 196 |
SumI: "[| a : A; b : B(a) |] ==> <a,b> : SUM x:A. B(x)" |
197 |
SumIL: "[| a=c:A; b=d:B(a) |] ==> <a,b> = <c,d> : SUM x:A. B(x)" |
|
0 | 198 |
|
17441 | 199 |
SumE: |
200 |
"[| p: SUM x:A. B(x); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] |
|
3837 | 201 |
==> split(p, %x y. c(x,y)) : C(p)" |
0 | 202 |
|
17441 | 203 |
SumEL: |
204 |
"[| p=q : SUM x:A. B(x); |
|
205 |
!!x y. [| x:A; y:B(x) |] ==> c(x,y)=d(x,y): C(<x,y>)|] |
|
3837 | 206 |
==> split(p, %x y. c(x,y)) = split(q, % x y. d(x,y)) : C(p)" |
0 | 207 |
|
17441 | 208 |
SumC: |
209 |
"[| a: A; b: B(a); !!x y. [| x:A; y:B(x) |] ==> c(x,y): C(<x,y>) |] |
|
3837 | 210 |
==> split(<a,b>, %x y. c(x,y)) = c(a,b) : C(<a,b>)" |
0 | 211 |
|
17441 | 212 |
fst_def: "fst(a) == split(a, %x y. x)" |
213 |
snd_def: "snd(a) == split(a, %x y. y)" |
|
0 | 214 |
|
215 |
||
216 |
(*The sum of two types*) |
|
217 |
||
17441 | 218 |
PlusF: "[| A type; B type |] ==> A+B type" |
219 |
PlusFL: "[| A = C; B = D |] ==> A+B = C+D" |
|
0 | 220 |
|
17441 | 221 |
PlusI_inl: "[| a : A; B type |] ==> inl(a) : A+B" |
222 |
PlusI_inlL: "[| a = c : A; B type |] ==> inl(a) = inl(c) : A+B" |
|
0 | 223 |
|
17441 | 224 |
PlusI_inr: "[| A type; b : B |] ==> inr(b) : A+B" |
225 |
PlusI_inrL: "[| A type; b = d : B |] ==> inr(b) = inr(d) : A+B" |
|
0 | 226 |
|
17441 | 227 |
PlusE: |
228 |
"[| p: A+B; !!x. x:A ==> c(x): C(inl(x)); |
|
229 |
!!y. y:B ==> d(y): C(inr(y)) |] |
|
3837 | 230 |
==> when(p, %x. c(x), %y. d(y)) : C(p)" |
0 | 231 |
|
17441 | 232 |
PlusEL: |
233 |
"[| p = q : A+B; !!x. x: A ==> c(x) = e(x) : C(inl(x)); |
|
234 |
!!y. y: B ==> d(y) = f(y) : C(inr(y)) |] |
|
3837 | 235 |
==> when(p, %x. c(x), %y. d(y)) = when(q, %x. e(x), %y. f(y)) : C(p)" |
0 | 236 |
|
17441 | 237 |
PlusC_inl: |
238 |
"[| a: A; !!x. x:A ==> c(x): C(inl(x)); |
|
239 |
!!y. y:B ==> d(y): C(inr(y)) |] |
|
3837 | 240 |
==> when(inl(a), %x. c(x), %y. d(y)) = c(a) : C(inl(a))" |
0 | 241 |
|
17441 | 242 |
PlusC_inr: |
243 |
"[| b: B; !!x. x:A ==> c(x): C(inl(x)); |
|
244 |
!!y. y:B ==> d(y): C(inr(y)) |] |
|
3837 | 245 |
==> when(inr(b), %x. c(x), %y. d(y)) = d(b) : C(inr(b))" |
0 | 246 |
|
247 |
||
248 |
(*The type Eq*) |
|
249 |
||
17441 | 250 |
EqF: "[| A type; a : A; b : A |] ==> Eq(A,a,b) type" |
251 |
EqFL: "[| A=B; a=c: A; b=d : A |] ==> Eq(A,a,b) = Eq(B,c,d)" |
|
252 |
EqI: "a = b : A ==> eq : Eq(A,a,b)" |
|
253 |
EqE: "p : Eq(A,a,b) ==> a = b : A" |
|
0 | 254 |
|
255 |
(*By equality of types, can prove C(p) from C(eq), an elimination rule*) |
|
17441 | 256 |
EqC: "p : Eq(A,a,b) ==> p = eq : Eq(A,a,b)" |
0 | 257 |
|
258 |
(*The type F*) |
|
259 |
||
17441 | 260 |
FF: "F type" |
261 |
FE: "[| p: F; C type |] ==> contr(p) : C" |
|
262 |
FEL: "[| p = q : F; C type |] ==> contr(p) = contr(q) : C" |
|
0 | 263 |
|
264 |
(*The type T |
|
265 |
Martin-Lof's book (page 68) discusses elimination and computation. |
|
266 |
Elimination can be derived by computation and equality of types, |
|
267 |
but with an extra premise C(x) type x:T. |
|
268 |
Also computation can be derived from elimination. *) |
|
269 |
||
17441 | 270 |
TF: "T type" |
271 |
TI: "tt : T" |
|
272 |
TE: "[| p : T; c : C(tt) |] ==> c : C(p)" |
|
273 |
TEL: "[| p = q : T; c = d : C(tt) |] ==> c = d : C(p)" |
|
274 |
TC: "p : T ==> p = tt : T" |
|
0 | 275 |
|
17441 | 276 |
ML {* use_legacy_bindings (the_context ()) *} |
0 | 277 |
|
17441 | 278 |
end |