author | nipkow |
Mon, 30 Sep 2002 15:44:21 +0200 | |
changeset 13596 | ee5f79b210c1 |
parent 12399 | 2ba27248af7f |
child 13601 | fd3e3d6b37b2 |
permissions | -rw-r--r-- |
10249 | 1 |
(* Title: HOL/Library/Multiset.thy |
2 |
ID: $Id$ |
|
12399 | 3 |
Author: Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson |
4 |
License: GPL (GNU GENERAL PUBLIC LICENSE) |
|
10249 | 5 |
*) |
6 |
||
7 |
header {* |
|
8 |
\title{Multisets} |
|
9 |
\author{Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson} |
|
10 |
*} |
|
11 |
||
12 |
theory Multiset = Accessible_Part: |
|
13 |
||
14 |
subsection {* The type of multisets *} |
|
15 |
||
16 |
typedef 'a multiset = "{f::'a => nat. finite {x . 0 < f x}}" |
|
17 |
proof |
|
11464 | 18 |
show "(\<lambda>x. 0::nat) \<in> ?multiset" by simp |
10249 | 19 |
qed |
20 |
||
21 |
lemmas multiset_typedef [simp] = |
|
10277 | 22 |
Abs_multiset_inverse Rep_multiset_inverse Rep_multiset |
23 |
and [simp] = Rep_multiset_inject [symmetric] |
|
10249 | 24 |
|
25 |
constdefs |
|
26 |
Mempty :: "'a multiset" ("{#}") |
|
11464 | 27 |
"{#} == Abs_multiset (\<lambda>a. 0)" |
10249 | 28 |
|
29 |
single :: "'a => 'a multiset" ("{#_#}") |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
30 |
"{#a#} == Abs_multiset (\<lambda>b. if b = a then 1 else 0)" |
10249 | 31 |
|
32 |
count :: "'a multiset => 'a => nat" |
|
33 |
"count == Rep_multiset" |
|
34 |
||
35 |
MCollect :: "'a multiset => ('a => bool) => 'a multiset" |
|
11464 | 36 |
"MCollect M P == Abs_multiset (\<lambda>x. if P x then Rep_multiset M x else 0)" |
10249 | 37 |
|
38 |
syntax |
|
39 |
"_Melem" :: "'a => 'a multiset => bool" ("(_/ :# _)" [50, 51] 50) |
|
40 |
"_MCollect" :: "pttrn => 'a multiset => bool => 'a multiset" ("(1{# _ : _./ _#})") |
|
41 |
translations |
|
42 |
"a :# M" == "0 < count M a" |
|
11464 | 43 |
"{#x:M. P#}" == "MCollect M (\<lambda>x. P)" |
10249 | 44 |
|
45 |
constdefs |
|
46 |
set_of :: "'a multiset => 'a set" |
|
47 |
"set_of M == {x. x :# M}" |
|
48 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11868
diff
changeset
|
49 |
instance multiset :: (type) plus .. |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11868
diff
changeset
|
50 |
instance multiset :: (type) minus .. |
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11868
diff
changeset
|
51 |
instance multiset :: (type) zero .. |
10249 | 52 |
|
53 |
defs (overloaded) |
|
11464 | 54 |
union_def: "M + N == Abs_multiset (\<lambda>a. Rep_multiset M a + Rep_multiset N a)" |
55 |
diff_def: "M - N == Abs_multiset (\<lambda>a. Rep_multiset M a - Rep_multiset N a)" |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
56 |
Zero_multiset_def [simp]: "0 == {#}" |
10249 | 57 |
size_def: "size M == setsum (count M) (set_of M)" |
58 |
||
59 |
||
60 |
text {* |
|
61 |
\medskip Preservation of the representing set @{term multiset}. |
|
62 |
*} |
|
63 |
||
11464 | 64 |
lemma const0_in_multiset [simp]: "(\<lambda>a. 0) \<in> multiset" |
10249 | 65 |
apply (simp add: multiset_def) |
66 |
done |
|
67 |
||
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
68 |
lemma only1_in_multiset [simp]: "(\<lambda>b. if b = a then 1 else 0) \<in> multiset" |
10249 | 69 |
apply (simp add: multiset_def) |
70 |
done |
|
71 |
||
72 |
lemma union_preserves_multiset [simp]: |
|
11464 | 73 |
"M \<in> multiset ==> N \<in> multiset ==> (\<lambda>a. M a + N a) \<in> multiset" |
10249 | 74 |
apply (unfold multiset_def) |
75 |
apply simp |
|
76 |
apply (drule finite_UnI) |
|
77 |
apply assumption |
|
78 |
apply (simp del: finite_Un add: Un_def) |
|
79 |
done |
|
80 |
||
81 |
lemma diff_preserves_multiset [simp]: |
|
11464 | 82 |
"M \<in> multiset ==> (\<lambda>a. M a - N a) \<in> multiset" |
10249 | 83 |
apply (unfold multiset_def) |
84 |
apply simp |
|
85 |
apply (rule finite_subset) |
|
86 |
prefer 2 |
|
87 |
apply assumption |
|
88 |
apply auto |
|
89 |
done |
|
90 |
||
91 |
||
92 |
subsection {* Algebraic properties of multisets *} |
|
93 |
||
94 |
subsubsection {* Union *} |
|
95 |
||
11464 | 96 |
theorem union_empty [simp]: "M + {#} = M \<and> {#} + M = M" |
10249 | 97 |
apply (simp add: union_def Mempty_def) |
98 |
done |
|
99 |
||
100 |
theorem union_commute: "M + N = N + (M::'a multiset)" |
|
101 |
apply (simp add: union_def add_ac) |
|
102 |
done |
|
103 |
||
104 |
theorem union_assoc: "(M + N) + K = M + (N + (K::'a multiset))" |
|
105 |
apply (simp add: union_def add_ac) |
|
106 |
done |
|
107 |
||
108 |
theorem union_lcomm: "M + (N + K) = N + (M + (K::'a multiset))" |
|
109 |
apply (rule union_commute [THEN trans]) |
|
110 |
apply (rule union_assoc [THEN trans]) |
|
111 |
apply (rule union_commute [THEN arg_cong]) |
|
112 |
done |
|
113 |
||
114 |
theorems union_ac = union_assoc union_commute union_lcomm |
|
115 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11868
diff
changeset
|
116 |
instance multiset :: (type) plus_ac0 |
10277 | 117 |
apply intro_classes |
118 |
apply (rule union_commute) |
|
119 |
apply (rule union_assoc) |
|
120 |
apply simp |
|
121 |
done |
|
122 |
||
10249 | 123 |
|
124 |
subsubsection {* Difference *} |
|
125 |
||
11464 | 126 |
theorem diff_empty [simp]: "M - {#} = M \<and> {#} - M = {#}" |
10249 | 127 |
apply (simp add: Mempty_def diff_def) |
128 |
done |
|
129 |
||
130 |
theorem diff_union_inverse2 [simp]: "M + {#a#} - {#a#} = M" |
|
131 |
apply (simp add: union_def diff_def) |
|
132 |
done |
|
133 |
||
134 |
||
135 |
subsubsection {* Count of elements *} |
|
136 |
||
137 |
theorem count_empty [simp]: "count {#} a = 0" |
|
138 |
apply (simp add: count_def Mempty_def) |
|
139 |
done |
|
140 |
||
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
141 |
theorem count_single [simp]: "count {#b#} a = (if b = a then 1 else 0)" |
10249 | 142 |
apply (simp add: count_def single_def) |
143 |
done |
|
144 |
||
145 |
theorem count_union [simp]: "count (M + N) a = count M a + count N a" |
|
146 |
apply (simp add: count_def union_def) |
|
147 |
done |
|
148 |
||
149 |
theorem count_diff [simp]: "count (M - N) a = count M a - count N a" |
|
150 |
apply (simp add: count_def diff_def) |
|
151 |
done |
|
152 |
||
153 |
||
154 |
subsubsection {* Set of elements *} |
|
155 |
||
156 |
theorem set_of_empty [simp]: "set_of {#} = {}" |
|
157 |
apply (simp add: set_of_def) |
|
158 |
done |
|
159 |
||
160 |
theorem set_of_single [simp]: "set_of {#b#} = {b}" |
|
161 |
apply (simp add: set_of_def) |
|
162 |
done |
|
163 |
||
11464 | 164 |
theorem set_of_union [simp]: "set_of (M + N) = set_of M \<union> set_of N" |
10249 | 165 |
apply (auto simp add: set_of_def) |
166 |
done |
|
167 |
||
168 |
theorem set_of_eq_empty_iff [simp]: "(set_of M = {}) = (M = {#})" |
|
169 |
apply (auto simp add: set_of_def Mempty_def count_def expand_fun_eq) |
|
170 |
done |
|
171 |
||
11464 | 172 |
theorem mem_set_of_iff [simp]: "(x \<in> set_of M) = (x :# M)" |
10249 | 173 |
apply (auto simp add: set_of_def) |
174 |
done |
|
175 |
||
176 |
||
177 |
subsubsection {* Size *} |
|
178 |
||
179 |
theorem size_empty [simp]: "size {#} = 0" |
|
180 |
apply (simp add: size_def) |
|
181 |
done |
|
182 |
||
183 |
theorem size_single [simp]: "size {#b#} = 1" |
|
184 |
apply (simp add: size_def) |
|
185 |
done |
|
186 |
||
187 |
theorem finite_set_of [iff]: "finite (set_of M)" |
|
188 |
apply (cut_tac x = M in Rep_multiset) |
|
189 |
apply (simp add: multiset_def set_of_def count_def) |
|
190 |
done |
|
191 |
||
192 |
theorem setsum_count_Int: |
|
11464 | 193 |
"finite A ==> setsum (count N) (A \<inter> set_of N) = setsum (count N) A" |
10249 | 194 |
apply (erule finite_induct) |
195 |
apply simp |
|
196 |
apply (simp add: Int_insert_left set_of_def) |
|
197 |
done |
|
198 |
||
199 |
theorem size_union [simp]: "size (M + N::'a multiset) = size M + size N" |
|
200 |
apply (unfold size_def) |
|
11464 | 201 |
apply (subgoal_tac "count (M + N) = (\<lambda>a. count M a + count N a)") |
10249 | 202 |
prefer 2 |
203 |
apply (rule ext) |
|
204 |
apply simp |
|
205 |
apply (simp (no_asm_simp) add: setsum_Un setsum_addf setsum_count_Int) |
|
206 |
apply (subst Int_commute) |
|
207 |
apply (simp (no_asm_simp) add: setsum_count_Int) |
|
208 |
done |
|
209 |
||
210 |
theorem size_eq_0_iff_empty [iff]: "(size M = 0) = (M = {#})" |
|
211 |
apply (unfold size_def Mempty_def count_def) |
|
212 |
apply auto |
|
213 |
apply (simp add: set_of_def count_def expand_fun_eq) |
|
214 |
done |
|
215 |
||
11464 | 216 |
theorem size_eq_Suc_imp_elem: "size M = Suc n ==> \<exists>a. a :# M" |
10249 | 217 |
apply (unfold size_def) |
218 |
apply (drule setsum_SucD) |
|
219 |
apply auto |
|
220 |
done |
|
221 |
||
222 |
||
223 |
subsubsection {* Equality of multisets *} |
|
224 |
||
11464 | 225 |
theorem multiset_eq_conv_count_eq: "(M = N) = (\<forall>a. count M a = count N a)" |
10249 | 226 |
apply (simp add: count_def expand_fun_eq) |
227 |
done |
|
228 |
||
11464 | 229 |
theorem single_not_empty [simp]: "{#a#} \<noteq> {#} \<and> {#} \<noteq> {#a#}" |
10249 | 230 |
apply (simp add: single_def Mempty_def expand_fun_eq) |
231 |
done |
|
232 |
||
233 |
theorem single_eq_single [simp]: "({#a#} = {#b#}) = (a = b)" |
|
234 |
apply (auto simp add: single_def expand_fun_eq) |
|
235 |
done |
|
236 |
||
11464 | 237 |
theorem union_eq_empty [iff]: "(M + N = {#}) = (M = {#} \<and> N = {#})" |
10249 | 238 |
apply (auto simp add: union_def Mempty_def expand_fun_eq) |
239 |
done |
|
240 |
||
11464 | 241 |
theorem empty_eq_union [iff]: "({#} = M + N) = (M = {#} \<and> N = {#})" |
10249 | 242 |
apply (auto simp add: union_def Mempty_def expand_fun_eq) |
243 |
done |
|
244 |
||
245 |
theorem union_right_cancel [simp]: "(M + K = N + K) = (M = (N::'a multiset))" |
|
246 |
apply (simp add: union_def expand_fun_eq) |
|
247 |
done |
|
248 |
||
249 |
theorem union_left_cancel [simp]: "(K + M = K + N) = (M = (N::'a multiset))" |
|
250 |
apply (simp add: union_def expand_fun_eq) |
|
251 |
done |
|
252 |
||
253 |
theorem union_is_single: |
|
11464 | 254 |
"(M + N = {#a#}) = (M = {#a#} \<and> N={#} \<or> M = {#} \<and> N = {#a#})" |
10249 | 255 |
apply (unfold Mempty_def single_def union_def) |
256 |
apply (simp add: add_is_1 expand_fun_eq) |
|
257 |
apply blast |
|
258 |
done |
|
259 |
||
260 |
theorem single_is_union: |
|
261 |
"({#a#} = M + N) = |
|
11464 | 262 |
({#a#} = M \<and> N = {#} \<or> M = {#} \<and> {#a#} = N)" |
10249 | 263 |
apply (unfold Mempty_def single_def union_def) |
11464 | 264 |
apply (simp add: add_is_1 one_is_add expand_fun_eq) |
10249 | 265 |
apply (blast dest: sym) |
266 |
done |
|
267 |
||
268 |
theorem add_eq_conv_diff: |
|
269 |
"(M + {#a#} = N + {#b#}) = |
|
11464 | 270 |
(M = N \<and> a = b \<or> |
271 |
M = N - {#a#} + {#b#} \<and> N = M - {#b#} + {#a#})" |
|
10249 | 272 |
apply (unfold single_def union_def diff_def) |
273 |
apply (simp (no_asm) add: expand_fun_eq) |
|
274 |
apply (rule conjI) |
|
275 |
apply force |
|
11868
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents:
11701
diff
changeset
|
276 |
apply safe |
56db9f3a6b3e
Numerals now work for the integers: the binary numerals for 0 and 1 rewrite
paulson
parents:
11701
diff
changeset
|
277 |
apply (simp_all add: eq_sym_conv) |
10249 | 278 |
done |
279 |
||
280 |
(* |
|
281 |
val prems = Goal |
|
282 |
"[| !!F. [| finite F; !G. G < F --> P G |] ==> P F |] ==> finite F --> P F"; |
|
11464 | 283 |
by (res_inst_tac [("a","F"),("f","\<lambda>A. if finite A then card A else 0")] |
10249 | 284 |
measure_induct 1); |
285 |
by (Clarify_tac 1); |
|
286 |
by (resolve_tac prems 1); |
|
287 |
by (assume_tac 1); |
|
288 |
by (Clarify_tac 1); |
|
289 |
by (subgoal_tac "finite G" 1); |
|
290 |
by (fast_tac (claset() addDs [finite_subset,order_less_le RS iffD1]) 2); |
|
291 |
by (etac allE 1); |
|
292 |
by (etac impE 1); |
|
293 |
by (Blast_tac 2); |
|
294 |
by (asm_simp_tac (simpset() addsimps [psubset_card]) 1); |
|
295 |
no_qed(); |
|
296 |
val lemma = result(); |
|
297 |
||
298 |
val prems = Goal |
|
299 |
"[| finite F; !!F. [| finite F; !G. G < F --> P G |] ==> P F |] ==> P F"; |
|
300 |
by (rtac (lemma RS mp) 1); |
|
301 |
by (REPEAT(ares_tac prems 1)); |
|
302 |
qed "finite_psubset_induct"; |
|
303 |
||
304 |
Better: use wf_finite_psubset in WF_Rel |
|
305 |
*) |
|
306 |
||
307 |
||
308 |
subsection {* Induction over multisets *} |
|
309 |
||
310 |
lemma setsum_decr: |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
311 |
"finite F ==> (0::nat) < f a ==> |
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
312 |
setsum (f (a := f a - 1)) F = (if a \<in> F then setsum f F - 1 else setsum f F)" |
10249 | 313 |
apply (erule finite_induct) |
314 |
apply auto |
|
315 |
apply (drule_tac a = a in mk_disjoint_insert) |
|
316 |
apply auto |
|
317 |
done |
|
318 |
||
10313 | 319 |
lemma rep_multiset_induct_aux: |
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
320 |
"P (\<lambda>a. (0::nat)) ==> (!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))) |
11464 | 321 |
==> \<forall>f. f \<in> multiset --> setsum f {x. 0 < f x} = n --> P f" |
10249 | 322 |
proof - |
11549 | 323 |
case rule_context |
324 |
note premises = this [unfolded multiset_def] |
|
10249 | 325 |
show ?thesis |
326 |
apply (unfold multiset_def) |
|
327 |
apply (induct_tac n) |
|
328 |
apply simp |
|
329 |
apply clarify |
|
11464 | 330 |
apply (subgoal_tac "f = (\<lambda>a.0)") |
10249 | 331 |
apply simp |
11549 | 332 |
apply (rule premises) |
10249 | 333 |
apply (rule ext) |
334 |
apply force |
|
335 |
apply clarify |
|
336 |
apply (frule setsum_SucD) |
|
337 |
apply clarify |
|
338 |
apply (rename_tac a) |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
339 |
apply (subgoal_tac "finite {x. 0 < (f (a := f a - 1)) x}") |
10249 | 340 |
prefer 2 |
341 |
apply (rule finite_subset) |
|
342 |
prefer 2 |
|
343 |
apply assumption |
|
344 |
apply simp |
|
345 |
apply blast |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
346 |
apply (subgoal_tac "f = (f (a := f a - 1))(a := (f (a := f a - 1)) a + 1)") |
10249 | 347 |
prefer 2 |
348 |
apply (rule ext) |
|
349 |
apply (simp (no_asm_simp)) |
|
11549 | 350 |
apply (erule ssubst, rule premises) |
10249 | 351 |
apply blast |
352 |
apply (erule allE, erule impE, erule_tac [2] mp) |
|
353 |
apply blast |
|
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
354 |
apply (simp (no_asm_simp) add: setsum_decr del: fun_upd_apply One_nat_def) |
11464 | 355 |
apply (subgoal_tac "{x. x \<noteq> a --> 0 < f x} = {x. 0 < f x}") |
10249 | 356 |
prefer 2 |
357 |
apply blast |
|
11464 | 358 |
apply (subgoal_tac "{x. x \<noteq> a \<and> 0 < f x} = {x. 0 < f x} - {a}") |
10249 | 359 |
prefer 2 |
360 |
apply blast |
|
361 |
apply (simp add: le_imp_diff_is_add setsum_diff1 cong: conj_cong) |
|
362 |
done |
|
363 |
qed |
|
364 |
||
10313 | 365 |
theorem rep_multiset_induct: |
11464 | 366 |
"f \<in> multiset ==> P (\<lambda>a. 0) ==> |
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
367 |
(!!f b. f \<in> multiset ==> P f ==> P (f (b := f b + 1))) ==> P f" |
10313 | 368 |
apply (insert rep_multiset_induct_aux) |
10249 | 369 |
apply blast |
370 |
done |
|
371 |
||
372 |
theorem multiset_induct [induct type: multiset]: |
|
373 |
"P {#} ==> (!!M x. P M ==> P (M + {#x#})) ==> P M" |
|
374 |
proof - |
|
375 |
note defns = union_def single_def Mempty_def |
|
376 |
assume prem1 [unfolded defns]: "P {#}" |
|
377 |
assume prem2 [unfolded defns]: "!!M x. P M ==> P (M + {#x#})" |
|
378 |
show ?thesis |
|
379 |
apply (rule Rep_multiset_inverse [THEN subst]) |
|
10313 | 380 |
apply (rule Rep_multiset [THEN rep_multiset_induct]) |
10249 | 381 |
apply (rule prem1) |
11701
3d51fbf81c17
sane numerals (stage 1): added generic 1, removed 1' and 2 on nat,
wenzelm
parents:
11655
diff
changeset
|
382 |
apply (subgoal_tac "f (b := f b + 1) = (\<lambda>a. f a + (if a = b then 1 else 0))") |
10249 | 383 |
prefer 2 |
384 |
apply (simp add: expand_fun_eq) |
|
385 |
apply (erule ssubst) |
|
386 |
apply (erule Abs_multiset_inverse [THEN subst]) |
|
387 |
apply (erule prem2 [simplified]) |
|
388 |
done |
|
389 |
qed |
|
390 |
||
391 |
||
392 |
lemma MCollect_preserves_multiset: |
|
11464 | 393 |
"M \<in> multiset ==> (\<lambda>x. if P x then M x else 0) \<in> multiset" |
10249 | 394 |
apply (simp add: multiset_def) |
395 |
apply (rule finite_subset) |
|
396 |
apply auto |
|
397 |
done |
|
398 |
||
399 |
theorem count_MCollect [simp]: |
|
400 |
"count {# x:M. P x #} a = (if P a then count M a else 0)" |
|
401 |
apply (unfold count_def MCollect_def) |
|
402 |
apply (simp add: MCollect_preserves_multiset) |
|
403 |
done |
|
404 |
||
11464 | 405 |
theorem set_of_MCollect [simp]: "set_of {# x:M. P x #} = set_of M \<inter> {x. P x}" |
10249 | 406 |
apply (auto simp add: set_of_def) |
407 |
done |
|
408 |
||
11464 | 409 |
theorem multiset_partition: "M = {# x:M. P x #} + {# x:M. \<not> P x #}" |
10249 | 410 |
apply (subst multiset_eq_conv_count_eq) |
411 |
apply auto |
|
412 |
done |
|
413 |
||
10277 | 414 |
declare Rep_multiset_inject [symmetric, simp del] |
10249 | 415 |
declare multiset_typedef [simp del] |
416 |
||
417 |
theorem add_eq_conv_ex: |
|
418 |
"(M + {#a#} = N + {#b#}) = |
|
11464 | 419 |
(M = N \<and> a = b \<or> (\<exists>K. M = K + {#b#} \<and> N = K + {#a#}))" |
10249 | 420 |
apply (auto simp add: add_eq_conv_diff) |
421 |
done |
|
422 |
||
423 |
||
424 |
subsection {* Multiset orderings *} |
|
425 |
||
426 |
subsubsection {* Well-foundedness *} |
|
427 |
||
428 |
constdefs |
|
11464 | 429 |
mult1 :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" |
10249 | 430 |
"mult1 r == |
11464 | 431 |
{(N, M). \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> |
432 |
(\<forall>b. b :# K --> (b, a) \<in> r)}" |
|
10249 | 433 |
|
11464 | 434 |
mult :: "('a \<times> 'a) set => ('a multiset \<times> 'a multiset) set" |
10392 | 435 |
"mult r == (mult1 r)\<^sup>+" |
10249 | 436 |
|
11464 | 437 |
lemma not_less_empty [iff]: "(M, {#}) \<notin> mult1 r" |
10277 | 438 |
by (simp add: mult1_def) |
10249 | 439 |
|
11464 | 440 |
lemma less_add: "(N, M0 + {#a#}) \<in> mult1 r ==> |
441 |
(\<exists>M. (M, M0) \<in> mult1 r \<and> N = M + {#a#}) \<or> |
|
442 |
(\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K)" |
|
443 |
(concl is "?case1 (mult1 r) \<or> ?case2") |
|
10249 | 444 |
proof (unfold mult1_def) |
11464 | 445 |
let ?r = "\<lambda>K a. \<forall>b. b :# K --> (b, a) \<in> r" |
446 |
let ?R = "\<lambda>N M. \<exists>a M0 K. M = M0 + {#a#} \<and> N = M0 + K \<and> ?r K a" |
|
10249 | 447 |
let ?case1 = "?case1 {(N, M). ?R N M}" |
448 |
||
11464 | 449 |
assume "(N, M0 + {#a#}) \<in> {(N, M). ?R N M}" |
450 |
hence "\<exists>a' M0' K. |
|
451 |
M0 + {#a#} = M0' + {#a'#} \<and> N = M0' + K \<and> ?r K a'" by simp |
|
452 |
thus "?case1 \<or> ?case2" |
|
10249 | 453 |
proof (elim exE conjE) |
454 |
fix a' M0' K |
|
455 |
assume N: "N = M0' + K" and r: "?r K a'" |
|
456 |
assume "M0 + {#a#} = M0' + {#a'#}" |
|
11464 | 457 |
hence "M0 = M0' \<and> a = a' \<or> |
458 |
(\<exists>K'. M0 = K' + {#a'#} \<and> M0' = K' + {#a#})" |
|
10249 | 459 |
by (simp only: add_eq_conv_ex) |
460 |
thus ?thesis |
|
461 |
proof (elim disjE conjE exE) |
|
462 |
assume "M0 = M0'" "a = a'" |
|
11464 | 463 |
with N r have "?r K a \<and> N = M0 + K" by simp |
10249 | 464 |
hence ?case2 .. thus ?thesis .. |
465 |
next |
|
466 |
fix K' |
|
467 |
assume "M0' = K' + {#a#}" |
|
468 |
with N have n: "N = K' + K + {#a#}" by (simp add: union_ac) |
|
469 |
||
470 |
assume "M0 = K' + {#a'#}" |
|
471 |
with r have "?R (K' + K) M0" by blast |
|
472 |
with n have ?case1 by simp thus ?thesis .. |
|
473 |
qed |
|
474 |
qed |
|
475 |
qed |
|
476 |
||
11464 | 477 |
lemma all_accessible: "wf r ==> \<forall>M. M \<in> acc (mult1 r)" |
10249 | 478 |
proof |
479 |
let ?R = "mult1 r" |
|
480 |
let ?W = "acc ?R" |
|
481 |
{ |
|
482 |
fix M M0 a |
|
11464 | 483 |
assume M0: "M0 \<in> ?W" |
12399 | 484 |
and wf_hyp: "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)" |
11464 | 485 |
and acc_hyp: "\<forall>M. (M, M0) \<in> ?R --> M + {#a#} \<in> ?W" |
486 |
have "M0 + {#a#} \<in> ?W" |
|
10249 | 487 |
proof (rule accI [of "M0 + {#a#}"]) |
488 |
fix N |
|
11464 | 489 |
assume "(N, M0 + {#a#}) \<in> ?R" |
490 |
hence "((\<exists>M. (M, M0) \<in> ?R \<and> N = M + {#a#}) \<or> |
|
491 |
(\<exists>K. (\<forall>b. b :# K --> (b, a) \<in> r) \<and> N = M0 + K))" |
|
10249 | 492 |
by (rule less_add) |
11464 | 493 |
thus "N \<in> ?W" |
10249 | 494 |
proof (elim exE disjE conjE) |
11464 | 495 |
fix M assume "(M, M0) \<in> ?R" and N: "N = M + {#a#}" |
496 |
from acc_hyp have "(M, M0) \<in> ?R --> M + {#a#} \<in> ?W" .. |
|
497 |
hence "M + {#a#} \<in> ?W" .. |
|
498 |
thus "N \<in> ?W" by (simp only: N) |
|
10249 | 499 |
next |
500 |
fix K |
|
501 |
assume N: "N = M0 + K" |
|
11464 | 502 |
assume "\<forall>b. b :# K --> (b, a) \<in> r" |
503 |
have "?this --> M0 + K \<in> ?W" (is "?P K") |
|
10249 | 504 |
proof (induct K) |
11464 | 505 |
from M0 have "M0 + {#} \<in> ?W" by simp |
10249 | 506 |
thus "?P {#}" .. |
507 |
||
508 |
fix K x assume hyp: "?P K" |
|
509 |
show "?P (K + {#x#})" |
|
510 |
proof |
|
11464 | 511 |
assume a: "\<forall>b. b :# (K + {#x#}) --> (b, a) \<in> r" |
512 |
hence "(x, a) \<in> r" by simp |
|
513 |
with wf_hyp have b: "\<forall>M \<in> ?W. M + {#x#} \<in> ?W" by blast |
|
10249 | 514 |
|
11464 | 515 |
from a hyp have "M0 + K \<in> ?W" by simp |
516 |
with b have "(M0 + K) + {#x#} \<in> ?W" .. |
|
517 |
thus "M0 + (K + {#x#}) \<in> ?W" by (simp only: union_assoc) |
|
10249 | 518 |
qed |
519 |
qed |
|
11464 | 520 |
hence "M0 + K \<in> ?W" .. |
521 |
thus "N \<in> ?W" by (simp only: N) |
|
10249 | 522 |
qed |
523 |
qed |
|
524 |
} note tedious_reasoning = this |
|
525 |
||
526 |
assume wf: "wf r" |
|
527 |
fix M |
|
11464 | 528 |
show "M \<in> ?W" |
10249 | 529 |
proof (induct M) |
11464 | 530 |
show "{#} \<in> ?W" |
10249 | 531 |
proof (rule accI) |
11464 | 532 |
fix b assume "(b, {#}) \<in> ?R" |
533 |
with not_less_empty show "b \<in> ?W" by contradiction |
|
10249 | 534 |
qed |
535 |
||
11464 | 536 |
fix M a assume "M \<in> ?W" |
537 |
from wf have "\<forall>M \<in> ?W. M + {#a#} \<in> ?W" |
|
10249 | 538 |
proof induct |
539 |
fix a |
|
12399 | 540 |
assume "!!b. (b, a) \<in> r ==> (\<forall>M \<in> ?W. M + {#b#} \<in> ?W)" |
11464 | 541 |
show "\<forall>M \<in> ?W. M + {#a#} \<in> ?W" |
10249 | 542 |
proof |
11464 | 543 |
fix M assume "M \<in> ?W" |
544 |
thus "M + {#a#} \<in> ?W" |
|
10249 | 545 |
by (rule acc_induct) (rule tedious_reasoning) |
546 |
qed |
|
547 |
qed |
|
11464 | 548 |
thus "M + {#a#} \<in> ?W" .. |
10249 | 549 |
qed |
550 |
qed |
|
551 |
||
552 |
theorem wf_mult1: "wf r ==> wf (mult1 r)" |
|
553 |
by (rule acc_wfI, rule all_accessible) |
|
554 |
||
555 |
theorem wf_mult: "wf r ==> wf (mult r)" |
|
556 |
by (unfold mult_def, rule wf_trancl, rule wf_mult1) |
|
557 |
||
558 |
||
559 |
subsubsection {* Closure-free presentation *} |
|
560 |
||
561 |
(*Badly needed: a linear arithmetic procedure for multisets*) |
|
562 |
||
563 |
lemma diff_union_single_conv: "a :# J ==> I + J - {#a#} = I + (J - {#a#})" |
|
564 |
apply (simp add: multiset_eq_conv_count_eq) |
|
565 |
done |
|
566 |
||
567 |
text {* One direction. *} |
|
568 |
||
569 |
lemma mult_implies_one_step: |
|
11464 | 570 |
"trans r ==> (M, N) \<in> mult r ==> |
571 |
\<exists>I J K. N = I + J \<and> M = I + K \<and> J \<noteq> {#} \<and> |
|
572 |
(\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r)" |
|
10249 | 573 |
apply (unfold mult_def mult1_def set_of_def) |
574 |
apply (erule converse_trancl_induct) |
|
575 |
apply clarify |
|
576 |
apply (rule_tac x = M0 in exI) |
|
577 |
apply simp |
|
578 |
apply clarify |
|
579 |
apply (case_tac "a :# K") |
|
580 |
apply (rule_tac x = I in exI) |
|
581 |
apply (simp (no_asm)) |
|
582 |
apply (rule_tac x = "(K - {#a#}) + Ka" in exI) |
|
583 |
apply (simp (no_asm_simp) add: union_assoc [symmetric]) |
|
11464 | 584 |
apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong) |
10249 | 585 |
apply (simp add: diff_union_single_conv) |
586 |
apply (simp (no_asm_use) add: trans_def) |
|
587 |
apply blast |
|
588 |
apply (subgoal_tac "a :# I") |
|
589 |
apply (rule_tac x = "I - {#a#}" in exI) |
|
590 |
apply (rule_tac x = "J + {#a#}" in exI) |
|
591 |
apply (rule_tac x = "K + Ka" in exI) |
|
592 |
apply (rule conjI) |
|
593 |
apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split) |
|
594 |
apply (rule conjI) |
|
11464 | 595 |
apply (drule_tac f = "\<lambda>M. M - {#a#}" in arg_cong) |
10249 | 596 |
apply simp |
597 |
apply (simp add: multiset_eq_conv_count_eq split: nat_diff_split) |
|
598 |
apply (simp (no_asm_use) add: trans_def) |
|
599 |
apply blast |
|
10277 | 600 |
apply (subgoal_tac "a :# (M0 + {#a#})") |
10249 | 601 |
apply simp |
602 |
apply (simp (no_asm)) |
|
603 |
done |
|
604 |
||
605 |
lemma elem_imp_eq_diff_union: "a :# M ==> M = M - {#a#} + {#a#}" |
|
606 |
apply (simp add: multiset_eq_conv_count_eq) |
|
607 |
done |
|
608 |
||
11464 | 609 |
lemma size_eq_Suc_imp_eq_union: "size M = Suc n ==> \<exists>a N. M = N + {#a#}" |
10249 | 610 |
apply (erule size_eq_Suc_imp_elem [THEN exE]) |
611 |
apply (drule elem_imp_eq_diff_union) |
|
612 |
apply auto |
|
613 |
done |
|
614 |
||
615 |
lemma one_step_implies_mult_aux: |
|
616 |
"trans r ==> |
|
11464 | 617 |
\<forall>I J K. (size J = n \<and> J \<noteq> {#} \<and> (\<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r)) |
618 |
--> (I + K, I + J) \<in> mult r" |
|
10249 | 619 |
apply (induct_tac n) |
620 |
apply auto |
|
621 |
apply (frule size_eq_Suc_imp_eq_union) |
|
622 |
apply clarify |
|
623 |
apply (rename_tac "J'") |
|
624 |
apply simp |
|
625 |
apply (erule notE) |
|
626 |
apply auto |
|
627 |
apply (case_tac "J' = {#}") |
|
628 |
apply (simp add: mult_def) |
|
629 |
apply (rule r_into_trancl) |
|
630 |
apply (simp add: mult1_def set_of_def) |
|
631 |
apply blast |
|
11464 | 632 |
txt {* Now we know @{term "J' \<noteq> {#}"}. *} |
633 |
apply (cut_tac M = K and P = "\<lambda>x. (x, a) \<in> r" in multiset_partition) |
|
634 |
apply (erule_tac P = "\<forall>k \<in> set_of K. ?P k" in rev_mp) |
|
10249 | 635 |
apply (erule ssubst) |
636 |
apply (simp add: Ball_def) |
|
637 |
apply auto |
|
638 |
apply (subgoal_tac |
|
11464 | 639 |
"((I + {# x : K. (x, a) \<in> r #}) + {# x : K. (x, a) \<notin> r #}, |
640 |
(I + {# x : K. (x, a) \<in> r #}) + J') \<in> mult r") |
|
10249 | 641 |
prefer 2 |
642 |
apply force |
|
643 |
apply (simp (no_asm_use) add: union_assoc [symmetric] mult_def) |
|
644 |
apply (erule trancl_trans) |
|
645 |
apply (rule r_into_trancl) |
|
646 |
apply (simp add: mult1_def set_of_def) |
|
647 |
apply (rule_tac x = a in exI) |
|
648 |
apply (rule_tac x = "I + J'" in exI) |
|
649 |
apply (simp add: union_ac) |
|
650 |
done |
|
651 |
||
652 |
theorem one_step_implies_mult: |
|
11464 | 653 |
"trans r ==> J \<noteq> {#} ==> \<forall>k \<in> set_of K. \<exists>j \<in> set_of J. (k, j) \<in> r |
654 |
==> (I + K, I + J) \<in> mult r" |
|
10249 | 655 |
apply (insert one_step_implies_mult_aux) |
656 |
apply blast |
|
657 |
done |
|
658 |
||
659 |
||
660 |
subsubsection {* Partial-order properties *} |
|
661 |
||
12338
de0f4a63baa5
renamed class "term" to "type" (actually "HOL.type");
wenzelm
parents:
11868
diff
changeset
|
662 |
instance multiset :: (type) ord .. |
10249 | 663 |
|
664 |
defs (overloaded) |
|
11464 | 665 |
less_multiset_def: "M' < M == (M', M) \<in> mult {(x', x). x' < x}" |
666 |
le_multiset_def: "M' <= M == M' = M \<or> M' < (M::'a multiset)" |
|
10249 | 667 |
|
668 |
lemma trans_base_order: "trans {(x', x). x' < (x::'a::order)}" |
|
669 |
apply (unfold trans_def) |
|
670 |
apply (blast intro: order_less_trans) |
|
671 |
done |
|
672 |
||
673 |
text {* |
|
674 |
\medskip Irreflexivity. |
|
675 |
*} |
|
676 |
||
677 |
lemma mult_irrefl_aux: |
|
11464 | 678 |
"finite A ==> (\<forall>x \<in> A. \<exists>y \<in> A. x < (y::'a::order)) --> A = {}" |
10249 | 679 |
apply (erule finite_induct) |
680 |
apply (auto intro: order_less_trans) |
|
681 |
done |
|
682 |
||
11464 | 683 |
theorem mult_less_not_refl: "\<not> M < (M::'a::order multiset)" |
10249 | 684 |
apply (unfold less_multiset_def) |
685 |
apply auto |
|
686 |
apply (drule trans_base_order [THEN mult_implies_one_step]) |
|
687 |
apply auto |
|
688 |
apply (drule finite_set_of [THEN mult_irrefl_aux [rule_format (no_asm)]]) |
|
689 |
apply (simp add: set_of_eq_empty_iff) |
|
690 |
done |
|
691 |
||
692 |
lemma mult_less_irrefl [elim!]: "M < (M::'a::order multiset) ==> R" |
|
693 |
apply (insert mult_less_not_refl) |
|
13596 | 694 |
apply fast |
10249 | 695 |
done |
696 |
||
697 |
||
698 |
text {* Transitivity. *} |
|
699 |
||
700 |
theorem mult_less_trans: "K < M ==> M < N ==> K < (N::'a::order multiset)" |
|
701 |
apply (unfold less_multiset_def mult_def) |
|
702 |
apply (blast intro: trancl_trans) |
|
703 |
done |
|
704 |
||
705 |
text {* Asymmetry. *} |
|
706 |
||
11464 | 707 |
theorem mult_less_not_sym: "M < N ==> \<not> N < (M::'a::order multiset)" |
10249 | 708 |
apply auto |
709 |
apply (rule mult_less_not_refl [THEN notE]) |
|
710 |
apply (erule mult_less_trans) |
|
711 |
apply assumption |
|
712 |
done |
|
713 |
||
714 |
theorem mult_less_asym: |
|
11464 | 715 |
"M < N ==> (\<not> P ==> N < (M::'a::order multiset)) ==> P" |
10249 | 716 |
apply (insert mult_less_not_sym) |
717 |
apply blast |
|
718 |
done |
|
719 |
||
720 |
theorem mult_le_refl [iff]: "M <= (M::'a::order multiset)" |
|
721 |
apply (unfold le_multiset_def) |
|
722 |
apply auto |
|
723 |
done |
|
724 |
||
725 |
text {* Anti-symmetry. *} |
|
726 |
||
727 |
theorem mult_le_antisym: |
|
728 |
"M <= N ==> N <= M ==> M = (N::'a::order multiset)" |
|
729 |
apply (unfold le_multiset_def) |
|
730 |
apply (blast dest: mult_less_not_sym) |
|
731 |
done |
|
732 |
||
733 |
text {* Transitivity. *} |
|
734 |
||
735 |
theorem mult_le_trans: |
|
736 |
"K <= M ==> M <= N ==> K <= (N::'a::order multiset)" |
|
737 |
apply (unfold le_multiset_def) |
|
738 |
apply (blast intro: mult_less_trans) |
|
739 |
done |
|
740 |
||
11655 | 741 |
theorem mult_less_le: "(M < N) = (M <= N \<and> M \<noteq> (N::'a::order multiset))" |
10249 | 742 |
apply (unfold le_multiset_def) |
743 |
apply auto |
|
744 |
done |
|
745 |
||
10277 | 746 |
text {* Partial order. *} |
747 |
||
748 |
instance multiset :: (order) order |
|
749 |
apply intro_classes |
|
750 |
apply (rule mult_le_refl) |
|
751 |
apply (erule mult_le_trans) |
|
752 |
apply assumption |
|
753 |
apply (erule mult_le_antisym) |
|
754 |
apply assumption |
|
755 |
apply (rule mult_less_le) |
|
756 |
done |
|
757 |
||
10249 | 758 |
|
759 |
subsubsection {* Monotonicity of multiset union *} |
|
760 |
||
761 |
theorem mult1_union: |
|
11464 | 762 |
"(B, D) \<in> mult1 r ==> trans r ==> (C + B, C + D) \<in> mult1 r" |
10249 | 763 |
apply (unfold mult1_def) |
764 |
apply auto |
|
765 |
apply (rule_tac x = a in exI) |
|
766 |
apply (rule_tac x = "C + M0" in exI) |
|
767 |
apply (simp add: union_assoc) |
|
768 |
done |
|
769 |
||
770 |
lemma union_less_mono2: "B < D ==> C + B < C + (D::'a::order multiset)" |
|
771 |
apply (unfold less_multiset_def mult_def) |
|
772 |
apply (erule trancl_induct) |
|
773 |
apply (blast intro: mult1_union transI order_less_trans r_into_trancl) |
|
774 |
apply (blast intro: mult1_union transI order_less_trans r_into_trancl trancl_trans) |
|
775 |
done |
|
776 |
||
777 |
lemma union_less_mono1: "B < D ==> B + C < D + (C::'a::order multiset)" |
|
778 |
apply (subst union_commute [of B C]) |
|
779 |
apply (subst union_commute [of D C]) |
|
780 |
apply (erule union_less_mono2) |
|
781 |
done |
|
782 |
||
783 |
theorem union_less_mono: |
|
784 |
"A < C ==> B < D ==> A + B < C + (D::'a::order multiset)" |
|
785 |
apply (blast intro!: union_less_mono1 union_less_mono2 mult_less_trans) |
|
786 |
done |
|
787 |
||
788 |
theorem union_le_mono: |
|
789 |
"A <= C ==> B <= D ==> A + B <= C + (D::'a::order multiset)" |
|
790 |
apply (unfold le_multiset_def) |
|
791 |
apply (blast intro: union_less_mono union_less_mono1 union_less_mono2) |
|
792 |
done |
|
793 |
||
794 |
theorem empty_leI [iff]: "{#} <= (M::'a::order multiset)" |
|
795 |
apply (unfold le_multiset_def less_multiset_def) |
|
796 |
apply (case_tac "M = {#}") |
|
797 |
prefer 2 |
|
11464 | 798 |
apply (subgoal_tac "({#} + {#}, {#} + M) \<in> mult (Collect (split op <))") |
10249 | 799 |
prefer 2 |
800 |
apply (rule one_step_implies_mult) |
|
801 |
apply (simp only: trans_def) |
|
802 |
apply auto |
|
803 |
apply (blast intro: order_less_trans) |
|
804 |
done |
|
805 |
||
806 |
theorem union_upper1: "A <= A + (B::'a::order multiset)" |
|
807 |
apply (subgoal_tac "A + {#} <= A + B") |
|
808 |
prefer 2 |
|
809 |
apply (rule union_le_mono) |
|
810 |
apply auto |
|
811 |
done |
|
812 |
||
813 |
theorem union_upper2: "B <= A + (B::'a::order multiset)" |
|
814 |
apply (subst union_commute, rule union_upper1) |
|
815 |
done |
|
816 |
||
817 |
end |