| author | wenzelm | 
| Sat, 04 Apr 2020 20:06:15 +0200 | |
| changeset 71687 | f17be1db8381 | 
| parent 71633 | 07bec530f02e | 
| child 73253 | f6bb31879698 | 
| permissions | -rw-r--r-- | 
| 63627 | 1 | (* Title: HOL/Analysis/Nonnegative_Lebesgue_Integration.thy | 
| 42067 | 2 | Author: Johannes Hölzl, TU München | 
| 3 | Author: Armin Heller, TU München | |
| 4 | *) | |
| 38656 | 5 | |
| 61808 | 6 | section \<open>Lebesgue Integration for Nonnegative Functions\<close> | 
| 35582 | 7 | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 8 | theory Nonnegative_Lebesgue_Integration | 
| 47694 | 9 | imports Measure_Space Borel_Space | 
| 35582 | 10 | begin | 
| 11 | ||
| 70136 | 12 | subsection\<^marker>\<open>tag unimportant\<close> \<open>Approximating functions\<close> | 
| 64283 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 13 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 14 | lemma AE_upper_bound_inf_ennreal: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 15 | fixes F G::"'a \<Rightarrow> ennreal" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 16 | assumes "\<And>e. (e::real) > 0 \<Longrightarrow> AE x in M. F x \<le> G x + e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 17 | shows "AE x in M. F x \<le> G x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 18 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 19 | have "AE x in M. \<forall>n::nat. F x \<le> G x + ennreal (1 / Suc n)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 20 | using assms by (auto simp: AE_all_countable) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 21 | then show ?thesis | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 22 | proof (eventually_elim) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 23 | fix x assume x: "\<forall>n::nat. F x \<le> G x + ennreal (1 / Suc n)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 24 | show "F x \<le> G x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 25 | proof (rule ennreal_le_epsilon) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 26 | fix e :: real assume "0 < e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 27 | then obtain n where n: "1 / Suc n < e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 28 | by (blast elim: nat_approx_posE) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 29 | have "F x \<le> G x + 1 / Suc n" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 30 | using x by simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 31 | also have "\<dots> \<le> G x + e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 32 | using n by (intro add_mono ennreal_leI) auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 33 | finally show "F x \<le> G x + ennreal e" . | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 34 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 35 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 36 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 37 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 38 | lemma AE_upper_bound_inf: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 39 | fixes F G::"'a \<Rightarrow> real" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 40 | assumes "\<And>e. e > 0 \<Longrightarrow> AE x in M. F x \<le> G x + e" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 41 | shows "AE x in M. F x \<le> G x" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 42 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 43 | have "AE x in M. F x \<le> G x + 1/real (n+1)" for n::nat | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 44 | by (rule assms, auto) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 45 | then have "AE x in M. \<forall>n::nat \<in> UNIV. F x \<le> G x + 1/real (n+1)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 46 | by (rule AE_ball_countable', auto) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 47 | moreover | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 48 |   {
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 49 | fix x assume i: "\<forall>n::nat \<in> UNIV. F x \<le> G x + 1/real (n+1)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 50 | have "(\<lambda>n. G x + 1/real (n+1)) \<longlonglongrightarrow> G x + 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 51 | by (rule tendsto_add, simp, rule LIMSEQ_ignore_initial_segment[OF lim_1_over_n, of 1]) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 52 | then have "F x \<le> G x" using i LIMSEQ_le_const by fastforce | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 53 | } | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 54 | ultimately show ?thesis by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 55 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 56 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 57 | lemma not_AE_zero_ennreal_E: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 58 | fixes f::"'a \<Rightarrow> ennreal" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 59 | assumes "\<not> (AE x in M. f x = 0)" and [measurable]: "f \<in> borel_measurable M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 60 | shows "\<exists>A\<in>sets M. \<exists>e::real>0. emeasure M A > 0 \<and> (\<forall>x \<in> A. f x \<ge> e)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 61 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 62 |   { assume "\<not> (\<exists>e::real>0. {x \<in> space M. f x \<ge> e} \<notin> null_sets M)"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 63 | then have "0 < e \<Longrightarrow> AE x in M. f x \<le> e" for e :: real | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 64 | by (auto simp: not_le less_imp_le dest!: AE_not_in) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 65 | then have "AE x in M. f x \<le> 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 66 | by (intro AE_upper_bound_inf_ennreal[where G="\<lambda>_. 0"]) simp | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 67 | then have False | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 68 | using assms by auto } | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 69 |   then obtain e::real where e: "e > 0" "{x \<in> space M. f x \<ge> e} \<notin> null_sets M" by auto
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 70 |   define A where "A = {x \<in> space M. f x \<ge> e}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 71 | have 1 [measurable]: "A \<in> sets M" unfolding A_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 72 | have 2: "emeasure M A > 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 73 | using e(2) A_def \<open>A \<in> sets M\<close> by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 74 | have 3: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> e" unfolding A_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 75 | show ?thesis using e(1) 1 2 3 by blast | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 76 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 77 | |
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 78 | lemma not_AE_zero_E: | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 79 | fixes f::"'a \<Rightarrow> real" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 80 | assumes "AE x in M. f x \<ge> 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 81 | "\<not>(AE x in M. f x = 0)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 82 | and [measurable]: "f \<in> borel_measurable M" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 83 | shows "\<exists>A e. A \<in> sets M \<and> e>0 \<and> emeasure M A > 0 \<and> (\<forall>x \<in> A. f x \<ge> e)" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 84 | proof - | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 85 |   have "\<exists>e. e > 0 \<and> {x \<in> space M. f x \<ge> e} \<notin> null_sets M"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 86 | proof (rule ccontr) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 87 |     assume *: "\<not>(\<exists>e. e > 0 \<and> {x \<in> space M. f x \<ge> e} \<notin> null_sets M)"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 88 |     {
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 89 | fix e::real assume "e > 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 90 |       then have "{x \<in> space M. f x \<ge> e} \<in> null_sets M" using * by blast
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 91 |       then have "AE x in M. x \<notin> {x \<in> space M. f x \<ge> e}" using AE_not_in by blast
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 92 | then have "AE x in M. f x \<le> e" by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 93 | } | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 94 | then have "AE x in M. f x \<le> 0" by (rule AE_upper_bound_inf, auto) | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 95 | then have "AE x in M. f x = 0" using assms(1) by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 96 | then show False using assms(2) by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 97 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 98 |   then obtain e where e: "e>0" "{x \<in> space M. f x \<ge> e} \<notin> null_sets M" by auto
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 99 |   define A where "A = {x \<in> space M. f x \<ge> e}"
 | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 100 | have 1 [measurable]: "A \<in> sets M" unfolding A_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 101 | have 2: "emeasure M A > 0" | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 102 | using e(2) A_def \<open>A \<in> sets M\<close> by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 103 | have 3: "\<And>x. x \<in> A \<Longrightarrow> f x \<ge> e" unfolding A_def by auto | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 104 | show ?thesis | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 105 | using e(1) 1 2 3 by blast | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 106 | qed | 
| 
979cdfdf7a79
HOL-Probability: move conditional expectation from AFP/Ergodic_Theory
 hoelzl parents: 
64267diff
changeset | 107 | |
| 56994 | 108 | subsection "Simple function" | 
| 35582 | 109 | |
| 61808 | 110 | text \<open> | 
| 38656 | 111 | |
| 56996 | 112 | Our simple functions are not restricted to nonnegative real numbers. Instead | 
| 38656 | 113 | they are just functions with a finite range and are measurable when singleton | 
| 114 | sets are measurable. | |
| 35582 | 115 | |
| 61808 | 116 | \<close> | 
| 38656 | 117 | |
| 70136 | 118 | definition\<^marker>\<open>tag important\<close> "simple_function M g \<longleftrightarrow> | 
| 38656 | 119 | finite (g ` space M) \<and> | 
| 120 |     (\<forall>x \<in> g ` space M. g -` {x} \<inter> space M \<in> sets M)"
 | |
| 36624 | 121 | |
| 47694 | 122 | lemma simple_functionD: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 123 | assumes "simple_function M g" | 
| 40875 | 124 | shows "finite (g ` space M)" and "g -` X \<inter> space M \<in> sets M" | 
| 40871 | 125 | proof - | 
| 126 | show "finite (g ` space M)" | |
| 127 | using assms unfolding simple_function_def by auto | |
| 40875 | 128 | have "g -` X \<inter> space M = g -` (X \<inter> g`space M) \<inter> space M" by auto | 
| 129 |   also have "\<dots> = (\<Union>x\<in>X \<inter> g`space M. g-`{x} \<inter> space M)" by auto
 | |
| 130 | finally show "g -` X \<inter> space M \<in> sets M" using assms | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 131 | by (auto simp del: UN_simps simp: simple_function_def) | 
| 40871 | 132 | qed | 
| 36624 | 133 | |
| 56949 | 134 | lemma measurable_simple_function[measurable_dest]: | 
| 135 | "simple_function M f \<Longrightarrow> f \<in> measurable M (count_space UNIV)" | |
| 136 | unfolding simple_function_def measurable_def | |
| 137 | proof safe | |
| 138 |   fix A assume "finite (f ` space M)" "\<forall>x\<in>f ` space M. f -` {x} \<inter> space M \<in> sets M"
 | |
| 139 |   then have "(\<Union>x\<in>f ` space M. if x \<in> A then f -` {x} \<inter> space M else {}) \<in> sets M"
 | |
| 140 | by (intro sets.finite_UN) auto | |
| 141 |   also have "(\<Union>x\<in>f ` space M. if x \<in> A then f -` {x} \<inter> space M else {}) = f -` A \<inter> space M"
 | |
| 62390 | 142 | by (auto split: if_split_asm) | 
| 56949 | 143 | finally show "f -` A \<inter> space M \<in> sets M" . | 
| 144 | qed simp | |
| 145 | ||
| 146 | lemma borel_measurable_simple_function: | |
| 147 | "simple_function M f \<Longrightarrow> f \<in> borel_measurable M" | |
| 148 | by (auto dest!: measurable_simple_function simp: measurable_def) | |
| 149 | ||
| 47694 | 150 | lemma simple_function_measurable2[intro]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 151 | assumes "simple_function M f" "simple_function M g" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 152 | shows "f -` A \<inter> g -` B \<inter> space M \<in> sets M" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 153 | proof - | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 154 | have "f -` A \<inter> g -` B \<inter> space M = (f -` A \<inter> space M) \<inter> (g -` B \<inter> space M)" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 155 | by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 156 | then show ?thesis using assms[THEN simple_functionD(2)] by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 157 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 158 | |
| 47694 | 159 | lemma simple_function_indicator_representation: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 160 | fixes f ::"'a \<Rightarrow> ennreal" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 161 | assumes f: "simple_function M f" and x: "x \<in> space M" | 
| 38656 | 162 |   shows "f x = (\<Sum>y \<in> f ` space M. y * indicator (f -` {y} \<inter> space M) x)"
 | 
| 163 | (is "?l = ?r") | |
| 164 | proof - | |
| 38705 | 165 | have "?r = (\<Sum>y \<in> f ` space M. | 
| 38656 | 166 |     (if y = f x then y * indicator (f -` {y} \<inter> space M) x else 0))"
 | 
| 64267 | 167 | by (auto intro!: sum.cong) | 
| 38656 | 168 |   also have "... =  f x *  indicator (f -` {f x} \<inter> space M) x"
 | 
| 71633 | 169 | using assms by (auto dest: simple_functionD) | 
| 38656 | 170 | also have "... = f x" using x by (auto simp: indicator_def) | 
| 171 | finally show ?thesis by auto | |
| 172 | qed | |
| 36624 | 173 | |
| 47694 | 174 | lemma simple_function_notspace: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 175 | "simple_function M (\<lambda>x. h x * indicator (- space M) x::ennreal)" (is "simple_function M ?h") | 
| 35692 | 176 | proof - | 
| 38656 | 177 |   have "?h ` space M \<subseteq> {0}" unfolding indicator_def by auto
 | 
| 178 | hence [simp, intro]: "finite (?h ` space M)" by (auto intro: finite_subset) | |
| 179 |   have "?h -` {0} \<inter> space M = space M" by auto
 | |
| 69661 | 180 | thus ?thesis unfolding simple_function_def by (auto simp add: image_constant_conv) | 
| 38656 | 181 | qed | 
| 182 | ||
| 47694 | 183 | lemma simple_function_cong: | 
| 38656 | 184 | assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 185 | shows "simple_function M f \<longleftrightarrow> simple_function M g" | 
| 38656 | 186 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 187 |   have "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 188 | using assms by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 189 | with assms show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 190 | by (simp add: simple_function_def cong: image_cong) | 
| 38656 | 191 | qed | 
| 192 | ||
| 47694 | 193 | lemma simple_function_cong_algebra: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 194 | assumes "sets N = sets M" "space N = space M" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 195 | shows "simple_function M f \<longleftrightarrow> simple_function N f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 196 | unfolding simple_function_def assms .. | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 197 | |
| 47694 | 198 | lemma simple_function_borel_measurable: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 199 |   fixes f :: "'a \<Rightarrow> 'x::{t2_space}"
 | 
| 38656 | 200 | assumes "f \<in> borel_measurable M" and "finite (f ` space M)" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 201 | shows "simple_function M f" | 
| 38656 | 202 | using assms unfolding simple_function_def | 
| 203 | by (auto intro: borel_measurable_vimage) | |
| 204 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 205 | lemma simple_function_iff_borel_measurable: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 206 |   fixes f :: "'a \<Rightarrow> 'x::{t2_space}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 207 | shows "simple_function M f \<longleftrightarrow> finite (f ` space M) \<and> f \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 208 | by (metis borel_measurable_simple_function simple_functionD(1) simple_function_borel_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 209 | |
| 56949 | 210 | lemma simple_function_eq_measurable: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 211 | "simple_function M f \<longleftrightarrow> finite (f`space M) \<and> f \<in> measurable M (count_space UNIV)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 212 | using measurable_simple_function[of M f] by (fastforce simp: simple_function_def) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 213 | |
| 47694 | 214 | lemma simple_function_const[intro, simp]: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 215 | "simple_function M (\<lambda>x. c)" | 
| 38656 | 216 | by (auto intro: finite_subset simp: simple_function_def) | 
| 47694 | 217 | lemma simple_function_compose[intro, simp]: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 218 | assumes "simple_function M f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 219 | shows "simple_function M (g \<circ> f)" | 
| 38656 | 220 | unfolding simple_function_def | 
| 221 | proof safe | |
| 222 | show "finite ((g \<circ> f) ` space M)" | |
| 69661 | 223 | using assms unfolding simple_function_def image_comp [symmetric] by auto | 
| 38656 | 224 | next | 
| 225 | fix x assume "x \<in> space M" | |
| 226 |   let ?G = "g -` {g (f x)} \<inter> (f`space M)"
 | |
| 227 |   have *: "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M =
 | |
| 228 |     (\<Union>x\<in>?G. f -` {x} \<inter> space M)" by auto
 | |
| 229 |   show "(g \<circ> f) -` {(g \<circ> f) x} \<inter> space M \<in> sets M"
 | |
| 230 | using assms unfolding simple_function_def * | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 231 | by (rule_tac sets.finite_UN) auto | 
| 38656 | 232 | qed | 
| 233 | ||
| 47694 | 234 | lemma simple_function_indicator[intro, simp]: | 
| 38656 | 235 | assumes "A \<in> sets M" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 236 | shows "simple_function M (indicator A)" | 
| 35692 | 237 | proof - | 
| 38656 | 238 |   have "indicator A ` space M \<subseteq> {0, 1}" (is "?S \<subseteq> _")
 | 
| 239 | by (auto simp: indicator_def) | |
| 240 | hence "finite ?S" by (rule finite_subset) simp | |
| 241 | moreover have "- A \<inter> space M = space M - A" by auto | |
| 242 | ultimately show ?thesis unfolding simple_function_def | |
| 46905 | 243 | using assms by (auto simp: indicator_def [abs_def]) | 
| 35692 | 244 | qed | 
| 245 | ||
| 47694 | 246 | lemma simple_function_Pair[intro, simp]: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 247 | assumes "simple_function M f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 248 | assumes "simple_function M g" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 249 | shows "simple_function M (\<lambda>x. (f x, g x))" (is "simple_function M ?p") | 
| 38656 | 250 | unfolding simple_function_def | 
| 251 | proof safe | |
| 252 | show "finite (?p ` space M)" | |
| 253 | using assms unfolding simple_function_def | |
| 254 | by (rule_tac finite_subset[of _ "f`space M \<times> g`space M"]) auto | |
| 255 | next | |
| 256 | fix x assume "x \<in> space M" | |
| 257 |   have "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M =
 | |
| 258 |       (f -` {f x} \<inter> space M) \<inter> (g -` {g x} \<inter> space M)"
 | |
| 259 | by auto | |
| 61808 | 260 |   with \<open>x \<in> space M\<close> show "(\<lambda>x. (f x, g x)) -` {(f x, g x)} \<inter> space M \<in> sets M"
 | 
| 38656 | 261 | using assms unfolding simple_function_def by auto | 
| 262 | qed | |
| 35692 | 263 | |
| 47694 | 264 | lemma simple_function_compose1: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 265 | assumes "simple_function M f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 266 | shows "simple_function M (\<lambda>x. g (f x))" | 
| 38656 | 267 | using simple_function_compose[OF assms, of g] | 
| 268 | by (simp add: comp_def) | |
| 35582 | 269 | |
| 47694 | 270 | lemma simple_function_compose2: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 271 | assumes "simple_function M f" and "simple_function M g" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 272 | shows "simple_function M (\<lambda>x. h (f x) (g x))" | 
| 38656 | 273 | proof - | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 274 | have "simple_function M ((\<lambda>(x, y). h x y) \<circ> (\<lambda>x. (f x, g x)))" | 
| 38656 | 275 | using assms by auto | 
| 276 | thus ?thesis by (simp_all add: comp_def) | |
| 277 | qed | |
| 35582 | 278 | |
| 67399 | 279 | lemmas simple_function_add[intro, simp] = simple_function_compose2[where h="(+)"] | 
| 280 | and simple_function_diff[intro, simp] = simple_function_compose2[where h="(-)"] | |
| 38656 | 281 | and simple_function_uminus[intro, simp] = simple_function_compose[where g="uminus"] | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67399diff
changeset | 282 | and simple_function_mult[intro, simp] = simple_function_compose2[where h="(*)"] | 
| 67399 | 283 | and simple_function_div[intro, simp] = simple_function_compose2[where h="(/)"] | 
| 38656 | 284 | and simple_function_inverse[intro, simp] = simple_function_compose[where g="inverse"] | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 285 | and simple_function_max[intro, simp] = simple_function_compose2[where h=max] | 
| 38656 | 286 | |
| 64267 | 287 | lemma simple_function_sum[intro, simp]: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 288 | assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 289 | shows "simple_function M (\<lambda>x. \<Sum>i\<in>P. f i x)" | 
| 38656 | 290 | proof cases | 
| 291 | assume "finite P" from this assms show ?thesis by induct auto | |
| 292 | qed auto | |
| 35582 | 293 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 294 | lemma simple_function_ennreal[intro, simp]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 295 | fixes f g :: "'a \<Rightarrow> real" assumes sf: "simple_function M f" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 296 | shows "simple_function M (\<lambda>x. ennreal (f x))" | 
| 59587 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59452diff
changeset | 297 | by (rule simple_function_compose1[OF sf]) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 298 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 299 | lemma simple_function_real_of_nat[intro, simp]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 300 | fixes f g :: "'a \<Rightarrow> nat" assumes sf: "simple_function M f" | 
| 56949 | 301 | shows "simple_function M (\<lambda>x. real (f x))" | 
| 59587 
8ea7b22525cb
Removed the obsolete functions "natfloor" and "natceiling"
 nipkow parents: 
59452diff
changeset | 302 | by (rule simple_function_compose1[OF sf]) | 
| 35582 | 303 | |
| 70136 | 304 | lemma\<^marker>\<open>tag important\<close> borel_measurable_implies_simple_function_sequence: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 305 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 306 | assumes u[measurable]: "u \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 307 | shows "\<exists>f. incseq f \<and> (\<forall>i. (\<forall>x. f i x < top) \<and> simple_function M (f i)) \<and> u = (SUP i. f i)" | 
| 70136 | 308 | proof - | 
| 63040 | 309 | define f where [abs_def]: | 
| 310 | "f i x = real_of_int (floor (enn2real (min i (u x)) * 2^i)) / 2^i" for i x | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 311 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 312 | have [simp]: "0 \<le> f i x" for i x | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 313 | by (auto simp: f_def intro!: divide_nonneg_nonneg mult_nonneg_nonneg enn2real_nonneg) | 
| 35582 | 314 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 315 | have *: "2^n * real_of_int x = real_of_int (2^n * x)" for n x | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 316 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 317 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 318 | have "real_of_int \<lfloor>real i * 2 ^ i\<rfloor> = real_of_int \<lfloor>i * 2 ^ i\<rfloor>" for i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 319 | by (intro arg_cong[where f=real_of_int]) simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 320 | then have [simp]: "real_of_int \<lfloor>real i * 2 ^ i\<rfloor> = i * 2 ^ i" for i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 321 | unfolding floor_of_nat by simp | 
| 35582 | 322 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 323 | have "incseq f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 324 | proof (intro monoI le_funI) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 325 | fix m n :: nat and x assume "m \<le> n" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 326 | moreover | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 327 |     { fix d :: nat
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 328 | have "\<lfloor>2^d::real\<rfloor> * \<lfloor>2^m * enn2real (min (of_nat m) (u x))\<rfloor> \<le> | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 329 | \<lfloor>2^d * (2^m * enn2real (min (of_nat m) (u x)))\<rfloor>" | 
| 71633 | 330 | by (rule le_mult_floor) (auto) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 331 | also have "\<dots> \<le> \<lfloor>2^d * (2^m * enn2real (min (of_nat d + of_nat m) (u x)))\<rfloor>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 332 | by (intro floor_mono mult_mono enn2real_mono min.mono) | 
| 71633 | 333 | (auto simp: min_less_iff_disj of_nat_less_top) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 334 | finally have "f m x \<le> f (m + d) x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 335 | unfolding f_def | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 336 | by (auto simp: field_simps power_add * simp del: of_int_mult) } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 337 | ultimately show "f m x \<le> f n x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 338 | by (auto simp add: le_iff_add) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 339 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 340 | then have inc_f: "incseq (\<lambda>i. ennreal (f i x))" for x | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 341 | by (auto simp: incseq_def le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 342 | then have "incseq (\<lambda>i x. ennreal (f i x))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 343 | by (auto simp: incseq_def le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 344 | moreover | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 345 | have "simple_function M (f i)" for i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 346 | proof (rule simple_function_borel_measurable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 347 | have "\<lfloor>enn2real (min (of_nat i) (u x)) * 2 ^ i\<rfloor> \<le> \<lfloor>int i * 2 ^ i\<rfloor>" for x | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 348 | by (cases "u x" rule: ennreal_cases) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 349 | (auto split: split_min intro!: floor_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 350 |     then have "f i ` space M \<subseteq> (\<lambda>n. real_of_int n / 2^i) ` {0 .. of_nat i * 2^i}"
 | 
| 71633 | 351 | unfolding floor_of_int by (auto simp: f_def intro!: imageI) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 352 | then show "finite (f i ` space M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 353 | by (rule finite_subset) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 354 | show "f i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 355 | unfolding f_def enn2real_def by measurable | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 356 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 357 | moreover | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 358 |   { fix x
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 359 | have "(SUP i. ennreal (f i x)) = u x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 360 | proof (cases "u x" rule: ennreal_cases) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 361 | case top then show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 362 | by (simp add: f_def inf_min[symmetric] ennreal_of_nat_eq_real_of_nat[symmetric] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 363 | ennreal_SUP_of_nat_eq_top) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 364 | next | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 365 | case (real r) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 366 | obtain n where "r \<le> of_nat n" using real_arch_simple by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 367 | then have min_eq_r: "\<forall>\<^sub>F x in sequentially. min (real x) r = r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 368 | by (auto simp: eventually_sequentially intro!: exI[of _ n] split: split_min) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 369 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 370 | have "(\<lambda>i. real_of_int \<lfloor>min (real i) r * 2^i\<rfloor> / 2^i) \<longlonglongrightarrow> r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 371 | proof (rule tendsto_sandwich) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 372 | show "(\<lambda>n. r - (1/2)^n) \<longlonglongrightarrow> r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 373 | by (auto intro!: tendsto_eq_intros LIMSEQ_power_zero) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 374 | show "\<forall>\<^sub>F n in sequentially. real_of_int \<lfloor>min (real n) r * 2 ^ n\<rfloor> / 2 ^ n \<le> r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 375 | using min_eq_r by eventually_elim (auto simp: field_simps) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 376 | have *: "r * (2 ^ n * 2 ^ n) \<le> 2^n + 2^n * real_of_int \<lfloor>r * 2 ^ n\<rfloor>" for n | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 377 | using real_of_int_floor_ge_diff_one[of "r * 2^n", THEN mult_left_mono, of "2^n"] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 378 | by (auto simp: field_simps) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 379 | show "\<forall>\<^sub>F n in sequentially. r - (1/2)^n \<le> real_of_int \<lfloor>min (real n) r * 2 ^ n\<rfloor> / 2 ^ n" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 380 | using min_eq_r by eventually_elim (insert *, auto simp: field_simps) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 381 | qed auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 382 | then have "(\<lambda>i. ennreal (f i x)) \<longlonglongrightarrow> ennreal r" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 383 | by (simp add: real f_def ennreal_of_nat_eq_real_of_nat min_ennreal) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 384 | from LIMSEQ_unique[OF LIMSEQ_SUP[OF inc_f] this] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 385 | show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 386 | by (simp add: real) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 387 | qed } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 388 | ultimately show ?thesis | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 389 | by (intro exI [of _ "\<lambda>i x. ennreal (f i x)"]) (auto simp add: image_comp) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 390 | qed | 
| 35582 | 391 | |
| 47694 | 392 | lemma borel_measurable_implies_simple_function_sequence': | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 393 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 394 | assumes u: "u \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 395 | obtains f where | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 396 | "\<And>i. simple_function M (f i)" "incseq f" "\<And>i x. f i x < top" "\<And>x. (SUP i. f i x) = u x" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 397 | using borel_measurable_implies_simple_function_sequence [OF u] | 
| 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 398 | by (metis SUP_apply) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 399 | |
| 70136 | 400 | lemma\<^marker>\<open>tag important\<close> simple_function_induct | 
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 401 | [consumes 1, case_names cong set mult add, induct set: simple_function]: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 402 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 403 | assumes u: "simple_function M u" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 404 | assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> simple_function M g \<Longrightarrow> (AE x in M. f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 405 | assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 406 | assumes mult: "\<And>u c. P u \<Longrightarrow> P (\<lambda>x. c * u x)" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 407 | assumes add: "\<And>u v. P u \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 408 | shows "P u" | 
| 70136 | 409 | proof (rule cong) | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 410 |   from AE_space show "AE x in M. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x"
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 411 | proof eventually_elim | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 412 | fix x assume x: "x \<in> space M" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 413 | from simple_function_indicator_representation[OF u x] | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 414 |     show "(\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x" ..
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 415 | qed | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 416 | next | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 417 | from u have "finite (u ` space M)" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 418 | unfolding simple_function_def by auto | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 419 |   then show "P (\<lambda>x. \<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x)"
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 420 | proof induct | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 421 | case empty show ?case | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 422 |       using set[of "{}"] by (simp add: indicator_def[abs_def])
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 423 | qed (auto intro!: add mult set simple_functionD u) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 424 | next | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 425 |   show "simple_function M (\<lambda>x. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x))"
 | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 426 | apply (subst simple_function_cong) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 427 | apply (rule simple_function_indicator_representation[symmetric]) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 428 | apply (auto intro: u) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 429 | done | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 430 | qed fact | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 431 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 432 | lemma simple_function_induct_nn[consumes 1, case_names cong set mult add]: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 433 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 434 | assumes u: "simple_function M u" | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 435 | assumes cong: "\<And>f g. simple_function M f \<Longrightarrow> simple_function M g \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P f \<Longrightarrow> P g" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 436 | assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 437 | assumes mult: "\<And>u c. simple_function M u \<Longrightarrow> P u \<Longrightarrow> P (\<lambda>x. c * u x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 438 | assumes add: "\<And>u v. simple_function M u \<Longrightarrow> P u \<Longrightarrow> simple_function M v \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = 0 \<or> v x = 0) \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 439 | shows "P u" | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 440 | proof - | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 441 | show ?thesis | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 442 | proof (rule cong) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 443 | fix x assume x: "x \<in> space M" | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 444 | from simple_function_indicator_representation[OF u x] | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 445 |     show "(\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x) = u x" ..
 | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 446 | next | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 447 |     show "simple_function M (\<lambda>x. (\<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x))"
 | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 448 | apply (subst simple_function_cong) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 449 | apply (rule simple_function_indicator_representation[symmetric]) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 450 | apply (auto intro: u) | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 451 | done | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 452 | next | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 453 | from u have "finite (u ` space M)" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 454 | unfolding simple_function_def by auto | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 455 |     then show "P (\<lambda>x. \<Sum>y\<in>u ` space M. y * indicator (u -` {y} \<inter> space M) x)"
 | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 456 | proof induct | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 457 | case empty show ?case | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 458 |         using set[of "{}"] by (simp add: indicator_def[abs_def])
 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 459 | next | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 460 | case (insert x S) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 461 |       { fix z have "(\<Sum>y\<in>S. y * indicator (u -` {y} \<inter> space M) z) = 0 \<or>
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 462 |           x * indicator (u -` {x} \<inter> space M) z = 0"
 | 
| 64267 | 463 | using insert by (subst sum_eq_0_iff) (auto simp: indicator_def) } | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 464 | note disj = this | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 465 | from insert show ?case | 
| 64267 | 466 | by (auto intro!: add mult set simple_functionD u simple_function_sum disj) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 467 | qed | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 468 | qed fact | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 469 | qed | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 470 | |
| 70136 | 471 | lemma\<^marker>\<open>tag important\<close> borel_measurable_induct | 
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 472 | [consumes 1, case_names cong set mult add seq, induct set: borel_measurable]: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 473 | fixes u :: "'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 474 | assumes u: "u \<in> borel_measurable M" | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 475 | assumes cong: "\<And>f g. f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> f x = g x) \<Longrightarrow> P g \<Longrightarrow> P f" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 476 | assumes set: "\<And>A. A \<in> sets M \<Longrightarrow> P (indicator A)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 477 | assumes mult': "\<And>u c. c < top \<Longrightarrow> u \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x < top) \<Longrightarrow> P u \<Longrightarrow> P (\<lambda>x. c * u x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 478 | assumes add: "\<And>u v. u \<in> borel_measurable M\<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x < top) \<Longrightarrow> P u \<Longrightarrow> v \<in> borel_measurable M \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> v x < top) \<Longrightarrow> (\<And>x. x \<in> space M \<Longrightarrow> u x = 0 \<or> v x = 0) \<Longrightarrow> P v \<Longrightarrow> P (\<lambda>x. v x + u x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 479 | assumes seq: "\<And>U. (\<And>i. U i \<in> borel_measurable M) \<Longrightarrow> (\<And>i x. x \<in> space M \<Longrightarrow> U i x < top) \<Longrightarrow> (\<And>i. P (U i)) \<Longrightarrow> incseq U \<Longrightarrow> u = (SUP i. U i) \<Longrightarrow> P (SUP i. U i)" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 480 | shows "P u" | 
| 70136 | 481 | using u | 
| 482 | proof (induct rule: borel_measurable_implies_simple_function_sequence') | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 483 | fix U assume U: "\<And>i. simple_function M (U i)" "incseq U" "\<And>i x. U i x < top" and sup: "\<And>x. (SUP i. U i x) = u x" | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 484 | have u_eq: "u = (SUP i. U i)" | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 485 | using u by (auto simp add: image_comp sup) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 486 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 487 | have not_inf: "\<And>x i. x \<in> space M \<Longrightarrow> U i x < top" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 488 | using U by (auto simp: image_iff eq_commute) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 489 | |
| 49797 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 490 | from U have "\<And>i. U i \<in> borel_measurable M" | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 491 | by (simp add: borel_measurable_simple_function) | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 492 | |
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 493 | show "P u" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 494 | unfolding u_eq | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 495 | proof (rule seq) | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 496 | fix i show "P (U i)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 497 | using \<open>simple_function M (U i)\<close> not_inf[of _ i] | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 498 | proof (induct rule: simple_function_induct_nn) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 499 | case (mult u c) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 500 | show ?case | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 501 | proof cases | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 502 |         assume "c = 0 \<or> space M = {} \<or> (\<forall>x\<in>space M. u x = 0)"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 503 | with mult(1) show ?thesis | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 504 |           by (intro cong[of "\<lambda>x. c * u x" "indicator {}"] set)
 | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 505 | (auto dest!: borel_measurable_simple_function) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 506 | next | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 507 |         assume "\<not> (c = 0 \<or> space M = {} \<or> (\<forall>x\<in>space M. u x = 0))"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 508 |         then obtain x where "space M \<noteq> {}" and x: "x \<in> space M" "u x \<noteq> 0" "c \<noteq> 0"
 | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 509 | by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 510 | with mult(3)[of x] have "c < top" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 511 | by (auto simp: ennreal_mult_less_top) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 512 | then have u_fin: "x' \<in> space M \<Longrightarrow> u x' < top" for x' | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 513 | using mult(3)[of x'] \<open>c \<noteq> 0\<close> by (auto simp: ennreal_mult_less_top) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 514 | then have "P u" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 515 | by (rule mult) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 516 | with u_fin \<open>c < top\<close> mult(1) show ?thesis | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 517 | by (intro mult') (auto dest!: borel_measurable_simple_function) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 518 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 519 | qed (auto intro: cong intro!: set add dest!: borel_measurable_simple_function) | 
| 49797 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 520 | qed fact+ | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 521 | qed | 
| 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 522 | |
| 47694 | 523 | lemma simple_function_If_set: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 524 | assumes sf: "simple_function M f" "simple_function M g" and A: "A \<inter> space M \<in> sets M" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 525 | shows "simple_function M (\<lambda>x. if x \<in> A then f x else g x)" (is "simple_function M ?IF") | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 526 | proof - | 
| 63040 | 527 |   define F where "F x = f -` {x} \<inter> space M" for x
 | 
| 528 |   define G where "G x = g -` {x} \<inter> space M" for x
 | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 529 | show ?thesis unfolding simple_function_def | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 530 | proof safe | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 531 | have "?IF ` space M \<subseteq> f ` space M \<union> g ` space M" by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 532 | from finite_subset[OF this] assms | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 533 | show "finite (?IF ` space M)" unfolding simple_function_def by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 534 | next | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 535 | fix x assume "x \<in> space M" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 536 |     then have *: "?IF -` {?IF x} \<inter> space M = (if x \<in> A
 | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 537 | then ((F (f x) \<inter> (A \<inter> space M)) \<union> (G (f x) - (G (f x) \<inter> (A \<inter> space M)))) | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 538 | else ((F (g x) \<inter> (A \<inter> space M)) \<union> (G (g x) - (G (g x) \<inter> (A \<inter> space M)))))" | 
| 62390 | 539 | using sets.sets_into_space[OF A] by (auto split: if_split_asm simp: G_def F_def) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 540 | have [intro]: "\<And>x. F x \<in> sets M" "\<And>x. G x \<in> sets M" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 541 | unfolding F_def G_def using sf[THEN simple_functionD(2)] by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 542 |     show "?IF -` {?IF x} \<inter> space M \<in> sets M" unfolding * using A by auto
 | 
| 35582 | 543 | qed | 
| 544 | qed | |
| 545 | ||
| 47694 | 546 | lemma simple_function_If: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 547 |   assumes sf: "simple_function M f" "simple_function M g" and P: "{x\<in>space M. P x} \<in> sets M"
 | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 548 | shows "simple_function M (\<lambda>x. if P x then f x else g x)" | 
| 35582 | 549 | proof - | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 550 |   have "{x\<in>space M. P x} = {x. P x} \<inter> space M" by auto
 | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 551 |   with simple_function_If_set[OF sf, of "{x. P x}"] P show ?thesis by simp
 | 
| 38656 | 552 | qed | 
| 553 | ||
| 47694 | 554 | lemma simple_function_subalgebra: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 555 | assumes "simple_function N f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 556 | and N_subalgebra: "sets N \<subseteq> sets M" "space N = space M" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 557 | shows "simple_function M f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 558 | using assms unfolding simple_function_def by auto | 
| 39092 | 559 | |
| 47694 | 560 | lemma simple_function_comp: | 
| 561 | assumes T: "T \<in> measurable M M'" | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 562 | and f: "simple_function M' f" | 
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 563 | shows "simple_function M (\<lambda>x. f (T x))" | 
| 41661 | 564 | proof (intro simple_function_def[THEN iffD2] conjI ballI) | 
| 565 | have "(\<lambda>x. f (T x)) ` space M \<subseteq> f ` space M'" | |
| 566 | using T unfolding measurable_def by auto | |
| 567 | then show "finite ((\<lambda>x. f (T x)) ` space M)" | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 568 | using f unfolding simple_function_def by (auto intro: finite_subset) | 
| 41661 | 569 | fix i assume i: "i \<in> (\<lambda>x. f (T x)) ` space M" | 
| 570 | then have "i \<in> f ` space M'" | |
| 571 | using T unfolding measurable_def by auto | |
| 572 |   then have "f -` {i} \<inter> space M' \<in> sets M'"
 | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 573 | using f unfolding simple_function_def by auto | 
| 41661 | 574 |   then have "T -` (f -` {i} \<inter> space M') \<inter> space M \<in> sets M"
 | 
| 575 | using T unfolding measurable_def by auto | |
| 576 |   also have "T -` (f -` {i} \<inter> space M') \<inter> space M = (\<lambda>x. f (T x)) -` {i} \<inter> space M"
 | |
| 577 | using T unfolding measurable_def by auto | |
| 578 |   finally show "(\<lambda>x. f (T x)) -` {i} \<inter> space M \<in> sets M" .
 | |
| 40859 | 579 | qed | 
| 580 | ||
| 56994 | 581 | subsection "Simple integral" | 
| 38656 | 582 | |
| 70136 | 583 | definition\<^marker>\<open>tag important\<close> simple_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> ennreal" ("integral\<^sup>S") where
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 584 |   "integral\<^sup>S M f = (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M))"
 | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 585 | |
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 586 | syntax | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 587 |   "_simple_integral" :: "pttrn \<Rightarrow> ennreal \<Rightarrow> 'a measure \<Rightarrow> ennreal" ("\<integral>\<^sup>S _. _ \<partial>_" [60,61] 110)
 | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 588 | |
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 589 | translations | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 590 | "\<integral>\<^sup>S x. f \<partial>M" == "CONST simple_integral M (%x. f)" | 
| 35582 | 591 | |
| 47694 | 592 | lemma simple_integral_cong: | 
| 38656 | 593 | assumes "\<And>t. t \<in> space M \<Longrightarrow> f t = g t" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 594 | shows "integral\<^sup>S M f = integral\<^sup>S M g" | 
| 38656 | 595 | proof - | 
| 596 | have "f ` space M = g ` space M" | |
| 597 |     "\<And>x. f -` {x} \<inter> space M = g -` {x} \<inter> space M"
 | |
| 598 | using assms by (auto intro!: image_eqI) | |
| 599 | thus ?thesis unfolding simple_integral_def by simp | |
| 600 | qed | |
| 601 | ||
| 47694 | 602 | lemma simple_integral_const[simp]: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 603 | "(\<integral>\<^sup>Sx. c \<partial>M) = c * (emeasure M) (space M)" | 
| 38656 | 604 | proof (cases "space M = {}")
 | 
| 605 | case True thus ?thesis unfolding simple_integral_def by simp | |
| 606 | next | |
| 607 |   case False hence "(\<lambda>x. c) ` space M = {c}" by auto
 | |
| 608 | thus ?thesis unfolding simple_integral_def by simp | |
| 35582 | 609 | qed | 
| 610 | ||
| 47694 | 611 | lemma simple_function_partition: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 612 | assumes f: "simple_function M f" and g: "simple_function M g" | 
| 56949 | 613 | assumes sub: "\<And>x y. x \<in> space M \<Longrightarrow> y \<in> space M \<Longrightarrow> g x = g y \<Longrightarrow> f x = f y" | 
| 614 | assumes v: "\<And>x. x \<in> space M \<Longrightarrow> f x = v (g x)" | |
| 615 |   shows "integral\<^sup>S M f = (\<Sum>y\<in>g ` space M. v y * emeasure M {x\<in>space M. g x = y})"
 | |
| 616 | (is "_ = ?r") | |
| 617 | proof - | |
| 618 | from f g have [simp]: "finite (f`space M)" "finite (g`space M)" | |
| 619 | by (auto simp: simple_function_def) | |
| 620 | from f g have [measurable]: "f \<in> measurable M (count_space UNIV)" "g \<in> measurable M (count_space UNIV)" | |
| 621 | by (auto intro: measurable_simple_function) | |
| 35582 | 622 | |
| 56949 | 623 |   { fix y assume "y \<in> space M"
 | 
| 624 |     then have "f ` space M \<inter> {i. \<exists>x\<in>space M. i = f x \<and> g y = g x} = {v (g y)}"
 | |
| 625 | by (auto cong: sub simp: v[symmetric]) } | |
| 626 | note eq = this | |
| 35582 | 627 | |
| 56949 | 628 | have "integral\<^sup>S M f = | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 629 | (\<Sum>y\<in>f`space M. y * (\<Sum>z\<in>g`space M. | 
| 56949 | 630 |       if \<exists>x\<in>space M. y = f x \<and> z = g x then emeasure M {x\<in>space M. g x = z} else 0))"
 | 
| 631 | unfolding simple_integral_def | |
| 64267 | 632 | proof (safe intro!: sum.cong ennreal_mult_left_cong) | 
| 56949 | 633 | fix y assume y: "y \<in> space M" "f y \<noteq> 0" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 634 |     have [simp]: "g ` space M \<inter> {z. \<exists>x\<in>space M. f y = f x \<and> z = g x} =
 | 
| 56949 | 635 |         {z. \<exists>x\<in>space M. f y = f x \<and> z = g x}"
 | 
| 636 | by auto | |
| 637 |     have eq:"(\<Union>i\<in>{z. \<exists>x\<in>space M. f y = f x \<and> z = g x}. {x \<in> space M. g x = i}) =
 | |
| 638 |         f -` {f y} \<inter> space M"
 | |
| 639 | by (auto simp: eq_commute cong: sub rev_conj_cong) | |
| 640 | have "finite (g`space M)" by simp | |
| 641 |     then have "finite {z. \<exists>x\<in>space M. f y = f x \<and> z = g x}"
 | |
| 642 | by (rule rev_finite_subset) auto | |
| 643 |     then show "emeasure M (f -` {f y} \<inter> space M) =
 | |
| 644 |       (\<Sum>z\<in>g ` space M. if \<exists>x\<in>space M. f y = f x \<and> z = g x then emeasure M {x \<in> space M. g x = z} else 0)"
 | |
| 64267 | 645 | apply (simp add: sum.If_cases) | 
| 646 | apply (subst sum_emeasure) | |
| 56949 | 647 | apply (auto simp: disjoint_family_on_def eq) | 
| 648 | done | |
| 38656 | 649 | qed | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 650 | also have "\<dots> = (\<Sum>y\<in>f`space M. (\<Sum>z\<in>g`space M. | 
| 56949 | 651 |       if \<exists>x\<in>space M. y = f x \<and> z = g x then y * emeasure M {x\<in>space M. g x = z} else 0))"
 | 
| 64267 | 652 | by (auto intro!: sum.cong simp: sum_distrib_left) | 
| 56949 | 653 | also have "\<dots> = ?r" | 
| 66804 
3f9bb52082c4
avoid name clashes on interpretation of abstract locales
 haftmann parents: 
65680diff
changeset | 654 | by (subst sum.swap) | 
| 64267 | 655 | (auto intro!: sum.cong simp: sum.If_cases scaleR_sum_right[symmetric] eq) | 
| 56949 | 656 | finally show "integral\<^sup>S M f = ?r" . | 
| 35582 | 657 | qed | 
| 658 | ||
| 47694 | 659 | lemma simple_integral_add[simp]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 660 | assumes f: "simple_function M f" and "\<And>x. 0 \<le> f x" and g: "simple_function M g" and "\<And>x. 0 \<le> g x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 661 | shows "(\<integral>\<^sup>Sx. f x + g x \<partial>M) = integral\<^sup>S M f + integral\<^sup>S M g" | 
| 35582 | 662 | proof - | 
| 56949 | 663 | have "(\<integral>\<^sup>Sx. f x + g x \<partial>M) = | 
| 664 |     (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. (fst y + snd y) * emeasure M {x\<in>space M. (f x, g x) = y})"
 | |
| 665 | by (intro simple_function_partition) (auto intro: f g) | |
| 666 |   also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * emeasure M {x\<in>space M. (f x, g x) = y}) +
 | |
| 667 |     (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * emeasure M {x\<in>space M. (f x, g x) = y})"
 | |
| 64267 | 668 | using assms(2,4) by (auto intro!: sum.cong distrib_right simp: sum.distrib[symmetric]) | 
| 56949 | 669 |   also have "(\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * emeasure M {x\<in>space M. (f x, g x) = y}) = (\<integral>\<^sup>Sx. f x \<partial>M)"
 | 
| 670 | by (intro simple_function_partition[symmetric]) (auto intro: f g) | |
| 671 |   also have "(\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * emeasure M {x\<in>space M. (f x, g x) = y}) = (\<integral>\<^sup>Sx. g x \<partial>M)"
 | |
| 672 | by (intro simple_function_partition[symmetric]) (auto intro: f g) | |
| 673 | finally show ?thesis . | |
| 35582 | 674 | qed | 
| 675 | ||
| 64267 | 676 | lemma simple_integral_sum[simp]: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 677 | assumes "\<And>i x. i \<in> P \<Longrightarrow> 0 \<le> f i x" | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 678 | assumes "\<And>i. i \<in> P \<Longrightarrow> simple_function M (f i)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 679 | shows "(\<integral>\<^sup>Sx. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^sup>S M (f i))" | 
| 38656 | 680 | proof cases | 
| 681 | assume "finite P" | |
| 682 | from this assms show ?thesis | |
| 71633 | 683 | by induct (auto) | 
| 38656 | 684 | qed auto | 
| 685 | ||
| 47694 | 686 | lemma simple_integral_mult[simp]: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 687 | assumes f: "simple_function M f" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 688 | shows "(\<integral>\<^sup>Sx. c * f x \<partial>M) = c * integral\<^sup>S M f" | 
| 38656 | 689 | proof - | 
| 56949 | 690 |   have "(\<integral>\<^sup>Sx. c * f x \<partial>M) = (\<Sum>y\<in>f ` space M. (c * y) * emeasure M {x\<in>space M. f x = y})"
 | 
| 691 | using f by (intro simple_function_partition) auto | |
| 692 | also have "\<dots> = c * integral\<^sup>S M f" | |
| 693 | using f unfolding simple_integral_def | |
| 64267 | 694 | by (subst sum_distrib_left) (auto simp: mult.assoc Int_def conj_commute) | 
| 56949 | 695 | finally show ?thesis . | 
| 40871 | 696 | qed | 
| 697 | ||
| 47694 | 698 | lemma simple_integral_mono_AE: | 
| 56949 | 699 | assumes f[measurable]: "simple_function M f" and g[measurable]: "simple_function M g" | 
| 47694 | 700 | and mono: "AE x in M. f x \<le> g x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 701 | shows "integral\<^sup>S M f \<le> integral\<^sup>S M g" | 
| 40859 | 702 | proof - | 
| 56949 | 703 |   let ?\<mu> = "\<lambda>P. emeasure M {x\<in>space M. P x}"
 | 
| 704 | have "integral\<^sup>S M f = (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. fst y * ?\<mu> (\<lambda>x. (f x, g x) = y))" | |
| 705 | using f g by (intro simple_function_partition) auto | |
| 706 | also have "\<dots> \<le> (\<Sum>y\<in>(\<lambda>x. (f x, g x))`space M. snd y * ?\<mu> (\<lambda>x. (f x, g x) = y))" | |
| 64267 | 707 | proof (clarsimp intro!: sum_mono) | 
| 40859 | 708 | fix x assume "x \<in> space M" | 
| 56949 | 709 | let ?M = "?\<mu> (\<lambda>y. f y = f x \<and> g y = g x)" | 
| 710 | show "f x * ?M \<le> g x * ?M" | |
| 711 | proof cases | |
| 712 | assume "?M \<noteq> 0" | |
| 713 | then have "0 < ?M" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 714 | by (simp add: less_le) | 
| 56949 | 715 | also have "\<dots> \<le> ?\<mu> (\<lambda>y. f x \<le> g x)" | 
| 716 | using mono by (intro emeasure_mono_AE) auto | |
| 717 | finally have "\<not> \<not> f x \<le> g x" | |
| 718 | by (intro notI) auto | |
| 719 | then show ?thesis | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 720 | by (intro mult_right_mono) auto | 
| 56949 | 721 | qed simp | 
| 40859 | 722 | qed | 
| 56949 | 723 | also have "\<dots> = integral\<^sup>S M g" | 
| 724 | using f g by (intro simple_function_partition[symmetric]) auto | |
| 725 | finally show ?thesis . | |
| 40859 | 726 | qed | 
| 727 | ||
| 47694 | 728 | lemma simple_integral_mono: | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 729 | assumes "simple_function M f" and "simple_function M g" | 
| 38656 | 730 | and mono: "\<And> x. x \<in> space M \<Longrightarrow> f x \<le> g x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 731 | shows "integral\<^sup>S M f \<le> integral\<^sup>S M g" | 
| 41705 | 732 | using assms by (intro simple_integral_mono_AE) auto | 
| 35582 | 733 | |
| 47694 | 734 | lemma simple_integral_cong_AE: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 735 | assumes "simple_function M f" and "simple_function M g" | 
| 47694 | 736 | and "AE x in M. f x = g x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 737 | shows "integral\<^sup>S M f = integral\<^sup>S M g" | 
| 40859 | 738 | using assms by (auto simp: eq_iff intro!: simple_integral_mono_AE) | 
| 739 | ||
| 47694 | 740 | lemma simple_integral_cong': | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 741 | assumes sf: "simple_function M f" "simple_function M g" | 
| 47694 | 742 |   and mea: "(emeasure M) {x\<in>space M. f x \<noteq> g x} = 0"
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 743 | shows "integral\<^sup>S M f = integral\<^sup>S M g" | 
| 40859 | 744 | proof (intro simple_integral_cong_AE sf AE_I) | 
| 47694 | 745 |   show "(emeasure M) {x\<in>space M. f x \<noteq> g x} = 0" by fact
 | 
| 40859 | 746 |   show "{x \<in> space M. f x \<noteq> g x} \<in> sets M"
 | 
| 747 | using sf[THEN borel_measurable_simple_function] by auto | |
| 748 | qed simp | |
| 749 | ||
| 47694 | 750 | lemma simple_integral_indicator: | 
| 56949 | 751 | assumes A: "A \<in> sets M" | 
| 49796 
182fa22e7ee8
introduce induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49795diff
changeset | 752 | assumes f: "simple_function M f" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 753 | shows "(\<integral>\<^sup>Sx. f x * indicator A x \<partial>M) = | 
| 56949 | 754 |     (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M \<inter> A))"
 | 
| 755 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 756 |   have eq: "(\<lambda>x. (f x, indicator A x)) ` space M \<inter> {x. snd x = 1} = (\<lambda>x. (f x, 1::ennreal))`A"
 | 
| 62390 | 757 | using A[THEN sets.sets_into_space] by (auto simp: indicator_def image_iff split: if_split_asm) | 
| 56949 | 758 |   have eq2: "\<And>x. f x \<notin> f ` A \<Longrightarrow> f -` {f x} \<inter> space M \<inter> A = {}"
 | 
| 759 | by (auto simp: image_iff) | |
| 760 | ||
| 761 | have "(\<integral>\<^sup>Sx. f x * indicator A x \<partial>M) = | |
| 762 |     (\<Sum>y\<in>(\<lambda>x. (f x, indicator A x))`space M. (fst y * snd y) * emeasure M {x\<in>space M. (f x, indicator A x) = y})"
 | |
| 763 | using assms by (intro simple_function_partition) auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 764 | also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, indicator A x::ennreal))`space M. | 
| 56949 | 765 |     if snd y = 1 then fst y * emeasure M (f -` {fst y} \<inter> space M \<inter> A) else 0)"
 | 
| 69064 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 nipkow parents: 
67399diff
changeset | 766 | by (auto simp: indicator_def split: if_split_asm intro!: arg_cong2[where f="(*)"] arg_cong2[where f=emeasure] sum.cong) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 767 |   also have "\<dots> = (\<Sum>y\<in>(\<lambda>x. (f x, 1::ennreal))`A. fst y * emeasure M (f -` {fst y} \<inter> space M \<inter> A))"
 | 
| 64267 | 768 | using assms by (subst sum.If_cases) (auto intro!: simple_functionD(1) simp: eq) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 769 |   also have "\<dots> = (\<Sum>y\<in>fst`(\<lambda>x. (f x, 1::ennreal))`A. y * emeasure M (f -` {y} \<inter> space M \<inter> A))"
 | 
| 64267 | 770 | by (subst sum.reindex [of fst]) (auto simp: inj_on_def) | 
| 56949 | 771 |   also have "\<dots> = (\<Sum>x \<in> f ` space M. x * emeasure M (f -` {x} \<inter> space M \<inter> A))"
 | 
| 772 | using A[THEN sets.sets_into_space] | |
| 64267 | 773 | by (intro sum.mono_neutral_cong_left simple_functionD f) (auto simp: image_comp comp_def eq2) | 
| 56949 | 774 | finally show ?thesis . | 
| 38656 | 775 | qed | 
| 35582 | 776 | |
| 47694 | 777 | lemma simple_integral_indicator_only[simp]: | 
| 38656 | 778 | assumes "A \<in> sets M" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 779 | shows "integral\<^sup>S M (indicator A) = emeasure M A" | 
| 56949 | 780 | using simple_integral_indicator[OF assms, of "\<lambda>x. 1"] sets.sets_into_space[OF assms] | 
| 62390 | 781 | by (simp_all add: image_constant_conv Int_absorb1 split: if_split_asm) | 
| 35582 | 782 | |
| 47694 | 783 | lemma simple_integral_null_set: | 
| 784 | assumes "simple_function M u" "\<And>x. 0 \<le> u x" and "N \<in> null_sets M" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 785 | shows "(\<integral>\<^sup>Sx. u x * indicator N x \<partial>M) = 0" | 
| 38656 | 786 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 787 | have "AE x in M. indicator N x = (0 :: ennreal)" | 
| 61808 | 788 | using \<open>N \<in> null_sets M\<close> by (auto simp: indicator_def intro!: AE_I[of _ _ N]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 789 | then have "(\<integral>\<^sup>Sx. u x * indicator N x \<partial>M) = (\<integral>\<^sup>Sx. 0 \<partial>M)" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 790 | using assms apply (intro simple_integral_cong_AE) by auto | 
| 40859 | 791 | then show ?thesis by simp | 
| 38656 | 792 | qed | 
| 35582 | 793 | |
| 47694 | 794 | lemma simple_integral_cong_AE_mult_indicator: | 
| 795 | assumes sf: "simple_function M f" and eq: "AE x in M. x \<in> S" and "S \<in> sets M" | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 796 | shows "integral\<^sup>S M f = (\<integral>\<^sup>Sx. f x * indicator S x \<partial>M)" | 
| 41705 | 797 | using assms by (intro simple_integral_cong_AE) auto | 
| 35582 | 798 | |
| 47694 | 799 | lemma simple_integral_cmult_indicator: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 800 | assumes A: "A \<in> sets M" | 
| 56949 | 801 | shows "(\<integral>\<^sup>Sx. c * indicator A x \<partial>M) = c * emeasure M A" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 802 | using simple_integral_mult[OF simple_function_indicator[OF A]] | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 803 | unfolding simple_integral_indicator_only[OF A] by simp | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 804 | |
| 56996 | 805 | lemma simple_integral_nonneg: | 
| 47694 | 806 | assumes f: "simple_function M f" and ae: "AE x in M. 0 \<le> f x" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 807 | shows "0 \<le> integral\<^sup>S M f" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 808 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 809 | have "integral\<^sup>S M (\<lambda>x. 0) \<le> integral\<^sup>S M f" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 810 | using simple_integral_mono_AE[OF _ f ae] by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 811 | then show ?thesis by simp | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 812 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 813 | |
| 61808 | 814 | subsection \<open>Integral on nonnegative functions\<close> | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 815 | |
| 70136 | 816 | definition\<^marker>\<open>tag important\<close> nn_integral :: "'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> ennreal" ("integral\<^sup>N") where
 | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 817 |   "integral\<^sup>N M f = (SUP g \<in> {g. simple_function M g \<and> g \<le> f}. integral\<^sup>S M g)"
 | 
| 35692 | 818 | |
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 819 | syntax | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 820 |   "_nn_integral" :: "pttrn \<Rightarrow> ennreal \<Rightarrow> 'a measure \<Rightarrow> ennreal" ("\<integral>\<^sup>+((2 _./ _)/ \<partial>_)" [60,61] 110)
 | 
| 41689 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 821 | |
| 
3e39b0e730d6
the measure valuation is again part of the measure_space type, instead of an explicit parameter to the locale;
 hoelzl parents: 
41661diff
changeset | 822 | translations | 
| 56996 | 823 | "\<integral>\<^sup>+x. f \<partial>M" == "CONST nn_integral M (\<lambda>x. f)" | 
| 40872 | 824 | |
| 56996 | 825 | lemma nn_integral_def_finite: | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 826 |   "integral\<^sup>N M f = (SUP g \<in> {g. simple_function M g \<and> g \<le> f \<and> (\<forall>x. g x < top)}. integral\<^sup>S M g)"
 | 
| 69313 | 827 | (is "_ = Sup (?A ` ?f)") | 
| 56996 | 828 | unfolding nn_integral_def | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44890diff
changeset | 829 | proof (safe intro!: antisym SUP_least) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 830 | fix g assume g[measurable]: "simple_function M g" "g \<le> f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 831 | |
| 69313 | 832 | show "integral\<^sup>S M g \<le> Sup (?A ` ?f)" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 833 | proof cases | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 834 | assume ae: "AE x in M. g x \<noteq> top" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 835 |     let ?G = "{x \<in> space M. g x \<noteq> top}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 836 | have "integral\<^sup>S M g = integral\<^sup>S M (\<lambda>x. g x * indicator ?G x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 837 | proof (rule simple_integral_cong_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 838 | show "AE x in M. g x = g x * indicator ?G x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 839 | using ae AE_space by eventually_elim auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 840 | qed (insert g, auto) | 
| 69313 | 841 | also have "\<dots> \<le> Sup (?A ` ?f)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 842 | using g by (intro SUP_upper) (auto simp: le_fun_def less_top split: split_indicator) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 843 | finally show ?thesis . | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 844 | next | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 845 | assume nAE: "\<not> (AE x in M. g x \<noteq> top)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 846 |     then have "emeasure M {x\<in>space M. g x = top} \<noteq> 0" (is "emeasure M ?G \<noteq> 0")
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 847 | by (subst (asm) AE_iff_measurable[OF _ refl]) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 848 | then have "top = (SUP n. (\<integral>\<^sup>Sx. of_nat n * indicator ?G x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 849 | by (simp add: ennreal_SUP_of_nat_eq_top ennreal_top_eq_mult_iff SUP_mult_right_ennreal[symmetric]) | 
| 69313 | 850 | also have "\<dots> \<le> Sup (?A ` ?f)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 851 | using g | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 852 | by (safe intro!: SUP_least SUP_upper) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 853 | (auto simp: le_fun_def of_nat_less_top top_unique[symmetric] split: split_indicator | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 854 | intro: order_trans[of _ "g x" "f x" for x, OF order_trans[of _ top]]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 855 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 856 | by (simp add: top_unique del: SUP_eq_top_iff Sup_eq_top_iff) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 857 | qed | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44890diff
changeset | 858 | qed (auto intro: SUP_upper) | 
| 40873 | 859 | |
| 56996 | 860 | lemma nn_integral_mono_AE: | 
| 861 | assumes ae: "AE x in M. u x \<le> v x" shows "integral\<^sup>N M u \<le> integral\<^sup>N M v" | |
| 862 | unfolding nn_integral_def | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 863 | proof (safe intro!: SUP_mono) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 864 | fix n assume n: "simple_function M n" "n \<le> u" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 865 | from ae[THEN AE_E] guess N . note N = this | 
| 47694 | 866 | then have ae_N: "AE x in M. x \<notin> N" by (auto intro: AE_not_in) | 
| 46731 | 867 | let ?n = "\<lambda>x. n x * indicator (space M - N) x" | 
| 47694 | 868 | have "AE x in M. n x \<le> ?n x" "simple_function M ?n" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 869 | using n N ae_N by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 870 | moreover | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 871 |   { fix x have "?n x \<le> v x"
 | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 872 | proof cases | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 873 | assume x: "x \<in> space M - N" | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 874 | with N have "u x \<le> v x" by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 875 | with n(2)[THEN le_funD, of x] x show ?thesis | 
| 62390 | 876 | by (auto simp: max_def split: if_split_asm) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 877 | qed simp } | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 878 | then have "?n \<le> v" by (auto simp: le_funI) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 879 | moreover have "integral\<^sup>S M n \<le> integral\<^sup>S M ?n" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 880 | using ae_N N n by (auto intro!: simple_integral_mono_AE) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 881 |   ultimately show "\<exists>m\<in>{g. simple_function M g \<and> g \<le> v}. integral\<^sup>S M n \<le> integral\<^sup>S M m"
 | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 882 | by force | 
| 38656 | 883 | qed | 
| 884 | ||
| 56996 | 885 | lemma nn_integral_mono: | 
| 886 | "(\<And>x. x \<in> space M \<Longrightarrow> u x \<le> v x) \<Longrightarrow> integral\<^sup>N M u \<le> integral\<^sup>N M v" | |
| 887 | by (auto intro: nn_integral_mono_AE) | |
| 40859 | 888 | |
| 60175 | 889 | lemma mono_nn_integral: "mono F \<Longrightarrow> mono (\<lambda>x. integral\<^sup>N M (F x))" | 
| 890 | by (auto simp add: mono_def le_fun_def intro!: nn_integral_mono) | |
| 891 | ||
| 56996 | 892 | lemma nn_integral_cong_AE: | 
| 893 | "AE x in M. u x = v x \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v" | |
| 894 | by (auto simp: eq_iff intro!: nn_integral_mono_AE) | |
| 40859 | 895 | |
| 56996 | 896 | lemma nn_integral_cong: | 
| 897 | "(\<And>x. x \<in> space M \<Longrightarrow> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v" | |
| 898 | by (auto intro: nn_integral_cong_AE) | |
| 40859 | 899 | |
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 900 | lemma nn_integral_cong_simp: | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 901 | "(\<And>x. x \<in> space M =simp=> u x = v x) \<Longrightarrow> integral\<^sup>N M u = integral\<^sup>N M v" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 902 | by (auto intro: nn_integral_cong simp: simp_implies_def) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 903 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 904 | lemma incseq_nn_integral: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 905 | assumes "incseq f" shows "incseq (\<lambda>i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 906 | proof - | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 907 | have "\<And>i x. f i x \<le> f (Suc i) x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 908 | using assms by (auto dest!: incseq_SucD simp: le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 909 | then show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 910 | by (auto intro!: incseq_SucI nn_integral_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 911 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 912 | |
| 56996 | 913 | lemma nn_integral_eq_simple_integral: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 914 | assumes f: "simple_function M f" shows "integral\<^sup>N M f = integral\<^sup>S M f" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 915 | proof - | 
| 46731 | 916 | let ?f = "\<lambda>x. f x * indicator (space M) x" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 917 | have f': "simple_function M ?f" using f by auto | 
| 56996 | 918 | have "integral\<^sup>N M ?f \<le> integral\<^sup>S M ?f" using f' | 
| 919 | by (force intro!: SUP_least simple_integral_mono simp: le_fun_def nn_integral_def) | |
| 920 | moreover have "integral\<^sup>S M ?f \<le> integral\<^sup>N M ?f" | |
| 921 | unfolding nn_integral_def | |
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44890diff
changeset | 922 | using f' by (auto intro!: SUP_upper) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 923 | ultimately show ?thesis | 
| 56996 | 924 | by (simp cong: nn_integral_cong simple_integral_cong) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 925 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 926 | |
| 61808 | 927 | text \<open>Beppo-Levi monotone convergence theorem\<close> | 
| 56996 | 928 | lemma nn_integral_monotone_convergence_SUP: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 929 | assumes f: "incseq f" and [measurable]: "\<And>i. f i \<in> borel_measurable M" | 
| 56996 | 930 | shows "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^sup>N M (f i))" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 931 | proof (rule antisym) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 932 | show "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) \<le> (SUP i. (\<integral>\<^sup>+ x. f i x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 933 | unfolding nn_integral_def_finite[of _ "\<lambda>x. SUP i. f i x"] | 
| 44928 
7ef6505bde7f
renamed Complete_Lattices lemmas, removed legacy names
 hoelzl parents: 
44890diff
changeset | 934 | proof (safe intro!: SUP_least) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 935 | fix u assume sf_u[simp]: "simple_function M u" and | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 936 | u: "u \<le> (\<lambda>x. SUP i. f i x)" and u_range: "\<forall>x. u x < top" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 937 | note sf_u[THEN borel_measurable_simple_function, measurable] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 938 | show "integral\<^sup>S M u \<le> (SUP j. \<integral>\<^sup>+x. f j x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 939 | proof (rule ennreal_approx_unit) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 940 | fix a :: ennreal assume "a < 1" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 941 | let ?au = "\<lambda>x. a * u x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 942 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 943 |       let ?B = "\<lambda>c i. {x\<in>space M. ?au x = c \<and> c \<le> f i x}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 944 | have "integral\<^sup>S M ?au = (\<Sum>c\<in>?au`space M. c * (SUP i. emeasure M (?B c i)))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 945 | unfolding simple_integral_def | 
| 64267 | 946 | proof (intro sum.cong ennreal_mult_left_cong refl) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 947 | fix c assume "c \<in> ?au ` space M" "c \<noteq> 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 948 |         { fix x' assume x': "x' \<in> space M" "?au x' = c"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 949 | with \<open>c \<noteq> 0\<close> u_range have "?au x' < 1 * u x'" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 950 | by (intro ennreal_mult_strict_right_mono \<open>a < 1\<close>) (auto simp: less_le) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 951 | also have "\<dots> \<le> (SUP i. f i x')" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 952 | using u by (auto simp: le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 953 | finally have "\<exists>i. ?au x' \<le> f i x'" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 954 | by (auto simp: less_SUP_iff intro: less_imp_le) } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 955 |         then have *: "?au -` {c} \<inter> space M = (\<Union>i. ?B c i)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 956 | by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 957 |         show "emeasure M (?au -` {c} \<inter> space M) = (SUP i. emeasure M (?B c i))"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 958 | unfolding * using f | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 959 | by (intro SUP_emeasure_incseq[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 960 | (auto simp: incseq_def le_fun_def intro: order_trans) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 961 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 962 | also have "\<dots> = (SUP i. \<Sum>c\<in>?au`space M. c * emeasure M (?B c i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 963 | unfolding SUP_mult_left_ennreal using f | 
| 64267 | 964 | by (intro ennreal_SUP_sum[symmetric]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 965 | (auto intro!: mult_mono emeasure_mono simp: incseq_def le_fun_def intro: order_trans) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 966 | also have "\<dots> \<le> (SUP i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 967 | proof (intro SUP_subset_mono order_refl) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 968 | fix i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 969 | have "(\<Sum>c\<in>?au`space M. c * emeasure M (?B c i)) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 970 |           (\<integral>\<^sup>Sx. (a * u x) * indicator {x\<in>space M. a * u x \<le> f i x} x \<partial>M)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 971 | by (subst simple_integral_indicator) | 
| 64267 | 972 | (auto intro!: sum.cong ennreal_mult_left_cong arg_cong2[where f=emeasure]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 973 |         also have "\<dots> = (\<integral>\<^sup>+x. (a * u x) * indicator {x\<in>space M. a * u x \<le> f i x} x \<partial>M)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 974 | by (rule nn_integral_eq_simple_integral[symmetric]) simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 975 | also have "\<dots> \<le> (\<integral>\<^sup>+x. f i x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 976 | by (intro nn_integral_mono) (auto split: split_indicator) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 977 | finally show "(\<Sum>c\<in>?au`space M. c * emeasure M (?B c i)) \<le> (\<integral>\<^sup>+x. f i x \<partial>M)" . | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 978 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 979 | finally show "a * integral\<^sup>S M u \<le> (SUP i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 980 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 981 | qed | 
| 35582 | 982 | qed | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 983 | qed (auto intro!: SUP_least SUP_upper nn_integral_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 984 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 985 | lemma sup_continuous_nn_integral[order_continuous_intros]: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 986 | assumes f: "\<And>y. sup_continuous (f y)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 987 | assumes [measurable]: "\<And>x. (\<lambda>y. f y x) \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 988 | shows "sup_continuous (\<lambda>x. (\<integral>\<^sup>+y. f y x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 989 | unfolding sup_continuous_def | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 990 | proof safe | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 991 | fix C :: "nat \<Rightarrow> 'b" assume C: "incseq C" | 
| 69313 | 992 | with sup_continuous_mono[OF f] show "(\<integral>\<^sup>+ y. f y (Sup (C ` UNIV)) \<partial>M) = (SUP i. \<integral>\<^sup>+ y. f y (C i) \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 993 | unfolding sup_continuousD[OF f C] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 994 | by (subst nn_integral_monotone_convergence_SUP) (auto simp: mono_def le_fun_def) | 
| 35582 | 995 | qed | 
| 996 | ||
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 997 | theorem nn_integral_monotone_convergence_SUP_AE: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 998 | assumes f: "\<And>i. AE x in M. f i x \<le> f (Suc i) x" "\<And>i. f i \<in> borel_measurable M" | 
| 56996 | 999 | shows "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (SUP i. integral\<^sup>N M (f i))" | 
| 40859 | 1000 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1001 | from f have "AE x in M. \<forall>i. f i x \<le> f (Suc i) x" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1002 | by (simp add: AE_all_countable) | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1003 | from this[THEN AE_E] guess N . note N = this | 
| 46731 | 1004 | let ?f = "\<lambda>i x. if x \<in> space M - N then f i x else 0" | 
| 47694 | 1005 | have f_eq: "AE x in M. \<forall>i. ?f i x = f i x" using N by (auto intro!: AE_I[of _ _ N]) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1006 | then have "(\<integral>\<^sup>+ x. (SUP i. f i x) \<partial>M) = (\<integral>\<^sup>+ x. (SUP i. ?f i x) \<partial>M)" | 
| 56996 | 1007 | by (auto intro!: nn_integral_cong_AE) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1008 | also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. ?f i x \<partial>M))" | 
| 56996 | 1009 | proof (rule nn_integral_monotone_convergence_SUP) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1010 | show "incseq ?f" using N(1) by (force intro!: incseq_SucI le_funI) | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1011 |     { fix i show "(\<lambda>x. if x \<in> space M - N then f i x else 0) \<in> borel_measurable M"
 | 
| 59000 | 1012 | using f N(3) by (intro measurable_If_set) auto } | 
| 40859 | 1013 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1014 | also have "\<dots> = (SUP i. (\<integral>\<^sup>+ x. f i x \<partial>M))" | 
| 69313 | 1015 | using f_eq by (force intro!: arg_cong[where f = "\<lambda>f. Sup (range f)"] nn_integral_cong_AE ext) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1016 | finally show ?thesis . | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1017 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1018 | |
| 56996 | 1019 | lemma nn_integral_monotone_convergence_simple: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1020 | "incseq f \<Longrightarrow> (\<And>i. simple_function M (f i)) \<Longrightarrow> (SUP i. \<integral>\<^sup>S x. f i x \<partial>M) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)" | 
| 63092 | 1021 | using nn_integral_monotone_convergence_SUP[of f M] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1022 | by (simp add: nn_integral_eq_simple_integral[symmetric] borel_measurable_simple_function) | 
| 40859 | 1023 | |
| 47694 | 1024 | lemma SUP_simple_integral_sequences: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1025 | assumes f: "incseq f" "\<And>i. simple_function M (f i)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1026 | and g: "incseq g" "\<And>i. simple_function M (g i)" | 
| 47694 | 1027 | and eq: "AE x in M. (SUP i. f i x) = (SUP i. g i x)" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1028 | shows "(SUP i. integral\<^sup>S M (f i)) = (SUP i. integral\<^sup>S M (g i))" | 
| 69313 | 1029 | (is "Sup (?F ` _) = Sup (?G ` _)") | 
| 38656 | 1030 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1031 | have "(SUP i. integral\<^sup>S M (f i)) = (\<integral>\<^sup>+x. (SUP i. f i x) \<partial>M)" | 
| 56996 | 1032 | using f by (rule nn_integral_monotone_convergence_simple) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1033 | also have "\<dots> = (\<integral>\<^sup>+x. (SUP i. g i x) \<partial>M)" | 
| 56996 | 1034 | unfolding eq[THEN nn_integral_cong_AE] .. | 
| 38656 | 1035 | also have "\<dots> = (SUP i. ?G i)" | 
| 56996 | 1036 | using g by (rule nn_integral_monotone_convergence_simple[symmetric]) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1037 | finally show ?thesis by simp | 
| 38656 | 1038 | qed | 
| 1039 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1040 | lemma nn_integral_const[simp]: "(\<integral>\<^sup>+ x. c \<partial>M) = c * emeasure M (space M)" | 
| 56996 | 1041 | by (subst nn_integral_eq_simple_integral) auto | 
| 38656 | 1042 | |
| 56996 | 1043 | lemma nn_integral_linear: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1044 | assumes f: "f \<in> borel_measurable M" and g: "g \<in> borel_measurable M" | 
| 56996 | 1045 | shows "(\<integral>\<^sup>+ x. a * f x + g x \<partial>M) = a * integral\<^sup>N M f + integral\<^sup>N M g" | 
| 1046 | (is "integral\<^sup>N M ?L = _") | |
| 35582 | 1047 | proof - | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1048 | from borel_measurable_implies_simple_function_sequence'[OF f(1)] guess u . | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1049 | note u = nn_integral_monotone_convergence_simple[OF this(2,1)] this | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1050 | from borel_measurable_implies_simple_function_sequence'[OF g(1)] guess v . | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1051 | note v = nn_integral_monotone_convergence_simple[OF this(2,1)] this | 
| 46731 | 1052 | let ?L' = "\<lambda>i x. a * u i x + v i x" | 
| 38656 | 1053 | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1054 | have "?L \<in> borel_measurable M" using assms by auto | 
| 38656 | 1055 | from borel_measurable_implies_simple_function_sequence'[OF this] guess l . | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1056 | note l = nn_integral_monotone_convergence_simple[OF this(2,1)] this | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1057 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1058 | have inc: "incseq (\<lambda>i. a * integral\<^sup>S M (u i))" "incseq (\<lambda>i. integral\<^sup>S M (v i))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1059 | using u v by (auto simp: incseq_Suc_iff le_fun_def intro!: add_mono mult_left_mono simple_integral_mono) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1060 | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1061 | have l': "(SUP i. integral\<^sup>S M (l i)) = (SUP i. integral\<^sup>S M (?L' i))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1062 | proof (rule SUP_simple_integral_sequences[OF l(3,2)]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1063 | show "incseq ?L'" "\<And>i. simple_function M (?L' i)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1064 | using u v unfolding incseq_Suc_iff le_fun_def | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1065 | by (auto intro!: add_mono mult_left_mono) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1066 |     { fix x
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1067 | have "(SUP i. a * u i x + v i x) = a * (SUP i. u i x) + (SUP i. v i x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1068 | using u(3) v(3) u(4)[of _ x] v(4)[of _ x] unfolding SUP_mult_left_ennreal | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1069 | by (auto intro!: ennreal_SUP_add simp: incseq_Suc_iff le_fun_def add_mono mult_left_mono) } | 
| 47694 | 1070 | then show "AE x in M. (SUP i. l i x) = (SUP i. ?L' i x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1071 | unfolding l(5) using u(5) v(5) by (intro AE_I2) auto | 
| 38656 | 1072 | qed | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1073 | also have "\<dots> = (SUP i. a * integral\<^sup>S M (u i) + integral\<^sup>S M (v i))" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1074 | using u(2) v(2) by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1075 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1076 | unfolding l(5)[symmetric] l(1)[symmetric] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1077 | by (simp add: ennreal_SUP_add[OF inc] v u SUP_mult_left_ennreal[symmetric]) | 
| 38656 | 1078 | qed | 
| 1079 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1080 | lemma nn_integral_cmult: "f \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. c * f x \<partial>M) = c * integral\<^sup>N M f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1081 | using nn_integral_linear[of f M "\<lambda>x. 0" c] by simp | 
| 38656 | 1082 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1083 | lemma nn_integral_multc: "f \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. f x * c \<partial>M) = integral\<^sup>N M f * c" | 
| 63092 | 1084 | unfolding mult.commute[of _ c] nn_integral_cmult by simp | 
| 41096 | 1085 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1086 | lemma nn_integral_divide: "f \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. f x / c \<partial>M) = (\<integral>\<^sup>+ x. f x \<partial>M) / c" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1087 | unfolding divide_ennreal_def by (rule nn_integral_multc) | 
| 59000 | 1088 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1089 | lemma nn_integral_indicator[simp]: "A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x. indicator A x\<partial>M) = (emeasure M) A" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1090 | by (subst nn_integral_eq_simple_integral) (auto simp: simple_integral_indicator) | 
| 38656 | 1091 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1092 | lemma nn_integral_cmult_indicator: "A \<in> sets M \<Longrightarrow> (\<integral>\<^sup>+ x. c * indicator A x \<partial>M) = c * emeasure M A" | 
| 71633 | 1093 | by (subst nn_integral_eq_simple_integral) (auto) | 
| 38656 | 1094 | |
| 56996 | 1095 | lemma nn_integral_indicator': | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1096 | assumes [measurable]: "A \<inter> space M \<in> sets M" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1097 | shows "(\<integral>\<^sup>+ x. indicator A x \<partial>M) = emeasure M (A \<inter> space M)" | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1098 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1099 | have "(\<integral>\<^sup>+ x. indicator A x \<partial>M) = (\<integral>\<^sup>+ x. indicator (A \<inter> space M) x \<partial>M)" | 
| 56996 | 1100 | by (intro nn_integral_cong) (simp split: split_indicator) | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1101 | also have "\<dots> = emeasure M (A \<inter> space M)" | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1102 | by simp | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1103 | finally show ?thesis . | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1104 | qed | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1105 | |
| 62083 | 1106 | lemma nn_integral_indicator_singleton[simp]: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1107 |   assumes [measurable]: "{y} \<in> sets M" shows "(\<integral>\<^sup>+x. f x * indicator {y} x \<partial>M) = f y * emeasure M {y}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1108 | proof - | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1109 |   have "(\<integral>\<^sup>+x. f x * indicator {y} x \<partial>M) = (\<integral>\<^sup>+x. f y * indicator {y} x \<partial>M)"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1110 | by (auto intro!: nn_integral_cong split: split_indicator) | 
| 62083 | 1111 | then show ?thesis | 
| 1112 | by (simp add: nn_integral_cmult) | |
| 1113 | qed | |
| 1114 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1115 | lemma nn_integral_set_ennreal: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1116 | "(\<integral>\<^sup>+x. ennreal (f x) * indicator A x \<partial>M) = (\<integral>\<^sup>+x. ennreal (f x * indicator A x) \<partial>M)" | 
| 62083 | 1117 | by (rule nn_integral_cong) (simp split: split_indicator) | 
| 1118 | ||
| 1119 | lemma nn_integral_indicator_singleton'[simp]: | |
| 1120 |   assumes [measurable]: "{y} \<in> sets M"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1121 |   shows "(\<integral>\<^sup>+x. ennreal (f x * indicator {y} x) \<partial>M) = f y * emeasure M {y}"
 | 
| 71633 | 1122 | by (subst nn_integral_set_ennreal[symmetric]) (simp) | 
| 62083 | 1123 | |
| 56996 | 1124 | lemma nn_integral_add: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1125 | "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> (\<integral>\<^sup>+ x. f x + g x \<partial>M) = integral\<^sup>N M f + integral\<^sup>N M g" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1126 | using nn_integral_linear[of f M g 1] by simp | 
| 38656 | 1127 | |
| 64267 | 1128 | lemma nn_integral_sum: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1129 | "(\<And>i. i \<in> P \<Longrightarrow> f i \<in> borel_measurable M) \<Longrightarrow> (\<integral>\<^sup>+ x. (\<Sum>i\<in>P. f i x) \<partial>M) = (\<Sum>i\<in>P. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1130 | by (induction P rule: infinite_finite_induct) (auto simp: nn_integral_add) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1131 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1132 | theorem nn_integral_suminf: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1133 | assumes f: "\<And>i. f i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1134 | shows "(\<integral>\<^sup>+ x. (\<Sum>i. f i x) \<partial>M) = (\<Sum>i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1135 | proof - | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1136 | have all_pos: "AE x in M. \<forall>i. 0 \<le> f i x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1137 | using assms by (auto simp: AE_all_countable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1138 | have "(\<Sum>i. integral\<^sup>N M (f i)) = (SUP n. \<Sum>i<n. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1139 | by (rule suminf_eq_SUP) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1140 | also have "\<dots> = (SUP n. \<integral>\<^sup>+x. (\<Sum>i<n. f i x) \<partial>M)" | 
| 64267 | 1141 | unfolding nn_integral_sum[OF f] .. | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1142 | also have "\<dots> = \<integral>\<^sup>+x. (SUP n. \<Sum>i<n. f i x) \<partial>M" using f all_pos | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1143 | by (intro nn_integral_monotone_convergence_SUP_AE[symmetric]) | 
| 70097 
4005298550a6
The last big tranche of Homology material: invariance of domain; renamings to use generic sum/prod lemmas from their locale
 paulson <lp15@cam.ac.uk> parents: 
69861diff
changeset | 1144 | (elim AE_mp, auto simp: sum_nonneg simp del: sum.lessThan_Suc intro!: AE_I2 sum_mono2) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1145 | also have "\<dots> = \<integral>\<^sup>+x. (\<Sum>i. f i x) \<partial>M" using all_pos | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1146 | by (intro nn_integral_cong_AE) (auto simp: suminf_eq_SUP) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1147 | finally show ?thesis by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1148 | qed | 
| 38656 | 1149 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1150 | lemma nn_integral_bound_simple_function: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1151 | assumes bnd: "\<And>x. x \<in> space M \<Longrightarrow> f x < \<infinity>" | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1152 | assumes f[measurable]: "simple_function M f" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1153 |   assumes supp: "emeasure M {x\<in>space M. f x \<noteq> 0} < \<infinity>"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1154 | shows "nn_integral M f < \<infinity>" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1155 | proof cases | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1156 |   assume "space M = {}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1157 | then have "nn_integral M f = (\<integral>\<^sup>+x. 0 \<partial>M)" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1158 | by (intro nn_integral_cong) auto | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1159 | then show ?thesis by simp | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1160 | next | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1161 |   assume "space M \<noteq> {}"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1162 | with simple_functionD(1)[OF f] bnd have bnd: "0 \<le> Max (f`space M) \<and> Max (f`space M) < \<infinity>" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1163 | by (subst Max_less_iff) (auto simp: Max_ge_iff) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1164 | |
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1165 |   have "nn_integral M f \<le> (\<integral>\<^sup>+x. Max (f`space M) * indicator {x\<in>space M. f x \<noteq> 0} x \<partial>M)"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1166 | proof (rule nn_integral_mono) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1167 | fix x assume "x \<in> space M" | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1168 |     with f show "f x \<le> Max (f ` space M) * indicator {x \<in> space M. f x \<noteq> 0} x"
 | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1169 | by (auto split: split_indicator intro!: Max_ge simple_functionD) | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1170 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1171 | also have "\<dots> < \<infinity>" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1172 | using bnd supp by (subst nn_integral_cmult) (auto simp: ennreal_mult_less_top) | 
| 57447 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1173 | finally show ?thesis . | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1174 | qed | 
| 
87429bdecad5
import more stuff from the CLT proof; base the lborel measure on interval_measure; remove lebesgue measure
 hoelzl parents: 
57418diff
changeset | 1175 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1176 | theorem nn_integral_Markov_inequality: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1177 | assumes u: "u \<in> borel_measurable M" and "A \<in> sets M" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1178 |   shows "(emeasure M) ({x\<in>space M. 1 \<le> c * u x} \<inter> A) \<le> c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)"
 | 
| 47694 | 1179 | (is "(emeasure M) ?A \<le> _ * ?PI") | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1180 | proof - | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1181 | have "?A \<in> sets M" | 
| 61808 | 1182 | using \<open>A \<in> sets M\<close> u by auto | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1183 | hence "(emeasure M) ?A = (\<integral>\<^sup>+ x. indicator ?A x \<partial>M)" | 
| 56996 | 1184 | using nn_integral_indicator by simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1185 | also have "\<dots> \<le> (\<integral>\<^sup>+ x. c * (u x * indicator A x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1186 | using u by (auto intro!: nn_integral_mono_AE simp: indicator_def) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1187 | also have "\<dots> = c * (\<integral>\<^sup>+ x. u x * indicator A x \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1188 | using assms by (auto intro!: nn_integral_cmult) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1189 | finally show ?thesis . | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1190 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1191 | |
| 56996 | 1192 | lemma nn_integral_noteq_infinite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1193 | assumes g: "g \<in> borel_measurable M" and "integral\<^sup>N M g \<noteq> \<infinity>" | 
| 47694 | 1194 | shows "AE x in M. g x \<noteq> \<infinity>" | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1195 | proof (rule ccontr) | 
| 47694 | 1196 | assume c: "\<not> (AE x in M. g x \<noteq> \<infinity>)" | 
| 1197 |   have "(emeasure M) {x\<in>space M. g x = \<infinity>} \<noteq> 0"
 | |
| 1198 | using c g by (auto simp add: AE_iff_null) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1199 |   then have "0 < (emeasure M) {x\<in>space M. g x = \<infinity>}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1200 | by (auto simp: zero_less_iff_neq_zero) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1201 |   then have "\<infinity> = \<infinity> * (emeasure M) {x\<in>space M. g x = \<infinity>}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1202 | by (auto simp: ennreal_top_eq_mult_iff) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1203 |   also have "\<dots> \<le> (\<integral>\<^sup>+x. \<infinity> * indicator {x\<in>space M. g x = \<infinity>} x \<partial>M)"
 | 
| 56996 | 1204 | using g by (subst nn_integral_cmult_indicator) auto | 
| 1205 | also have "\<dots> \<le> integral\<^sup>N M g" | |
| 1206 | using assms by (auto intro!: nn_integral_mono_AE simp: indicator_def) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1207 | finally show False | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1208 | using \<open>integral\<^sup>N M g \<noteq> \<infinity>\<close> by (auto simp: top_unique) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1209 | qed | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1210 | |
| 56996 | 1211 | lemma nn_integral_PInf: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1212 | assumes f: "f \<in> borel_measurable M" and not_Inf: "integral\<^sup>N M f \<noteq> \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1213 |   shows "emeasure M (f -` {\<infinity>} \<inter> space M) = 0"
 | 
| 56949 | 1214 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1215 |   have "\<infinity> * emeasure M (f -` {\<infinity>} \<inter> space M) = (\<integral>\<^sup>+ x. \<infinity> * indicator (f -` {\<infinity>} \<inter> space M) x \<partial>M)"
 | 
| 56996 | 1216 | using f by (subst nn_integral_cmult_indicator) (auto simp: measurable_sets) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1217 | also have "\<dots> \<le> integral\<^sup>N M f" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1218 | by (auto intro!: nn_integral_mono simp: indicator_def) | 
| 56996 | 1219 |   finally have "\<infinity> * (emeasure M) (f -` {\<infinity>} \<inter> space M) \<le> integral\<^sup>N M f"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1220 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1221 | then show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1222 | using assms by (auto simp: ennreal_top_mult top_unique split: if_split_asm) | 
| 56949 | 1223 | qed | 
| 1224 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1225 | lemma simple_integral_PInf: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1226 |   "simple_function M f \<Longrightarrow> integral\<^sup>S M f \<noteq> \<infinity> \<Longrightarrow> emeasure M (f -` {\<infinity>} \<inter> space M) = 0"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1227 | by (rule nn_integral_PInf) (auto simp: nn_integral_eq_simple_integral borel_measurable_simple_function) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1228 | |
| 56996 | 1229 | lemma nn_integral_PInf_AE: | 
| 1230 | assumes "f \<in> borel_measurable M" "integral\<^sup>N M f \<noteq> \<infinity>" shows "AE x in M. f x \<noteq> \<infinity>" | |
| 56949 | 1231 | proof (rule AE_I) | 
| 1232 |   show "(emeasure M) (f -` {\<infinity>} \<inter> space M) = 0"
 | |
| 56996 | 1233 | by (rule nn_integral_PInf[OF assms]) | 
| 56949 | 1234 |   show "f -` {\<infinity>} \<inter> space M \<in> sets M"
 | 
| 1235 | using assms by (auto intro: borel_measurable_vimage) | |
| 1236 | qed auto | |
| 1237 | ||
| 56996 | 1238 | lemma nn_integral_diff: | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1239 | assumes f: "f \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1240 | and g: "g \<in> borel_measurable M" | 
| 56996 | 1241 | and fin: "integral\<^sup>N M g \<noteq> \<infinity>" | 
| 47694 | 1242 | and mono: "AE x in M. g x \<le> f x" | 
| 56996 | 1243 | shows "(\<integral>\<^sup>+ x. f x - g x \<partial>M) = integral\<^sup>N M f - integral\<^sup>N M g" | 
| 38656 | 1244 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1245 | have diff: "(\<lambda>x. f x - g x) \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1246 | using assms by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1247 | have "AE x in M. f x = f x - g x + g x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1248 | using diff_add_cancel_ennreal mono nn_integral_noteq_infinite[OF g fin] assms by auto | 
| 56996 | 1249 | then have **: "integral\<^sup>N M f = (\<integral>\<^sup>+x. f x - g x \<partial>M) + integral\<^sup>N M g" | 
| 1250 | unfolding nn_integral_add[OF diff g, symmetric] | |
| 1251 | by (rule nn_integral_cong_AE) | |
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1252 | show ?thesis unfolding ** | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1253 | using fin | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1254 | by (cases rule: ennreal2_cases[of "\<integral>\<^sup>+ x. f x - g x \<partial>M" "integral\<^sup>N M g"]) auto | 
| 38656 | 1255 | qed | 
| 1256 | ||
| 56996 | 1257 | lemma nn_integral_mult_bounded_inf: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1258 | assumes f: "f \<in> borel_measurable M" "(\<integral>\<^sup>+x. f x \<partial>M) < \<infinity>" and c: "c \<noteq> \<infinity>" and ae: "AE x in M. g x \<le> c * f x" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1259 | shows "(\<integral>\<^sup>+x. g x \<partial>M) < \<infinity>" | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1260 | proof - | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1261 | have "(\<integral>\<^sup>+x. g x \<partial>M) \<le> (\<integral>\<^sup>+x. c * f x \<partial>M)" | 
| 56996 | 1262 | by (intro nn_integral_mono_AE ae) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1263 | also have "(\<integral>\<^sup>+x. c * f x \<partial>M) < \<infinity>" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1264 | using c f by (subst nn_integral_cmult) (auto simp: ennreal_mult_less_top top_unique not_less) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1265 | finally show ?thesis . | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1266 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1267 | |
| 61808 | 1268 | text \<open>Fatou's lemma: convergence theorem on limes inferior\<close> | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1269 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1270 | lemma nn_integral_monotone_convergence_INF_AE': | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1271 | assumes f: "\<And>i. AE x in M. f (Suc i) x \<le> f i x" and [measurable]: "\<And>i. f i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1272 | and *: "(\<integral>\<^sup>+ x. f 0 x \<partial>M) < \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1273 | shows "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (INF i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1274 | proof (rule ennreal_minus_cancel) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1275 | have "integral\<^sup>N M (f 0) - (\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (\<integral>\<^sup>+x. f 0 x - (INF i. f i x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1276 | proof (rule nn_integral_diff[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1277 | have "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) \<le> (\<integral>\<^sup>+ x. f 0 x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1278 | by (intro nn_integral_mono INF_lower) simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1279 | with * show "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) \<noteq> \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1280 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1281 | qed (auto intro: INF_lower) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1282 | also have "\<dots> = (\<integral>\<^sup>+x. (SUP i. f 0 x - f i x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1283 | by (simp add: ennreal_INF_const_minus) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1284 | also have "\<dots> = (SUP i. (\<integral>\<^sup>+x. f 0 x - f i x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1285 | proof (intro nn_integral_monotone_convergence_SUP_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1286 | show "AE x in M. f 0 x - f i x \<le> f 0 x - f (Suc i) x" for i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1287 | using f[of i] by eventually_elim (auto simp: ennreal_mono_minus) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1288 | qed simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1289 | also have "\<dots> = (SUP i. nn_integral M (f 0) - (\<integral>\<^sup>+x. f i x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1290 | proof (subst nn_integral_diff[symmetric]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1291 | fix i | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1292 | have dec: "AE x in M. \<forall>i. f (Suc i) x \<le> f i x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1293 | unfolding AE_all_countable using f by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1294 | then show "AE x in M. f i x \<le> f 0 x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1295 | using dec by eventually_elim (auto intro: lift_Suc_antimono_le[of "\<lambda>i. f i x" 0 i for x]) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1296 | then have "(\<integral>\<^sup>+ x. f i x \<partial>M) \<le> (\<integral>\<^sup>+ x. f 0 x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1297 | by (rule nn_integral_mono_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1298 | with * show "(\<integral>\<^sup>+ x. f i x \<partial>M) \<noteq> \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1299 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1300 | qed (insert f, auto simp: decseq_def le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1301 | finally show "integral\<^sup>N M (f 0) - (\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1302 | integral\<^sup>N M (f 0) - (INF i. \<integral>\<^sup>+ x. f i x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1303 | by (simp add: ennreal_INF_const_minus) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1304 | qed (insert *, auto intro!: nn_integral_mono intro: INF_lower) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1305 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1306 | theorem nn_integral_monotone_convergence_INF_AE: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1307 | fixes f :: "nat \<Rightarrow> 'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1308 | assumes f: "\<And>i. AE x in M. f (Suc i) x \<le> f i x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1309 | and [measurable]: "\<And>i. f i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1310 | and fin: "(\<integral>\<^sup>+ x. f i x \<partial>M) < \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1311 | shows "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (INF i. integral\<^sup>N M (f i))" | 
| 38656 | 1312 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1313 |   { fix f :: "nat \<Rightarrow> ennreal" and j assume "decseq f"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1314 | then have "(INF i. f i) = (INF i. f (i + j))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1315 | apply (intro INF_eq) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1316 | apply (rule_tac x="i" in bexI) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1317 | apply (auto simp: decseq_def le_fun_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1318 | done } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1319 | note INF_shift = this | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1320 | have mono: "AE x in M. \<forall>i. f (Suc i) x \<le> f i x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1321 | using f by (auto simp: AE_all_countable) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1322 | then have "AE x in M. (INF i. f i x) = (INF n. f (n + i) x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1323 | by eventually_elim (auto intro!: decseq_SucI INF_shift) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1324 | then have "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (\<integral>\<^sup>+ x. (INF n. f (n + i) x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1325 | by (rule nn_integral_cong_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1326 | also have "\<dots> = (INF n. (\<integral>\<^sup>+ x. f (n + i) x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1327 | by (rule nn_integral_monotone_convergence_INF_AE') (insert assms, auto) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1328 | also have "\<dots> = (INF n. (\<integral>\<^sup>+ x. f n x \<partial>M))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1329 | by (intro INF_shift[symmetric] decseq_SucI nn_integral_mono_AE f) | 
| 38656 | 1330 | finally show ?thesis . | 
| 35582 | 1331 | qed | 
| 1332 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1333 | lemma nn_integral_monotone_convergence_INF_decseq: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1334 | assumes f: "decseq f" and *: "\<And>i. f i \<in> borel_measurable M" "(\<integral>\<^sup>+ x. f i x \<partial>M) < \<infinity>" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1335 | shows "(\<integral>\<^sup>+ x. (INF i. f i x) \<partial>M) = (INF i. integral\<^sup>N M (f i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1336 | using nn_integral_monotone_convergence_INF_AE[of f M i, OF _ *] f by (auto simp: decseq_Suc_iff le_fun_def) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1337 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1338 | theorem nn_integral_liminf: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1339 | fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1340 | assumes u: "\<And>i. u i \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1341 | shows "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) \<le> liminf (\<lambda>n. integral\<^sup>N M (u n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1342 | proof - | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1343 |   have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) = (SUP n. \<integral>\<^sup>+ x. (INF i\<in>{n..}. u i x) \<partial>M)"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1344 | unfolding liminf_SUP_INF using u | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1345 | by (intro nn_integral_monotone_convergence_SUP_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1346 | (auto intro!: AE_I2 intro: INF_greatest INF_superset_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1347 | also have "\<dots> \<le> liminf (\<lambda>n. integral\<^sup>N M (u n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1348 | by (auto simp: liminf_SUP_INF intro!: SUP_mono INF_greatest nn_integral_mono INF_lower) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1349 | finally show ?thesis . | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1350 | qed | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1351 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1352 | theorem nn_integral_limsup: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1353 | fixes u :: "nat \<Rightarrow> 'a \<Rightarrow> ennreal" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1354 | assumes [measurable]: "\<And>i. u i \<in> borel_measurable M" "w \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1355 | assumes bounds: "\<And>i. AE x in M. u i x \<le> w x" and w: "(\<integral>\<^sup>+x. w x \<partial>M) < \<infinity>" | 
| 56996 | 1356 | shows "limsup (\<lambda>n. integral\<^sup>N M (u n)) \<le> (\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M)" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1357 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1358 | have bnd: "AE x in M. \<forall>i. u i x \<le> w x" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1359 | using bounds by (auto simp: AE_all_countable) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1360 | then have "(\<integral>\<^sup>+ x. (SUP n. u n x) \<partial>M) \<le> (\<integral>\<^sup>+ x. w x \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1361 | by (auto intro!: nn_integral_mono_AE elim: eventually_mono intro: SUP_least) | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1362 |   then have "(\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M) = (INF n. \<integral>\<^sup>+ x. (SUP i\<in>{n..}. u i x) \<partial>M)"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1363 | unfolding limsup_INF_SUP using bnd w | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1364 | by (intro nn_integral_monotone_convergence_INF_AE') | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1365 | (auto intro!: AE_I2 intro: SUP_least SUP_subset_mono) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1366 | also have "\<dots> \<ge> limsup (\<lambda>n. integral\<^sup>N M (u n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1367 | by (auto simp: limsup_INF_SUP intro!: INF_mono SUP_least exI nn_integral_mono SUP_upper) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1368 | finally (xtrans) show ?thesis . | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1369 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1370 | |
| 57025 | 1371 | lemma nn_integral_LIMSEQ: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1372 | assumes f: "incseq f" "\<And>i. f i \<in> borel_measurable M" | 
| 61969 | 1373 | and u: "\<And>x. (\<lambda>i. f i x) \<longlonglongrightarrow> u x" | 
| 1374 | shows "(\<lambda>n. integral\<^sup>N M (f n)) \<longlonglongrightarrow> integral\<^sup>N M u" | |
| 57025 | 1375 | proof - | 
| 61969 | 1376 | have "(\<lambda>n. integral\<^sup>N M (f n)) \<longlonglongrightarrow> (SUP n. integral\<^sup>N M (f n))" | 
| 57025 | 1377 | using f by (intro LIMSEQ_SUP[of "\<lambda>n. integral\<^sup>N M (f n)"] incseq_nn_integral) | 
| 1378 | also have "(SUP n. integral\<^sup>N M (f n)) = integral\<^sup>N M (\<lambda>x. SUP n. f n x)" | |
| 1379 | using f by (intro nn_integral_monotone_convergence_SUP[symmetric]) | |
| 1380 | also have "integral\<^sup>N M (\<lambda>x. SUP n. f n x) = integral\<^sup>N M (\<lambda>x. u x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1381 | using f by (subst LIMSEQ_SUP[THEN LIMSEQ_unique, OF _ u]) (auto simp: incseq_def le_fun_def) | 
| 57025 | 1382 | finally show ?thesis . | 
| 1383 | qed | |
| 1384 | ||
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1385 | theorem nn_integral_dominated_convergence: | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1386 | assumes [measurable]: | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1387 | "\<And>i. u i \<in> borel_measurable M" "u' \<in> borel_measurable M" "w \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1388 | and bound: "\<And>j. AE x in M. u j x \<le> w x" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1389 | and w: "(\<integral>\<^sup>+x. w x \<partial>M) < \<infinity>" | 
| 61969 | 1390 | and u': "AE x in M. (\<lambda>i. u i x) \<longlonglongrightarrow> u' x" | 
| 1391 | shows "(\<lambda>i. (\<integral>\<^sup>+x. u i x \<partial>M)) \<longlonglongrightarrow> (\<integral>\<^sup>+x. u' x \<partial>M)" | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1392 | proof - | 
| 56996 | 1393 | have "limsup (\<lambda>n. integral\<^sup>N M (u n)) \<le> (\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M)" | 
| 1394 | by (intro nn_integral_limsup[OF _ _ bound w]) auto | |
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1395 | moreover have "(\<integral>\<^sup>+ x. limsup (\<lambda>n. u n x) \<partial>M) = (\<integral>\<^sup>+ x. u' x \<partial>M)" | 
| 56996 | 1396 | using u' by (intro nn_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup sequentially_bot) | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1397 | moreover have "(\<integral>\<^sup>+ x. liminf (\<lambda>n. u n x) \<partial>M) = (\<integral>\<^sup>+ x. u' x \<partial>M)" | 
| 56996 | 1398 | using u' by (intro nn_integral_cong_AE, eventually_elim) (metis tendsto_iff_Liminf_eq_Limsup sequentially_bot) | 
| 1399 | moreover have "(\<integral>\<^sup>+x. liminf (\<lambda>n. u n x) \<partial>M) \<le> liminf (\<lambda>n. integral\<^sup>N M (u n))" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1400 | by (intro nn_integral_liminf) auto | 
| 56996 | 1401 | moreover have "liminf (\<lambda>n. integral\<^sup>N M (u n)) \<le> limsup (\<lambda>n. integral\<^sup>N M (u n))" | 
| 56993 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1402 | by (intro Liminf_le_Limsup sequentially_bot) | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1403 | ultimately show ?thesis | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1404 | by (intro Liminf_eq_Limsup) auto | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1405 | qed | 
| 
e5366291d6aa
introduce Bochner integral: generalizes Lebesgue integral from real-valued function to functions on real-normed vector spaces
 hoelzl parents: 
56949diff
changeset | 1406 | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1407 | lemma inf_continuous_nn_integral[order_continuous_intros]: | 
| 60175 | 1408 | assumes f: "\<And>y. inf_continuous (f y)" | 
| 60614 
e39e6881985c
generalized inf and sup_continuous; added intro rules
 hoelzl parents: 
60175diff
changeset | 1409 | assumes [measurable]: "\<And>x. (\<lambda>y. f y x) \<in> borel_measurable M" | 
| 
e39e6881985c
generalized inf and sup_continuous; added intro rules
 hoelzl parents: 
60175diff
changeset | 1410 | assumes bnd: "\<And>x. (\<integral>\<^sup>+ y. f y x \<partial>M) \<noteq> \<infinity>" | 
| 
e39e6881985c
generalized inf and sup_continuous; added intro rules
 hoelzl parents: 
60175diff
changeset | 1411 | shows "inf_continuous (\<lambda>x. (\<integral>\<^sup>+y. f y x \<partial>M))" | 
| 60175 | 1412 | unfolding inf_continuous_def | 
| 1413 | proof safe | |
| 60614 
e39e6881985c
generalized inf and sup_continuous; added intro rules
 hoelzl parents: 
60175diff
changeset | 1414 | fix C :: "nat \<Rightarrow> 'b" assume C: "decseq C" | 
| 69313 | 1415 | then show "(\<integral>\<^sup>+ y. f y (Inf (C ` UNIV)) \<partial>M) = (INF i. \<integral>\<^sup>+ y. f y (C i) \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1416 | using inf_continuous_mono[OF f] bnd | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1417 | by (auto simp add: inf_continuousD[OF f C] fun_eq_iff antimono_def mono_def le_fun_def less_top | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1418 | intro!: nn_integral_monotone_convergence_INF_decseq) | 
| 60175 | 1419 | qed | 
| 1420 | ||
| 56996 | 1421 | lemma nn_integral_null_set: | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1422 | assumes "N \<in> null_sets M" shows "(\<integral>\<^sup>+ x. u x * indicator N x \<partial>M) = 0" | 
| 38656 | 1423 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1424 | have "(\<integral>\<^sup>+ x. u x * indicator N x \<partial>M) = (\<integral>\<^sup>+ x. 0 \<partial>M)" | 
| 56996 | 1425 | proof (intro nn_integral_cong_AE AE_I) | 
| 40859 | 1426 |     show "{x \<in> space M. u x * indicator N x \<noteq> 0} \<subseteq> N"
 | 
| 1427 | by (auto simp: indicator_def) | |
| 47694 | 1428 | show "(emeasure M) N = 0" "N \<in> sets M" | 
| 40859 | 1429 | using assms by auto | 
| 35582 | 1430 | qed | 
| 40859 | 1431 | then show ?thesis by simp | 
| 38656 | 1432 | qed | 
| 35582 | 1433 | |
| 56996 | 1434 | lemma nn_integral_0_iff: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1435 | assumes u: "u \<in> borel_measurable M" | 
| 56996 | 1436 |   shows "integral\<^sup>N M u = 0 \<longleftrightarrow> emeasure M {x\<in>space M. u x \<noteq> 0} = 0"
 | 
| 47694 | 1437 | (is "_ \<longleftrightarrow> (emeasure M) ?A = 0") | 
| 35582 | 1438 | proof - | 
| 56996 | 1439 | have u_eq: "(\<integral>\<^sup>+ x. u x * indicator ?A x \<partial>M) = integral\<^sup>N M u" | 
| 1440 | by (auto intro!: nn_integral_cong simp: indicator_def) | |
| 38656 | 1441 | show ?thesis | 
| 1442 | proof | |
| 47694 | 1443 | assume "(emeasure M) ?A = 0" | 
| 56996 | 1444 | with nn_integral_null_set[of ?A M u] u | 
| 1445 | show "integral\<^sup>N M u = 0" by (simp add: u_eq null_sets_def) | |
| 38656 | 1446 | next | 
| 56996 | 1447 | assume *: "integral\<^sup>N M u = 0" | 
| 46731 | 1448 |     let ?M = "\<lambda>n. {x \<in> space M. 1 \<le> real (n::nat) * u x}"
 | 
| 47694 | 1449 | have "0 = (SUP n. (emeasure M) (?M n \<inter> ?A))" | 
| 38656 | 1450 | proof - | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1451 |       { fix n :: nat
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1452 | from nn_integral_Markov_inequality[OF u, of ?A "of_nat n"] u | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1453 | have "(emeasure M) (?M n \<inter> ?A) \<le> 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1454 | by (simp add: ennreal_of_nat_eq_real_of_nat u_eq *) | 
| 47694 | 1455 | moreover have "0 \<le> (emeasure M) (?M n \<inter> ?A)" using u by auto | 
| 1456 | ultimately have "(emeasure M) (?M n \<inter> ?A) = 0" by auto } | |
| 38656 | 1457 | thus ?thesis by simp | 
| 35582 | 1458 | qed | 
| 47694 | 1459 | also have "\<dots> = (emeasure M) (\<Union>n. ?M n \<inter> ?A)" | 
| 1460 | proof (safe intro!: SUP_emeasure_incseq) | |
| 38656 | 1461 | fix n show "?M n \<inter> ?A \<in> sets M" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 1462 | using u by (auto intro!: sets.Int) | 
| 38656 | 1463 | next | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1464 |       show "incseq (\<lambda>n. {x \<in> space M. 1 \<le> real n * u x} \<inter> {x \<in> space M. u x \<noteq> 0})"
 | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1465 | proof (safe intro!: incseq_SucI) | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1466 | fix n :: nat and x | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1467 | assume *: "1 \<le> real n * u x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1468 | also have "real n * u x \<le> real (Suc n) * u x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1469 | by (auto intro!: mult_right_mono) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1470 | finally show "1 \<le> real (Suc n) * u x" by auto | 
| 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1471 | qed | 
| 38656 | 1472 | qed | 
| 47694 | 1473 |     also have "\<dots> = (emeasure M) {x\<in>space M. 0 < u x}"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1474 | proof (safe intro!: arg_cong[where f="(emeasure M)"]) | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1475 | fix x assume "0 < u x" and [simp, intro]: "x \<in> space M" | 
| 38656 | 1476 | show "x \<in> (\<Union>n. ?M n \<inter> ?A)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1477 | proof (cases "u x" rule: ennreal_cases) | 
| 61808 | 1478 | case (real r) with \<open>0 < u x\<close> have "0 < r" by auto | 
| 41981 
cdf7693bbe08
reworked Probability theory: measures are not type restricted to positive extended reals
 hoelzl parents: 
41831diff
changeset | 1479 | obtain j :: nat where "1 / r \<le> real j" using real_arch_simple .. | 
| 61808 | 1480 | hence "1 / r * r \<le> real j * r" unfolding mult_le_cancel_right using \<open>0 < r\<close> by auto | 
| 1481 | hence "1 \<le> real j * r" using real \<open>0 < r\<close> by auto | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1482 | thus ?thesis using \<open>0 < r\<close> real | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1483 | by (auto simp: ennreal_of_nat_eq_real_of_nat ennreal_1[symmetric] ennreal_mult[symmetric] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1484 | simp del: ennreal_1) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1485 | qed (insert \<open>0 < u x\<close>, auto simp: ennreal_mult_top) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1486 | qed (auto simp: zero_less_iff_neq_zero) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1487 | finally show "emeasure M ?A = 0" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1488 | by (simp add: zero_less_iff_neq_zero) | 
| 35582 | 1489 | qed | 
| 1490 | qed | |
| 1491 | ||
| 56996 | 1492 | lemma nn_integral_0_iff_AE: | 
| 41705 | 1493 | assumes u: "u \<in> borel_measurable M" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1494 | shows "integral\<^sup>N M u = 0 \<longleftrightarrow> (AE x in M. u x = 0)" | 
| 41705 | 1495 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1496 |   have sets: "{x\<in>space M. u x \<noteq> 0} \<in> sets M"
 | 
| 41705 | 1497 | using u by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1498 | show "integral\<^sup>N M u = 0 \<longleftrightarrow> (AE x in M. u x = 0)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1499 | using nn_integral_0_iff[of u] AE_iff_null[OF sets] u by auto | 
| 41705 | 1500 | qed | 
| 1501 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1502 | lemma AE_iff_nn_integral: | 
| 56996 | 1503 |   "{x\<in>space M. P x} \<in> sets M \<Longrightarrow> (AE x in M. P x) \<longleftrightarrow> integral\<^sup>N M (indicator {x. \<not> P x}) = 0"
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1504 | by (subst nn_integral_0_iff_AE) (auto simp: indicator_def[abs_def]) | 
| 50001 
382bd3173584
add syntax and a.e.-rules for (conditional) probability on predicates
 hoelzl parents: 
49800diff
changeset | 1505 | |
| 59000 | 1506 | lemma nn_integral_less: | 
| 1507 | assumes [measurable]: "f \<in> borel_measurable M" "g \<in> borel_measurable M" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1508 | assumes f: "(\<integral>\<^sup>+x. f x \<partial>M) \<noteq> \<infinity>" | 
| 59000 | 1509 | assumes ord: "AE x in M. f x \<le> g x" "\<not> (AE x in M. g x \<le> f x)" | 
| 1510 | shows "(\<integral>\<^sup>+x. f x \<partial>M) < (\<integral>\<^sup>+x. g x \<partial>M)" | |
| 1511 | proof - | |
| 1512 | have "0 < (\<integral>\<^sup>+x. g x - f x \<partial>M)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1513 | proof (intro order_le_neq_trans notI) | 
| 59000 | 1514 | assume "0 = (\<integral>\<^sup>+x. g x - f x \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1515 | then have "AE x in M. g x - f x = 0" | 
| 59000 | 1516 | using nn_integral_0_iff_AE[of "\<lambda>x. g x - f x" M] by simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1517 | with ord(1) have "AE x in M. g x \<le> f x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1518 | by eventually_elim (auto simp: ennreal_minus_eq_0) | 
| 59000 | 1519 | with ord show False | 
| 1520 | by simp | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1521 | qed simp | 
| 59000 | 1522 | also have "\<dots> = (\<integral>\<^sup>+x. g x \<partial>M) - (\<integral>\<^sup>+x. f x \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1523 | using f by (subst nn_integral_diff) (auto simp: ord) | 
| 59000 | 1524 | finally show ?thesis | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1525 | using f by (auto dest!: ennreal_minus_pos_iff[rotated] simp: less_top) | 
| 59000 | 1526 | qed | 
| 1527 | ||
| 56996 | 1528 | lemma nn_integral_subalgebra: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1529 | assumes f: "f \<in> borel_measurable N" | 
| 47694 | 1530 | and N: "sets N \<subseteq> sets M" "space N = space M" "\<And>A. A \<in> sets N \<Longrightarrow> emeasure N A = emeasure M A" | 
| 56996 | 1531 | shows "integral\<^sup>N N f = integral\<^sup>N M f" | 
| 39092 | 1532 | proof - | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1533 | have [simp]: "\<And>f :: 'a \<Rightarrow> ennreal. f \<in> borel_measurable N \<Longrightarrow> f \<in> borel_measurable M" | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1534 | using N by (auto simp: measurable_def) | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1535 | have [simp]: "\<And>P. (AE x in N. P x) \<Longrightarrow> (AE x in M. P x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1536 | using N by (auto simp add: eventually_ae_filter null_sets_def subset_eq) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1537 | have [simp]: "\<And>A. A \<in> sets N \<Longrightarrow> A \<in> sets M" | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1538 | using N by auto | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1539 | from f show ?thesis | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1540 | apply induct | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 1541 | apply (simp_all add: nn_integral_add nn_integral_cmult nn_integral_monotone_convergence_SUP N image_comp) | 
| 56996 | 1542 | apply (auto intro!: nn_integral_cong cong: nn_integral_cong simp: N(2)[symmetric]) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1543 | done | 
| 39092 | 1544 | qed | 
| 1545 | ||
| 56996 | 1546 | lemma nn_integral_nat_function: | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1547 | fixes f :: "'a \<Rightarrow> nat" | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1548 | assumes "f \<in> measurable M (count_space UNIV)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1549 |   shows "(\<integral>\<^sup>+x. of_nat (f x) \<partial>M) = (\<Sum>t. emeasure M {x\<in>space M. t < f x})"
 | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1550 | proof - | 
| 63040 | 1551 |   define F where "F i = {x\<in>space M. i < f x}" for i
 | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1552 | with assms have [measurable]: "\<And>i. F i \<in> sets M" | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1553 | by auto | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1554 | |
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1555 |   { fix x assume "x \<in> space M"
 | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1556 | have "(\<lambda>i. if i < f x then 1 else 0) sums (of_nat (f x)::real)" | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1557 | using sums_If_finite[of "\<lambda>i. i < f x" "\<lambda>_. 1::real"] by simp | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1558 | then have "(\<lambda>i. ennreal (if i < f x then 1 else 0)) sums of_nat(f x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1559 | unfolding ennreal_of_nat_eq_real_of_nat | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1560 | by (subst sums_ennreal) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1561 | moreover have "\<And>i. ennreal (if i < f x then 1 else 0) = indicator (F i) x" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1562 | using \<open>x \<in> space M\<close> by (simp add: one_ennreal_def F_def) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1563 | ultimately have "of_nat (f x) = (\<Sum>i. indicator (F i) x :: ennreal)" | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1564 | by (simp add: sums_iff) } | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1565 | then have "(\<integral>\<^sup>+x. of_nat (f x) \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>i. indicator (F i) x) \<partial>M)" | 
| 56996 | 1566 | by (simp cong: nn_integral_cong) | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1567 | also have "\<dots> = (\<Sum>i. emeasure M (F i))" | 
| 56996 | 1568 | by (simp add: nn_integral_suminf) | 
| 50097 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1569 | finally show ?thesis | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1570 | by (simp add: F_def) | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1571 | qed | 
| 
32973da2d4f7
rules for intergration: integrating nat-functions, integrals on finite measures, constant multiplication
 hoelzl parents: 
50027diff
changeset | 1572 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1573 | theorem nn_integral_lfp: | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1574 | assumes sets[simp]: "\<And>s. sets (M s) = sets N" | 
| 60175 | 1575 | assumes f: "sup_continuous f" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1576 | assumes g: "sup_continuous g" | 
| 60175 | 1577 | assumes meas: "\<And>F. F \<in> borel_measurable N \<Longrightarrow> f F \<in> borel_measurable N" | 
| 1578 | assumes step: "\<And>F s. F \<in> borel_measurable N \<Longrightarrow> integral\<^sup>N (M s) (f F) = g (\<lambda>s. integral\<^sup>N (M s) F) s" | |
| 1579 | shows "(\<integral>\<^sup>+\<omega>. lfp f \<omega> \<partial>M s) = lfp g s" | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1580 | proof (subst lfp_transfer_bounded[where \<alpha>="\<lambda>F s. \<integral>\<^sup>+x. F x \<partial>M s" and g=g and f=f and P="\<lambda>f. f \<in> borel_measurable N", symmetric]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1581 | fix C :: "nat \<Rightarrow> 'b \<Rightarrow> ennreal" assume "incseq C" "\<And>i. C i \<in> borel_measurable N" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1582 | then show "(\<lambda>s. \<integral>\<^sup>+x. (SUP i. C i) x \<partial>M s) = (SUP i. (\<lambda>s. \<integral>\<^sup>+x. C i x \<partial>M s))" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1583 | unfolding SUP_apply[abs_def] | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1584 | by (subst nn_integral_monotone_convergence_SUP) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1585 | (auto simp: mono_def fun_eq_iff intro!: arg_cong2[where f=emeasure] cong: measurable_cong_sets) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1586 | qed (auto simp add: step le_fun_def SUP_apply[abs_def] bot_fun_def bot_ennreal intro!: meas f g) | 
| 60175 | 1587 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1588 | theorem nn_integral_gfp: | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1589 | assumes sets[simp]: "\<And>s. sets (M s) = sets N" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1590 | assumes f: "inf_continuous f" and g: "inf_continuous g" | 
| 60175 | 1591 | assumes meas: "\<And>F. F \<in> borel_measurable N \<Longrightarrow> f F \<in> borel_measurable N" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1592 | assumes bound: "\<And>F s. F \<in> borel_measurable N \<Longrightarrow> (\<integral>\<^sup>+x. f F x \<partial>M s) < \<infinity>" | 
| 60175 | 1593 | assumes non_zero: "\<And>s. emeasure (M s) (space (M s)) \<noteq> 0" | 
| 1594 | assumes step: "\<And>F s. F \<in> borel_measurable N \<Longrightarrow> integral\<^sup>N (M s) (f F) = g (\<lambda>s. integral\<^sup>N (M s) F) s" | |
| 1595 | shows "(\<integral>\<^sup>+\<omega>. gfp f \<omega> \<partial>M s) = gfp g s" | |
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1596 | proof (subst gfp_transfer_bounded[where \<alpha>="\<lambda>F s. \<integral>\<^sup>+x. F x \<partial>M s" and g=g and f=f | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1597 | and P="\<lambda>F. F \<in> borel_measurable N \<and> (\<forall>s. (\<integral>\<^sup>+x. F x \<partial>M s) < \<infinity>)", symmetric]) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1598 | fix C :: "nat \<Rightarrow> 'b \<Rightarrow> ennreal" assume "decseq C" "\<And>i. C i \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) (C i) < \<infinity>)" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1599 | then show "(\<lambda>s. \<integral>\<^sup>+x. (INF i. C i) x \<partial>M s) = (INF i. (\<lambda>s. \<integral>\<^sup>+x. C i x \<partial>M s))" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1600 | unfolding INF_apply[abs_def] | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1601 | by (subst nn_integral_monotone_convergence_INF_decseq) | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1602 | (auto simp: mono_def fun_eq_iff intro!: arg_cong2[where f=emeasure] cong: measurable_cong_sets) | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1603 | next | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1604 | show "\<And>x. g x \<le> (\<lambda>s. integral\<^sup>N (M s) (f top))" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1605 | by (subst step) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1606 | (auto simp add: top_fun_def less_le non_zero le_fun_def ennreal_top_mult | 
| 63566 | 1607 | cong del: if_weak_cong intro!: monoD[OF inf_continuous_mono[OF g], THEN le_funD]) | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1608 | next | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1609 | fix C assume "\<And>i::nat. C i \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) (C i) < \<infinity>)" "decseq C" | 
| 69313 | 1610 | with bound show "Inf (C ` UNIV) \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) (Inf (C ` UNIV)) < \<infinity>)" | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1611 | unfolding INF_apply[abs_def] | 
| 61359 
e985b52c3eb3
cleanup projective limit of probability distributions; proved Ionescu-Tulcea; used it to prove infinite prob. distribution
 hoelzl parents: 
61169diff
changeset | 1612 | by (subst nn_integral_monotone_convergence_INF_decseq) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1613 | (auto simp: INF_less_iff cong: measurable_cong_sets intro!: borel_measurable_INF) | 
| 60636 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1614 | next | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1615 | show "\<And>x. x \<in> borel_measurable N \<and> (\<forall>s. integral\<^sup>N (M s) x < \<infinity>) \<Longrightarrow> | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1616 | (\<lambda>s. integral\<^sup>N (M s) (f x)) = g (\<lambda>s. integral\<^sup>N (M s) x)" | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1617 | by (subst step) auto | 
| 
ee18efe9b246
add named theorems order_continuous_intros; lfp/gfp_funpow; bounded variant for lfp/gfp transfer
 hoelzl parents: 
60614diff
changeset | 1618 | qed (insert bound, auto simp add: le_fun_def INF_apply[abs_def] top_fun_def intro!: meas f g) | 
| 60175 | 1619 | |
| 69457 
bea49e443909
tagged more of HOL-Analysis
 Manuel Eberl <eberlm@in.tum.de> parents: 
69313diff
changeset | 1620 | (* TODO: rename? *) | 
| 61808 | 1621 | subsection \<open>Integral under concrete measures\<close> | 
| 56994 | 1622 | |
| 63333 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1623 | lemma nn_integral_mono_measure: | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1624 | assumes "sets M = sets N" "M \<le> N" shows "nn_integral M f \<le> nn_integral N f" | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1625 | unfolding nn_integral_def | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1626 | proof (intro SUP_subset_mono) | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1627 | note \<open>sets M = sets N\<close>[simp] \<open>sets M = sets N\<close>[THEN sets_eq_imp_space_eq, simp] | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1628 |   show "{g. simple_function M g \<and> g \<le> f} \<subseteq> {g. simple_function N g \<and> g \<le> f}"
 | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1629 | by (simp add: simple_function_def) | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1630 | show "integral\<^sup>S M x \<le> integral\<^sup>S N x" for x | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1631 | using le_measureD3[OF \<open>M \<le> N\<close>] | 
| 64267 | 1632 | by (auto simp add: simple_integral_def intro!: sum_mono mult_mono) | 
| 63333 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1633 | qed | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1634 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1635 | lemma nn_integral_empty: | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1636 |   assumes "space M = {}"
 | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1637 | shows "nn_integral M f = 0" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1638 | proof - | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1639 | have "(\<integral>\<^sup>+ x. f x \<partial>M) = (\<integral>\<^sup>+ x. 0 \<partial>M)" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1640 | by(rule nn_integral_cong)(simp add: assms) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1641 | thus ?thesis by simp | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1642 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1643 | |
| 63333 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1644 | lemma nn_integral_bot[simp]: "nn_integral bot f = 0" | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1645 | by (simp add: nn_integral_empty) | 
| 
158ab2239496
Probability: show that measures form a complete lattice
 hoelzl parents: 
63167diff
changeset | 1646 | |
| 70136 | 1647 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Distributions\<close> | 
| 47694 | 1648 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1649 | lemma nn_integral_distr: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1650 | assumes T: "T \<in> measurable M M'" and f: "f \<in> borel_measurable (distr M M' T)" | 
| 56996 | 1651 | shows "integral\<^sup>N (distr M M' T) f = (\<integral>\<^sup>+ x. f (T x) \<partial>M)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1652 | using f | 
| 49797 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1653 | proof induct | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1654 | case (cong f g) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1655 | with T show ?case | 
| 56996 | 1656 | apply (subst nn_integral_cong[of _ f g]) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1657 | apply simp | 
| 56996 | 1658 | apply (subst nn_integral_cong[of _ "\<lambda>x. f (T x)" "\<lambda>x. g (T x)"]) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1659 | apply (simp add: measurable_def Pi_iff) | 
| 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 1660 | apply simp | 
| 49797 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1661 | done | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1662 | next | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1663 | case (set A) | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1664 | then have eq: "\<And>x. x \<in> space M \<Longrightarrow> indicator A (T x) = indicator (T -` A \<inter> space M) x" | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1665 | by (auto simp: indicator_def) | 
| 
28066863284c
add induction rules for simple functions and for Borel measurable functions
 hoelzl parents: 
49796diff
changeset | 1666 | from set T show ?case | 
| 56996 | 1667 | by (subst nn_integral_cong[OF eq]) | 
| 1668 | (auto simp add: emeasure_distr intro!: nn_integral_indicator[symmetric] measurable_sets) | |
| 1669 | qed (simp_all add: measurable_compose[OF T] T nn_integral_cmult nn_integral_add | |
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 1670 | nn_integral_monotone_convergence_SUP le_fun_def incseq_def image_comp) | 
| 47694 | 1671 | |
| 70136 | 1672 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Counting space\<close> | 
| 47694 | 1673 | |
| 1674 | lemma simple_function_count_space[simp]: | |
| 1675 | "simple_function (count_space A) f \<longleftrightarrow> finite (f ` A)" | |
| 1676 | unfolding simple_function_def by simp | |
| 1677 | ||
| 56996 | 1678 | lemma nn_integral_count_space: | 
| 47694 | 1679 |   assumes A: "finite {a\<in>A. 0 < f a}"
 | 
| 56996 | 1680 | shows "integral\<^sup>N (count_space A) f = (\<Sum>a|a\<in>A \<and> 0 < f a. f a)" | 
| 35582 | 1681 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1682 | have *: "(\<integral>\<^sup>+x. max 0 (f x) \<partial>count_space A) = | 
| 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1683 |     (\<integral>\<^sup>+ x. (\<Sum>a|a\<in>A \<and> 0 < f a. f a * indicator {a} x) \<partial>count_space A)"
 | 
| 56996 | 1684 | by (auto intro!: nn_integral_cong | 
| 64267 | 1685 | simp add: indicator_def if_distrib sum.If_cases[OF A] max_def le_less) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 1686 |   also have "\<dots> = (\<Sum>a|a\<in>A \<and> 0 < f a. \<integral>\<^sup>+ x. f a * indicator {a} x \<partial>count_space A)"
 | 
| 64267 | 1687 | by (subst nn_integral_sum) (simp_all add: AE_count_space less_imp_le) | 
| 47694 | 1688 | also have "\<dots> = (\<Sum>a|a\<in>A \<and> 0 < f a. f a)" | 
| 64267 | 1689 | by (auto intro!: sum.cong simp: one_ennreal_def[symmetric] max_def) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1690 | finally show ?thesis by (simp add: max.absorb2) | 
| 47694 | 1691 | qed | 
| 1692 | ||
| 56996 | 1693 | lemma nn_integral_count_space_finite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1694 | "finite A \<Longrightarrow> (\<integral>\<^sup>+x. f x \<partial>count_space A) = (\<Sum>a\<in>A. f a)" | 
| 64267 | 1695 | by (auto intro!: sum.mono_neutral_left simp: nn_integral_count_space less_le) | 
| 47694 | 1696 | |
| 59000 | 1697 | lemma nn_integral_count_space': | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1698 | assumes "finite A" "\<And>x. x \<in> B \<Longrightarrow> x \<notin> A \<Longrightarrow> f x = 0" "A \<subseteq> B" | 
| 59000 | 1699 | shows "(\<integral>\<^sup>+x. f x \<partial>count_space B) = (\<Sum>x\<in>A. f x)" | 
| 1700 | proof - | |
| 1701 | have "(\<integral>\<^sup>+x. f x \<partial>count_space B) = (\<Sum>a | a \<in> B \<and> 0 < f a. f a)" | |
| 1702 | using assms(2,3) | |
| 61808 | 1703 | by (intro nn_integral_count_space finite_subset[OF _ \<open>finite A\<close>]) (auto simp: less_le) | 
| 59000 | 1704 | also have "\<dots> = (\<Sum>a\<in>A. f a)" | 
| 64267 | 1705 | using assms by (intro sum.mono_neutral_cong_left) (auto simp: less_le) | 
| 59000 | 1706 | finally show ?thesis . | 
| 1707 | qed | |
| 1708 | ||
| 59011 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1709 | lemma nn_integral_bij_count_space: | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1710 | assumes g: "bij_betw g A B" | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1711 | shows "(\<integral>\<^sup>+x. f (g x) \<partial>count_space A) = (\<integral>\<^sup>+x. f x \<partial>count_space B)" | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1712 | using g[THEN bij_betw_imp_funcset] | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1713 | by (subst distr_bij_count_space[OF g, symmetric]) | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1714 | (auto intro!: nn_integral_distr[symmetric]) | 
| 
4902a2fec434
add reindex rules for distr and nn_integral on count_space
 hoelzl parents: 
59002diff
changeset | 1715 | |
| 59000 | 1716 | lemma nn_integral_indicator_finite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1717 | fixes f :: "'a \<Rightarrow> ennreal" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1718 |   assumes f: "finite A" and [measurable]: "\<And>a. a \<in> A \<Longrightarrow> {a} \<in> sets M"
 | 
| 59000 | 1719 |   shows "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = (\<Sum>x\<in>A. f x * emeasure M {x})"
 | 
| 1720 | proof - | |
| 1721 |   from f have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>a\<in>A. f a * indicator {a} x) \<partial>M)"
 | |
| 64267 | 1722 | by (intro nn_integral_cong) (auto simp: indicator_def if_distrib[where f="\<lambda>a. x * a" for x] sum.If_cases) | 
| 59000 | 1723 |   also have "\<dots> = (\<Sum>a\<in>A. f a * emeasure M {a})"
 | 
| 64267 | 1724 | by (subst nn_integral_sum) auto | 
| 59000 | 1725 | finally show ?thesis . | 
| 1726 | qed | |
| 1727 | ||
| 57025 | 1728 | lemma nn_integral_count_space_nat: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1729 | fixes f :: "nat \<Rightarrow> ennreal" | 
| 57025 | 1730 | shows "(\<integral>\<^sup>+i. f i \<partial>count_space UNIV) = (\<Sum>i. f i)" | 
| 1731 | proof - | |
| 1732 | have "(\<integral>\<^sup>+i. f i \<partial>count_space UNIV) = | |
| 1733 |     (\<integral>\<^sup>+i. (\<Sum>j. f j * indicator {j} i) \<partial>count_space UNIV)"
 | |
| 1734 | proof (intro nn_integral_cong) | |
| 1735 | fix i | |
| 1736 |     have "f i = (\<Sum>j\<in>{i}. f j * indicator {j} i)"
 | |
| 1737 | by simp | |
| 1738 |     also have "\<dots> = (\<Sum>j. f j * indicator {j} i)"
 | |
| 1739 | by (rule suminf_finite[symmetric]) auto | |
| 1740 |     finally show "f i = (\<Sum>j. f j * indicator {j} i)" .
 | |
| 1741 | qed | |
| 1742 |   also have "\<dots> = (\<Sum>j. (\<integral>\<^sup>+i. f j * indicator {j} i \<partial>count_space UNIV))"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1743 | by (rule nn_integral_suminf) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1744 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1745 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1746 | qed | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1747 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1748 | lemma nn_integral_enat_function: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1749 | assumes f: "f \<in> measurable M (count_space UNIV)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1750 |   shows "(\<integral>\<^sup>+ x. ennreal_of_enat (f x) \<partial>M) = (\<Sum>t. emeasure M {x \<in> space M. t < f x})"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1751 | proof - | 
| 63040 | 1752 |   define F where "F i = {x\<in>space M. i < f x}" for i :: nat
 | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1753 | with assms have [measurable]: "\<And>i. F i \<in> sets M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1754 | by auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1755 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1756 |   { fix x assume "x \<in> space M"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1757 | have "(\<lambda>i::nat. if i < f x then 1 else 0) sums ennreal_of_enat (f x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1758 | using sums_If_finite[of "\<lambda>r. r < f x" "\<lambda>_. 1 :: ennreal"] | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1759 | by (cases "f x") (simp_all add: sums_def of_nat_tendsto_top_ennreal) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1760 | also have "(\<lambda>i. (if i < f x then 1 else 0)) = (\<lambda>i. indicator (F i) x)" | 
| 63167 | 1761 | using \<open>x \<in> space M\<close> by (simp add: one_ennreal_def F_def fun_eq_iff) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1762 | finally have "ennreal_of_enat (f x) = (\<Sum>i. indicator (F i) x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1763 | by (simp add: sums_iff) } | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1764 | then have "(\<integral>\<^sup>+x. ennreal_of_enat (f x) \<partial>M) = (\<integral>\<^sup>+x. (\<Sum>i. indicator (F i) x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1765 | by (simp cong: nn_integral_cong) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1766 | also have "\<dots> = (\<Sum>i. emeasure M (F i))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1767 | by (simp add: nn_integral_suminf) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1768 | finally show ?thesis | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1769 | by (simp add: F_def) | 
| 57025 | 1770 | qed | 
| 1771 | ||
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1772 | lemma nn_integral_count_space_nn_integral: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1773 | fixes f :: "'i \<Rightarrow> 'a \<Rightarrow> ennreal" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1774 | assumes "countable I" and [measurable]: "\<And>i. i \<in> I \<Longrightarrow> f i \<in> borel_measurable M" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1775 | shows "(\<integral>\<^sup>+x. \<integral>\<^sup>+i. f i x \<partial>count_space I \<partial>M) = (\<integral>\<^sup>+i. \<integral>\<^sup>+x. f i x \<partial>M \<partial>count_space I)" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1776 | proof cases | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1777 | assume "finite I" then show ?thesis | 
| 64267 | 1778 | by (simp add: nn_integral_count_space_finite nn_integral_sum) | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1779 | next | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1780 | assume "infinite I" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1781 |   then have [simp]: "I \<noteq> {}"
 | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1782 | by auto | 
| 61808 | 1783 | note * = bij_betw_from_nat_into[OF \<open>countable I\<close> \<open>infinite I\<close>] | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1784 | have **: "\<And>f. (\<And>i. 0 \<le> f i) \<Longrightarrow> (\<integral>\<^sup>+i. f i \<partial>count_space I) = (\<Sum>n. f (from_nat_into I n))" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1785 | by (simp add: nn_integral_bij_count_space[symmetric, OF *] nn_integral_count_space_nat) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1786 | show ?thesis | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1787 | by (simp add: ** nn_integral_suminf from_nat_into) | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1788 | qed | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1789 | |
| 64008 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1790 | lemma of_bool_Bex_eq_nn_integral: | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1791 | assumes unique: "\<And>x y. x \<in> X \<Longrightarrow> y \<in> X \<Longrightarrow> P x \<Longrightarrow> P y \<Longrightarrow> x = y" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1792 | shows "of_bool (\<exists>y\<in>X. P y) = (\<integral>\<^sup>+y. of_bool (P y) \<partial>count_space X)" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1793 | proof cases | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1794 | assume "\<exists>y\<in>X. P y" | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1795 | then obtain y where "P y" "y \<in> X" by auto | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1796 | then show ?thesis | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1797 |     by (subst nn_integral_count_space'[where A="{y}"]) (auto dest: unique)
 | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1798 | qed (auto cong: nn_integral_cong_simp) | 
| 
17a20ca86d62
HOL-Probability: more about probability, prepare for Markov processes in the AFP
 hoelzl parents: 
63918diff
changeset | 1799 | |
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1800 | lemma emeasure_UN_countable: | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1801 | assumes sets[measurable]: "\<And>i. i \<in> I \<Longrightarrow> X i \<in> sets M" and I[simp]: "countable I" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1802 | assumes disj: "disjoint_family_on X I" | 
| 69313 | 1803 | shows "emeasure M (\<Union>(X ` I)) = (\<integral>\<^sup>+i. emeasure M (X i) \<partial>count_space I)" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1804 | proof - | 
| 69313 | 1805 | have eq: "\<And>x. indicator (\<Union>(X ` I)) x = \<integral>\<^sup>+ i. indicator (X i) x \<partial>count_space I" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 1806 | proof cases | 
| 69313 | 1807 | fix x assume x: "x \<in> \<Union>(X ` I)" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1808 | then obtain j where j: "x \<in> X j" "j \<in> I" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1809 | by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1810 |     with disj have "\<And>i. i \<in> I \<Longrightarrow> indicator (X i) x = (indicator {j} i::ennreal)"
 | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1811 | by (auto simp: disjoint_family_on_def split: split_indicator) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1812 | with x j show "?thesis x" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1813 | by (simp cong: nn_integral_cong_simp) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1814 | qed (auto simp: nn_integral_0_iff_AE) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1815 | |
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1816 | note sets.countable_UN'[unfolded subset_eq, measurable] | 
| 69313 | 1817 | have "emeasure M (\<Union>(X ` I)) = (\<integral>\<^sup>+x. indicator (\<Union>(X ` I)) x \<partial>M)" | 
| 59426 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1818 | by simp | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1819 | also have "\<dots> = (\<integral>\<^sup>+i. \<integral>\<^sup>+x. indicator (X i) x \<partial>M \<partial>count_space I)" | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1820 | by (simp add: eq nn_integral_count_space_nn_integral) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1821 | finally show ?thesis | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1822 | by (simp cong: nn_integral_cong_simp) | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1823 | qed | 
| 
6fca83e88417
integral of the product of count spaces equals the integral of the count space of the product type
 hoelzl parents: 
59425diff
changeset | 1824 | |
| 57025 | 1825 | lemma emeasure_countable_singleton: | 
| 1826 |   assumes sets: "\<And>x. x \<in> X \<Longrightarrow> {x} \<in> sets M" and X: "countable X"
 | |
| 1827 |   shows "emeasure M X = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space X)"
 | |
| 1828 | proof - | |
| 1829 |   have "emeasure M (\<Union>i\<in>X. {i}) = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space X)"
 | |
| 1830 | using assms by (intro emeasure_UN_countable) (auto simp: disjoint_family_on_def) | |
| 1831 |   also have "(\<Union>i\<in>X. {i}) = X" by auto
 | |
| 1832 | finally show ?thesis . | |
| 1833 | qed | |
| 1834 | ||
| 1835 | lemma measure_eqI_countable: | |
| 1836 | assumes [simp]: "sets M = Pow A" "sets N = Pow A" and A: "countable A" | |
| 1837 |   assumes eq: "\<And>a. a \<in> A \<Longrightarrow> emeasure M {a} = emeasure N {a}"
 | |
| 1838 | shows "M = N" | |
| 1839 | proof (rule measure_eqI) | |
| 1840 | fix X assume "X \<in> sets M" | |
| 1841 | then have X: "X \<subseteq> A" by auto | |
| 63540 | 1842 | moreover from A X have "countable X" by (auto dest: countable_subset) | 
| 57025 | 1843 | ultimately have | 
| 1844 |     "emeasure M X = (\<integral>\<^sup>+a. emeasure M {a} \<partial>count_space X)"
 | |
| 1845 |     "emeasure N X = (\<integral>\<^sup>+a. emeasure N {a} \<partial>count_space X)"
 | |
| 1846 | by (auto intro!: emeasure_countable_singleton) | |
| 1847 |   moreover have "(\<integral>\<^sup>+a. emeasure M {a} \<partial>count_space X) = (\<integral>\<^sup>+a. emeasure N {a} \<partial>count_space X)"
 | |
| 1848 | using X by (intro nn_integral_cong eq) auto | |
| 1849 | ultimately show "emeasure M X = emeasure N X" | |
| 1850 | by simp | |
| 1851 | qed simp | |
| 1852 | ||
| 59000 | 1853 | lemma measure_eqI_countable_AE: | 
| 1854 | assumes [simp]: "sets M = UNIV" "sets N = UNIV" | |
| 1855 | assumes ae: "AE x in M. x \<in> \<Omega>" "AE x in N. x \<in> \<Omega>" and [simp]: "countable \<Omega>" | |
| 1856 |   assumes eq: "\<And>x. x \<in> \<Omega> \<Longrightarrow> emeasure M {x} = emeasure N {x}"
 | |
| 1857 | shows "M = N" | |
| 1858 | proof (rule measure_eqI) | |
| 1859 | fix A | |
| 1860 |   have "emeasure N A = emeasure N {x\<in>\<Omega>. x \<in> A}"
 | |
| 1861 | using ae by (intro emeasure_eq_AE) auto | |
| 1862 |   also have "\<dots> = (\<integral>\<^sup>+x. emeasure N {x} \<partial>count_space {x\<in>\<Omega>. x \<in> A})"
 | |
| 1863 | by (intro emeasure_countable_singleton) auto | |
| 1864 |   also have "\<dots> = (\<integral>\<^sup>+x. emeasure M {x} \<partial>count_space {x\<in>\<Omega>. x \<in> A})"
 | |
| 1865 | by (intro nn_integral_cong eq[symmetric]) auto | |
| 1866 |   also have "\<dots> = emeasure M {x\<in>\<Omega>. x \<in> A}"
 | |
| 1867 | by (intro emeasure_countable_singleton[symmetric]) auto | |
| 1868 | also have "\<dots> = emeasure M A" | |
| 1869 | using ae by (intro emeasure_eq_AE) auto | |
| 1870 | finally show "emeasure M A = emeasure N A" .. | |
| 1871 | qed simp | |
| 1872 | ||
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1873 | lemma nn_integral_monotone_convergence_SUP_nat: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1874 | fixes f :: "'a \<Rightarrow> nat \<Rightarrow> ennreal" | 
| 67399 | 1875 | assumes chain: "Complete_Partial_Order.chain (\<le>) (f ` Y)" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1876 |   and nonempty: "Y \<noteq> {}"
 | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1877 | shows "(\<integral>\<^sup>+ x. (SUP i\<in>Y. f i x) \<partial>count_space UNIV) = (SUP i\<in>Y. (\<integral>\<^sup>+ x. f i x \<partial>count_space UNIV))" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1878 | (is "?lhs = ?rhs" is "integral\<^sup>N ?M _ = _") | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1879 | proof (rule order_class.order.antisym) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1880 | show "?rhs \<le> ?lhs" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1881 | by (auto intro!: SUP_least SUP_upper nn_integral_mono) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1882 | next | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1883 | have "\<exists>g. incseq g \<and> range g \<subseteq> (\<lambda>i. f i x) ` Y \<and> (SUP i\<in>Y. f i x) = (SUP i. g i)" for x | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1884 | by (rule ennreal_Sup_countable_SUP) (simp add: nonempty) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1885 | then obtain g where incseq: "\<And>x. incseq (g x)" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1886 | and range: "\<And>x. range (g x) \<subseteq> (\<lambda>i. f i x) ` Y" | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1887 | and sup: "\<And>x. (SUP i\<in>Y. f i x) = (SUP i. g x i)" by moura | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1888 | from incseq have incseq': "incseq (\<lambda>i x. g x i)" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1889 | by(blast intro: incseq_SucI le_funI dest: incseq_SucD) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1890 | |
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1891 | have "?lhs = \<integral>\<^sup>+ x. (SUP i. g x i) \<partial>?M" by(simp add: sup) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1892 | also have "\<dots> = (SUP i. \<integral>\<^sup>+ x. g x i \<partial>?M)" using incseq' | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1893 | by(rule nn_integral_monotone_convergence_SUP) simp | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1894 | also have "\<dots> \<le> (SUP i\<in>Y. \<integral>\<^sup>+ x. f i x \<partial>?M)" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1895 | proof(rule SUP_least) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1896 | fix n | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1897 | have "\<And>x. \<exists>i. g x n = f i x \<and> i \<in> Y" using range by blast | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1898 | then obtain I where I: "\<And>x. g x n = f (I x) x" "\<And>x. I x \<in> Y" by moura | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1899 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1900 | have "(\<integral>\<^sup>+ x. g x n \<partial>count_space UNIV) = (\<Sum>x. g x n)" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1901 | by(rule nn_integral_count_space_nat) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1902 | also have "\<dots> = (SUP m. \<Sum>x<m. g x n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1903 | by(rule suminf_eq_SUP) | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1904 | also have "\<dots> \<le> (SUP i\<in>Y. \<integral>\<^sup>+ x. f i x \<partial>?M)" | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1905 | proof(rule SUP_mono) | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1906 | fix m | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1907 | show "\<exists>m'\<in>Y. (\<Sum>x<m. g x n) \<le> (\<integral>\<^sup>+ x. f m' x \<partial>?M)" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1908 | proof(cases "m > 0") | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1909 | case False | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1910 | thus ?thesis using nonempty by auto | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1911 | next | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1912 | case True | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1913 |         let ?Y = "I ` {..<m}"
 | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1914 | have "f ` ?Y \<subseteq> f ` Y" using I by auto | 
| 67399 | 1915 | with chain have chain': "Complete_Partial_Order.chain (\<le>) (f ` ?Y)" by(rule chain_subset) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1916 | hence "Sup (f ` ?Y) \<in> f ` ?Y" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1917 | by(rule ccpo_class.in_chain_finite)(auto simp add: True lessThan_empty_iff) | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1918 | then obtain m' where "m' < m" and m': "(SUP i\<in>?Y. f i) = f (I m')" by auto | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1919 | have "I m' \<in> Y" using I by blast | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1920 | have "(\<Sum>x<m. g x n) \<le> (\<Sum>x<m. f (I m') x)" | 
| 64267 | 1921 | proof(rule sum_mono) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1922 | fix x | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1923 |           assume "x \<in> {..<m}"
 | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1924 | hence "x < m" by simp | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1925 | have "g x n = f (I x) x" by(simp add: I) | 
| 69260 
0a9688695a1b
removed relics of ASCII syntax for indexed big operators
 haftmann parents: 
69164diff
changeset | 1926 | also have "\<dots> \<le> (SUP i\<in>?Y. f i) x" unfolding Sup_fun_def image_image | 
| 62343 
24106dc44def
prefer abbreviations for compound operators INFIMUM and SUPREMUM
 haftmann parents: 
62083diff
changeset | 1927 |             using \<open>x \<in> {..<m}\<close> by (rule Sup_upper [OF imageI])
 | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1928 | also have "\<dots> = f (I m') x" unfolding m' by simp | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1929 | finally show "g x n \<le> f (I m') x" . | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1930 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1931 | also have "\<dots> \<le> (SUP m. (\<Sum>x<m. f (I m') x))" | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1932 | by(rule SUP_upper) simp | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1933 | also have "\<dots> = (\<Sum>x. f (I m') x)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1934 | by(rule suminf_eq_SUP[symmetric]) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1935 | also have "\<dots> = (\<integral>\<^sup>+ x. f (I m') x \<partial>?M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1936 | by(rule nn_integral_count_space_nat[symmetric]) | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1937 | finally show ?thesis using \<open>I m' \<in> Y\<close> by blast | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1938 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1939 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1940 | finally show "(\<integral>\<^sup>+ x. g x n \<partial>count_space UNIV) \<le> \<dots>" . | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1941 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1942 | finally show "?lhs \<le> ?rhs" . | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1943 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1944 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1945 | lemma power_series_tendsto_at_left: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1946 | assumes nonneg: "\<And>i. 0 \<le> f i" and summable: "\<And>z. 0 \<le> z \<Longrightarrow> z < 1 \<Longrightarrow> summable (\<lambda>n. f n * z^n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1947 | shows "((\<lambda>z. ennreal (\<Sum>n. f n * z^n)) \<longlongrightarrow> (\<Sum>n. ennreal (f n))) (at_left (1::real))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1948 | proof (intro tendsto_at_left_sequentially) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1949 | show "0 < (1::real)" by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1950 | fix S :: "nat \<Rightarrow> real" assume S: "\<And>n. S n < 1" "\<And>n. 0 < S n" "S \<longlonglongrightarrow> 1" "incseq S" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1951 | then have S_nonneg: "\<And>i. 0 \<le> S i" by (auto intro: less_imp_le) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1952 | |
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1953 | have "(\<lambda>i. (\<integral>\<^sup>+n. f n * S i^n \<partial>count_space UNIV)) \<longlonglongrightarrow> (\<integral>\<^sup>+n. ennreal (f n) \<partial>count_space UNIV)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1954 | proof (rule nn_integral_LIMSEQ) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1955 | show "incseq (\<lambda>i n. ennreal (f n * S i^n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1956 | using S by (auto intro!: mult_mono power_mono nonneg ennreal_leI | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1957 | simp: incseq_def le_fun_def less_imp_le) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1958 | fix n have "(\<lambda>i. ennreal (f n * S i^n)) \<longlonglongrightarrow> ennreal (f n * 1^n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1959 | by (intro tendsto_intros tendsto_ennrealI S) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1960 | then show "(\<lambda>i. ennreal (f n * S i^n)) \<longlonglongrightarrow> ennreal (f n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1961 | by simp | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1962 | qed (auto simp: S_nonneg intro!: mult_nonneg_nonneg nonneg) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1963 | also have "(\<lambda>i. (\<integral>\<^sup>+n. f n * S i^n \<partial>count_space UNIV)) = (\<lambda>i. \<Sum>n. f n * S i^n)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1964 | by (subst nn_integral_count_space_nat) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1965 | (intro ext suminf_ennreal2 mult_nonneg_nonneg nonneg S_nonneg | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1966 | zero_le_power summable S)+ | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1967 | also have "(\<integral>\<^sup>+n. ennreal (f n) \<partial>count_space UNIV) = (\<Sum>n. ennreal (f n))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1968 | by (simp add: nn_integral_count_space_nat nonneg) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1969 | finally show "(\<lambda>n. ennreal (\<Sum>na. f na * S n ^ na)) \<longlonglongrightarrow> (\<Sum>n. ennreal (f n))" . | 
| 60064 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1970 | qed | 
| 
63124d48a2ee
add lemma about monotone convergence for countable integrals over arbitrary sequences
 Andreas Lochbihler parents: 
59779diff
changeset | 1971 | |
| 61808 | 1972 | subsubsection \<open>Measures with Restricted Space\<close> | 
| 54417 | 1973 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1974 | lemma simple_function_restrict_space_ennreal: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1975 | fixes f :: "'a \<Rightarrow> ennreal" | 
| 57137 | 1976 | assumes "\<Omega> \<inter> space M \<in> sets M" | 
| 1977 | shows "simple_function (restrict_space M \<Omega>) f \<longleftrightarrow> simple_function M (\<lambda>x. f x * indicator \<Omega> x)" | |
| 1978 | proof - | |
| 1979 |   { assume "finite (f ` space (restrict_space M \<Omega>))"
 | |
| 1980 |     then have "finite (f ` space (restrict_space M \<Omega>) \<union> {0})" by simp
 | |
| 1981 | then have "finite ((\<lambda>x. f x * indicator \<Omega> x) ` space M)" | |
| 1982 | by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } | |
| 1983 | moreover | |
| 1984 |   { assume "finite ((\<lambda>x. f x * indicator \<Omega> x) ` space M)"
 | |
| 1985 | then have "finite (f ` space (restrict_space M \<Omega>))" | |
| 1986 | by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } | |
| 1987 | ultimately show ?thesis | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1988 | unfolding | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 1989 | simple_function_iff_borel_measurable borel_measurable_restrict_space_iff_ennreal[OF assms] | 
| 57137 | 1990 | by auto | 
| 1991 | qed | |
| 1992 | ||
| 1993 | lemma simple_function_restrict_space: | |
| 1994 | fixes f :: "'a \<Rightarrow> 'b::real_normed_vector" | |
| 1995 | assumes "\<Omega> \<inter> space M \<in> sets M" | |
| 1996 | shows "simple_function (restrict_space M \<Omega>) f \<longleftrightarrow> simple_function M (\<lambda>x. indicator \<Omega> x *\<^sub>R f x)" | |
| 1997 | proof - | |
| 1998 |   { assume "finite (f ` space (restrict_space M \<Omega>))"
 | |
| 1999 |     then have "finite (f ` space (restrict_space M \<Omega>) \<union> {0})" by simp
 | |
| 2000 | then have "finite ((\<lambda>x. indicator \<Omega> x *\<^sub>R f x) ` space M)" | |
| 2001 | by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } | |
| 2002 | moreover | |
| 2003 |   { assume "finite ((\<lambda>x. indicator \<Omega> x *\<^sub>R f x) ` space M)"
 | |
| 2004 | then have "finite (f ` space (restrict_space M \<Omega>))" | |
| 2005 | by (rule rev_finite_subset) (auto split: split_indicator simp: space_restrict_space) } | |
| 2006 | ultimately show ?thesis | |
| 2007 | unfolding simple_function_iff_borel_measurable | |
| 2008 | borel_measurable_restrict_space_iff[OF assms] | |
| 2009 | by auto | |
| 2010 | qed | |
| 2011 | ||
| 2012 | lemma simple_integral_restrict_space: | |
| 2013 | assumes \<Omega>: "\<Omega> \<inter> space M \<in> sets M" "simple_function (restrict_space M \<Omega>) f" | |
| 2014 | shows "simple_integral (restrict_space M \<Omega>) f = simple_integral M (\<lambda>x. f x * indicator \<Omega> x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2015 | using simple_function_restrict_space_ennreal[THEN iffD1, OF \<Omega>, THEN simple_functionD(1)] | 
| 57137 | 2016 | by (auto simp add: space_restrict_space emeasure_restrict_space[OF \<Omega>(1)] le_infI2 simple_integral_def | 
| 2017 | split: split_indicator split_indicator_asm | |
| 64267 | 2018 | intro!: sum.mono_neutral_cong_left ennreal_mult_left_cong arg_cong2[where f=emeasure]) | 
| 57137 | 2019 | |
| 56996 | 2020 | lemma nn_integral_restrict_space: | 
| 57137 | 2021 | assumes \<Omega>[simp]: "\<Omega> \<inter> space M \<in> sets M" | 
| 2022 | shows "nn_integral (restrict_space M \<Omega>) f = nn_integral M (\<lambda>x. f x * indicator \<Omega> x)" | |
| 2023 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2024 |   let ?R = "restrict_space M \<Omega>" and ?X = "\<lambda>M f. {s. simple_function M s \<and> s \<le> f \<and> (\<forall>x. s x < top)}"
 | 
| 57137 | 2025 | have "integral\<^sup>S ?R ` ?X ?R f = integral\<^sup>S M ` ?X M (\<lambda>x. f x * indicator \<Omega> x)" | 
| 2026 | proof (safe intro!: image_eqI) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2027 | fix s assume s: "simple_function ?R s" "s \<le> f" "\<forall>x. s x < top" | 
| 57137 | 2028 | from s show "integral\<^sup>S (restrict_space M \<Omega>) s = integral\<^sup>S M (\<lambda>x. s x * indicator \<Omega> x)" | 
| 2029 | by (intro simple_integral_restrict_space) auto | |
| 2030 | from s show "simple_function M (\<lambda>x. s x * indicator \<Omega> x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2031 | by (simp add: simple_function_restrict_space_ennreal) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2032 | from s show "(\<lambda>x. s x * indicator \<Omega> x) \<le> (\<lambda>x. f x * indicator \<Omega> x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2033 | "\<And>x. s x * indicator \<Omega> x < top" | 
| 57137 | 2034 | by (auto split: split_indicator simp: le_fun_def image_subset_iff) | 
| 2035 | next | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2036 | fix s assume s: "simple_function M s" "s \<le> (\<lambda>x. f x * indicator \<Omega> x)" "\<forall>x. s x < top" | 
| 57137 | 2037 | then have "simple_function M (\<lambda>x. s x * indicator (\<Omega> \<inter> space M) x)" (is ?s') | 
| 2038 | by (intro simple_function_mult simple_function_indicator) auto | |
| 2039 | also have "?s' \<longleftrightarrow> simple_function M (\<lambda>x. s x * indicator \<Omega> x)" | |
| 2040 | by (rule simple_function_cong) (auto split: split_indicator) | |
| 2041 | finally show sf: "simple_function (restrict_space M \<Omega>) s" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2042 | by (simp add: simple_function_restrict_space_ennreal) | 
| 57137 | 2043 | |
| 2044 | from s have s_eq: "s = (\<lambda>x. s x * indicator \<Omega> x)" | |
| 2045 | by (auto simp add: fun_eq_iff le_fun_def image_subset_iff | |
| 2046 | split: split_indicator split_indicator_asm | |
| 2047 | intro: antisym) | |
| 2048 | ||
| 2049 | show "integral\<^sup>S M s = integral\<^sup>S (restrict_space M \<Omega>) s" | |
| 2050 | by (subst s_eq) (rule simple_integral_restrict_space[symmetric, OF \<Omega> sf]) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2051 | show "\<And>x. s x < top" | 
| 57137 | 2052 | using s by (auto simp: image_subset_iff) | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2053 | from s show "s \<le> f" | 
| 57137 | 2054 | by (subst s_eq) (auto simp: image_subset_iff le_fun_def split: split_indicator split_indicator_asm) | 
| 2055 | qed | |
| 2056 | then show ?thesis | |
| 69546 
27dae626822b
prefer naming convention from datatype package for strong congruence rules
 haftmann parents: 
69457diff
changeset | 2057 | unfolding nn_integral_def_finite by (simp cong del: SUP_cong_simp) | 
| 54417 | 2058 | qed | 
| 2059 | ||
| 59000 | 2060 | lemma nn_integral_count_space_indicator: | 
| 59779 | 2061 | assumes "NO_MATCH (UNIV::'a set) (X::'a set)" | 
| 59000 | 2062 | shows "(\<integral>\<^sup>+x. f x \<partial>count_space X) = (\<integral>\<^sup>+x. f x * indicator X x \<partial>count_space UNIV)" | 
| 2063 | by (simp add: nn_integral_restrict_space[symmetric] restrict_count_space) | |
| 2064 | ||
| 59425 | 2065 | lemma nn_integral_count_space_eq: | 
| 2066 | "(\<And>x. x \<in> A - B \<Longrightarrow> f x = 0) \<Longrightarrow> (\<And>x. x \<in> B - A \<Longrightarrow> f x = 0) \<Longrightarrow> | |
| 2067 | (\<integral>\<^sup>+x. f x \<partial>count_space A) = (\<integral>\<^sup>+x. f x \<partial>count_space B)" | |
| 2068 | by (auto simp: nn_integral_count_space_indicator intro!: nn_integral_cong split: split_indicator) | |
| 2069 | ||
| 59023 | 2070 | lemma nn_integral_ge_point: | 
| 2071 | assumes "x \<in> A" | |
| 2072 | shows "p x \<le> \<integral>\<^sup>+ x. p x \<partial>count_space A" | |
| 2073 | proof - | |
| 2074 |   from assms have "p x \<le> \<integral>\<^sup>+ x. p x \<partial>count_space {x}"
 | |
| 2075 | by(auto simp add: nn_integral_count_space_finite max_def) | |
| 2076 |   also have "\<dots> = \<integral>\<^sup>+ x'. p x' * indicator {x} x' \<partial>count_space A"
 | |
| 2077 | using assms by(auto simp add: nn_integral_count_space_indicator indicator_def intro!: nn_integral_cong) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2078 | also have "\<dots> \<le> \<integral>\<^sup>+ x. p x \<partial>count_space A" | 
| 59023 | 2079 | by(rule nn_integral_mono)(simp add: indicator_def) | 
| 2080 | finally show ?thesis . | |
| 2081 | qed | |
| 2082 | ||
| 61808 | 2083 | subsubsection \<open>Measure spaces with an associated density\<close> | 
| 47694 | 2084 | |
| 70136 | 2085 | definition\<^marker>\<open>tag important\<close> density :: "'a measure \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> 'a measure" where
 | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2086 | "density M f = measure_of (space M) (sets M) (\<lambda>A. \<integral>\<^sup>+ x. f x * indicator A x \<partial>M)" | 
| 35582 | 2087 | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2088 | lemma | 
| 59048 | 2089 | shows sets_density[simp, measurable_cong]: "sets (density M f) = sets M" | 
| 47694 | 2090 | and space_density[simp]: "space (density M f) = space M" | 
| 2091 | by (auto simp: density_def) | |
| 2092 | ||
| 50003 | 2093 | (* FIXME: add conversion to simplify space, sets and measurable *) | 
| 2094 | lemma space_density_imp[measurable_dest]: | |
| 2095 | "\<And>x M f. x \<in> space (density M f) \<Longrightarrow> x \<in> space M" by auto | |
| 2096 | ||
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2097 | lemma | 
| 47694 | 2098 | shows measurable_density_eq1[simp]: "g \<in> measurable (density Mg f) Mg' \<longleftrightarrow> g \<in> measurable Mg Mg'" | 
| 2099 | and measurable_density_eq2[simp]: "h \<in> measurable Mh (density Mh' f) \<longleftrightarrow> h \<in> measurable Mh Mh'" | |
| 2100 | and simple_function_density_eq[simp]: "simple_function (density Mu f) u \<longleftrightarrow> simple_function Mu u" | |
| 2101 | unfolding measurable_def simple_function_def by simp_all | |
| 2102 | ||
| 2103 | lemma density_cong: "f \<in> borel_measurable M \<Longrightarrow> f' \<in> borel_measurable M \<Longrightarrow> | |
| 2104 | (AE x in M. f x = f' x) \<Longrightarrow> density M f = density M f'" | |
| 56996 | 2105 | unfolding density_def by (auto intro!: measure_of_eq nn_integral_cong_AE sets.space_closed) | 
| 47694 | 2106 | |
| 2107 | lemma emeasure_density: | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 2108 | assumes f[measurable]: "f \<in> borel_measurable M" and A[measurable]: "A \<in> sets M" | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2109 | shows "emeasure (density M f) A = (\<integral>\<^sup>+ x. f x * indicator A x \<partial>M)" | 
| 47694 | 2110 | (is "_ = ?\<mu> A") | 
| 2111 | unfolding density_def | |
| 2112 | proof (rule emeasure_measure_of_sigma) | |
| 2113 | show "sigma_algebra (space M) (sets M)" .. | |
| 2114 | show "positive (sets M) ?\<mu>" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2115 | using f by (auto simp: positive_def) | 
| 47694 | 2116 | show "countably_additive (sets M) ?\<mu>" | 
| 2117 | proof (intro countably_additiveI) | |
| 2118 | fix A :: "nat \<Rightarrow> 'a set" assume "range A \<subseteq> sets M" | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 2119 | then have "\<And>i. A i \<in> sets M" by auto | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2120 | then have *: "\<And>i. (\<lambda>x. f x * indicator (A i) x) \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2121 | by auto | 
| 47694 | 2122 | assume disj: "disjoint_family A" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2123 | then have "(\<Sum>n. ?\<mu> (A n)) = (\<integral>\<^sup>+ x. (\<Sum>n. f x * indicator (A n) x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2124 | using f * by (subst nn_integral_suminf) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2125 | also have "(\<integral>\<^sup>+ x. (\<Sum>n. f x * indicator (A n) x) \<partial>M) = (\<integral>\<^sup>+ x. f x * (\<Sum>n. indicator (A n) x) \<partial>M)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2126 | using f by (auto intro!: ennreal_suminf_cmult nn_integral_cong_AE) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2127 | also have "\<dots> = (\<integral>\<^sup>+ x. f x * indicator (\<Union>n. A n) x \<partial>M)" | 
| 47694 | 2128 | unfolding suminf_indicator[OF disj] .. | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2129 | finally show "(\<Sum>i. \<integral>\<^sup>+ x. f x * indicator (A i) x \<partial>M) = \<integral>\<^sup>+ x. f x * indicator (\<Union>i. A i) x \<partial>M" . | 
| 47694 | 2130 | qed | 
| 2131 | qed fact | |
| 38656 | 2132 | |
| 47694 | 2133 | lemma null_sets_density_iff: | 
| 2134 | assumes f: "f \<in> borel_measurable M" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2135 | shows "A \<in> null_sets (density M f) \<longleftrightarrow> A \<in> sets M \<and> (AE x in M. x \<in> A \<longrightarrow> f x = 0)" | 
| 47694 | 2136 | proof - | 
| 2137 |   { assume "A \<in> sets M"
 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2138 |     have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = 0 \<longleftrightarrow> emeasure M {x \<in> space M. f x * indicator A x \<noteq> 0} = 0"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2139 | using f \<open>A \<in> sets M\<close> by (intro nn_integral_0_iff) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2140 | also have "\<dots> \<longleftrightarrow> (AE x in M. f x * indicator A x = 0)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2141 | using f \<open>A \<in> sets M\<close> by (intro AE_iff_measurable[OF _ refl, symmetric]) auto | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2142 | also have "(AE x in M. f x * indicator A x = 0) \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> f x \<le> 0)" | 
| 62390 | 2143 | by (auto simp add: indicator_def max_def split: if_split_asm) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2144 | finally have "(\<integral>\<^sup>+x. f x * indicator A x \<partial>M) = 0 \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> f x \<le> 0)" . } | 
| 47694 | 2145 | with f show ?thesis | 
| 2146 | by (simp add: null_sets_def emeasure_density cong: conj_cong) | |
| 2147 | qed | |
| 2148 | ||
| 2149 | lemma AE_density: | |
| 2150 | assumes f: "f \<in> borel_measurable M" | |
| 2151 | shows "(AE x in density M f. P x) \<longleftrightarrow> (AE x in M. 0 < f x \<longrightarrow> P x)" | |
| 2152 | proof | |
| 2153 | assume "AE x in density M f. P x" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2154 |   with f obtain N where "{x \<in> space M. \<not> P x} \<subseteq> N" "N \<in> sets M" and ae: "AE x in M. x \<in> N \<longrightarrow> f x = 0"
 | 
| 47694 | 2155 | by (auto simp: eventually_ae_filter null_sets_density_iff) | 
| 2156 | then have "AE x in M. x \<notin> N \<longrightarrow> P x" by auto | |
| 2157 | with ae show "AE x in M. 0 < f x \<longrightarrow> P x" | |
| 2158 | by (rule eventually_elim2) auto | |
| 2159 | next | |
| 2160 | fix N assume ae: "AE x in M. 0 < f x \<longrightarrow> P x" | |
| 2161 |   then obtain N where "{x \<in> space M. \<not> (0 < f x \<longrightarrow> P x)} \<subseteq> N" "N \<in> null_sets M"
 | |
| 2162 | by (auto simp: eventually_ae_filter) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2163 |   then have *: "{x \<in> space (density M f). \<not> P x} \<subseteq> N \<union> {x\<in>space M. f x = 0}"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2164 |     "N \<union> {x\<in>space M. f x = 0} \<in> sets M" and ae2: "AE x in M. x \<notin> N"
 | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2165 | using f by (auto simp: subset_eq zero_less_iff_neq_zero intro!: AE_not_in) | 
| 47694 | 2166 | show "AE x in density M f. P x" | 
| 2167 | using ae2 | |
| 2168 | unfolding eventually_ae_filter[of _ "density M f"] Bex_def null_sets_density_iff[OF f] | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2169 |     by (intro exI[of _ "N \<union> {x\<in>space M. f x = 0}"] conjI *) (auto elim: eventually_elim2)
 | 
| 35582 | 2170 | qed | 
| 2171 | ||
| 70136 | 2172 | lemma\<^marker>\<open>tag important\<close> nn_integral_density: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2173 | assumes f: "f \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2174 | assumes g: "g \<in> borel_measurable M" | 
| 56996 | 2175 | shows "integral\<^sup>N (density M f) g = (\<integral>\<^sup>+ x. f x * g x \<partial>M)" | 
| 70136 | 2176 | using g proof induct | 
| 49798 | 2177 | case (cong u v) | 
| 49799 
15ea98537c76
strong nonnegativ (instead of ae nn) for induction rule
 hoelzl parents: 
49798diff
changeset | 2178 | then show ?case | 
| 56996 | 2179 | apply (subst nn_integral_cong[OF cong(3)]) | 
| 2180 | apply (simp_all cong: nn_integral_cong) | |
| 49798 | 2181 | done | 
| 2182 | next | |
| 2183 | case (set A) then show ?case | |
| 2184 | by (simp add: emeasure_density f) | |
| 2185 | next | |
| 2186 | case (mult u c) | |
| 2187 | moreover have "\<And>x. f x * (c * u x) = c * (f x * u x)" by (simp add: field_simps) | |
| 2188 | ultimately show ?case | |
| 56996 | 2189 | using f by (simp add: nn_integral_cmult) | 
| 49798 | 2190 | next | 
| 2191 | case (add u v) | |
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 2192 | then have "\<And>x. f x * (v x + u x) = f x * v x + f x * u x" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2193 | by (simp add: distrib_left) | 
| 53374 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 wenzelm parents: 
53015diff
changeset | 2194 | with add f show ?case | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2195 | by (auto simp add: nn_integral_add intro!: nn_integral_add[symmetric]) | 
| 49798 | 2196 | next | 
| 2197 | case (seq U) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2198 | have eq: "AE x in M. f x * (SUP i. U i x) = (SUP i. f x * U i x)" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2199 | by eventually_elim (simp add: SUP_mult_left_ennreal seq) | 
| 49798 | 2200 | from seq f show ?case | 
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 2201 | apply (simp add: nn_integral_monotone_convergence_SUP image_comp) | 
| 56996 | 2202 | apply (subst nn_integral_cong_AE[OF eq]) | 
| 2203 | apply (subst nn_integral_monotone_convergence_SUP_AE) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2204 | apply (auto simp: incseq_def le_fun_def intro!: mult_left_mono) | 
| 49798 | 2205 | done | 
| 47694 | 2206 | qed | 
| 38705 | 2207 | |
| 57275 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2208 | lemma density_distr: | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2209 | assumes [measurable]: "f \<in> borel_measurable N" "X \<in> measurable M N" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2210 | shows "density (distr M N X) f = distr (density M (\<lambda>x. f (X x))) N X" | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2211 | by (intro measure_eqI) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2212 | (auto simp add: emeasure_density nn_integral_distr emeasure_distr | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2213 | split: split_indicator intro!: nn_integral_cong) | 
| 
0ddb5b755cdc
moved lemmas from the proof of the Central Limit Theorem by Jeremy Avigad and Luke Serafin
 hoelzl parents: 
57137diff
changeset | 2214 | |
| 47694 | 2215 | lemma emeasure_restricted: | 
| 2216 | assumes S: "S \<in> sets M" and X: "X \<in> sets M" | |
| 2217 | shows "emeasure (density M (indicator S)) X = emeasure M (S \<inter> X)" | |
| 38705 | 2218 | proof - | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2219 | have "emeasure (density M (indicator S)) X = (\<integral>\<^sup>+x. indicator S x * indicator X x \<partial>M)" | 
| 47694 | 2220 | using S X by (simp add: emeasure_density) | 
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2221 | also have "\<dots> = (\<integral>\<^sup>+x. indicator (S \<inter> X) x \<partial>M)" | 
| 56996 | 2222 | by (auto intro!: nn_integral_cong simp: indicator_def) | 
| 47694 | 2223 | also have "\<dots> = emeasure M (S \<inter> X)" | 
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 2224 | using S X by (simp add: sets.Int) | 
| 47694 | 2225 | finally show ?thesis . | 
| 2226 | qed | |
| 2227 | ||
| 2228 | lemma measure_restricted: | |
| 2229 | "S \<in> sets M \<Longrightarrow> X \<in> sets M \<Longrightarrow> measure (density M (indicator S)) X = measure M (S \<inter> X)" | |
| 2230 | by (simp add: emeasure_restricted measure_def) | |
| 2231 | ||
| 2232 | lemma (in finite_measure) finite_measure_restricted: | |
| 2233 | "S \<in> sets M \<Longrightarrow> finite_measure (density M (indicator S))" | |
| 61169 | 2234 | by standard (simp add: emeasure_restricted) | 
| 47694 | 2235 | |
| 2236 | lemma emeasure_density_const: | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2237 | "A \<in> sets M \<Longrightarrow> emeasure (density M (\<lambda>_. c)) A = c * emeasure M A" | 
| 56996 | 2238 | by (auto simp: nn_integral_cmult_indicator emeasure_density) | 
| 47694 | 2239 | |
| 2240 | lemma measure_density_const: | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2241 | "A \<in> sets M \<Longrightarrow> c \<noteq> \<infinity> \<Longrightarrow> measure (density M (\<lambda>_. c)) A = enn2real c * measure M A" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2242 | by (auto simp: emeasure_density_const measure_def enn2real_mult) | 
| 47694 | 2243 | |
| 2244 | lemma density_density_eq: | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2245 | "f \<in> borel_measurable M \<Longrightarrow> g \<in> borel_measurable M \<Longrightarrow> | 
| 47694 | 2246 | density (density M f) g = density M (\<lambda>x. f x * g x)" | 
| 56996 | 2247 | by (auto intro!: measure_eqI simp: emeasure_density nn_integral_density ac_simps) | 
| 47694 | 2248 | |
| 2249 | lemma distr_density_distr: | |
| 2250 | assumes T: "T \<in> measurable M M'" and T': "T' \<in> measurable M' M" | |
| 2251 | and inv: "\<forall>x\<in>space M. T' (T x) = x" | |
| 2252 | assumes f: "f \<in> borel_measurable M'" | |
| 2253 | shows "distr (density (distr M M' T) f) M T' = density M (f \<circ> T)" (is "?R = ?L") | |
| 2254 | proof (rule measure_eqI) | |
| 2255 | fix A assume A: "A \<in> sets ?R" | |
| 2256 |   { fix x assume "x \<in> space M"
 | |
| 50244 
de72bbe42190
qualified interpretation of sigma_algebra, to avoid name clashes
 immler parents: 
50104diff
changeset | 2257 | with sets.sets_into_space[OF A] | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2258 | have "indicator (T' -` A \<inter> space M') (T x) = (indicator A x :: ennreal)" | 
| 47694 | 2259 | using T inv by (auto simp: indicator_def measurable_space) } | 
| 2260 | with A T T' f show "emeasure ?R A = emeasure ?L A" | |
| 2261 | by (simp add: measurable_comp emeasure_density emeasure_distr | |
| 56996 | 2262 | nn_integral_distr measurable_sets cong: nn_integral_cong) | 
| 47694 | 2263 | qed simp | 
| 2264 | ||
| 2265 | lemma density_density_divide: | |
| 2266 | fixes f g :: "'a \<Rightarrow> real" | |
| 2267 | assumes f: "f \<in> borel_measurable M" "AE x in M. 0 \<le> f x" | |
| 2268 | assumes g: "g \<in> borel_measurable M" "AE x in M. 0 \<le> g x" | |
| 2269 | assumes ac: "AE x in M. f x = 0 \<longrightarrow> g x = 0" | |
| 2270 | shows "density (density M f) (\<lambda>x. g x / f x) = density M g" | |
| 2271 | proof - | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2272 | have "density M g = density M (\<lambda>x. ennreal (f x) * ennreal (g x / f x))" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2273 | using f g ac by (auto intro!: density_cong measurable_If simp: ennreal_mult[symmetric]) | 
| 47694 | 2274 | then show ?thesis | 
| 2275 | using f g by (subst density_density_eq) auto | |
| 38705 | 2276 | qed | 
| 2277 | ||
| 59425 | 2278 | lemma density_1: "density M (\<lambda>_. 1) = M" | 
| 2279 | by (intro measure_eqI) (auto simp: emeasure_density) | |
| 2280 | ||
| 2281 | lemma emeasure_density_add: | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2282 | assumes X: "X \<in> sets M" | 
| 59425 | 2283 | assumes Mf[measurable]: "f \<in> borel_measurable M" | 
| 2284 | assumes Mg[measurable]: "g \<in> borel_measurable M" | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2285 | shows "emeasure (density M f) X + emeasure (density M g) X = | 
| 59425 | 2286 | emeasure (density M (\<lambda>x. f x + g x)) X" | 
| 2287 | using assms | |
| 2288 | apply (subst (1 2 3) emeasure_density, simp_all) [] | |
| 2289 | apply (subst nn_integral_add[symmetric], simp_all) [] | |
| 2290 | apply (intro nn_integral_cong, simp split: split_indicator) | |
| 2291 | done | |
| 2292 | ||
| 61808 | 2293 | subsubsection \<open>Point measure\<close> | 
| 47694 | 2294 | |
| 70136 | 2295 | definition\<^marker>\<open>tag important\<close> point_measure :: "'a set \<Rightarrow> ('a \<Rightarrow> ennreal) \<Rightarrow> 'a measure" where
 | 
| 47694 | 2296 | "point_measure A f = density (count_space A) f" | 
| 2297 | ||
| 2298 | lemma | |
| 2299 | shows space_point_measure: "space (point_measure A f) = A" | |
| 2300 | and sets_point_measure: "sets (point_measure A f) = Pow A" | |
| 2301 | by (auto simp: point_measure_def) | |
| 2302 | ||
| 59048 | 2303 | lemma sets_point_measure_count_space[measurable_cong]: "sets (point_measure A f) = sets (count_space A)" | 
| 2304 | by (simp add: sets_point_measure) | |
| 2305 | ||
| 47694 | 2306 | lemma measurable_point_measure_eq1[simp]: | 
| 2307 | "g \<in> measurable (point_measure A f) M \<longleftrightarrow> g \<in> A \<rightarrow> space M" | |
| 2308 | unfolding point_measure_def by simp | |
| 2309 | ||
| 2310 | lemma measurable_point_measure_eq2_finite[simp]: | |
| 2311 | "finite A \<Longrightarrow> | |
| 2312 | g \<in> measurable M (point_measure A f) \<longleftrightarrow> | |
| 2313 |     (g \<in> space M \<rightarrow> A \<and> (\<forall>a\<in>A. g -` {a} \<inter> space M \<in> sets M))"
 | |
| 50002 
ce0d316b5b44
add measurability prover; add support for Borel sets
 hoelzl parents: 
50001diff
changeset | 2314 | unfolding point_measure_def by (simp add: measurable_count_space_eq2) | 
| 47694 | 2315 | |
| 2316 | lemma simple_function_point_measure[simp]: | |
| 2317 | "simple_function (point_measure A f) g \<longleftrightarrow> finite (g ` A)" | |
| 2318 | by (simp add: point_measure_def) | |
| 2319 | ||
| 2320 | lemma emeasure_point_measure: | |
| 2321 |   assumes A: "finite {a\<in>X. 0 < f a}" "X \<subseteq> A"
 | |
| 2322 | shows "emeasure (point_measure A f) X = (\<Sum>a|a\<in>X \<and> 0 < f a. f a)" | |
| 35977 | 2323 | proof - | 
| 47694 | 2324 |   have "{a. (a \<in> X \<longrightarrow> a \<in> A \<and> 0 < f a) \<and> a \<in> X} = {a\<in>X. 0 < f a}"
 | 
| 61808 | 2325 | using \<open>X \<subseteq> A\<close> by auto | 
| 47694 | 2326 | with A show ?thesis | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2327 | by (simp add: emeasure_density nn_integral_count_space point_measure_def indicator_def) | 
| 35977 | 2328 | qed | 
| 2329 | ||
| 47694 | 2330 | lemma emeasure_point_measure_finite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2331 | "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> emeasure (point_measure A f) X = (\<Sum>a\<in>X. f a)" | 
| 64267 | 2332 | by (subst emeasure_point_measure) (auto dest: finite_subset intro!: sum.mono_neutral_left simp: less_le) | 
| 47694 | 2333 | |
| 49795 | 2334 | lemma emeasure_point_measure_finite2: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2335 | "X \<subseteq> A \<Longrightarrow> finite X \<Longrightarrow> emeasure (point_measure A f) X = (\<Sum>a\<in>X. f a)" | 
| 49795 | 2336 | by (subst emeasure_point_measure) | 
| 64267 | 2337 | (auto dest: finite_subset intro!: sum.mono_neutral_left simp: less_le) | 
| 49795 | 2338 | |
| 47694 | 2339 | lemma null_sets_point_measure_iff: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2340 | "X \<in> null_sets (point_measure A f) \<longleftrightarrow> X \<subseteq> A \<and> (\<forall>x\<in>X. f x = 0)" | 
| 47694 | 2341 | by (auto simp: AE_count_space null_sets_density_iff point_measure_def) | 
| 2342 | ||
| 2343 | lemma AE_point_measure: | |
| 2344 | "(AE x in point_measure A f. P x) \<longleftrightarrow> (\<forall>x\<in>A. 0 < f x \<longrightarrow> P x)" | |
| 2345 | unfolding point_measure_def | |
| 2346 | by (subst AE_density) (auto simp: AE_density AE_count_space point_measure_def) | |
| 2347 | ||
| 56996 | 2348 | lemma nn_integral_point_measure: | 
| 47694 | 2349 |   "finite {a\<in>A. 0 < f a \<and> 0 < g a} \<Longrightarrow>
 | 
| 56996 | 2350 | integral\<^sup>N (point_measure A f) g = (\<Sum>a|a\<in>A \<and> 0 < f a \<and> 0 < g a. f a * g a)" | 
| 47694 | 2351 | unfolding point_measure_def | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2352 | by (subst nn_integral_density) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2353 | (simp_all add: nn_integral_density nn_integral_count_space ennreal_zero_less_mult_iff) | 
| 47694 | 2354 | |
| 56996 | 2355 | lemma nn_integral_point_measure_finite: | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2356 | "finite A \<Longrightarrow> integral\<^sup>N (point_measure A f) g = (\<Sum>a\<in>A. f a * g a)" | 
| 64267 | 2357 | by (subst nn_integral_point_measure) (auto intro!: sum.mono_neutral_left simp: less_le) | 
| 47694 | 2358 | |
| 61808 | 2359 | subsubsection \<open>Uniform measure\<close> | 
| 47694 | 2360 | |
| 70136 | 2361 | definition\<^marker>\<open>tag important\<close> "uniform_measure M A = density M (\<lambda>x. indicator A x / emeasure M A)" | 
| 47694 | 2362 | |
| 2363 | lemma | |
| 59048 | 2364 | shows sets_uniform_measure[simp, measurable_cong]: "sets (uniform_measure M A) = sets M" | 
| 47694 | 2365 | and space_uniform_measure[simp]: "space (uniform_measure M A) = space M" | 
| 2366 | by (auto simp: uniform_measure_def) | |
| 2367 | ||
| 2368 | lemma emeasure_uniform_measure[simp]: | |
| 2369 | assumes A: "A \<in> sets M" and B: "B \<in> sets M" | |
| 2370 | shows "emeasure (uniform_measure M A) B = emeasure M (A \<inter> B) / emeasure M A" | |
| 2371 | proof - | |
| 53015 
a1119cf551e8
standardized symbols via "isabelle update_sub_sup", excluding src/Pure and src/Tools/WWW_Find;
 wenzelm parents: 
51340diff
changeset | 2372 | from A B have "emeasure (uniform_measure M A) B = (\<integral>\<^sup>+x. (1 / emeasure M A) * indicator (A \<inter> B) x \<partial>M)" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2373 | by (auto simp add: uniform_measure_def emeasure_density divide_ennreal_def split: split_indicator | 
| 56996 | 2374 | intro!: nn_integral_cong) | 
| 47694 | 2375 | also have "\<dots> = emeasure M (A \<inter> B) / emeasure M A" | 
| 2376 | using A B | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2377 | by (subst nn_integral_cmult_indicator) (simp_all add: sets.Int divide_ennreal_def mult.commute) | 
| 47694 | 2378 | finally show ?thesis . | 
| 2379 | qed | |
| 2380 | ||
| 2381 | lemma measure_uniform_measure[simp]: | |
| 2382 | assumes A: "emeasure M A \<noteq> 0" "emeasure M A \<noteq> \<infinity>" and B: "B \<in> sets M" | |
| 2383 | shows "measure (uniform_measure M A) B = measure M (A \<inter> B) / measure M A" | |
| 2384 | using emeasure_uniform_measure[OF emeasure_neq_0_sets[OF A(1)] B] A | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2385 | by (cases "emeasure M A" "emeasure M (A \<inter> B)" rule: ennreal2_cases) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2386 | (simp_all add: measure_def divide_ennreal top_ennreal.rep_eq top_ereal_def ennreal_top_divide) | 
| 47694 | 2387 | |
| 58606 | 2388 | lemma AE_uniform_measureI: | 
| 2389 | "A \<in> sets M \<Longrightarrow> (AE x in M. x \<in> A \<longrightarrow> P x) \<Longrightarrow> (AE x in uniform_measure M A. P x)" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2390 | unfolding uniform_measure_def by (auto simp: AE_density divide_ennreal_def) | 
| 58606 | 2391 | |
| 59000 | 2392 | lemma emeasure_uniform_measure_1: | 
| 2393 | "emeasure M S \<noteq> 0 \<Longrightarrow> emeasure M S \<noteq> \<infinity> \<Longrightarrow> emeasure (uniform_measure M S) S = 1" | |
| 2394 | by (subst emeasure_uniform_measure) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2395 | (simp_all add: emeasure_neq_0_sets emeasure_eq_ennreal_measure divide_ennreal | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2396 | zero_less_iff_neq_zero[symmetric]) | 
| 59000 | 2397 | |
| 2398 | lemma nn_integral_uniform_measure: | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2399 | assumes f[measurable]: "f \<in> borel_measurable M" and S[measurable]: "S \<in> sets M" | 
| 59000 | 2400 | shows "(\<integral>\<^sup>+x. f x \<partial>uniform_measure M S) = (\<integral>\<^sup>+x. f x * indicator S x \<partial>M) / emeasure M S" | 
| 2401 | proof - | |
| 2402 |   { assume "emeasure M S = \<infinity>"
 | |
| 2403 | then have ?thesis | |
| 2404 | by (simp add: uniform_measure_def nn_integral_density f) } | |
| 2405 | moreover | |
| 2406 |   { assume [simp]: "emeasure M S = 0"
 | |
| 2407 | then have ae: "AE x in M. x \<notin> S" | |
| 2408 | using sets.sets_into_space[OF S] | |
| 2409 | by (subst AE_iff_measurable[OF _ refl]) (simp_all add: subset_eq cong: rev_conj_cong) | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2410 | from ae have "(\<integral>\<^sup>+ x. indicator S x / 0 * f x \<partial>M) = 0" | 
| 59000 | 2411 | by (subst nn_integral_0_iff_AE) auto | 
| 2412 | moreover from ae have "(\<integral>\<^sup>+ x. f x * indicator S x \<partial>M) = 0" | |
| 2413 | by (subst nn_integral_0_iff_AE) auto | |
| 2414 | ultimately have ?thesis | |
| 2415 | by (simp add: uniform_measure_def nn_integral_density f) } | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2416 | moreover have "emeasure M S \<noteq> 0 \<Longrightarrow> emeasure M S \<noteq> \<infinity> \<Longrightarrow> ?thesis" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2417 | unfolding uniform_measure_def | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2418 | by (subst nn_integral_density) | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2419 | (auto simp: ennreal_times_divide f nn_integral_divide[symmetric] mult.commute) | 
| 59000 | 2420 | ultimately show ?thesis by blast | 
| 2421 | qed | |
| 2422 | ||
| 2423 | lemma AE_uniform_measure: | |
| 2424 | assumes "emeasure M A \<noteq> 0" "emeasure M A < \<infinity>" | |
| 2425 | shows "(AE x in uniform_measure M A. P x) \<longleftrightarrow> (AE x in M. x \<in> A \<longrightarrow> P x)" | |
| 2426 | proof - | |
| 2427 | have "A \<in> sets M" | |
| 61808 | 2428 | using \<open>emeasure M A \<noteq> 0\<close> by (metis emeasure_notin_sets) | 
| 59000 | 2429 | moreover have "\<And>x. 0 < indicator A x / emeasure M A \<longleftrightarrow> x \<in> A" | 
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2430 | using assms | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2431 | by (cases "emeasure M A") (auto split: split_indicator simp: ennreal_zero_less_divide) | 
| 59000 | 2432 | ultimately show ?thesis | 
| 2433 | unfolding uniform_measure_def by (simp add: AE_density) | |
| 2434 | qed | |
| 2435 | ||
| 70136 | 2436 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Null measure\<close> | 
| 59425 | 2437 | |
| 2438 | lemma null_measure_eq_density: "null_measure M = density M (\<lambda>_. 0)" | |
| 2439 | by (intro measure_eqI) (simp_all add: emeasure_density) | |
| 2440 | ||
| 2441 | lemma nn_integral_null_measure[simp]: "(\<integral>\<^sup>+x. f x \<partial>null_measure M) = 0" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2442 | by (auto simp add: nn_integral_def simple_integral_def SUP_constant bot_ennreal_def le_fun_def | 
| 59425 | 2443 | intro!: exI[of _ "\<lambda>x. 0"]) | 
| 2444 | ||
| 2445 | lemma density_null_measure[simp]: "density (null_measure M) f = null_measure M" | |
| 2446 | proof (intro measure_eqI) | |
| 2447 | fix A show "emeasure (density (null_measure M) f) A = emeasure (null_measure M) A" | |
| 2448 | by (simp add: density_def) (simp only: null_measure_def[symmetric] emeasure_null_measure) | |
| 2449 | qed simp | |
| 2450 | ||
| 61808 | 2451 | subsubsection \<open>Uniform count measure\<close> | 
| 47694 | 2452 | |
| 70136 | 2453 | definition\<^marker>\<open>tag important\<close> "uniform_count_measure A = point_measure A (\<lambda>x. 1 / card A)" | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2454 | |
| 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2455 | lemma | 
| 47694 | 2456 | shows space_uniform_count_measure: "space (uniform_count_measure A) = A" | 
| 2457 | and sets_uniform_count_measure: "sets (uniform_count_measure A) = Pow A" | |
| 2458 | unfolding uniform_count_measure_def by (auto simp: space_point_measure sets_point_measure) | |
| 59048 | 2459 | |
| 2460 | lemma sets_uniform_count_measure_count_space[measurable_cong]: | |
| 2461 | "sets (uniform_count_measure A) = sets (count_space A)" | |
| 2462 | by (simp add: sets_uniform_count_measure) | |
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2463 | |
| 47694 | 2464 | lemma emeasure_uniform_count_measure: | 
| 2465 | "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> emeasure (uniform_count_measure A) X = card X / card A" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2466 | by (simp add: emeasure_point_measure_finite uniform_count_measure_def divide_inverse ennreal_mult | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2467 | ennreal_of_nat_eq_real_of_nat) | 
| 61609 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 paulson <lp15@cam.ac.uk> parents: 
61359diff
changeset | 2468 | |
| 47694 | 2469 | lemma measure_uniform_count_measure: | 
| 2470 | "finite A \<Longrightarrow> X \<subseteq> A \<Longrightarrow> measure (uniform_count_measure A) X = card X / card A" | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2471 | by (simp add: emeasure_point_measure_finite uniform_count_measure_def measure_def enn2real_mult) | 
| 47694 | 2472 | |
| 61633 | 2473 | lemma space_uniform_count_measure_empty_iff [simp]: | 
| 2474 |   "space (uniform_count_measure X) = {} \<longleftrightarrow> X = {}"
 | |
| 2475 | by(simp add: space_uniform_count_measure) | |
| 2476 | ||
| 2477 | lemma sets_uniform_count_measure_eq_UNIV [simp]: | |
| 2478 | "sets (uniform_count_measure UNIV) = UNIV \<longleftrightarrow> True" | |
| 2479 | "UNIV = sets (uniform_count_measure UNIV) \<longleftrightarrow> True" | |
| 2480 | by(simp_all add: sets_uniform_count_measure) | |
| 2481 | ||
| 70136 | 2482 | subsubsection\<^marker>\<open>tag unimportant\<close> \<open>Scaled measure\<close> | 
| 61634 | 2483 | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2484 | lemma nn_integral_scale_measure: | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2485 | assumes f: "f \<in> borel_measurable M" | 
| 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2486 | shows "nn_integral (scale_measure r M) f = r * nn_integral M f" | 
| 61634 | 2487 | using f | 
| 2488 | proof induction | |
| 2489 | case (cong f g) | |
| 2490 | thus ?case | |
| 2491 | by(simp add: cong.hyps space_scale_measure cong: nn_integral_cong_simp) | |
| 2492 | next | |
| 2493 | case (mult f c) | |
| 2494 | thus ?case | |
| 2495 | by(simp add: nn_integral_cmult max_def mult.assoc mult.left_commute) | |
| 2496 | next | |
| 2497 | case (add f g) | |
| 2498 | thus ?case | |
| 62975 
1d066f6ab25d
Probability: move emeasure and nn_integral from ereal to ennreal
 hoelzl parents: 
62390diff
changeset | 2499 | by(simp add: nn_integral_add distrib_left) | 
| 61634 | 2500 | next | 
| 2501 | case (seq U) | |
| 2502 | thus ?case | |
| 69861 
62e47f06d22c
avoid context-sensitive simp rules whose context-free form (image_comp) is not simp by default
 haftmann parents: 
69661diff
changeset | 2503 | by(simp add: nn_integral_monotone_convergence_SUP SUP_mult_left_ennreal image_comp) | 
| 61634 | 2504 | qed simp | 
| 2505 | ||
| 35748 | 2506 | end |