| author | wenzelm | 
| Tue, 17 Jul 2007 15:59:50 +0200 | |
| changeset 23830 | f838adde842d | 
| parent 23821 | 2acd9d79d855 | 
| child 27368 | 9f90ac19e32b | 
| permissions | -rw-r--r-- | 
| 22803 | 1  | 
(* Title: HOL/Library/While_Combinator.thy  | 
| 10251 | 2  | 
ID: $Id$  | 
3  | 
Author: Tobias Nipkow  | 
|
4  | 
Copyright 2000 TU Muenchen  | 
|
5  | 
*)  | 
|
6  | 
||
| 14706 | 7  | 
header {* A general ``while'' combinator *}
 | 
| 10251 | 8  | 
|
| 15131 | 9  | 
theory While_Combinator  | 
| 15140 | 10  | 
imports Main  | 
| 15131 | 11  | 
begin  | 
| 10251 | 12  | 
|
| 23821 | 13  | 
text {* 
 | 
14  | 
We define the while combinator as the "mother of all tail recursive functions".  | 
|
| 10251 | 15  | 
*}  | 
16  | 
||
| 23821 | 17  | 
function (tailrec) while :: "('a \<Rightarrow> bool) \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a"
 | 
18  | 
where  | 
|
19  | 
while_unfold[simp del]: "while b c s = (if b s then while b c (c s) else s)"  | 
|
20  | 
by auto  | 
|
| 10251 | 21  | 
|
| 23821 | 22  | 
declare while_unfold[code]  | 
| 10984 | 23  | 
|
| 18372 | 24  | 
lemma def_while_unfold:  | 
25  | 
assumes fdef: "f == while test do"  | 
|
26  | 
shows "f x = (if test x then f(do x) else x)"  | 
|
| 14300 | 27  | 
proof -  | 
28  | 
have "f x = while test do x" using fdef by simp  | 
|
29  | 
also have "\<dots> = (if test x then while test do (do x) else x)"  | 
|
30  | 
by(rule while_unfold)  | 
|
31  | 
also have "\<dots> = (if test x then f(do x) else x)" by(simp add:fdef[symmetric])  | 
|
32  | 
finally show ?thesis .  | 
|
33  | 
qed  | 
|
34  | 
||
35  | 
||
| 10251 | 36  | 
text {*
 | 
37  | 
 The proof rule for @{term while}, where @{term P} is the invariant.
 | 
|
38  | 
*}  | 
|
39  | 
||
| 18372 | 40  | 
theorem while_rule_lemma:  | 
41  | 
assumes invariant: "!!s. P s ==> b s ==> P (c s)"  | 
|
42  | 
and terminate: "!!s. P s ==> \<not> b s ==> Q s"  | 
|
43  | 
    and wf: "wf {(t, s). P s \<and> b s \<and> t = c s}"
 | 
|
44  | 
shows "P s \<Longrightarrow> Q (while b c s)"  | 
|
| 19736 | 45  | 
using wf  | 
46  | 
apply (induct s)  | 
|
| 18372 | 47  | 
apply simp  | 
48  | 
apply (subst while_unfold)  | 
|
49  | 
apply (simp add: invariant terminate)  | 
|
50  | 
done  | 
|
| 10251 | 51  | 
|
| 10653 | 52  | 
theorem while_rule:  | 
| 10984 | 53  | 
"[| P s;  | 
54  | 
!!s. [| P s; b s |] ==> P (c s);  | 
|
55  | 
!!s. [| P s; \<not> b s |] ==> Q s;  | 
|
| 10997 | 56  | 
wf r;  | 
| 10984 | 57  | 
!!s. [| P s; b s |] ==> (c s, s) \<in> r |] ==>  | 
58  | 
Q (while b c s)"  | 
|
| 19736 | 59  | 
apply (rule while_rule_lemma)  | 
60  | 
prefer 4 apply assumption  | 
|
61  | 
apply blast  | 
|
62  | 
apply blast  | 
|
63  | 
apply (erule wf_subset)  | 
|
64  | 
apply blast  | 
|
65  | 
done  | 
|
| 10653 | 66  | 
|
| 10984 | 67  | 
text {*
 | 
68  | 
 \medskip An application: computation of the @{term lfp} on finite
 | 
|
69  | 
sets via iteration.  | 
|
70  | 
*}  | 
|
71  | 
||
72  | 
theorem lfp_conv_while:  | 
|
73  | 
"[| mono f; finite U; f U = U |] ==>  | 
|
74  | 
    lfp f = fst (while (\<lambda>(A, fA). A \<noteq> fA) (\<lambda>(A, fA). (fA, f fA)) ({}, f {}))"
 | 
|
75  | 
apply (rule_tac P = "\<lambda>(A, B). (A \<subseteq> U \<and> B = f A \<and> A \<subseteq> B \<and> B \<subseteq> lfp f)" and  | 
|
| 11047 | 76  | 
r = "((Pow U \<times> UNIV) \<times> (Pow U \<times> UNIV)) \<inter>  | 
| 10984 | 77  | 
inv_image finite_psubset (op - U o fst)" in while_rule)  | 
78  | 
apply (subst lfp_unfold)  | 
|
79  | 
apply assumption  | 
|
80  | 
apply (simp add: monoD)  | 
|
81  | 
apply (subst lfp_unfold)  | 
|
82  | 
apply assumption  | 
|
83  | 
apply clarsimp  | 
|
84  | 
apply (blast dest: monoD)  | 
|
85  | 
apply (fastsimp intro!: lfp_lowerbound)  | 
|
86  | 
apply (blast intro: wf_finite_psubset Int_lower2 [THEN [2] wf_subset])  | 
|
| 
19769
 
c40ce2de2020
Added [simp]-lemmas "in_inv_image" and "in_lex_prod" in the spirit of "in_measure".
 
krauss 
parents: 
19736 
diff
changeset
 | 
87  | 
apply (clarsimp simp add: finite_psubset_def order_less_le)  | 
| 10984 | 88  | 
apply (blast intro!: finite_Diff dest: monoD)  | 
89  | 
done  | 
|
90  | 
||
91  | 
||
92  | 
text {*
 | 
|
| 14589 | 93  | 
 An example of using the @{term while} combinator.
 | 
| 10984 | 94  | 
*}  | 
95  | 
||
| 15197 | 96  | 
text{* Cannot use @{thm[source]set_eq_subset} because it leads to
 | 
97  | 
looping because the antisymmetry simproc turns the subset relationship  | 
|
98  | 
back into equality. *}  | 
|
99  | 
||
| 14589 | 100  | 
theorem "P (lfp (\<lambda>N::int set. {0} \<union> {(n + 2) mod 6 | n. n \<in> N})) =
 | 
101  | 
  P {0, 4, 2}"
 | 
|
| 10997 | 102  | 
proof -  | 
| 19736 | 103  | 
have seteq: "!!A B. (A = B) = ((!a : A. a:B) & (!b:B. b:A))"  | 
104  | 
by blast  | 
|
| 10997 | 105  | 
  have aux: "!!f A B. {f n | n. A n \<or> B n} = {f n | n. A n} \<union> {f n | n. B n}"
 | 
| 10984 | 106  | 
apply blast  | 
| 10997 | 107  | 
done  | 
108  | 
show ?thesis  | 
|
| 11914 | 109  | 
    apply (subst lfp_conv_while [where ?U = "{0, 1, 2, 3, 4, 5}"])
 | 
| 10997 | 110  | 
apply (rule monoI)  | 
111  | 
apply blast  | 
|
112  | 
apply simp  | 
|
113  | 
apply (simp add: aux set_eq_subset)  | 
|
114  | 
    txt {* The fixpoint computation is performed purely by rewriting: *}
 | 
|
| 15197 | 115  | 
apply (simp add: while_unfold aux seteq del: subset_empty)  | 
| 10997 | 116  | 
done  | 
117  | 
qed  | 
|
| 10251 | 118  | 
|
119  | 
end  |