src/HOL/Deriv.thy
author nipkow
Thu, 06 Aug 2020 17:11:33 +0200
changeset 72099 f978ecaf119a
parent 71837 dca11678c495
child 72219 0f38c96a0a74
permissions -rw-r--r--
added theory Tree23_of_List
Ignore whitespace changes - Everywhere: Within whitespace: At end of lines:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     1
(*  Title:      HOL/Deriv.thy
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     2
    Author:     Jacques D. Fleuriot, University of Cambridge, 1998
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     3
    Author:     Brian Huffman
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     4
    Author:     Lawrence C Paulson, 2004
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     5
    Author:     Benjamin Porter, 2005
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     6
*)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     7
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
     8
section \<open>Differentiation\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
     9
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    10
theory Deriv
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    11
  imports Limits
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    12
begin
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
    13
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    14
subsection \<open>Frechet derivative\<close>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    15
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    16
definition has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    17
    ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool"  (infix "(has'_derivative)" 50)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    18
  where "(f has_derivative f') F \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    19
    bounded_linear f' \<and>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    20
    ((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) \<longlongrightarrow> 0) F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    21
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    22
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    23
  Usually the filter \<^term>\<open>F\<close> is \<^term>\<open>at x within s\<close>.  \<^term>\<open>(f has_derivative D)
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    24
  (at x within s)\<close> means: \<^term>\<open>D\<close> is the derivative of function \<^term>\<open>f\<close> at point \<^term>\<open>x\<close>
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    25
  within the set \<^term>\<open>s\<close>. Where \<^term>\<open>s\<close> is used to express left or right sided derivatives. In
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    26
  most cases \<^term>\<open>s\<close> is either a variable or \<^term>\<open>UNIV\<close>.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    27
\<close>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    28
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    29
text \<open>These are the only cases we'll care about, probably.\<close>
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    30
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    31
lemma has_derivative_within: "(f has_derivative f') (at x within s) \<longleftrightarrow>
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    32
    bounded_linear f' \<and> ((\<lambda>y. (1 / norm(y - x)) *\<^sub>R (f y - (f x + f' (y - x)))) \<longlongrightarrow> 0) (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    33
  unfolding has_derivative_def tendsto_iff
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    34
  by (subst eventually_Lim_ident_at) (auto simp add: field_simps)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
    35
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    36
lemma has_derivative_eq_rhs: "(f has_derivative f') F \<Longrightarrow> f' = g' \<Longrightarrow> (f has_derivative g') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    37
  by simp
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    38
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    39
definition has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    40
    (infix "(has'_field'_derivative)" 50)
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
    41
  where "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative (*) D) F"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    42
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    43
lemma DERIV_cong: "(f has_field_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_field_derivative Y) F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    44
  by simp
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    45
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    46
definition has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    47
    (infix "has'_vector'_derivative" 50)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    48
  where "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    49
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    50
lemma has_vector_derivative_eq_rhs:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    51
  "(f has_vector_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_vector_derivative Y) F"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    52
  by simp
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    53
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57514
diff changeset
    54
named_theorems derivative_intros "structural introduction rules for derivatives"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    55
setup \<open>
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    56
  let
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57514
diff changeset
    57
    val eq_thms = @{thms has_derivative_eq_rhs DERIV_cong has_vector_derivative_eq_rhs}
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    58
    fun eq_rule thm = get_first (try (fn eq_thm => eq_thm OF [thm])) eq_thms
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    59
  in
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    60
    Global_Theory.add_thms_dynamic
67149
e61557884799 prefer control symbol antiquotations;
wenzelm
parents: 64272
diff changeset
    61
      (\<^binding>\<open>derivative_eq_intros\<close>,
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57514
diff changeset
    62
        fn context =>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
    63
          Named_Theorems.get (Context.proof_of context) \<^named_theorems>\<open>derivative_intros\<close>
57953
69728243a614 updated to named_theorems;
wenzelm
parents: 57514
diff changeset
    64
          |> map_filter eq_rule)
69216
1a52baa70aed clarified ML_Context.expression: it is a closed expression, not a let-declaration -- thus source positions are more accurate (amending d8849cfad60f, 162a4c2e97bc);
wenzelm
parents: 69111
diff changeset
    65
  end
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    66
\<close>
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    67
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    68
text \<open>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    69
  The following syntax is only used as a legacy syntax.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
    70
\<close>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    71
abbreviation (input)
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    72
  FDERIV :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow>  ('a \<Rightarrow> 'b) \<Rightarrow> bool"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    73
  ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
    74
  where "FDERIV f x :> f' \<equiv> (f has_derivative f') (at x)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    75
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    76
lemma has_derivative_bounded_linear: "(f has_derivative f') F \<Longrightarrow> bounded_linear f'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    77
  by (simp add: has_derivative_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    78
56369
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56289
diff changeset
    79
lemma has_derivative_linear: "(f has_derivative f') F \<Longrightarrow> linear f'"
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56289
diff changeset
    80
  using bounded_linear.linear[OF has_derivative_bounded_linear] .
2704ca85be98 moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
hoelzl
parents: 56289
diff changeset
    81
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    82
lemma has_derivative_ident[derivative_intros, simp]: "((\<lambda>x. x) has_derivative (\<lambda>x. x)) F"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
    83
  by (simp add: has_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    84
63469
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63299
diff changeset
    85
lemma has_derivative_id [derivative_intros, simp]: "(id has_derivative id) (at a)"
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63299
diff changeset
    86
  by (metis eq_id_iff has_derivative_ident)
b6900858dcb9 lots of new theorems about differentiable_on, retracts, ANRs, etc.
paulson <lp15@cam.ac.uk>
parents: 63299
diff changeset
    87
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    88
lemma has_derivative_const[derivative_intros, simp]: "((\<lambda>x. c) has_derivative (\<lambda>x. 0)) F"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
    89
  by (simp add: has_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    90
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    91
lemma (in bounded_linear) bounded_linear: "bounded_linear f" ..
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    92
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    93
lemma (in bounded_linear) has_derivative:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    94
  "(g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f (g x)) has_derivative (\<lambda>x. f (g' x))) F"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63079
diff changeset
    95
  unfolding has_derivative_def
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
    96
  by (auto simp add: bounded_linear_compose [OF bounded_linear] scaleR diff dest: tendsto)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
    97
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
    98
lemmas has_derivative_scaleR_right [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
    99
  bounded_linear.has_derivative [OF bounded_linear_scaleR_right]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   100
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   101
lemmas has_derivative_scaleR_left [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   102
  bounded_linear.has_derivative [OF bounded_linear_scaleR_left]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   103
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   104
lemmas has_derivative_mult_right [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   105
  bounded_linear.has_derivative [OF bounded_linear_mult_right]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   106
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   107
lemmas has_derivative_mult_left [derivative_intros] =
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   108
  bounded_linear.has_derivative [OF bounded_linear_mult_left]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   109
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   110
lemmas has_derivative_of_real[derivative_intros, simp] = 
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   111
  bounded_linear.has_derivative[OF bounded_linear_of_real] 
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   112
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   113
lemma has_derivative_add[simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   114
  assumes f: "(f has_derivative f') F"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   115
    and g: "(g has_derivative g') F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   116
  shows "((\<lambda>x. f x + g x) has_derivative (\<lambda>x. f' x + g' x)) F"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   117
  unfolding has_derivative_def
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   118
proof safe
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   119
  let ?x = "Lim F (\<lambda>x. x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   120
  let ?D = "\<lambda>f f' y. ((f y - f ?x) - f' (y - ?x)) /\<^sub>R norm (y - ?x)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   121
  have "((\<lambda>x. ?D f f' x + ?D g g' x) \<longlongrightarrow> (0 + 0)) F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   122
    using f g by (intro tendsto_add) (auto simp: has_derivative_def)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   123
  then show "(?D (\<lambda>x. f x + g x) (\<lambda>x. f' x + g' x) \<longlongrightarrow> 0) F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   124
    by (simp add: field_simps scaleR_add_right scaleR_diff_right)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   125
qed (blast intro: bounded_linear_add f g has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   126
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   127
lemma has_derivative_sum[simp, derivative_intros]:
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   128
  "(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) F) \<Longrightarrow>
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   129
    ((\<lambda>x. \<Sum>i\<in>I. f i x) has_derivative (\<lambda>x. \<Sum>i\<in>I. f' i x)) F"
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   130
  by (induct I rule: infinite_finite_induct) simp_all
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   131
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   132
lemma has_derivative_minus[simp, derivative_intros]:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   133
  "(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. - f x) has_derivative (\<lambda>x. - f' x)) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   134
  using has_derivative_scaleR_right[of f f' F "-1"] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   135
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   136
lemma has_derivative_diff[simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   137
  "(f has_derivative f') F \<Longrightarrow> (g has_derivative g') F \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   138
    ((\<lambda>x. f x - g x) has_derivative (\<lambda>x. f' x - g' x)) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   139
  by (simp only: diff_conv_add_uminus has_derivative_add has_derivative_minus)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   140
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   141
lemma has_derivative_at_within:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   142
  "(f has_derivative f') (at x within s) \<longleftrightarrow>
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   143
    (bounded_linear f' \<and> ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s))"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   144
  by (cases "at x within s = bot") (simp_all add: has_derivative_def Lim_ident_at)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   145
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   146
lemma has_derivative_iff_norm:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   147
  "(f has_derivative f') (at x within s) \<longleftrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   148
    bounded_linear f' \<and> ((\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   149
  using tendsto_norm_zero_iff[of _ "at x within s", where 'b="'b", symmetric]
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   150
  by (simp add: has_derivative_at_within divide_inverse ac_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   151
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   152
lemma has_derivative_at:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   153
  "(f has_derivative D) (at x) \<longleftrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   154
    (bounded_linear D \<and> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) \<midarrow>0\<rightarrow> 0)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   155
  unfolding has_derivative_iff_norm LIM_offset_zero_iff[of _ _ x] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   156
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   157
lemma field_has_derivative_at:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   158
  fixes x :: "'a::real_normed_field"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   159
  shows "(f has_derivative (*) D) (at x) \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D" (is "?lhs = ?rhs")
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   160
proof -
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   161
  have "?lhs = (\<lambda>h. norm (f (x + h) - f x - D * h) / norm h) \<midarrow>0 \<rightarrow> 0"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   162
    by (simp add: bounded_linear_mult_right has_derivative_at)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   163
  also have "... = (\<lambda>y. norm ((f (x + y) - f x - D * y) / y)) \<midarrow>0\<rightarrow> 0"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   164
    by (simp cong: LIM_cong flip: nonzero_norm_divide)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   165
  also have "... = (\<lambda>y. norm ((f (x + y) - f x) / y - D / y * y)) \<midarrow>0\<rightarrow> 0"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   166
    by (simp only: diff_divide_distrib times_divide_eq_left [symmetric])
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   167
  also have "... = ?rhs"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   168
    by (simp add: tendsto_norm_zero_iff LIM_zero_iff cong: LIM_cong)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   169
  finally show ?thesis .
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   170
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   171
70999
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   172
lemma has_derivative_iff_Ex:
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   173
  "(f has_derivative f') (at x) \<longleftrightarrow>
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   174
    bounded_linear f' \<and> (\<exists>e. (\<forall>h. f (x+h) = f x + f' h + e h) \<and> ((\<lambda>h. norm (e h) / norm h) \<longlongrightarrow> 0) (at 0))"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   175
  unfolding has_derivative_at by force
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   176
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   177
lemma has_derivative_at_within_iff_Ex:
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   178
  assumes "x \<in> S" "open S"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   179
  shows "(f has_derivative f') (at x within S) \<longleftrightarrow>
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   180
         bounded_linear f' \<and> (\<exists>e. (\<forall>h. x+h \<in> S \<longrightarrow> f (x+h) = f x + f' h + e h) \<and> ((\<lambda>h. norm (e h) / norm h) \<longlongrightarrow> 0) (at 0))"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   181
    (is "?lhs = ?rhs")
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   182
proof safe
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   183
  show "bounded_linear f'"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   184
    if "(f has_derivative f') (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   185
    using has_derivative_bounded_linear that by blast
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   186
  show "\<exists>e. (\<forall>h. x + h \<in> S \<longrightarrow> f (x + h) = f x + f' h + e h) \<and> (\<lambda>h. norm (e h) / norm h) \<midarrow>0\<rightarrow> 0"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   187
    if "(f has_derivative f') (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   188
    by (metis (full_types) assms that has_derivative_iff_Ex at_within_open)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   189
  show "(f has_derivative f') (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   190
    if "bounded_linear f'"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   191
      and eq [rule_format]: "\<forall>h. x + h \<in> S \<longrightarrow> f (x + h) = f x + f' h + e h"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   192
      and 0: "(\<lambda>h. norm (e (h::'a)::'b) / norm h) \<midarrow>0\<rightarrow> 0"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   193
    for e 
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   194
  proof -
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   195
    have 1: "f y - f x = f' (y-x) + e (y-x)" if "y \<in> S" for y
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   196
      using eq [of "y-x"] that by simp
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   197
    have 2: "((\<lambda>y. norm (e (y-x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   198
      by (simp add: "0" assms tendsto_offset_zero_iff)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   199
    have "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S)"
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   200
      by (simp add: Lim_cong_within 1 2)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   201
    then show ?thesis
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   202
      by (simp add: has_derivative_iff_norm \<open>bounded_linear f'\<close>)
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   203
  qed
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   204
qed
5b753486c075 Inverse function theorem + lemmas
paulson <lp15@cam.ac.uk>
parents: 70707
diff changeset
   205
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   206
lemma has_derivativeI:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   207
  "bounded_linear f' \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   208
    ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   209
    (f has_derivative f') (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   210
  by (simp add: has_derivative_at_within)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   211
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   212
lemma has_derivativeI_sandwich:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   213
  assumes e: "0 < e"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   214
    and bounded: "bounded_linear f'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   215
    and sandwich: "(\<And>y. y \<in> s \<Longrightarrow> y \<noteq> x \<Longrightarrow> dist y x < e \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   216
      norm ((f y - f x) - f' (y - x)) / norm (y - x) \<le> H y)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   217
    and "(H \<longlongrightarrow> 0) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   218
  shows "(f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   219
  unfolding has_derivative_iff_norm
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   220
proof safe
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   221
  show "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   222
  proof (rule tendsto_sandwich[where f="\<lambda>x. 0"])
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   223
    show "(H \<longlongrightarrow> 0) (at x within s)" by fact
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   224
    show "eventually (\<lambda>n. norm (f n - f x - f' (n - x)) / norm (n - x) \<le> H n) (at x within s)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   225
      unfolding eventually_at using e sandwich by auto
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
   226
  qed (auto simp: le_divide_eq)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   227
qed fact
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   228
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   229
lemma has_derivative_subset:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   230
  "(f has_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> (f has_derivative f') (at x within t)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   231
  by (auto simp add: has_derivative_iff_norm intro: tendsto_within_subset)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   232
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   233
lemmas has_derivative_within_subset = has_derivative_subset
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   234
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   235
lemma has_derivative_within_singleton_iff:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   236
  "(f has_derivative g) (at x within {x}) \<longleftrightarrow> bounded_linear g"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   237
  by (auto intro!: has_derivativeI_sandwich[where e=1] has_derivative_bounded_linear)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   238
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   239
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   240
subsubsection \<open>Limit transformation for derivatives\<close>
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   241
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   242
lemma has_derivative_transform_within:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   243
  assumes "(f has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   244
    and "0 < d"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   245
    and "x \<in> s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   246
    and "\<And>x'. \<lbrakk>x' \<in> s; dist x' x < d\<rbrakk> \<Longrightarrow> f x' = g x'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   247
  shows "(g has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   248
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   249
  unfolding has_derivative_within
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   250
  by (force simp add: intro: Lim_transform_within)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   251
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   252
lemma has_derivative_transform_within_open:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   253
  assumes "(f has_derivative f') (at x within t)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   254
    and "open s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   255
    and "x \<in> s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   256
    and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   257
  shows "(g has_derivative f') (at x within t)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   258
  using assms unfolding has_derivative_within
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   259
  by (force simp add: intro: Lim_transform_within_open)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   260
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   261
lemma has_derivative_transform:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   262
  assumes "x \<in> s" "\<And>x. x \<in> s \<Longrightarrow> g x = f x"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   263
  assumes "(f has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   264
  shows "(g has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   265
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   266
  by (intro has_derivative_transform_within[OF _ zero_less_one, where g=g]) auto
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   267
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   268
lemma has_derivative_transform_eventually:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   269
  assumes "(f has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   270
    "(\<forall>\<^sub>F x' in at x within s. f x' = g x')"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   271
  assumes "f x = g x" "x \<in> s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   272
  shows "(g has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   273
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   274
proof -
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   275
  from assms(2,3) obtain d where "d > 0" "\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   276
    by (force simp: eventually_at)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   277
  from has_derivative_transform_within[OF assms(1) this(1) assms(4) this(2)]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   278
  show ?thesis .
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   279
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   280
71029
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   281
lemma has_field_derivative_transform_within:
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   282
  assumes "(f has_field_derivative f') (at a within S)"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   283
    and "0 < d"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   284
    and "a \<in> S"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   285
    and "\<And>x. \<lbrakk>x \<in> S; dist x a < d\<rbrakk> \<Longrightarrow> f x = g x"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   286
  shows "(g has_field_derivative f') (at a within S)"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   287
  using assms unfolding has_field_derivative_def
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   288
  by (metis has_derivative_transform_within)
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   289
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   290
lemma has_field_derivative_transform_within_open:
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   291
  assumes "(f has_field_derivative f') (at a)"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   292
    and "open S" "a \<in> S"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   293
    and "\<And>x. x \<in> S \<Longrightarrow> f x = g x"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   294
  shows "(g has_field_derivative f') (at a)"
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   295
  using assms unfolding has_field_derivative_def
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   296
  by (metis has_derivative_transform_within_open)
934e0044e94b Moved or deleted some out of place material, also eliminating obsolete naming conventions
paulson <lp15@cam.ac.uk>
parents: 70999
diff changeset
   297
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   298
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   299
subsection \<open>Continuity\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   300
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   301
lemma has_derivative_continuous:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   302
  assumes f: "(f has_derivative f') (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   303
  shows "continuous (at x within s) f"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   304
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   305
  from f interpret F: bounded_linear f'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   306
    by (rule has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   307
  note F.tendsto[tendsto_intros]
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   308
  let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   309
  have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x))"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   310
    using f unfolding has_derivative_iff_norm by blast
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   311
  then have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x) * norm (y - x))" (is ?m)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   312
    by (rule tendsto_mult_zero) (auto intro!: tendsto_eq_intros)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   313
  also have "?m \<longleftrightarrow> ?L (\<lambda>y. norm ((f y - f x) - f' (y - x)))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   314
    by (intro filterlim_cong) (simp_all add: eventually_at_filter)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   315
  finally have "?L (\<lambda>y. (f y - f x) - f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   316
    by (rule tendsto_norm_zero_cancel)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   317
  then have "?L (\<lambda>y. ((f y - f x) - f' (y - x)) + f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   318
    by (rule tendsto_eq_intros) (auto intro!: tendsto_eq_intros simp: F.zero)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   319
  then have "?L (\<lambda>y. f y - f x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   320
    by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   321
  from tendsto_add[OF this tendsto_const, of "f x"] show ?thesis
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   322
    by (simp add: continuous_within)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   323
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   324
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   325
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   326
subsection \<open>Composition\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   327
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   328
lemma tendsto_at_iff_tendsto_nhds_within:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   329
  "f x = y \<Longrightarrow> (f \<longlongrightarrow> y) (at x within s) \<longleftrightarrow> (f \<longlongrightarrow> y) (inf (nhds x) (principal s))"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   330
  unfolding tendsto_def eventually_inf_principal eventually_at_filter
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
   331
  by (intro ext all_cong imp_cong) (auto elim!: eventually_mono)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   332
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   333
lemma has_derivative_in_compose:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   334
  assumes f: "(f has_derivative f') (at x within s)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   335
    and g: "(g has_derivative g') (at (f x) within (f`s))"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   336
  shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   337
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   338
  from f interpret F: bounded_linear f'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   339
    by (rule has_derivative_bounded_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   340
  from g interpret G: bounded_linear g'
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   341
    by (rule has_derivative_bounded_linear)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   342
  from F.bounded obtain kF where kF: "\<And>x. norm (f' x) \<le> norm x * kF"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   343
    by fast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   344
  from G.bounded obtain kG where kG: "\<And>x. norm (g' x) \<le> norm x * kG"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   345
    by fast
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   346
  note G.tendsto[tendsto_intros]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   347
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   348
  let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   349
  let ?D = "\<lambda>f f' x y. (f y - f x) - f' (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   350
  let ?N = "\<lambda>f f' x y. norm (?D f f' x y) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   351
  let ?gf = "\<lambda>x. g (f x)" and ?gf' = "\<lambda>x. g' (f' x)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
   352
  define Nf where "Nf = ?N f f' x"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
   353
  define Ng where [abs_def]: "Ng y = ?N g g' (f x) (f y)" for y
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   354
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   355
  show ?thesis
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   356
  proof (rule has_derivativeI_sandwich[of 1])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   357
    show "bounded_linear (\<lambda>x. g' (f' x))"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   358
      using f g by (blast intro: bounded_linear_compose has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   359
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   360
    fix y :: 'a
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   361
    assume neq: "y \<noteq> x"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   362
    have "?N ?gf ?gf' x y = norm (g' (?D f f' x y) + ?D g g' (f x) (f y)) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   363
      by (simp add: G.diff G.add field_simps)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   364
    also have "\<dots> \<le> norm (g' (?D f f' x y)) / norm (y - x) + Ng y * (norm (f y - f x) / norm (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   365
      by (simp add: add_divide_distrib[symmetric] divide_right_mono norm_triangle_ineq G.zero Ng_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   366
    also have "\<dots> \<le> Nf y * kG + Ng y * (Nf y + kF)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   367
    proof (intro add_mono mult_left_mono)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   368
      have "norm (f y - f x) = norm (?D f f' x y + f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   369
        by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   370
      also have "\<dots> \<le> norm (?D f f' x y) + norm (f' (y - x))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   371
        by (rule norm_triangle_ineq)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   372
      also have "\<dots> \<le> norm (?D f f' x y) + norm (y - x) * kF"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   373
        using kF by (intro add_mono) simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   374
      finally show "norm (f y - f x) / norm (y - x) \<le> Nf y + kF"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   375
        by (simp add: neq Nf_def field_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   376
    qed (use kG in \<open>simp_all add: Ng_def Nf_def neq zero_le_divide_iff field_simps\<close>)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   377
    finally show "?N ?gf ?gf' x y \<le> Nf y * kG + Ng y * (Nf y + kF)" .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   378
  next
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   379
    have [tendsto_intros]: "?L Nf"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   380
      using f unfolding has_derivative_iff_norm Nf_def ..
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   381
    from f have "(f \<longlongrightarrow> f x) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   382
      by (blast intro: has_derivative_continuous continuous_within[THEN iffD1])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   383
    then have f': "LIM x at x within s. f x :> inf (nhds (f x)) (principal (f`s))"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   384
      unfolding filterlim_def
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   385
      by (simp add: eventually_filtermap eventually_at_filter le_principal)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   386
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   387
    have "((?N g  g' (f x)) \<longlongrightarrow> 0) (at (f x) within f`s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   388
      using g unfolding has_derivative_iff_norm ..
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   389
    then have g': "((?N g  g' (f x)) \<longlongrightarrow> 0) (inf (nhds (f x)) (principal (f`s)))"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   390
      by (rule tendsto_at_iff_tendsto_nhds_within[THEN iffD1, rotated]) simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   391
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   392
    have [tendsto_intros]: "?L Ng"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   393
      unfolding Ng_def by (rule filterlim_compose[OF g' f'])
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   394
    show "((\<lambda>y. Nf y * kG + Ng y * (Nf y + kF)) \<longlongrightarrow> 0) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   395
      by (intro tendsto_eq_intros) auto
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   396
  qed simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   397
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   398
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   399
lemma has_derivative_compose:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   400
  "(f has_derivative f') (at x within s) \<Longrightarrow> (g has_derivative g') (at (f x)) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   401
  ((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   402
  by (blast intro: has_derivative_in_compose has_derivative_subset)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   403
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   404
lemma has_derivative_in_compose2:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   405
  assumes "\<And>x. x \<in> t \<Longrightarrow> (g has_derivative g' x) (at x within t)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   406
  assumes "f ` s \<subseteq> t" "x \<in> s"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   407
  assumes "(f has_derivative f') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   408
  shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>y. g' (f x) (f' y))) (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   409
  using assms
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   410
  by (auto intro: has_derivative_within_subset intro!: has_derivative_in_compose[of f f' x s g])
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   411
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   412
lemma (in bounded_bilinear) FDERIV:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   413
  assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   414
  shows "((\<lambda>x. f x ** g x) has_derivative (\<lambda>h. f x ** g' h + f' h ** g x)) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   415
proof -
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   416
  from bounded_linear.bounded [OF has_derivative_bounded_linear [OF f]]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   417
  obtain KF where norm_F: "\<And>x. norm (f' x) \<le> norm x * KF" by fast
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   418
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   419
  from pos_bounded obtain K
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   420
    where K: "0 < K" and norm_prod: "\<And>a b. norm (a ** b) \<le> norm a * norm b * K"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   421
    by fast
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   422
  let ?D = "\<lambda>f f' y. f y - f x - f' (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   423
  let ?N = "\<lambda>f f' y. norm (?D f f' y) / norm (y - x)"
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
   424
  define Ng where "Ng = ?N g g'"
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
   425
  define Nf where "Nf = ?N f f'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   426
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   427
  let ?fun1 = "\<lambda>y. norm (f y ** g y - f x ** g x - (f x ** g' (y - x) + f' (y - x) ** g x)) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   428
  let ?fun2 = "\<lambda>y. norm (f x) * Ng y * K + Nf y * norm (g y) * K + KF * norm (g y - g x) * K"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   429
  let ?F = "at x within s"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   430
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   431
  show ?thesis
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   432
  proof (rule has_derivativeI_sandwich[of 1])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   433
    show "bounded_linear (\<lambda>h. f x ** g' h + f' h ** g x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   434
      by (intro bounded_linear_add
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   435
        bounded_linear_compose [OF bounded_linear_right] bounded_linear_compose [OF bounded_linear_left]
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   436
        has_derivative_bounded_linear [OF g] has_derivative_bounded_linear [OF f])
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   437
  next
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   438
    from g have "(g \<longlongrightarrow> g x) ?F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   439
      by (intro continuous_within[THEN iffD1] has_derivative_continuous)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   440
    moreover from f g have "(Nf \<longlongrightarrow> 0) ?F" "(Ng \<longlongrightarrow> 0) ?F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   441
      by (simp_all add: has_derivative_iff_norm Ng_def Nf_def)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   442
    ultimately have "(?fun2 \<longlongrightarrow> norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K) ?F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   443
      by (intro tendsto_intros) (simp_all add: LIM_zero_iff)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
   444
    then show "(?fun2 \<longlongrightarrow> 0) ?F"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   445
      by simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   446
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   447
    fix y :: 'd
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   448
    assume "y \<noteq> x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   449
    have "?fun1 y =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   450
        norm (f x ** ?D g g' y + ?D f f' y ** g y + f' (y - x) ** (g y - g x)) / norm (y - x)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   451
      by (simp add: diff_left diff_right add_left add_right field_simps)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   452
    also have "\<dots> \<le> (norm (f x) * norm (?D g g' y) * K + norm (?D f f' y) * norm (g y) * K +
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   453
        norm (y - x) * KF * norm (g y - g x) * K) / norm (y - x)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   454
      by (intro divide_right_mono mult_mono'
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   455
                order_trans [OF norm_triangle_ineq add_mono]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   456
                order_trans [OF norm_prod mult_right_mono]
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   457
                mult_nonneg_nonneg order_refl norm_ge_zero norm_F
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   458
                K [THEN order_less_imp_le])
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   459
    also have "\<dots> = ?fun2 y"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   460
      by (simp add: add_divide_distrib Ng_def Nf_def)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   461
    finally show "?fun1 y \<le> ?fun2 y" .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   462
  qed simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   463
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   464
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   465
lemmas has_derivative_mult[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_mult]
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   466
lemmas has_derivative_scaleR[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_scaleR]
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   467
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   468
lemma has_derivative_prod[simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   469
  fixes f :: "'i \<Rightarrow> 'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   470
  shows "(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) (at x within S)) \<Longrightarrow>
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   471
    ((\<lambda>x. \<Prod>i\<in>I. f i x) has_derivative (\<lambda>y. \<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x))) (at x within S)"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   472
proof (induct I rule: infinite_finite_induct)
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   473
  case infinite
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   474
  then show ?case by simp
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   475
next
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   476
  case empty
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   477
  then show ?case by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   478
next
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   479
  case (insert i I)
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   480
  let ?P = "\<lambda>y. f i x * (\<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x)) + (f' i y) * (\<Prod>i\<in>I. f i x)"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   481
  have "((\<lambda>x. f i x * (\<Prod>i\<in>I. f i x)) has_derivative ?P) (at x within S)"
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   482
    using insert by (intro has_derivative_mult) auto
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   483
  also have "?P = (\<lambda>y. \<Sum>i'\<in>insert i I. f' i' y * (\<Prod>j\<in>insert i I - {i'}. f j x))"
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   484
    using insert(1,2)
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   485
    by (auto simp add: sum_distrib_left insert_Diff_if intro!: ext sum.cong)
63915
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   486
  finally show ?case
bab633745c7f tuned proofs;
wenzelm
parents: 63717
diff changeset
   487
    using insert by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   488
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   489
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   490
lemma has_derivative_power[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   491
  fixes f :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   492
  assumes f: "(f has_derivative f') (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   493
  shows "((\<lambda>x. f x^n) has_derivative (\<lambda>y. of_nat n * f' y * f x^(n - 1))) (at x within S)"
64272
f76b6dda2e56 setprod -> prod
nipkow
parents: 64267
diff changeset
   494
  using has_derivative_prod[OF f, of "{..< n}"] by (simp add: prod_constant ac_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   495
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   496
lemma has_derivative_inverse':
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   497
  fixes x :: "'a::real_normed_div_algebra"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   498
  assumes x: "x \<noteq> 0"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   499
  shows "(inverse has_derivative (\<lambda>h. - (inverse x * h * inverse x))) (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   500
    (is "(_ has_derivative ?f) _")
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   501
proof (rule has_derivativeI_sandwich)
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   502
  show "bounded_linear (\<lambda>h. - (inverse x * h * inverse x))"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   503
    by (simp add: bounded_linear_minus bounded_linear_mult_const bounded_linear_mult_right)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   504
  show "0 < norm x" using x by simp
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   505
  have "(inverse \<longlongrightarrow> inverse x) (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   506
    using tendsto_inverse tendsto_ident_at x by auto
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   507
  then show "((\<lambda>y. norm (inverse y - inverse x) * norm (inverse x)) \<longlongrightarrow> 0) (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   508
    by (simp add: LIM_zero_iff tendsto_mult_left_zero tendsto_norm_zero)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   509
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   510
  fix y :: 'a
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   511
  assume h: "y \<noteq> x" "dist y x < norm x"
62397
5ae24f33d343 Substantial new material for multivariate analysis. Also removal of some duplicates.
paulson <lp15@cam.ac.uk>
parents: 61976
diff changeset
   512
  then have "y \<noteq> 0" by auto
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   513
  have "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x) 
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   514
        = norm (- (inverse y * (y - x) * inverse x - inverse x * (y - x) * inverse x)) /
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   515
                norm (y - x)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   516
    by (simp add: \<open>y \<noteq> 0\<close> inverse_diff_inverse x)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   517
  also have "... = norm ((inverse y - inverse x) * (y - x) * inverse x) / norm (y - x)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   518
    by (simp add: left_diff_distrib norm_minus_commute)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   519
  also have "\<dots> \<le> norm (inverse y - inverse x) * norm (y - x) * norm (inverse x) / norm (y - x)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   520
    by (simp add: norm_mult)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   521
  also have "\<dots> = norm (inverse y - inverse x) * norm (inverse x)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   522
    by simp
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   523
  finally show "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x) \<le>
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   524
    norm (inverse y - inverse x) * norm (inverse x)" .
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   525
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   526
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   527
lemma has_derivative_inverse[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   528
  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   529
  assumes x:  "f x \<noteq> 0"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   530
    and f: "(f has_derivative f') (at x within S)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   531
  shows "((\<lambda>x. inverse (f x)) has_derivative (\<lambda>h. - (inverse (f x) * f' h * inverse (f x))))
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   532
    (at x within S)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   533
  using has_derivative_compose[OF f has_derivative_inverse', OF x] .
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   534
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   535
lemma has_derivative_divide[simp, derivative_intros]:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   536
  fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   537
  assumes f: "(f has_derivative f') (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   538
    and g: "(g has_derivative g') (at x within S)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   539
  assumes x: "g x \<noteq> 0"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   540
  shows "((\<lambda>x. f x / g x) has_derivative
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   541
                (\<lambda>h. - f x * (inverse (g x) * g' h * inverse (g x)) + f' h / g x)) (at x within S)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   542
  using has_derivative_mult[OF f has_derivative_inverse[OF x g]]
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
   543
  by (simp add: field_simps)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   544
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   545
lemma has_derivative_power_int':
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   546
  fixes x :: "'a::real_normed_field"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   547
  assumes x: "x \<noteq> 0"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   548
  shows "((\<lambda>x. power_int x n) has_derivative (\<lambda>y. y * (of_int n * power_int x (n - 1)))) (at x within S)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   549
proof (cases n rule: int_cases4)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   550
  case (nonneg n)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   551
  thus ?thesis using x
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   552
    by (cases "n = 0") (auto intro!: derivative_eq_intros simp: field_simps power_int_diff fun_eq_iff
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   553
                             simp flip: power_Suc)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   554
next
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   555
  case (neg n)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   556
  thus ?thesis using x
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   557
    by (auto intro!: derivative_eq_intros simp: field_simps power_int_diff power_int_minus
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   558
             simp flip: power_Suc power_Suc2 power_add)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   559
qed
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   560
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   561
lemma has_derivative_power_int[simp, derivative_intros]:
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   562
  fixes f :: "_ \<Rightarrow> 'a::real_normed_field"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   563
  assumes x:  "f x \<noteq> 0"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   564
    and f: "(f has_derivative f') (at x within S)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   565
  shows "((\<lambda>x. power_int (f x) n) has_derivative (\<lambda>h. f' h * (of_int n * power_int (f x) (n - 1))))
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   566
           (at x within S)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   567
  using has_derivative_compose[OF f has_derivative_power_int', OF x] .
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   568
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   569
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   570
text \<open>Conventional form requires mult-AC laws. Types real and complex only.\<close>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   571
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   572
lemma has_derivative_divide'[derivative_intros]:
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   573
  fixes f :: "_ \<Rightarrow> 'a::real_normed_field"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   574
  assumes f: "(f has_derivative f') (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   575
    and g: "(g has_derivative g') (at x within S)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   576
    and x: "g x \<noteq> 0"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   577
  shows "((\<lambda>x. f x / g x) has_derivative (\<lambda>h. (f' h * g x - f x * g' h) / (g x * g x))) (at x within S)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   578
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   579
  have "f' h / g x - f x * (inverse (g x) * g' h * inverse (g x)) =
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   580
      (f' h * g x - f x * g' h) / (g x * g x)" for h
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   581
    by (simp add: field_simps x)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   582
  then show ?thesis
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   583
    using has_derivative_divide [OF f g] x
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   584
    by simp
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   585
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   586
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   587
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   588
subsection \<open>Uniqueness\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   589
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   590
text \<open>
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
   591
This can not generally shown for \<^const>\<open>has_derivative\<close>, as we need to approach the point from
63627
6ddb43c6b711 rename HOL-Multivariate_Analysis to HOL-Analysis.
hoelzl
parents: 63558
diff changeset
   592
all directions. There is a proof in \<open>Analysis\<close> for \<open>euclidean_space\<close>.
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   593
\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   594
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   595
lemma has_derivative_at2: "(f has_derivative f') (at x) \<longleftrightarrow>
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   596
    bounded_linear f' \<and> ((\<lambda>y. (1 / (norm(y - x))) *\<^sub>R (f y - (f x + f' (y - x)))) \<longlongrightarrow> 0) (at x)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   597
  using has_derivative_within [of f f' x UNIV]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   598
  by simp
71827
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
   599
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   600
lemma has_derivative_zero_unique:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   601
  assumes "((\<lambda>x. 0) has_derivative F) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   602
  shows "F = (\<lambda>h. 0)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   603
proof -
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   604
  interpret F: bounded_linear F
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   605
    using assms by (rule has_derivative_bounded_linear)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   606
  let ?r = "\<lambda>h. norm (F h) / norm h"
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   607
  have *: "?r \<midarrow>0\<rightarrow> 0"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   608
    using assms unfolding has_derivative_at by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   609
  show "F = (\<lambda>h. 0)"
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   610
  proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   611
    show "F h = 0" for h
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   612
    proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   613
      assume **: "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   614
      then have h: "h \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   615
        by (auto simp add: F.zero)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   616
      with ** have "0 < ?r h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   617
        by simp
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   618
      from LIM_D [OF * this] obtain S
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   619
        where S: "0 < S" and r: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < S \<Longrightarrow> ?r x < ?r h"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   620
        by auto
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   621
      from dense [OF S] obtain t where t: "0 < t \<and> t < S" ..
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   622
      let ?x = "scaleR (t / norm h) h"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   623
      have "?x \<noteq> 0" and "norm ?x < S"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   624
        using t h by simp_all
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   625
      then have "?r ?x < ?r h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   626
        by (rule r)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   627
      then show False
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   628
        using t h by (simp add: F.scaleR)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   629
    qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   630
  qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   631
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   632
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   633
lemma has_derivative_unique:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   634
  assumes "(f has_derivative F) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   635
    and "(f has_derivative F') (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   636
  shows "F = F'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   637
proof -
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   638
  have "((\<lambda>x. 0) has_derivative (\<lambda>h. F h - F' h)) (at x)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   639
    using has_derivative_diff [OF assms] by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   640
  then have "(\<lambda>h. F h - F' h) = (\<lambda>h. 0)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   641
    by (rule has_derivative_zero_unique)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   642
  then show "F = F'"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   643
    unfolding fun_eq_iff right_minus_eq .
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   644
qed
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   645
71827
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
   646
lemma has_derivative_Uniq: "\<exists>\<^sub>\<le>\<^sub>1F. (f has_derivative F) (at x)"
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
   647
  by (simp add: Uniq_def has_derivative_unique)
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
   648
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   649
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   650
subsection \<open>Differentiability predicate\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   651
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   652
definition differentiable :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   653
    (infix "differentiable" 50)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   654
  where "f differentiable F \<longleftrightarrow> (\<exists>D. (f has_derivative D) F)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   655
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   656
lemma differentiable_subset:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   657
  "f differentiable (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f differentiable (at x within t)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   658
  unfolding differentiable_def by (blast intro: has_derivative_subset)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   659
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   660
lemmas differentiable_within_subset = differentiable_subset
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   661
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   662
lemma differentiable_ident [simp, derivative_intros]: "(\<lambda>x. x) differentiable F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   663
  unfolding differentiable_def by (blast intro: has_derivative_ident)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   664
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   665
lemma differentiable_const [simp, derivative_intros]: "(\<lambda>z. a) differentiable F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   666
  unfolding differentiable_def by (blast intro: has_derivative_const)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   667
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   668
lemma differentiable_in_compose:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   669
  "f differentiable (at (g x) within (g`s)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   670
    (\<lambda>x. f (g x)) differentiable (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   671
  unfolding differentiable_def by (blast intro: has_derivative_in_compose)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   672
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   673
lemma differentiable_compose:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   674
  "f differentiable (at (g x)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   675
    (\<lambda>x. f (g x)) differentiable (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   676
  by (blast intro: differentiable_in_compose differentiable_subset)
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   677
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   678
lemma differentiable_add [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   679
  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x + g x) differentiable F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   680
  unfolding differentiable_def by (blast intro: has_derivative_add)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   681
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   682
lemma differentiable_sum[simp, derivative_intros]:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   683
  assumes "finite s" "\<forall>a\<in>s. (f a) differentiable net"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   684
  shows "(\<lambda>x. sum (\<lambda>a. f a x) s) differentiable net"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   685
proof -
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   686
  from bchoice[OF assms(2)[unfolded differentiable_def]]
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   687
  show ?thesis
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   688
    by (auto intro!: has_derivative_sum simp: differentiable_def)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   689
qed
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   690
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   691
lemma differentiable_minus [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   692
  "f differentiable F \<Longrightarrow> (\<lambda>x. - f x) differentiable F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   693
  unfolding differentiable_def by (blast intro: has_derivative_minus)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   694
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   695
lemma differentiable_diff [simp, derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   696
  "f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x - g x) differentiable F"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   697
  unfolding differentiable_def by (blast intro: has_derivative_diff)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   698
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   699
lemma differentiable_mult [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   700
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   701
  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   702
    (\<lambda>x. f x * g x) differentiable (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   703
  unfolding differentiable_def by (blast intro: has_derivative_mult)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   704
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   705
lemma differentiable_inverse [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   706
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   707
  shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   708
    (\<lambda>x. inverse (f x)) differentiable (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   709
  unfolding differentiable_def by (blast intro: has_derivative_inverse)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   710
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   711
lemma differentiable_divide [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   712
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   713
  shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   714
    g x \<noteq> 0 \<Longrightarrow> (\<lambda>x. f x / g x) differentiable (at x within s)"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63079
diff changeset
   715
  unfolding divide_inverse by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   716
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   717
lemma differentiable_power [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   718
  fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   719
  shows "f differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x ^ n) differentiable (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   720
  unfolding differentiable_def by (blast intro: has_derivative_power)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   721
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   722
lemma differentiable_power_int [simp, derivative_intros]:
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   723
  fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   724
  shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   725
           (\<lambda>x. power_int (f x) n) differentiable (at x within s)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   726
  unfolding differentiable_def by (blast intro: has_derivative_power_int)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
   727
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   728
lemma differentiable_scaleR [simp, derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   729
  "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   730
    (\<lambda>x. f x *\<^sub>R g x) differentiable (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   731
  unfolding differentiable_def by (blast intro: has_derivative_scaleR)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   732
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   733
lemma has_derivative_imp_has_field_derivative:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   734
  "(f has_derivative D) F \<Longrightarrow> (\<And>x. x * D' = D x) \<Longrightarrow> (f has_field_derivative D') F"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   735
  unfolding has_field_derivative_def
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   736
  by (rule has_derivative_eq_rhs[of f D]) (simp_all add: fun_eq_iff mult.commute)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   737
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   738
lemma has_field_derivative_imp_has_derivative:
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   739
  "(f has_field_derivative D) F \<Longrightarrow> (f has_derivative (*) D) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   740
  by (simp add: has_field_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   741
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   742
lemma DERIV_subset:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   743
  "(f has_field_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   744
    (f has_field_derivative f') (at x within t)"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   745
  by (simp add: has_field_derivative_def has_derivative_within_subset)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   746
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   747
lemma has_field_derivative_at_within:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   748
  "(f has_field_derivative f') (at x) \<Longrightarrow> (f has_field_derivative f') (at x within s)"
59862
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   749
  using DERIV_subset by blast
44b3f4fa33ca New material and binomial fix
paulson <lp15@cam.ac.uk>
parents: 59615
diff changeset
   750
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   751
abbreviation (input)
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   752
  DERIV :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   753
    ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   754
  where "DERIV f x :> D \<equiv> (f has_field_derivative D) (at x)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   755
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   756
abbreviation has_real_derivative :: "(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   757
    (infix "(has'_real'_derivative)" 50)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   758
  where "(f has_real_derivative D) F \<equiv> (f has_field_derivative D) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   759
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   760
lemma real_differentiable_def:
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   761
  "f differentiable at x within s \<longleftrightarrow> (\<exists>D. (f has_real_derivative D) (at x within s))"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   762
proof safe
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   763
  assume "f differentiable at x within s"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   764
  then obtain f' where *: "(f has_derivative f') (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   765
    unfolding differentiable_def by auto
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   766
  then obtain c where "f' = ((*) c)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   767
    by (metis real_bounded_linear has_derivative_bounded_linear mult.commute fun_eq_iff)
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   768
  with * show "\<exists>D. (f has_real_derivative D) (at x within s)"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   769
    unfolding has_field_derivative_def by auto
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   770
qed (auto simp: differentiable_def has_field_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   771
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   772
lemma real_differentiableE [elim?]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   773
  assumes f: "f differentiable (at x within s)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   774
  obtains df where "(f has_real_derivative df) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   775
  using assms by (auto simp: real_differentiable_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   776
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   777
lemma has_field_derivative_iff:
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   778
  "(f has_field_derivative D) (at x within S) \<longleftrightarrow>
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   779
    ((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   780
proof -
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   781
  have "((\<lambda>y. norm (f y - f x - D * (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S) 
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   782
      = ((\<lambda>y. (f y - f x) / (y - x) - D) \<longlongrightarrow> 0) (at x within S)"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   783
    apply (subst tendsto_norm_zero_iff[symmetric], rule filterlim_cong)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   784
      apply (simp_all add: eventually_at_filter field_simps nonzero_norm_divide)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   785
    done
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   786
  then show ?thesis
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   787
    by (simp add: has_field_derivative_def has_derivative_iff_norm bounded_linear_mult_right LIM_zero_iff)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   788
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   789
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   790
lemma DERIV_def: "DERIV f x :> D \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   791
  unfolding field_has_derivative_at has_field_derivative_def has_field_derivative_iff ..
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   792
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   793
lemma mult_commute_abs: "(\<lambda>x. x * c) = (*) c"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   794
  for c :: "'a::ab_semigroup_mult"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
   795
  by (simp add: fun_eq_iff mult.commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   796
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   797
lemma DERIV_compose_FDERIV:
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   798
  fixes f::"real\<Rightarrow>real"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   799
  assumes "DERIV f (g x) :> f'"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   800
  assumes "(g has_derivative g') (at x within s)"
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   801
  shows "((\<lambda>x. f (g x)) has_derivative (\<lambda>x. g' x * f')) (at x within s)"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   802
  using assms has_derivative_compose[of g g' x s f "(*) f'"]
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   803
  by (auto simp: has_field_derivative_def ac_simps)
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
   804
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   805
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   806
subsection \<open>Vector derivative\<close>
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   807
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   808
lemma has_field_derivative_iff_has_vector_derivative:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   809
  "(f has_field_derivative y) F \<longleftrightarrow> (f has_vector_derivative y) F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   810
  unfolding has_vector_derivative_def has_field_derivative_def real_scaleR_def mult_commute_abs ..
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   811
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   812
lemma has_field_derivative_subset:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   813
  "(f has_field_derivative y) (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   814
    (f has_field_derivative y) (at x within t)"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   815
  unfolding has_field_derivative_def by (rule has_derivative_subset)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   816
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   817
lemma has_vector_derivative_const[simp, derivative_intros]: "((\<lambda>x. c) has_vector_derivative 0) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   818
  by (auto simp: has_vector_derivative_def)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   819
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   820
lemma has_vector_derivative_id[simp, derivative_intros]: "((\<lambda>x. x) has_vector_derivative 1) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   821
  by (auto simp: has_vector_derivative_def)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   822
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   823
lemma has_vector_derivative_minus[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   824
  "(f has_vector_derivative f') net \<Longrightarrow> ((\<lambda>x. - f x) has_vector_derivative (- f')) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   825
  by (auto simp: has_vector_derivative_def)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   826
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   827
lemma has_vector_derivative_add[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   828
  "(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow>
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   829
    ((\<lambda>x. f x + g x) has_vector_derivative (f' + g')) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   830
  by (auto simp: has_vector_derivative_def scaleR_right_distrib)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   831
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   832
lemma has_vector_derivative_sum[derivative_intros]:
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   833
  "(\<And>i. i \<in> I \<Longrightarrow> (f i has_vector_derivative f' i) net) \<Longrightarrow>
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   834
    ((\<lambda>x. \<Sum>i\<in>I. f i x) has_vector_derivative (\<Sum>i\<in>I. f' i)) net"
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
   835
  by (auto simp: has_vector_derivative_def fun_eq_iff scaleR_sum_right intro!: derivative_eq_intros)
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   836
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   837
lemma has_vector_derivative_diff[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   838
  "(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow>
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   839
    ((\<lambda>x. f x - g x) has_vector_derivative (f' - g')) net"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   840
  by (auto simp: has_vector_derivative_def scaleR_diff_right)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   841
61204
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60758
diff changeset
   842
lemma has_vector_derivative_add_const:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   843
  "((\<lambda>t. g t + z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   844
  apply (intro iffI)
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   845
   apply (force dest: has_vector_derivative_diff [where g = "\<lambda>t. z", OF _ has_vector_derivative_const])
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
   846
  apply (force dest: has_vector_derivative_add [OF _ has_vector_derivative_const])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   847
  done
61204
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60758
diff changeset
   848
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60758
diff changeset
   849
lemma has_vector_derivative_diff_const:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   850
  "((\<lambda>t. g t - z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   851
  using has_vector_derivative_add_const [where z = "-z"]
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   852
  by simp
61204
3e491e34a62e new lemmas and movement of lemmas into place
paulson
parents: 60758
diff changeset
   853
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   854
lemma (in bounded_linear) has_vector_derivative:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   855
  assumes "(g has_vector_derivative g') F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   856
  shows "((\<lambda>x. f (g x)) has_vector_derivative f g') F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   857
  using has_derivative[OF assms[unfolded has_vector_derivative_def]]
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   858
  by (simp add: has_vector_derivative_def scaleR)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   859
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   860
lemma (in bounded_bilinear) has_vector_derivative:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   861
  assumes "(f has_vector_derivative f') (at x within s)"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   862
    and "(g has_vector_derivative g') (at x within s)"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   863
  shows "((\<lambda>x. f x ** g x) has_vector_derivative (f x ** g' + f' ** g x)) (at x within s)"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   864
  using FDERIV[OF assms(1-2)[unfolded has_vector_derivative_def]]
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   865
  by (simp add: has_vector_derivative_def scaleR_right scaleR_left scaleR_right_distrib)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   866
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   867
lemma has_vector_derivative_scaleR[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   868
  "(f has_field_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow>
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   869
    ((\<lambda>x. f x *\<^sub>R g x) has_vector_derivative (f x *\<^sub>R g' + f' *\<^sub>R g x)) (at x within s)"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   870
  unfolding has_field_derivative_iff_has_vector_derivative
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   871
  by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_scaleR])
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   872
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   873
lemma has_vector_derivative_mult[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   874
  "(f has_vector_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   875
    ((\<lambda>x. f x * g x) has_vector_derivative (f x * g' + f' * g x)) (at x within s)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   876
  for f g :: "real \<Rightarrow> 'a::real_normed_algebra"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   877
  by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_mult])
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   878
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   879
lemma has_vector_derivative_of_real[derivative_intros]:
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   880
  "(f has_field_derivative D) F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_vector_derivative (of_real D)) F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   881
  by (rule bounded_linear.has_vector_derivative[OF bounded_linear_of_real])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   882
    (simp add: has_field_derivative_iff_has_vector_derivative)
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   883
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   884
lemma has_vector_derivative_real_field:
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   885
  "(f has_field_derivative f') (at (of_real a)) \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   886
  using has_derivative_compose[of of_real of_real a _ f "(*) f'"] 
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   887
  by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
   888
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   889
lemma has_vector_derivative_continuous:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   890
  "(f has_vector_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   891
  by (auto intro: has_derivative_continuous simp: has_vector_derivative_def)
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   892
70613
8b7f6ecb3369 moved basic theorem
immler
parents: 70346
diff changeset
   893
lemma continuous_on_vector_derivative:
8b7f6ecb3369 moved basic theorem
immler
parents: 70346
diff changeset
   894
  "(\<And>x. x \<in> S \<Longrightarrow> (f has_vector_derivative f' x) (at x within S)) \<Longrightarrow> continuous_on S f"
8b7f6ecb3369 moved basic theorem
immler
parents: 70346
diff changeset
   895
  by (auto simp: continuous_on_eq_continuous_within intro!: has_vector_derivative_continuous)
8b7f6ecb3369 moved basic theorem
immler
parents: 70346
diff changeset
   896
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   897
lemma has_vector_derivative_mult_right[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   898
  fixes a :: "'a::real_normed_algebra"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   899
  shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. a * f x) has_vector_derivative (a * x)) F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   900
  by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_right])
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   901
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   902
lemma has_vector_derivative_mult_left[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   903
  fixes a :: "'a::real_normed_algebra"
60177
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   904
  shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. f x * a) has_vector_derivative (x * a)) F"
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   905
  by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_left])
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   906
2bfcb83531c6 moved basic lemmas about has_vector_derivative
immler
parents: 59867
diff changeset
   907
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   908
subsection \<open>Derivatives\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   909
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
   910
lemma DERIV_D: "DERIV f x :> D \<Longrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   911
  by (simp add: DERIV_def)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   912
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   913
lemma has_field_derivativeD:
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   914
  "(f has_field_derivative D) (at x within S) \<Longrightarrow>
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   915
    ((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   916
  by (simp add: has_field_derivative_iff)
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
   917
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   918
lemma DERIV_const [simp, derivative_intros]: "((\<lambda>x. k) has_field_derivative 0) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   919
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_const]) auto
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   920
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   921
lemma DERIV_ident [simp, derivative_intros]: "((\<lambda>x. x) has_field_derivative 1) F"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   922
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_ident]) auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   923
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   924
lemma field_differentiable_add[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   925
  "(f has_field_derivative f') F \<Longrightarrow> (g has_field_derivative g') F \<Longrightarrow>
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   926
    ((\<lambda>z. f z + g z) has_field_derivative f' + g') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   927
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_add])
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   928
     (auto simp: has_field_derivative_def field_simps mult_commute_abs)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   929
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   930
corollary DERIV_add:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   931
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   932
    ((\<lambda>x. f x + g x) has_field_derivative D + E) (at x within s)"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   933
  by (rule field_differentiable_add)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   934
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   935
lemma field_differentiable_minus[derivative_intros]:
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   936
  "(f has_field_derivative f') F \<Longrightarrow> ((\<lambda>z. - (f z)) has_field_derivative -f') F"
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   937
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus])
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   938
     (auto simp: has_field_derivative_def field_simps mult_commute_abs)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   939
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   940
corollary DERIV_minus:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   941
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   942
    ((\<lambda>x. - f x) has_field_derivative -D) (at x within s)"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   943
  by (rule field_differentiable_minus)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   944
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   945
lemma field_differentiable_diff[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   946
  "(f has_field_derivative f') F \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   947
    (g has_field_derivative g') F \<Longrightarrow> ((\<lambda>z. f z - g z) has_field_derivative f' - g') F"
63092
a949b2a5f51d eliminated use of empty "assms";
wenzelm
parents: 63079
diff changeset
   948
  by (simp only: diff_conv_add_uminus field_differentiable_add field_differentiable_minus)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   949
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   950
corollary DERIV_diff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   951
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   952
    (g has_field_derivative E) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   953
    ((\<lambda>x. f x - g x) has_field_derivative D - E) (at x within s)"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   954
  by (rule field_differentiable_diff)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   955
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   956
lemma DERIV_continuous: "(f has_field_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   957
  by (drule has_derivative_continuous[OF has_field_derivative_imp_has_derivative]) simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   958
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   959
corollary DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   960
  by (rule DERIV_continuous)
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   961
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   962
lemma DERIV_atLeastAtMost_imp_continuous_on:
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   963
  assumes "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   964
  shows "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   965
  by (meson DERIV_isCont assms atLeastAtMost_iff continuous_at_imp_continuous_at_within continuous_on_eq_continuous_within)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
   966
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
   967
lemma DERIV_continuous_on:
63299
71805faedeb2 Integration by substitution
eberlm
parents: 63263
diff changeset
   968
  "(\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative (D x)) (at x within s)) \<Longrightarrow> continuous_on s f"
71805faedeb2 Integration by substitution
eberlm
parents: 63263
diff changeset
   969
  unfolding continuous_on_eq_continuous_within
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   970
  by (intro continuous_at_imp_continuous_on ballI DERIV_continuous)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   971
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   972
lemma DERIV_mult':
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   973
  "(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   974
    ((\<lambda>x. f x * g x) has_field_derivative f x * E + D * g x) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   975
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   976
     (auto simp: field_simps mult_commute_abs dest: has_field_derivative_imp_has_derivative)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   977
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
   978
lemma DERIV_mult[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   979
  "(f has_field_derivative Da) (at x within s) \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   980
    ((\<lambda>x. f x * g x) has_field_derivative Da * g x + Db * f x) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   981
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   982
     (auto simp: field_simps dest: has_field_derivative_imp_has_derivative)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   983
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
   984
text \<open>Derivative of linear multiplication\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   985
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   986
lemma DERIV_cmult:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   987
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   988
    ((\<lambda>x. c * f x) has_field_derivative c * D) (at x within s)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   989
  by (drule DERIV_mult' [OF DERIV_const]) simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
   990
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   991
lemma DERIV_cmult_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   992
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   993
    ((\<lambda>x. f x * c) has_field_derivative D * c) (at x within s)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   994
  using DERIV_cmult by (auto simp add: ac_simps)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
   995
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
   996
lemma DERIV_cmult_Id [simp]: "((*) c has_field_derivative c) (at x within s)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
   997
  using DERIV_ident [THEN DERIV_cmult, where c = c and x = x] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
   998
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
   999
lemma DERIV_cdivide:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1000
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1001
    ((\<lambda>x. f x / c) has_field_derivative D / c) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1002
  using DERIV_cmult_right[of f D x s "1 / c"] by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1003
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1004
lemma DERIV_unique: "DERIV f x :> D \<Longrightarrow> DERIV f x :> E \<Longrightarrow> D = E"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1005
  unfolding DERIV_def by (rule LIM_unique)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1006
71827
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
  1007
lemma DERIV_Uniq: "\<exists>\<^sub>\<le>\<^sub>1D. DERIV f x :> D"
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
  1008
  by (simp add: DERIV_unique Uniq_def)
5e315defb038 the Uniq quantifier
paulson <lp15@cam.ac.uk>
parents: 71029
diff changeset
  1009
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  1010
lemma DERIV_sum[derivative_intros]:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1011
  "(\<And> n. n \<in> S \<Longrightarrow> ((\<lambda>x. f x n) has_field_derivative (f' x n)) F) \<Longrightarrow>
64267
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  1012
    ((\<lambda>x. sum (f x) S) has_field_derivative sum (f' x) S) F"
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  1013
  by (rule has_derivative_imp_has_field_derivative [OF has_derivative_sum])
b9a1486e79be setsum -> sum
nipkow
parents: 63952
diff changeset
  1014
     (auto simp: sum_distrib_left mult_commute_abs dest: has_field_derivative_imp_has_derivative)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1015
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1016
lemma DERIV_inverse'[derivative_intros]:
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1017
  assumes "(f has_field_derivative D) (at x within s)"
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1018
    and "f x \<noteq> 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1019
  shows "((\<lambda>x. inverse (f x)) has_field_derivative - (inverse (f x) * D * inverse (f x)))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1020
    (at x within s)"
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1021
proof -
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
  1022
  have "(f has_derivative (\<lambda>x. x * D)) = (f has_derivative (*) D)"
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1023
    by (rule arg_cong [of "\<lambda>x. x * D"]) (simp add: fun_eq_iff)
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1024
  with assms have "(f has_derivative (\<lambda>x. x * D)) (at x within s)"
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1025
    by (auto dest!: has_field_derivative_imp_has_derivative)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1026
  then show ?thesis using \<open>f x \<noteq> 0\<close>
59867
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1027
    by (auto intro: has_derivative_imp_has_field_derivative has_derivative_inverse)
58043346ca64 given up separate type classes demanding `inverse 0 = 0`
haftmann
parents: 59862
diff changeset
  1028
qed
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1029
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1030
text \<open>Power of \<open>-1\<close>\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1031
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1032
lemma DERIV_inverse:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1033
  "x \<noteq> 0 \<Longrightarrow> ((\<lambda>x. inverse(x)) has_field_derivative - (inverse x ^ Suc (Suc 0))) (at x within s)"
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1034
  by (drule DERIV_inverse' [OF DERIV_ident]) simp
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1035
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1036
text \<open>Derivative of inverse\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1037
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1038
lemma DERIV_inverse_fun:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1039
  "(f has_field_derivative d) (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1040
    ((\<lambda>x. inverse (f x)) has_field_derivative (- (d * inverse(f x ^ Suc (Suc 0))))) (at x within s)"
57514
bdc2c6b40bf2 prefer ac_simps collections over separate name bindings for add and mult
haftmann
parents: 57512
diff changeset
  1041
  by (drule (1) DERIV_inverse') (simp add: ac_simps nonzero_inverse_mult_distrib)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1042
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1043
text \<open>Derivative of quotient\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1044
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1045
lemma DERIV_divide[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1046
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1047
    (g has_field_derivative E) (at x within s) \<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1048
    ((\<lambda>x. f x / g x) has_field_derivative (D * g x - f x * E) / (g x * g x)) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1049
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_divide])
56480
093ea91498e6 field_simps: better support for negation and division, and power
hoelzl
parents: 56479
diff changeset
  1050
     (auto dest: has_field_derivative_imp_has_derivative simp: field_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1051
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1052
lemma DERIV_quotient:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1053
  "(f has_field_derivative d) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1054
    (g has_field_derivative e) (at x within s)\<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1055
    ((\<lambda>y. f y / g y) has_field_derivative (d * g x - (e * f x)) / (g x ^ Suc (Suc 0))) (at x within s)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1056
  by (drule (2) DERIV_divide) (simp add: mult.commute)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1057
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1058
lemma DERIV_power_Suc:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1059
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1060
    ((\<lambda>x. f x ^ Suc n) has_field_derivative (1 + of_nat n) * (D * f x ^ n)) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1061
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1062
     (auto simp: has_field_derivative_def)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1063
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1064
lemma DERIV_power[derivative_intros]:
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1065
  "(f has_field_derivative D) (at x within s) \<Longrightarrow>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1066
    ((\<lambda>x. f x ^ n) has_field_derivative of_nat n * (D * f x ^ (n - Suc 0))) (at x within s)"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1067
  by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1068
     (auto simp: has_field_derivative_def)
31880
6fb86c61747c Added DERIV_intros
hoelzl
parents: 31404
diff changeset
  1069
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1070
lemma DERIV_pow: "((\<lambda>x. x ^ n) has_field_derivative real n * (x ^ (n - Suc 0))) (at x within s)"
61609
77b453bd616f Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
paulson <lp15@cam.ac.uk>
parents: 61552
diff changeset
  1071
  using DERIV_power [OF DERIV_ident] by simp
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1072
71837
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1073
lemma DERIV_power_int [derivative_intros]:
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1074
  assumes [derivative_intros]: "(f has_field_derivative d) (at x within s)" and [simp]: "f x \<noteq> 0"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1075
  shows   "((\<lambda>x. power_int (f x) n) has_field_derivative
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1076
             (of_int n * power_int (f x) (n - 1) * d)) (at x within s)"
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1077
proof (cases n rule: int_cases4)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1078
  case (nonneg n)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1079
  thus ?thesis 
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1080
    by (cases "n = 0")
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1081
       (auto intro!: derivative_eq_intros simp: field_simps power_int_diff
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1082
             simp flip: power_Suc power_Suc2 power_add)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1083
next
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1084
  case (neg n)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1085
  thus ?thesis
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1086
    by (auto intro!: derivative_eq_intros simp: field_simps power_int_diff power_int_minus
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1087
             simp flip: power_Suc power_Suc2 power_add)
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1088
qed
dca11678c495 new constant power_int in HOL
Manuel Eberl <eberlm@in.tum.de>
parents: 71827
diff changeset
  1089
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1090
lemma DERIV_chain': "(f has_field_derivative D) (at x within s) \<Longrightarrow> DERIV g (f x) :> E \<Longrightarrow>
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1091
  ((\<lambda>x. g (f x)) has_field_derivative E * D) (at x within s)"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
  1092
  using has_derivative_compose[of f "(*) D" x s g "(*) E"]
63170
eae6549dbea2 tuned proofs, to allow unfold_abs_def;
wenzelm
parents: 63092
diff changeset
  1093
  by (simp only: has_field_derivative_def mult_commute_abs ac_simps)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1094
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1095
corollary DERIV_chain2: "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1096
  ((\<lambda>x. f (g x)) has_field_derivative Da * Db) (at x within s)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1097
  by (rule DERIV_chain')
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1098
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1099
text \<open>Standard version\<close>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1100
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1101
lemma DERIV_chain:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1102
  "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1103
    (f \<circ> g has_field_derivative Da * Db) (at x within s)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1104
  by (drule (1) DERIV_chain', simp add: o_def mult.commute)
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1105
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1106
lemma DERIV_image_chain:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1107
  "(f has_field_derivative Da) (at (g x) within (g ` s)) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1108
    (g has_field_derivative Db) (at x within s) \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1109
    (f \<circ> g has_field_derivative Da * Db) (at x within s)"
69064
5840724b1d71 Prefix form of infix with * on either side no longer needs special treatment
nipkow
parents: 69022
diff changeset
  1110
  using has_derivative_in_compose [of g "(*) Db" x s f "(*) Da "]
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1111
  by (simp add: has_field_derivative_def o_def mult_commute_abs ac_simps)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1112
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1113
(*These two are from HOL Light: HAS_COMPLEX_DERIVATIVE_CHAIN*)
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1114
lemma DERIV_chain_s:
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1115
  assumes "(\<And>x. x \<in> s \<Longrightarrow> DERIV g x :> g'(x))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1116
    and "DERIV f x :> f'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1117
    and "f x \<in> s"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1118
  shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
57512
cc97b347b301 reduced name variants for assoc and commute on plus and mult
haftmann
parents: 57418
diff changeset
  1119
  by (metis (full_types) DERIV_chain' mult.commute assms)
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1120
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1121
lemma DERIV_chain3: (*HAS_COMPLEX_DERIVATIVE_CHAIN_UNIV*)
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1122
  assumes "(\<And>x. DERIV g x :> g'(x))"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1123
    and "DERIV f x :> f'"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1124
  shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"
55967
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1125
  by (metis UNIV_I DERIV_chain_s [of UNIV] assms)
5dadc93ff3df a few new lemmas
paulson <lp15@cam.ac.uk>
parents: 54230
diff changeset
  1126
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1127
text \<open>Alternative definition for differentiability\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1128
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1129
lemma DERIV_LIM_iff:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1130
  fixes f :: "'a::{real_normed_vector,inverse} \<Rightarrow> 'a"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1131
  shows "((\<lambda>h. (f (a + h) - f a) / h) \<midarrow>0\<rightarrow> D) = ((\<lambda>x. (f x - f a) / (x - a)) \<midarrow>a\<rightarrow> D)" (is "?lhs = ?rhs")
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1132
proof
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1133
  assume ?lhs
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1134
  then have "(\<lambda>x. (f (a + (x + - a)) - f a) / (x + - a)) \<midarrow>0 - - a\<rightarrow> D"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1135
    by (rule LIM_offset)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1136
  then show ?rhs
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1137
    by simp
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1138
next
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1139
  assume ?rhs
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1140
  then have "(\<lambda>x. (f (x+a) - f a) / ((x+a) - a)) \<midarrow>a-a\<rightarrow> D"
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1141
    by (rule LIM_offset)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1142
  then show ?lhs
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1143
    by (simp add: add.commute)
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1144
qed
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1145
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1146
lemma has_field_derivative_cong_ev:
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1147
  assumes "x = y"
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1148
    and *: "eventually (\<lambda>x. x \<in> S \<longrightarrow> f x = g x) (nhds x)"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1149
    and "u = v" "S = t" "x \<in> S"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1150
  shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative v) (at y within t)"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1151
  unfolding has_field_derivative_iff
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1152
proof (rule filterlim_cong)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1153
  from assms have "f y = g y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1154
    by (auto simp: eventually_nhds)
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1155
  with * show "\<forall>\<^sub>F z in at x within S. (f z - f x) / (z - x) = (g z - g y) / (z - y)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1156
    unfolding eventually_at_filter
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1157
    by eventually_elim (auto simp: assms \<open>f y = g y\<close>)
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1158
qed (simp_all add: assms)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1159
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67443
diff changeset
  1160
lemma has_field_derivative_cong_eventually:
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1161
  assumes "eventually (\<lambda>x. f x = g x) (at x within S)" "f x = g x"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1162
  shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative u) (at x within S)"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1163
  unfolding has_field_derivative_iff
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1164
proof (rule tendsto_cong)
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1165
  show "\<forall>\<^sub>F y in at x within S. (f y - f x) / (y - x) = (g y - g x) / (y - x)"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1166
    using assms by (auto elim: eventually_mono)
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1167
qed
67706
4ddc49205f5d Unified the order of zeros and poles; improved reasoning around non-essential singularites
Wenda Li <wl302@cam.ac.uk>
parents: 67443
diff changeset
  1168
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1169
lemma DERIV_cong_ev:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1170
  "x = y \<Longrightarrow> eventually (\<lambda>x. f x = g x) (nhds x) \<Longrightarrow> u = v \<Longrightarrow>
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1171
    DERIV f x :> u \<longleftrightarrow> DERIV g y :> v"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1172
  by (rule has_field_derivative_cong_ev) simp_all
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1173
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1174
lemma DERIV_shift:
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1175
  "(f has_field_derivative y) (at (x + z)) = ((\<lambda>x. f (x + z)) has_field_derivative y) (at x)"
56381
0556204bc230 merged DERIV_intros, has_derivative_intros into derivative_intros
hoelzl
parents: 56371
diff changeset
  1176
  by (simp add: DERIV_def field_simps)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1177
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1178
lemma DERIV_mirror: "(DERIV f (- x) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (- x)) x :> - y)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1179
  for f :: "real \<Rightarrow> real" and x y :: real
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  1180
  by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1181
      tendsto_minus_cancel_left field_simps conj_commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1182
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1183
lemma floor_has_real_derivative:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1184
  fixes f :: "real \<Rightarrow> 'a::{floor_ceiling,order_topology}"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1185
  assumes "isCont f x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1186
    and "f x \<notin> \<int>"
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1187
  shows "((\<lambda>x. floor (f x)) has_real_derivative 0) (at x)"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1188
proof (subst DERIV_cong_ev[OF refl _ refl])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1189
  show "((\<lambda>_. floor (f x)) has_real_derivative 0) (at x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1190
    by simp
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1191
  have "\<forall>\<^sub>F y in at x. \<lfloor>f y\<rfloor> = \<lfloor>f x\<rfloor>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1192
    by (rule eventually_floor_eq[OF assms[unfolded continuous_at]])
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1193
  then show "\<forall>\<^sub>F y in nhds x. real_of_int \<lfloor>f y\<rfloor> = real_of_int \<lfloor>f x\<rfloor>"
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1194
    unfolding eventually_at_filter
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1195
    by eventually_elim auto
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1196
qed
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1197
67685
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
  1198
lemmas has_derivative_floor[derivative_intros] =
bdff8bf0a75b moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
immler
parents: 67443
diff changeset
  1199
  floor_has_real_derivative[THEN DERIV_compose_FDERIV]
63263
c6c95d64607a approximation, derivative, and continuity of floor and ceiling
immler
parents: 63170
diff changeset
  1200
70707
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1201
lemma continuous_floor:
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1202
  fixes x::real
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1203
  shows "x \<notin> \<int> \<Longrightarrow> continuous (at x) (real_of_int \<circ> floor)"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1204
  using floor_has_real_derivative [where f=id]
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1205
  by (auto simp: o_def has_field_derivative_def intro: has_derivative_continuous)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1206
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1207
lemma continuous_frac:
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1208
  fixes x::real
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1209
  assumes "x \<notin> \<int>"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1210
  shows "continuous (at x) frac"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1211
proof -
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1212
  have "isCont (\<lambda>x. real_of_int \<lfloor>x\<rfloor>) x"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1213
    using continuous_floor [OF assms] by (simp add: o_def)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1214
  then have *: "continuous (at x) (\<lambda>x. x - real_of_int \<lfloor>x\<rfloor>)"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1215
    by (intro continuous_intros)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1216
  moreover have "\<forall>\<^sub>F x in nhds x. frac x = x - real_of_int \<lfloor>x\<rfloor>"
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1217
    by (simp add: frac_def)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1218
  ultimately show ?thesis
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1219
    by (simp add: LIM_imp_LIM frac_def isCont_def)
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1220
qed
125705f5965f A little-known material, and some tidying up
paulson <lp15@cam.ac.uk>
parents: 70615
diff changeset
  1221
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1222
text \<open>Caratheodory formulation of derivative at a point\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1223
68644
242d298526a3 de-applying and simplifying proofs
paulson <lp15@cam.ac.uk>
parents: 68638
diff changeset
  1224
lemma CARAT_DERIV:
51642
400ec5ae7f8f move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
hoelzl
parents: 51641
diff changeset
  1225
  "(DERIV f x :> l) \<longleftrightarrow> (\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1226
  (is "?lhs = ?rhs")
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1227
proof
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1228
  assume ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1229
  show "\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1230
  proof (intro exI conjI)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1231
    let ?g = "(\<lambda>z. if z = x then l else (f z - f x) / (z-x))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1232
    show "\<forall>z. f z - f x = ?g z * (z - x)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1233
      by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1234
    show "isCont ?g x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1235
      using \<open>?lhs\<close> by (simp add: isCont_iff DERIV_def cong: LIM_equal [rule_format])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1236
    show "?g x = l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1237
      by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1238
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1239
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1240
  assume ?rhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1241
  then show ?lhs
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1242
    by (auto simp add: isCont_iff DERIV_def cong: LIM_cong)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1243
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1244
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1245
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1246
subsection \<open>Local extrema\<close>
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1247
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1248
text \<open>If \<^term>\<open>0 < f' x\<close> then \<^term>\<open>x\<close> is Locally Strictly Increasing At The Right.\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1249
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1250
lemma has_real_derivative_pos_inc_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1251
  fixes f :: "real \<Rightarrow> real"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1252
  assumes der: "(f has_real_derivative l) (at x within S)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1253
    and l: "0 < l"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1254
  shows "\<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x + h)"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1255
  using assms
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1256
proof -
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1257
  from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1258
  obtain s where s: "0 < s"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1259
    and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < l"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1260
    by (auto simp: dist_real_def)
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1261
  then show ?thesis
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1262
  proof (intro exI conjI strip)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1263
    show "0 < s" by (rule s)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1264
  next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1265
    fix h :: real
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1266
    assume "0 < h" "h < s" "x + h \<in> S"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1267
    with all [of "x + h"] show "f x < f (x+h)"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1268
    proof (simp add: abs_if dist_real_def pos_less_divide_eq split: if_split_asm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1269
      assume "\<not> (f (x + h) - f x) / h < l" and h: "0 < h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1270
      with l have "0 < (f (x + h) - f x) / h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1271
        by arith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1272
      then show "f x < f (x + h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1273
        by (simp add: pos_less_divide_eq h)
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1274
    qed
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1275
  qed
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1276
qed
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1277
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1278
lemma DERIV_pos_inc_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1279
  fixes f :: "real \<Rightarrow> real"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1280
  assumes der: "DERIV f x :> l"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1281
    and l: "0 < l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1282
  shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x + h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1283
  using has_real_derivative_pos_inc_right[OF assms]
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1284
  by auto
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1285
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1286
lemma has_real_derivative_neg_dec_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1287
  fixes f :: "real \<Rightarrow> real"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1288
  assumes der: "(f has_real_derivative l) (at x within S)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1289
    and "l < 0"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1290
  shows "\<exists>d > 0. \<forall>h > 0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x - h)"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1291
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1292
  from \<open>l < 0\<close> have l: "- l > 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1293
    by simp
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1294
  from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1295
  obtain s where s: "0 < s"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1296
    and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < - l"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1297
    by (auto simp: dist_real_def)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1298
  then show ?thesis
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1299
  proof (intro exI conjI strip)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1300
    show "0 < s" by (rule s)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1301
  next
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1302
    fix h :: real
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1303
    assume "0 < h" "h < s" "x - h \<in> S"
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1304
    with all [of "x - h"] show "f x < f (x-h)"
63648
f9f3006a5579 "split add" -> "split"
nipkow
parents: 63627
diff changeset
  1305
    proof (simp add: abs_if pos_less_divide_eq dist_real_def split: if_split_asm)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1306
      assume "- ((f (x-h) - f x) / h) < l" and h: "0 < h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1307
      with l have "0 < (f (x-h) - f x) / h"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1308
        by arith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1309
      then show "f x < f (x - h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1310
        by (simp add: pos_less_divide_eq h)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1311
    qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1312
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1313
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1314
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1315
lemma DERIV_neg_dec_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1316
  fixes f :: "real \<Rightarrow> real"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1317
  assumes der: "DERIV f x :> l"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1318
    and l: "l < 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1319
  shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x - h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1320
  using has_real_derivative_neg_dec_left[OF assms]
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1321
  by auto
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1322
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1323
lemma has_real_derivative_pos_inc_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1324
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1325
  shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> 0 < l \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1326
    \<exists>d>0. \<forall>h>0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f (x - h) < f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1327
  by (rule has_real_derivative_neg_dec_left [of "\<lambda>x. - f x" "-l" x S, simplified])
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1328
      (auto simp add: DERIV_minus)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1329
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1330
lemma DERIV_pos_inc_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1331
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1332
  shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f (x - h) < f x"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1333
  using has_real_derivative_pos_inc_left
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1334
  by blast
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1335
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1336
lemma has_real_derivative_neg_dec_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1337
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1338
  shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> l < 0 \<Longrightarrow>
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1339
    \<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x > f (x + h)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1340
  by (rule has_real_derivative_pos_inc_right [of "\<lambda>x. - f x" "-l" x S, simplified])
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1341
      (auto simp add: DERIV_minus)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1342
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1343
lemma DERIV_neg_dec_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1344
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1345
  shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x > f (x + h)"
63079
e9ad90ce926c some slight generalizations
immler
parents: 63040
diff changeset
  1346
  using has_real_derivative_neg_dec_right by blast
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1347
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1348
lemma DERIV_local_max:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1349
  fixes f :: "real \<Rightarrow> real"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1350
  assumes der: "DERIV f x :> l"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1351
    and d: "0 < d"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1352
    and le: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1353
  shows "l = 0"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1354
proof (cases rule: linorder_cases [of l 0])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1355
  case equal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1356
  then show ?thesis .
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1357
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1358
  case less
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1359
  from DERIV_neg_dec_left [OF der less]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1360
  obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x - h)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1361
    by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1362
  obtain e where "0 < e \<and> e < d \<and> e < d'"
68527
2f4e2aab190a Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents: 67707
diff changeset
  1363
    using field_lbound_gt_zero [OF d d']  ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1364
  with lt le [THEN spec [where x="x - e"]] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1365
    by (auto simp add: abs_if)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1366
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1367
  case greater
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1368
  from DERIV_pos_inc_right [OF der greater]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1369
  obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1370
    by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1371
  obtain e where "0 < e \<and> e < d \<and> e < d'"
68527
2f4e2aab190a Generalising and renaming some basic results
paulson <lp15@cam.ac.uk>
parents: 67707
diff changeset
  1372
    using field_lbound_gt_zero [OF d d'] ..
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1373
  with lt le [THEN spec [where x="x + e"]] show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1374
    by (auto simp add: abs_if)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1375
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1376
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1377
text \<open>Similar theorem for a local minimum\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1378
lemma DERIV_local_min:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1379
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1380
  shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x \<le> f y \<Longrightarrow> l = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1381
  by (drule DERIV_minus [THEN DERIV_local_max]) auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1382
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1383
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1384
text\<open>In particular, if a function is locally flat\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1385
lemma DERIV_local_const:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1386
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1387
  shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x = f y \<Longrightarrow> l = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1388
  by (auto dest!: DERIV_local_max)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1389
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1390
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1391
subsection \<open>Rolle's Theorem\<close>
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1392
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1393
text \<open>Lemma about introducing open ball in open interval\<close>
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1394
lemma lemma_interval_lt: 
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1395
  fixes a b x :: real
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1396
  assumes "a < x" "x < b"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1397
  shows "\<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a < y \<and> y < b)"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1398
  using linorder_linear [of "x - a" "b - x"]
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1399
proof 
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1400
  assume "x - a \<le> b - x"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1401
  with assms show ?thesis
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1402
    by (rule_tac x = "x - a" in exI) auto
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1403
next
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1404
  assume "b - x \<le> x - a"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1405
  with assms show ?thesis
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1406
    by (rule_tac x = "b - x" in exI) auto
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1407
qed
27668
6eb20b2cecf8 Tuned and simplified proofs
chaieb
parents: 26120
diff changeset
  1408
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1409
lemma lemma_interval: "a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1410
  for a b x :: real
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1411
  by (force dest: lemma_interval_lt)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1412
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1413
text \<open>Rolle's Theorem.
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1414
   If \<^term>\<open>f\<close> is defined and continuous on the closed interval
61799
4cf66f21b764 isabelle update_cartouches -c -t;
wenzelm
parents: 61609
diff changeset
  1415
   \<open>[a,b]\<close> and differentiable on the open interval \<open>(a,b)\<close>,
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1416
   and \<^term>\<open>f a = f b\<close>,
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1417
   then there exists \<open>x0 \<in> (a,b)\<close> such that \<^term>\<open>f' x0 = 0\<close>\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1418
theorem Rolle_deriv:
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1419
  fixes f :: "real \<Rightarrow> real"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1420
  assumes "a < b"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1421
    and fab: "f a = f b"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1422
    and contf: "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1423
    and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1424
  shows "\<exists>z. a < z \<and> z < b \<and> f' z = (\<lambda>v. 0)"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1425
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1426
  have le: "a \<le> b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1427
    using \<open>a < b\<close> by simp
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1428
    have "(a + b) / 2 \<in> {a..b}"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1429
      using assms(1) by auto
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1430
    then have *: "{a..b} \<noteq> {}"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1431
      by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1432
  obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x" and "a \<le> x" "x \<le> b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1433
    using continuous_attains_sup[OF compact_Icc * contf]
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1434
    by (meson atLeastAtMost_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1435
  obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z" and "a \<le> x'" "x' \<le> b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1436
    using continuous_attains_inf[OF compact_Icc * contf] by (meson atLeastAtMost_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1437
  consider "a < x" "x < b" | "x = a \<or> x = b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1438
    using \<open>a \<le> x\<close> \<open>x \<le> b\<close> by arith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1439
  then show ?thesis
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1440
  proof cases
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1441
    case 1
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1442
    \<comment> \<open>\<^term>\<open>f\<close> attains its maximum within the interval\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1443
    then obtain l where der: "DERIV f x :> l"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1444
      using derf differentiable_def real_differentiable_def by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1445
    obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1446
      using lemma_interval [OF 1] by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1447
    then have bound': "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1448
      using x_max by blast
67443
3abf6a722518 standardized towards new-style formal comments: isabelle update_comments;
wenzelm
parents: 67399
diff changeset
  1449
    \<comment> \<open>the derivative at a local maximum is zero\<close>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1450
    have "l = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1451
      by (rule DERIV_local_max [OF der d bound'])
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1452
    with 1 der derf [of x] show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1453
      by (metis has_derivative_unique has_field_derivative_def mult_zero_left)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1454
  next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1455
    case 2
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1456
    then have fx: "f b = f x" by (auto simp add: fab)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1457
    consider "a < x'" "x' < b" | "x' = a \<or> x' = b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1458
      using \<open>a \<le> x'\<close> \<open>x' \<le> b\<close> by arith
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1459
    then show ?thesis
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1460
    proof cases
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1461
      case 1
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1462
        \<comment> \<open>\<^term>\<open>f\<close> attains its minimum within the interval\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1463
      then obtain l where der: "DERIV f x' :> l"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1464
        using derf differentiable_def real_differentiable_def by blast 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1465
      from lemma_interval [OF 1]
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1466
      obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1467
        by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1468
      then have bound': "\<forall>y. \<bar>x' - y\<bar> < d \<longrightarrow> f x' \<le> f y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1469
        using x'_min by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1470
      have "l = 0" by (rule DERIV_local_min [OF der d bound'])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1471
        \<comment> \<open>the derivative at a local minimum is zero\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1472
      then show ?thesis using 1 der derf [of x'] 
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1473
        by (metis has_derivative_unique has_field_derivative_def mult_zero_left)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1474
    next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1475
      case 2
69593
3dda49e08b9d isabelle update -u control_cartouches;
wenzelm
parents: 69216
diff changeset
  1476
        \<comment> \<open>\<^term>\<open>f\<close> is constant throughout the interval\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1477
      then have fx': "f b = f x'" by (auto simp: fab)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1478
      from dense [OF \<open>a < b\<close>] obtain r where r: "a < r" "r < b" by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1479
      obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1480
        using lemma_interval [OF r] by blast
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1481
      have eq_fb: "f z = f b" if "a \<le> z" and "z \<le> b" for z
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1482
      proof (rule order_antisym)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1483
        show "f z \<le> f b" by (simp add: fx x_max that)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1484
        show "f b \<le> f z" by (simp add: fx' x'_min that)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1485
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1486
      have bound': "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> f r = f y"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1487
      proof (intro strip)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1488
        fix y :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1489
        assume lt: "\<bar>r - y\<bar> < d"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1490
        then have "f y = f b" by (simp add: eq_fb bound)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1491
        then show "f r = f y" by (simp add: eq_fb r order_less_imp_le)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1492
      qed
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1493
      obtain l where der: "DERIV f r :> l"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1494
        using derf differentiable_def r(1) r(2) real_differentiable_def by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1495
      have "l = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1496
        by (rule DERIV_local_const [OF der d bound'])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1497
        \<comment> \<open>the derivative of a constant function is zero\<close>
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1498
      with r der derf [of r] show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1499
        by (metis has_derivative_unique has_field_derivative_def mult_zero_left)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1500
    qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1501
  qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1502
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1503
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1504
corollary Rolle:
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1505
  fixes a b :: real
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1506
  assumes ab: "a < b" "f a = f b" "continuous_on {a..b} f"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1507
    and dif [rule_format]: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1508
  shows "\<exists>z. a < z \<and> z < b \<and> DERIV f z :> 0"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1509
proof -
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1510
  obtain f' where f': "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1511
    using dif unfolding differentiable_def by metis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1512
  then have "\<exists>z. a < z \<and> z < b \<and> f' z = (\<lambda>v. 0)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1513
    by (metis Rolle_deriv [OF ab])
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1514
  then show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1515
    using f' has_derivative_imp_has_field_derivative by fastforce
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1516
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1517
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1518
subsection \<open>Mean Value Theorem\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1519
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1520
theorem mvt:
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1521
  fixes f :: "real \<Rightarrow> real"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1522
  assumes "a < b"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1523
    and contf: "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1524
    and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"
69109
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1525
  obtains \<xi> where "a < \<xi>" "\<xi> < b" "f b - f a = (f' \<xi>) (b - a)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1526
proof -
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1527
  have "\<exists>x. a < x \<and> x < b \<and> (\<lambda>y. f' x y - (f b - f a) / (b - a) * y) = (\<lambda>v. 0)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1528
  proof (intro Rolle_deriv[OF \<open>a < b\<close>])
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1529
    fix x
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1530
    assume x: "a < x" "x < b"
69109
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1531
    show "((\<lambda>x. f x - (f b - f a) / (b - a) * x) 
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1532
          has_derivative (\<lambda>y. f' x y - (f b - f a) / (b - a) * y)) (at x)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1533
      by (intro derivative_intros derf[OF x])
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1534
  qed (use assms in \<open>auto intro!: continuous_intros simp: field_simps\<close>)
69109
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1535
  then obtain \<xi> where
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1536
    "a < \<xi>" "\<xi> < b" "(\<lambda>y. f' \<xi> y - (f b - f a) / (b - a) * y) = (\<lambda>v. 0)" 
c9ea9290880f cosmetic change to mvt
paulson <lp15@cam.ac.uk>
parents: 69022
diff changeset
  1537
    by metis
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1538
  then show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1539
    by (metis (no_types, hide_lams) that add.right_neutral add_diff_cancel_left' add_diff_eq \<open>a < b\<close>
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1540
                 less_irrefl nonzero_eq_divide_eq)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1541
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1542
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1543
theorem MVT:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1544
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1545
  assumes lt: "a < b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1546
    and contf: "continuous_on {a..b} f"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1547
    and dif: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1548
  shows "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1549
proof -
70346
408e15cbd2a6 tuned proofs
haftmann
parents: 69593
diff changeset
  1550
  obtain f' :: "real \<Rightarrow> real \<Rightarrow> real"
408e15cbd2a6 tuned proofs
haftmann
parents: 69593
diff changeset
  1551
    where derf: "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (f has_derivative f' x) (at x)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1552
    using dif unfolding differentiable_def by metis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1553
  then obtain z where "a < z" "z < b" "f b - f a = (f' z) (b - a)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1554
    using mvt [OF lt contf] by blast
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1555
  then show ?thesis
70346
408e15cbd2a6 tuned proofs
haftmann
parents: 69593
diff changeset
  1556
    by (simp add: ac_simps)
408e15cbd2a6 tuned proofs
haftmann
parents: 69593
diff changeset
  1557
      (metis derf dif has_derivative_unique has_field_derivative_imp_has_derivative real_differentiable_def)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1558
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1559
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1560
corollary MVT2:
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1561
  assumes "a < b" and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> DERIV f x :> f' x"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1562
  shows "\<exists>z::real. a < z \<and> z < b \<and> (f b - f a = (b - a) * f' z)"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1563
proof -
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1564
  have "\<exists>l z. a < z \<and>
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1565
           z < b \<and>
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1566
           (f has_real_derivative l) (at z) \<and>
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1567
           f b - f a = (b - a) * l"
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1568
  proof (rule MVT [OF \<open>a < b\<close>])
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1569
    show "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1570
      by (meson DERIV_continuous atLeastAtMost_iff continuous_at_imp_continuous_on der) 
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1571
    show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"
68635
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1572
      using assms by (force dest: order_less_imp_le simp add: real_differentiable_def)
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1573
  qed
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1574
  with assms show ?thesis
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1575
    by (blast dest: DERIV_unique order_less_imp_le)
8094b853a92f fixes and more de-applying
paulson <lp15@cam.ac.uk>
parents: 68634
diff changeset
  1576
qed
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1577
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1578
lemma pos_deriv_imp_strict_mono:
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1579
  assumes "\<And>x. (f has_real_derivative f' x) (at x)"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1580
  assumes "\<And>x. f' x > 0"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1581
  shows   "strict_mono f"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1582
proof (rule strict_monoI)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1583
  fix x y :: real assume xy: "x < y"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1584
  from assms and xy have "\<exists>z>x. z < y \<and> f y - f x = (y - x) * f' z"
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1585
    by (intro MVT2) (auto dest: connectedD_interval)
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1586
  then obtain z where z: "z > x" "z < y" "f y - f x = (y - x) * f' z" by blast
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1587
  note \<open>f y - f x = (y - x) * f' z\<close>
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1588
  also have "(y - x) * f' z > 0" using xy assms by (intro mult_pos_pos) auto
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1589
  finally show "f x < f y" by simp
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1590
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1591
70614
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1592
proposition  deriv_nonneg_imp_mono:
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1593
  assumes deriv: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1594
  assumes nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1595
  assumes ab: "a \<le> b"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1596
  shows "g a \<le> g b"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1597
proof (cases "a < b")
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1598
  assume "a < b"
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1599
  from deriv have "\<And>x. \<lbrakk>x \<ge> a; x \<le> b\<rbrakk> \<Longrightarrow> (g has_real_derivative g' x) (at x)" by simp
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1600
  with MVT2[OF \<open>a < b\<close>] and deriv
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1601
    obtain \<xi> where \<xi>_ab: "\<xi> > a" "\<xi> < b" and g_ab: "g b - g a = (b - a) * g' \<xi>" by blast
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1602
  from \<xi>_ab ab nonneg have "(b - a) * g' \<xi> \<ge> 0" by simp
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1603
  with g_ab show ?thesis by simp
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1604
qed (insert ab, simp)
6a2c982363e9 moved lemmas
nipkow
parents: 70346
diff changeset
  1605
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1606
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1607
subsubsection \<open>A function is constant if its derivative is 0 over an interval.\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1608
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1609
lemma DERIV_isconst_end:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1610
  fixes f :: "real \<Rightarrow> real"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1611
  assumes "a < b" and contf: "continuous_on {a..b} f"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1612
    and 0: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> DERIV f x :> 0"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1613
  shows "f b = f a"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1614
  using MVT [OF \<open>a < b\<close>] "0" DERIV_unique contf real_differentiable_def
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1615
  by (fastforce simp: algebra_simps)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1616
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1617
lemma DERIV_isconst2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1618
  fixes f :: "real \<Rightarrow> real"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1619
  assumes "a < b" and contf: "continuous_on {a..b} f" and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> DERIV f x :> 0"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1620
    and "a \<le> x" "x \<le> b"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1621
shows "f x = f a"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1622
proof (cases "a < x")
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1623
  case True
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1624
  have *: "continuous_on {a..x} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1625
    using \<open>x \<le> b\<close> contf continuous_on_subset by fastforce
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1626
  show ?thesis
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1627
    by (rule DERIV_isconst_end [OF True *]) (use \<open>x \<le> b\<close> derf in auto)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1628
qed (use \<open>a \<le> x\<close> in auto)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1629
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1630
lemma DERIV_isconst3:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1631
  fixes a b x y :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1632
  assumes "a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1633
    and "x \<in> {a <..< b}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1634
    and "y \<in> {a <..< b}"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1635
    and derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0"
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1636
  shows "f x = f y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1637
proof (cases "x = y")
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1638
  case False
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1639
  let ?a = "min x y"
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1640
  let ?b = "max x y"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1641
  have *: "DERIV f z :> 0" if "?a \<le> z" "z \<le> ?b" for z
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1642
  proof -
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1643
    have "a < z" and "z < b"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1644
      using that \<open>x \<in> {a <..< b}\<close> and \<open>y \<in> {a <..< b}\<close> by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1645
    then have "z \<in> {a<..<b}" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1646
    then show "DERIV f z :> 0" by (rule derivable)
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1647
  qed
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1648
  have isCont: "continuous_on {?a..?b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1649
    by (meson * DERIV_continuous_on atLeastAtMost_iff has_field_derivative_at_within)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1650
  have DERIV: "\<And>z. \<lbrakk>?a < z; z < ?b\<rbrakk> \<Longrightarrow> DERIV f z :> 0"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1651
    using * by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1652
  have "?a < ?b" using \<open>x \<noteq> y\<close> by auto
29803
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1653
  from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y]
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1654
  show ?thesis by auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1655
qed auto
c56a5571f60a Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
hoelzl
parents: 29667
diff changeset
  1656
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1657
lemma DERIV_isconst_all:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1658
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1659
  shows "\<forall>x. DERIV f x :> 0 \<Longrightarrow> f x = f y"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1660
  apply (rule linorder_cases [of x y])
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1661
  apply (metis DERIV_continuous DERIV_isconst_end continuous_at_imp_continuous_on)+
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1662
  done
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1663
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1664
lemma DERIV_const_ratio_const:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1665
  fixes f :: "real \<Rightarrow> real"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1666
  assumes "a \<noteq> b" and df: "\<And>x. DERIV f x :> k"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1667
  shows "f b - f a = (b - a) * k"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1668
proof (cases a b rule: linorder_cases)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1669
  case less
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1670
  show ?thesis
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1671
    using MVT [OF less] df
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1672
    by (metis DERIV_continuous DERIV_unique continuous_at_imp_continuous_on real_differentiable_def)
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1673
next
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1674
  case greater
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1675
  have  "f a - f b = (a - b) * k"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1676
    using MVT [OF greater] df
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1677
    by (metis DERIV_continuous DERIV_unique continuous_at_imp_continuous_on real_differentiable_def)
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1678
  then show ?thesis
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1679
    by (simp add: algebra_simps)
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1680
qed auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1681
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1682
lemma DERIV_const_ratio_const2:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1683
  fixes f :: "real \<Rightarrow> real"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1684
  assumes "a \<noteq> b" and df: "\<And>x. DERIV f x :> k"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1685
  shows "(f b - f a) / (b - a) = k"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1686
  using DERIV_const_ratio_const [OF assms] \<open>a \<noteq> b\<close> by auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1687
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1688
lemma real_average_minus_first [simp]: "(a + b) / 2 - a = (b - a) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1689
  for a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1690
  by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1691
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1692
lemma real_average_minus_second [simp]: "(b + a) / 2 - a = (b - a) / 2"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1693
  for a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1694
  by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1695
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1696
text \<open>Gallileo's "trick": average velocity = av. of end velocities.\<close>
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1697
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1698
lemma DERIV_const_average:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1699
  fixes v :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1700
    and a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1701
  assumes neq: "a \<noteq> b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1702
    and der: "\<And>x. DERIV v x :> k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1703
  shows "v ((a + b) / 2) = (v a + v b) / 2"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1704
proof (cases rule: linorder_cases [of a b])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1705
  case equal
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1706
  with neq show ?thesis by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1707
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1708
  case less
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1709
  have "(v b - v a) / (b - a) = k"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1710
    by (rule DERIV_const_ratio_const2 [OF neq der])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1711
  then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1712
    by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1713
  moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1714
    by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1715
  ultimately show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1716
    using neq by force
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1717
next
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1718
  case greater
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1719
  have "(v b - v a) / (b - a) = k"
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1720
    by (rule DERIV_const_ratio_const2 [OF neq der])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1721
  then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1722
    by simp
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1723
  moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1724
    by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1725
  ultimately show ?thesis
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1726
    using neq by (force simp add: add.commute)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1727
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1728
68601
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1729
subsubsection\<open>A function with positive derivative is increasing\<close>
7828f3b85156 de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68527
diff changeset
  1730
text \<open>A simple proof using the MVT, by Jeremy Avigad. And variants.\<close>
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1731
lemma DERIV_pos_imp_increasing_open:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1732
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1733
    and f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1734
  assumes "a < b"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1735
    and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1736
    and con: "continuous_on {a..b} f"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1737
  shows "f a < f b"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1738
proof (rule ccontr)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1739
  assume f: "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1740
  have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1741
    by (rule MVT) (use assms real_differentiable_def in \<open>force+\<close>)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1742
  then obtain l z where z: "a < z" "z < b" "DERIV f z :> l" and "f b - f a = (b - a) * l"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1743
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1744
  with assms f have "\<not> l > 0"
36777
be5461582d0f avoid using real-specific versions of generic lemmas
huffman
parents: 35216
diff changeset
  1745
    by (metis linorder_not_le mult_le_0_iff diff_le_0_iff_le)
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1746
  with assms z show False
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1747
    by (metis DERIV_unique)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1748
qed
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1749
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1750
lemma DERIV_pos_imp_increasing:
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1751
  fixes a b :: real and f :: "real \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1752
  assumes "a < b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1753
    and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y > 0"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1754
  shows "f a < f b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1755
  by (metis less_le_not_le DERIV_atLeastAtMost_imp_continuous_on DERIV_pos_imp_increasing_open [OF \<open>a < b\<close>] der)
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1756
45791
d985ec974815 more systematic lemma name
noschinl
parents: 45600
diff changeset
  1757
lemma DERIV_nonneg_imp_nondecreasing:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1758
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1759
    and f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1760
  assumes "a \<le> b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1761
    and "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y \<ge> 0"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1762
  shows "f a \<le> f b"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1763
proof (rule ccontr, cases "a = b")
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1764
  assume "\<not> ?thesis" and "a = b"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1765
  then show False by auto
37891
c26f9d06e82c robustified metis proof
haftmann
parents: 37888
diff changeset
  1766
next
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1767
  assume *: "\<not> ?thesis"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1768
  assume "a \<noteq> b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1769
  with \<open>a \<le> b\<close> have "a < b"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1770
    by linarith
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1771
  moreover have "continuous_on {a..b} f"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1772
    by (meson DERIV_isCont assms(2) atLeastAtMost_iff continuous_at_imp_continuous_on)
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1773
  ultimately have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1774
    using assms MVT [OF \<open>a < b\<close>, of f] real_differentiable_def less_eq_real_def by blast
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1775
  then obtain l z where lz: "a < z" "z < b" "DERIV f z :> l" and **: "f b - f a = (b - a) * l"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1776
    by auto
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1777
  with * have "a < b" "f b < f a" by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1778
  with ** have "\<not> l \<ge> 0" by (auto simp add: not_le algebra_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1779
    (metis * add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1780
  with assms lz show False
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1781
    by (metis DERIV_unique order_less_imp_le)
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1782
qed
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1783
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1784
lemma DERIV_neg_imp_decreasing_open:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1785
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1786
    and f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1787
  assumes "a < b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1788
    and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1789
    and con: "continuous_on {a..b} f"
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1790
  shows "f a > f b"
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1791
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1792
  have "(\<lambda>x. -f x) a < (\<lambda>x. -f x) b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1793
  proof (rule DERIV_pos_imp_increasing_open [of a b])
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1794
    show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> \<exists>y. ((\<lambda>x. - f x) has_real_derivative y) (at x) \<and> 0 < y"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1795
      using assms
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1796
      by simp (metis field_differentiable_minus neg_0_less_iff_less)
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1797
    show "continuous_on {a..b} (\<lambda>x. - f x)"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1798
      using con continuous_on_minus by blast
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1799
  qed (use assms in auto)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1800
  then show ?thesis
56261
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1801
    by simp
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1802
qed
918432e3fcfa rearranging some deriv theorems
paulson <lp15@cam.ac.uk>
parents: 56219
diff changeset
  1803
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1804
lemma DERIV_neg_imp_decreasing:
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1805
  fixes a b :: real and f :: "real \<Rightarrow> real"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1806
  assumes "a < b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1807
    and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1808
  shows "f a > f b"
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1809
  by (metis less_le_not_le DERIV_atLeastAtMost_imp_continuous_on DERIV_neg_imp_decreasing_open [OF \<open>a < b\<close>] der)
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1810
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1811
lemma DERIV_nonpos_imp_nonincreasing:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1812
  fixes a b :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1813
    and f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1814
  assumes "a \<le> b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1815
    and "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y \<le> 0"
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1816
  shows "f a \<ge> f b"
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1817
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1818
  have "(\<lambda>x. -f x) a \<le> (\<lambda>x. -f x) b"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1819
    using DERIV_nonneg_imp_nondecreasing [of a b "\<lambda>x. -f x"] assms DERIV_minus by fastforce
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1820
  then show ?thesis
33654
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1821
    by simp
abf780db30ea A number of theorems contributed by Jeremy Avigad
paulson
parents: 31902
diff changeset
  1822
qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1823
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1824
lemma DERIV_pos_imp_increasing_at_bot:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1825
  fixes f :: "real \<Rightarrow> real"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1826
  assumes "\<And>x. x \<le> b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1827
    and lim: "(f \<longlongrightarrow> flim) at_bot"
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1828
  shows "flim < f b"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1829
proof -
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1830
  have "\<exists>N. \<forall>n\<le>N. f n \<le> f (b - 1)"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1831
    by (rule_tac x="b - 2" in exI) (force intro: order.strict_implies_order DERIV_pos_imp_increasing assms)
63952
354808e9f44b new material connected with HOL Light measure theory, plus more rationalisation
paulson <lp15@cam.ac.uk>
parents: 63918
diff changeset
  1832
  then have "flim \<le> f (b - 1)"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1833
     by (auto simp: eventually_at_bot_linorder tendsto_upperbound [OF lim])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1834
  also have "\<dots> < f b"
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1835
    by (force intro: DERIV_pos_imp_increasing [where f=f] assms)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1836
  finally show ?thesis .
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1837
qed
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1838
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1839
lemma DERIV_neg_imp_decreasing_at_top:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1840
  fixes f :: "real \<Rightarrow> real"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1841
  assumes der: "\<And>x. x \<ge> b \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1842
    and lim: "(f \<longlongrightarrow> flim) at_top"
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1843
  shows "flim < f b"
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1844
  apply (rule DERIV_pos_imp_increasing_at_bot [where f = "\<lambda>i. f (-i)" and b = "-b", simplified])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1845
   apply (metis DERIV_mirror der le_minus_iff neg_0_less_iff_less)
56289
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1846
  apply (metis filterlim_at_top_mirror lim)
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1847
  done
d8d2a2b97168 Some useful lemmas
paulson <lp15@cam.ac.uk>
parents: 56261
diff changeset
  1848
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1849
text \<open>Derivative of inverse function\<close>
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1850
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1851
lemma DERIV_inverse_function:
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1852
  fixes f g :: "real \<Rightarrow> real"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1853
  assumes der: "DERIV f (g x) :> D"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1854
    and neq: "D \<noteq> 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1855
    and x: "a < x" "x < b"
68611
4bc4b5c0ccfc de-applying, etc.
paulson <lp15@cam.ac.uk>
parents: 68601
diff changeset
  1856
    and inj: "\<And>y. \<lbrakk>a < y; y < b\<rbrakk> \<Longrightarrow> f (g y) = y"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1857
    and cont: "isCont g x"
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1858
  shows "DERIV g x :> inverse D"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1859
unfolding has_field_derivative_iff
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1860
proof (rule LIM_equal2)
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1861
  show "0 < min (x - a) (b - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1862
    using x by arith
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1863
next
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1864
  fix y
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1865
  assume "norm (y - x) < min (x - a) (b - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1866
  then have "a < y" and "y < b"
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1867
    by (simp_all add: abs_less_iff)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1868
  then show "(g y - g x) / (y - x) = inverse ((f (g y) - x) / (g y - g x))"
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1869
    by (simp add: inj)
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1870
next
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1871
  have "(\<lambda>z. (f z - f (g x)) / (z - g x)) \<midarrow>g x\<rightarrow> D"
68634
db0980691ef4 more de-applying and a fix
paulson <lp15@cam.ac.uk>
parents: 68611
diff changeset
  1872
    by (rule der [unfolded has_field_derivative_iff])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1873
  then have 1: "(\<lambda>z. (f z - x) / (z - g x)) \<midarrow>g x\<rightarrow> D"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1874
    using inj x by simp
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1875
  have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x"
56219
bf80d125406b tuned proofs;
wenzelm
parents: 56217
diff changeset
  1876
  proof (rule exI, safe)
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1877
    show "0 < min (x - a) (b - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1878
      using x by simp
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1879
  next
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1880
    fix y
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1881
    assume "norm (y - x) < min (x - a) (b - x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1882
    then have y: "a < y" "y < b"
23044
2ad82c359175 change premises of DERIV_inverse_function lemma
huffman
parents: 23041
diff changeset
  1883
      by (simp_all add: abs_less_iff)
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1884
    assume "g y = g x"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1885
    then have "f (g y) = f (g x)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1886
    then have "y = x" using inj y x by simp
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1887
    also assume "y \<noteq> x"
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1888
    finally show False by simp
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1889
  qed
61976
3a27957ac658 more symbols;
wenzelm
parents: 61973
diff changeset
  1890
  have "(\<lambda>y. (f (g y) - x) / (g y - g x)) \<midarrow>x\<rightarrow> D"
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1891
    using cont 1 2 by (rule isCont_LIM_compose2)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1892
  then show "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x))) \<midarrow>x\<rightarrow> inverse D"
44568
e6f291cb5810 discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
huffman
parents: 44317
diff changeset
  1893
    using neq by (rule tendsto_inverse)
23041
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1894
qed
a0f26d47369b add lemma DERIV_inverse_function
huffman
parents: 22998
diff changeset
  1895
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1896
subsection \<open>Generalized Mean Value Theorem\<close>
29975
28c5322f0df3 more subsection headings
huffman
parents: 29803
diff changeset
  1897
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1898
theorem GMVT:
21784
e76faa6e65fd changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
huffman
parents: 21404
diff changeset
  1899
  fixes a b :: real
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1900
  assumes alb: "a < b"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1901
    and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1902
    and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)"
41550
efa734d9b221 eliminated global prems;
wenzelm
parents: 41368
diff changeset
  1903
    and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1904
    and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable (at x)"
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  1905
  shows "\<exists>g'c f'c c.
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1906
    DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1907
proof -
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1908
  let ?h = "\<lambda>x. (f b - f a) * g x - (g b - g a) * f x"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1909
  have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1910
  proof (rule MVT)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1911
    from assms show "a < b" by simp
69020
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1912
    show "continuous_on {a..b} ?h"
4f94e262976d elimination of near duplication involving Rolle's theorem and the MVT
paulson <lp15@cam.ac.uk>
parents: 68644
diff changeset
  1913
      by (simp add: continuous_at_imp_continuous_on fc gc)
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1914
    show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> ?h differentiable (at x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1915
      using fd gd by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1916
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1917
  then obtain l where l: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" ..
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1918
  then obtain c where c: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" ..
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1919
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1920
  from c have cint: "a < c \<and> c < b" by auto
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1921
  then obtain g'c where g'c: "DERIV g c :> g'c"
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1922
    using gd real_differentiable_def by blast 
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1923
  from c have "a < c \<and> c < b" by auto
69022
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1924
  then obtain f'c where f'c: "DERIV f c :> f'c"
e2858770997a removal of more redundancies, and fixes
paulson <lp15@cam.ac.uk>
parents: 69020
diff changeset
  1925
    using fd real_differentiable_def by blast 
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1926
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1927
  from c have "DERIV ?h c :> l" by auto
41368
8afa26855137 use DERIV_intros
hoelzl
parents: 37891
diff changeset
  1928
  moreover have "DERIV ?h c :>  g'c * (f b - f a) - f'c * (g b - g a)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1929
    using g'c f'c by (auto intro!: derivative_eq_intros)
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1930
  ultimately have leq: "l =  g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique)
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1931
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1932
  have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1933
  proof -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1934
    from c have "?h b - ?h a = (b - a) * l" by auto
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  1935
    also from leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1936
    finally show ?thesis by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1937
  qed
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1938
  moreover have "?h b - ?h a = 0"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1939
  proof -
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1940
    have "?h b - ?h a =
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1941
      ((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) -
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1942
      ((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))"
29667
53103fc8ffa3 Replaced group_ and ring_simps by algebra_simps;
nipkow
parents: 29472
diff changeset
  1943
      by (simp add: algebra_simps)
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1944
    then show ?thesis  by auto
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1945
  qed
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1946
  ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1947
  with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1948
  then have "g'c * (f b - f a) = f'c * (g b - g a)" by simp
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1949
  then have "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: ac_simps)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1950
  with g'c f'c cint show ?thesis by auto
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1951
qed
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  1952
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1953
lemma GMVT':
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1954
  fixes f g :: "real \<Rightarrow> real"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1955
  assumes "a < b"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1956
    and isCont_f: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont f z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1957
    and isCont_g: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont g z"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1958
    and DERIV_g: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV g z :> (g' z)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1959
    and DERIV_f: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV f z :> (f' z)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1960
  shows "\<exists>c. a < c \<and> c < b \<and> (f b - f a) * g' c = (g b - g a) * f' c"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1961
proof -
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1962
  have "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and>
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1963
      a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"
56181
2aa0b19e74f3 unify syntax for has_derivative and differentiable
hoelzl
parents: 55970
diff changeset
  1964
    using assms by (intro GMVT) (force simp: real_differentiable_def)+
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1965
  then obtain c where "a < c" "c < b" "(f b - f a) * g' c = (g b - g a) * f' c"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1966
    using DERIV_f DERIV_g by (force dest: DERIV_unique)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1967
  then show ?thesis
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1968
    by auto
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1969
qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1970
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1971
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  1972
subsection \<open>L'Hopitals rule\<close>
51529
2d2f59e6055a move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
hoelzl
parents: 51526
diff changeset
  1973
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1974
lemma isCont_If_ge:
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1975
  fixes a :: "'a :: linorder_topology"
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1976
  assumes "continuous (at_left a) g" and f: "(f \<longlongrightarrow> g a) (at_right a)"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1977
  shows "isCont (\<lambda>x. if x \<le> a then g x else f x) a" (is "isCont ?gf a")
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1978
proof -
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1979
  have g: "(g \<longlongrightarrow> g a) (at_left a)"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1980
    using assms continuous_within by blast
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1981
  show ?thesis
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1982
    unfolding isCont_def continuous_within
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1983
  proof (intro filterlim_split_at; simp)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1984
    show "(?gf \<longlongrightarrow> g a) (at_left a)"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1985
      by (subst filterlim_cong[OF refl refl, where g=g]) (simp_all add: eventually_at_filter less_le g)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1986
    show "(?gf \<longlongrightarrow> g a) (at_right a)"
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1987
      by (subst filterlim_cong[OF refl refl, where g=f]) (simp_all add: eventually_at_filter less_le f)
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1988
  qed
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  1989
qed
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  1990
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  1991
lemma lhopital_right_0:
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  1992
  fixes f0 g0 :: "real \<Rightarrow> real"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  1993
  assumes f_0: "(f0 \<longlongrightarrow> 0) (at_right 0)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1994
    and g_0: "(g0 \<longlongrightarrow> 0) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1995
    and ev:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1996
      "eventually (\<lambda>x. g0 x \<noteq> 0) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1997
      "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1998
      "eventually (\<lambda>x. DERIV f0 x :> f' x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  1999
      "eventually (\<lambda>x. DERIV g0 x :> g' x) (at_right 0)"
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2000
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) F (at_right 0)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2001
  shows "filterlim (\<lambda> x. f0 x / g0 x) F (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2002
proof -
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
  2003
  define f where [abs_def]: "f x = (if x \<le> 0 then 0 else f0 x)" for x
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2004
  then have "f 0 = 0" by simp
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2005
63040
eb4ddd18d635 eliminated old 'def';
wenzelm
parents: 62398
diff changeset
  2006
  define g where [abs_def]: "g x = (if x \<le> 0 then 0 else g0 x)" for x
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2007
  then have "g 0 = 0" by simp
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2008
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2009
  have "eventually (\<lambda>x. g0 x \<noteq> 0 \<and> g' x \<noteq> 0 \<and>
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2010
      DERIV f0 x :> (f' x) \<and> DERIV g0 x :> (g' x)) (at_right 0)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2011
    using ev by eventually_elim auto
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2012
  then obtain a where [arith]: "0 < a"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2013
    and g0_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g0 x \<noteq> 0"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2014
    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2015
    and f0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV f0 x :> (f' x)"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2016
    and g0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV g0 x :> (g' x)"
56219
bf80d125406b tuned proofs;
wenzelm
parents: 56217
diff changeset
  2017
    unfolding eventually_at by (auto simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2018
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2019
  have g_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g x \<noteq> 0"
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2020
    using g0_neq_0 by (simp add: g_def)
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2021
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2022
  have f: "DERIV f x :> (f' x)" if x: "0 < x" "x < a" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2023
    using that
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2024
    by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ f0[OF x]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2025
      (auto simp: f_def eventually_nhds_metric dist_real_def intro!: exI[of _ x])
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2026
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2027
  have g: "DERIV g x :> (g' x)" if x: "0 < x" "x < a" for x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2028
    using that
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2029
    by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ g0[OF x]])
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2030
         (auto simp: g_def eventually_nhds_metric dist_real_def intro!: exI[of _ x])
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2031
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2032
  have "isCont f 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2033
    unfolding f_def by (intro isCont_If_ge f_0 continuous_const)
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2034
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2035
  have "isCont g 0"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2036
    unfolding g_def by (intro isCont_If_ge g_0 continuous_const)
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2037
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2038
  have "\<exists>\<zeta>. \<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2039
  proof (rule bchoice, rule ballI)
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2040
    fix x
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2041
    assume "x \<in> {0 <..< a}"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2042
    then have x[arith]: "0 < x" "x < a" by auto
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2043
    with g'_neq_0 g_neq_0 \<open>g 0 = 0\<close> have g': "\<And>x. 0 < x \<Longrightarrow> x < a  \<Longrightarrow> 0 \<noteq> g' x" "g 0 \<noteq> g x"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2044
      by auto
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2045
    have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont f x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2046
      using \<open>isCont f 0\<close> f by (auto intro: DERIV_isCont simp: le_less)
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2047
    moreover have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont g x"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2048
      using \<open>isCont g 0\<close> g by (auto intro: DERIV_isCont simp: le_less)
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2049
    ultimately have "\<exists>c. 0 < c \<and> c < x \<and> (f x - f 0) * g' c = (g x - g 0) * f' c"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2050
      using f g \<open>x < a\<close> by (intro GMVT') auto
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  2051
    then obtain c where *: "0 < c" "c < x" "(f x - f 0) * g' c = (g x - g 0) * f' c"
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  2052
      by blast
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2053
    moreover
53374
a14d2a854c02 tuned proofs -- clarified flow of facts wrt. calculation;
wenzelm
parents: 51642
diff changeset
  2054
    from * g'(1)[of c] g'(2) have "(f x - f 0)  / (g x - g 0) = f' c / g' c"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2055
      by (simp add: field_simps)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2056
    ultimately show "\<exists>y. 0 < y \<and> y < x \<and> f x / g x = f' y / g' y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2057
      using \<open>f 0 = 0\<close> \<open>g 0 = 0\<close> by (auto intro!: exI[of _ c])
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2058
  qed
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2059
  then obtain \<zeta> where "\<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)" ..
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2060
  then have \<zeta>: "eventually (\<lambda>x. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)) (at_right 0)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2061
    unfolding eventually_at by (intro exI[of _ a]) (auto simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2062
  moreover
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2063
  from \<zeta> have "eventually (\<lambda>x. norm (\<zeta> x) \<le> x) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2064
    by eventually_elim auto
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2065
  then have "((\<lambda>x. norm (\<zeta> x)) \<longlongrightarrow> 0) (at_right 0)"
58729
e8ecc79aee43 add tendsto_const and tendsto_ident_at as simp and intro rules
hoelzl
parents: 57953
diff changeset
  2066
    by (rule_tac real_tendsto_sandwich[where f="\<lambda>x. 0" and h="\<lambda>x. x"]) auto
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2067
  then have "(\<zeta> \<longlongrightarrow> 0) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2068
    by (rule tendsto_norm_zero_cancel)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2069
  with \<zeta> have "filterlim \<zeta> (at_right 0) (at_right 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2070
    by (auto elim!: eventually_mono simp: filterlim_at)
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2071
  from this lim have "filterlim (\<lambda>t. f' (\<zeta> t) / g' (\<zeta> t)) F (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2072
    by (rule_tac filterlim_compose[of _ _ _ \<zeta>])
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2073
  ultimately have "filterlim (\<lambda>t. f t / g t) F (at_right 0)" (is ?P)
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2074
    by (rule_tac filterlim_cong[THEN iffD1, OF refl refl])
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2075
       (auto elim: eventually_mono)
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2076
  also have "?P \<longleftrightarrow> ?thesis"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2077
    by (rule filterlim_cong) (auto simp: f_def g_def eventually_at_filter)
50329
9bd6b6b8a554 weakened assumptions for lhopital_right_0
hoelzl
parents: 50328
diff changeset
  2078
  finally show ?thesis .
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2079
qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2080
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2081
lemma lhopital_right:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2082
  "(f \<longlongrightarrow> 0) (at_right x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_right x) \<Longrightarrow>
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2083
    eventually (\<lambda>x. g x \<noteq> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2084
    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2085
    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2086
    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2087
    filterlim (\<lambda> x. (f' x / g' x)) F (at_right x) \<Longrightarrow>
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2088
  filterlim (\<lambda> x. f x / g x) F (at_right x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2089
  for x :: real
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2090
  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2091
  by (rule lhopital_right_0)
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2092
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2093
lemma lhopital_left:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2094
  "(f \<longlongrightarrow> 0) (at_left x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_left x) \<Longrightarrow>
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2095
    eventually (\<lambda>x. g x \<noteq> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2096
    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2097
    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2098
    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2099
    filterlim (\<lambda> x. (f' x / g' x)) F (at_left x) \<Longrightarrow>
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2100
  filterlim (\<lambda> x. f x / g x) F (at_left x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2101
  for x :: real
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2102
  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2103
  by (rule lhopital_right[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2104
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2105
lemma lhopital:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2106
  "(f \<longlongrightarrow> 0) (at x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at x) \<Longrightarrow>
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2107
    eventually (\<lambda>x. g x \<noteq> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2108
    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2109
    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2110
    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2111
    filterlim (\<lambda> x. (f' x / g' x)) F (at x) \<Longrightarrow>
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2112
  filterlim (\<lambda> x. f x / g x) F (at x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2113
  for x :: real
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2114
  unfolding eventually_at_split filterlim_at_split
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2115
  by (auto intro!: lhopital_right[of f x g g' f'] lhopital_left[of f x g g' f'])
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2116
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2117
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2118
lemma lhopital_right_0_at_top:
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2119
  fixes f g :: "real \<Rightarrow> real"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2120
  assumes g_0: "LIM x at_right 0. g x :> at_top"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2121
    and ev:
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2122
      "eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2123
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2124
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2125
    and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) (at_right 0)"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2126
  shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2127
  unfolding tendsto_iff
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2128
proof safe
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2129
  fix e :: real
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2130
  assume "0 < e"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2131
  with lim[unfolded tendsto_iff, rule_format, of "e / 4"]
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2132
  have "eventually (\<lambda>t. dist (f' t / g' t) x < e / 4) (at_right 0)"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2133
    by simp
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2134
  from eventually_conj[OF eventually_conj[OF ev(1) ev(2)] eventually_conj[OF ev(3) this]]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2135
  obtain a where [arith]: "0 < a"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2136
    and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2137
    and f0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV f x :> (f' x)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2138
    and g0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV g x :> (g' x)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2139
    and Df: "\<And>t. 0 < t \<Longrightarrow> t < a \<Longrightarrow> dist (f' t / g' t) x < e / 4"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2140
    unfolding eventually_at_le by (auto simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2141
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2142
  from Df have "eventually (\<lambda>t. t < a) (at_right 0)" "eventually (\<lambda>t::real. 0 < t) (at_right 0)"
51641
cd05e9fcc63d remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
hoelzl
parents: 51529
diff changeset
  2143
    unfolding eventually_at by (auto intro!: exI[of _ a] simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2144
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2145
  moreover
50328
25b1e8686ce0 tuned proof
hoelzl
parents: 50327
diff changeset
  2146
  have "eventually (\<lambda>t. 0 < g t) (at_right 0)" "eventually (\<lambda>t. g a < g t) (at_right 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2147
    using g_0 by (auto elim: eventually_mono simp: filterlim_at_top_dense)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2148
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2149
  moreover
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2150
  have inv_g: "((\<lambda>x. inverse (g x)) \<longlongrightarrow> 0) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2151
    using tendsto_inverse_0 filterlim_mono[OF g_0 at_top_le_at_infinity order_refl]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2152
    by (rule filterlim_compose)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2153
  then have "((\<lambda>x. norm (1 - g a * inverse (g x))) \<longlongrightarrow> norm (1 - g a * 0)) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2154
    by (intro tendsto_intros)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2155
  then have "((\<lambda>x. norm (1 - g a / g x)) \<longlongrightarrow> 1) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2156
    by (simp add: inverse_eq_divide)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2157
  from this[unfolded tendsto_iff, rule_format, of 1]
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2158
  have "eventually (\<lambda>x. norm (1 - g a / g x) < 2) (at_right 0)"
61810
3c5040d5694a sorted out eventually_mono
paulson <lp15@cam.ac.uk>
parents: 61799
diff changeset
  2159
    by (auto elim!: eventually_mono simp: dist_real_def)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2160
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2161
  moreover
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2162
  from inv_g have "((\<lambda>t. norm ((f a - x * g a) * inverse (g t))) \<longlongrightarrow> norm ((f a - x * g a) * 0))
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2163
      (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2164
    by (intro tendsto_intros)
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2165
  then have "((\<lambda>t. norm (f a - x * g a) / norm (g t)) \<longlongrightarrow> 0) (at_right 0)"
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2166
    by (simp add: inverse_eq_divide)
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2167
  from this[unfolded tendsto_iff, rule_format, of "e / 2"] \<open>0 < e\<close>
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2168
  have "eventually (\<lambda>t. norm (f a - x * g a) / norm (g t) < e / 2) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2169
    by (auto simp: dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2170
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2171
  ultimately show "eventually (\<lambda>t. dist (f t / g t) x < e) (at_right 0)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2172
  proof eventually_elim
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2173
    fix t assume t[arith]: "0 < t" "t < a" "g a < g t" "0 < g t"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2174
    assume ineq: "norm (1 - g a / g t) < 2" "norm (f a - x * g a) / norm (g t) < e / 2"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2175
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2176
    have "\<exists>y. t < y \<and> y < a \<and> (g a - g t) * f' y = (f a - f t) * g' y"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2177
      using f0 g0 t(1,2) by (intro GMVT') (force intro!: DERIV_isCont)+
53381
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2178
    then obtain y where [arith]: "t < y" "y < a"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2179
      and D_eq0: "(g a - g t) * f' y = (f a - f t) * g' y"
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2180
      by blast
355a4cac5440 tuned proofs -- less guessing;
wenzelm
parents: 53374
diff changeset
  2181
    from D_eq0 have D_eq: "(f t - f a) / (g t - g a) = f' y / g' y"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2182
      using \<open>g a < g t\<close> g'_neq_0[of y] by (auto simp add: field_simps)
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2183
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2184
    have *: "f t / g t - x = ((f t - f a) / (g t - g a) - x) * (1 - g a / g t) + (f a - x * g a) / g t"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2185
      by (simp add: field_simps)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2186
    have "norm (f t / g t - x) \<le>
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2187
        norm (((f t - f a) / (g t - g a) - x) * (1 - g a / g t)) + norm ((f a - x * g a) / g t)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2188
      unfolding * by (rule norm_triangle_ineq)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2189
    also have "\<dots> = dist (f' y / g' y) x * norm (1 - g a / g t) + norm (f a - x * g a) / norm (g t)"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2190
      by (simp add: abs_mult D_eq dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2191
    also have "\<dots> < (e / 4) * 2 + e / 2"
60758
d8d85a8172b5 isabelle update_cartouches;
wenzelm
parents: 60177
diff changeset
  2192
      using ineq Df[of y] \<open>0 < e\<close> by (intro add_le_less_mono mult_mono) auto
50327
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2193
    finally show "dist (f t / g t) x < e"
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2194
      by (simp add: dist_real_def)
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2195
  qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2196
qed
bbea2e82871c add L'Hôpital's rule
hoelzl
parents: 47108
diff changeset
  2197
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2198
lemma lhopital_right_at_top:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2199
  "LIM x at_right x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2200
    eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2201
    eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2202
    eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2203
    ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_right x) \<Longrightarrow>
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2204
    ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_right x)"
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2205
  unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2206
  by (rule lhopital_right_0_at_top)
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2207
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2208
lemma lhopital_left_at_top:
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2209
  "LIM x at_left x. g x :> at_top \<Longrightarrow>
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2210
    eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2211
    eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2212
    eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2213
    ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_left x) \<Longrightarrow>
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2214
    ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_left x)"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2215
  for x :: real
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2216
  unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2217
  by (rule lhopital_right_at_top[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2218
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2219
lemma lhopital_at_top:
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2220
  "LIM x at x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2221
    eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2222
    eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2223
    eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2224
    ((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at x) \<Longrightarrow>
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2225
    ((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at x)"
50330
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2226
  unfolding eventually_at_split filterlim_at_split
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2227
  by (auto intro!: lhopital_right_at_top[of g x g' f f'] lhopital_left_at_top[of g x g' f f'])
d0b12171118e conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
hoelzl
parents: 50329
diff changeset
  2228
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2229
lemma lhospital_at_top_at_top:
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2230
  fixes f g :: "real \<Rightarrow> real"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2231
  assumes g_0: "LIM x at_top. g x :> at_top"
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2232
    and g': "eventually (\<lambda>x. g' x \<noteq> 0) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2233
    and Df: "eventually (\<lambda>x. DERIV f x :> f' x) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2234
    and Dg: "eventually (\<lambda>x. DERIV g x :> g' x) at_top"
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2235
    and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) at_top"
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2236
  shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) at_top"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2237
  unfolding filterlim_at_top_to_right
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2238
proof (rule lhopital_right_0_at_top)
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2239
  let ?F = "\<lambda>x. f (inverse x)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2240
  let ?G = "\<lambda>x. g (inverse x)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2241
  let ?R = "at_right (0::real)"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2242
  let ?D = "\<lambda>f' x. f' (inverse x) * - (inverse x ^ Suc (Suc 0))"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2243
  show "LIM x ?R. ?G x :> at_top"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2244
    using g_0 unfolding filterlim_at_top_to_right .
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2245
  show "eventually (\<lambda>x. DERIV ?G x  :> ?D g' x) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2246
    unfolding eventually_at_right_to_top
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2247
    using Dg eventually_ge_at_top[where c=1]
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2248
    by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2249
  show "eventually (\<lambda>x. DERIV ?F x  :> ?D f' x) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2250
    unfolding eventually_at_right_to_top
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2251
    using Df eventually_ge_at_top[where c=1]
68638
87d1bff264df de-applying and meta-quantifying
paulson <lp15@cam.ac.uk>
parents: 68635
diff changeset
  2252
    by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2253
  show "eventually (\<lambda>x. ?D g' x \<noteq> 0) ?R"
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2254
    unfolding eventually_at_right_to_top
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2255
    using g' eventually_ge_at_top[where c=1]
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2256
    by eventually_elim auto
61973
0c7e865fa7cb more symbols;
wenzelm
parents: 61810
diff changeset
  2257
  show "((\<lambda>x. ?D f' x / ?D g' x) \<longlongrightarrow> x) ?R"
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2258
    unfolding filterlim_at_right_to_top
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2259
    apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim])
63558
0aa33085c8b1 misc tuning and modernization;
wenzelm
parents: 63469
diff changeset
  2260
    using eventually_ge_at_top[where c=1]
56479
91958d4b30f7 revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
hoelzl
parents: 56409
diff changeset
  2261
    by eventually_elim simp
50347
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2262
qed
77e3effa50b6 prove tendsto_power_div_exp_0
hoelzl
parents: 50346
diff changeset
  2263
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2264
lemma lhopital_right_at_top_at_top:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2265
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2266
  assumes f_0: "LIM x at_right a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2267
  assumes g_0: "LIM x at_right a. g x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2268
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2269
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2270
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2271
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2272
  shows "filterlim (\<lambda> x. f x / g x) at_top (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2273
proof -
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2274
  from lim have pos: "eventually (\<lambda>x. f' x / g' x > 0) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2275
    unfolding filterlim_at_top_dense by blast
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2276
  have "((\<lambda>x. g x / f x) \<longlongrightarrow> 0) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2277
  proof (rule lhopital_right_at_top)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2278
    from pos show "eventually (\<lambda>x. f' x \<noteq> 0) (at_right a)" by eventually_elim auto
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2279
    from tendsto_inverse_0_at_top[OF lim]
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2280
      show "((\<lambda>x. g' x / f' x) \<longlongrightarrow> 0) (at_right a)" by simp
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2281
  qed fact+
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2282
  moreover from f_0 g_0 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2283
    have "eventually (\<lambda>x. f x > 0) (at_right a)" "eventually (\<lambda>x. g x > 0) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2284
    unfolding filterlim_at_top_dense by blast+
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2285
  hence "eventually (\<lambda>x. g x / f x > 0) (at_right a)" by eventually_elim simp
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2286
  ultimately have "filterlim (\<lambda>x. inverse (g x / f x)) at_top (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2287
    by (rule filterlim_inverse_at_top)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2288
  thus ?thesis by simp
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2289
qed
63717
3b0500bd2240 remove spurious find_theorems
hoelzl
parents: 63713
diff changeset
  2290
63713
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2291
lemma lhopital_right_at_top_at_bot:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2292
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2293
  assumes f_0: "LIM x at_right a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2294
  assumes g_0: "LIM x at_right a. g x :> at_bot"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2295
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2296
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2297
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2298
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2299
  shows "filterlim (\<lambda> x. f x / g x) at_bot (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2300
proof -
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2301
  from ev(2) have ev': "eventually (\<lambda>x. DERIV (\<lambda>x. -g x) x :> -g' x) (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2302
    by eventually_elim (auto intro: derivative_intros)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2303
  have "filterlim (\<lambda>x. f x / (-g x)) at_top (at_right a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2304
    by (rule lhopital_right_at_top_at_top[where f' = f' and g' = "\<lambda>x. -g' x"])
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2305
       (insert assms ev', auto simp: filterlim_uminus_at_bot)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2306
  hence "filterlim (\<lambda>x. -(f x / g x)) at_top (at_right a)" by simp
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2307
  thus ?thesis by (simp add: filterlim_uminus_at_bot)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2308
qed
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2309
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2310
lemma lhopital_left_at_top_at_top:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2311
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2312
  assumes f_0: "LIM x at_left a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2313
  assumes g_0: "LIM x at_left a. g x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2314
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2315
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2316
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2317
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2318
  shows "filterlim (\<lambda> x. f x / g x) at_top (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2319
  by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror,
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2320
      rule lhopital_right_at_top_at_top[where f'="\<lambda>x. - f' (- x)"]) 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2321
     (insert assms, auto simp: DERIV_mirror)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2322
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2323
lemma lhopital_left_at_top_at_bot:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2324
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2325
  assumes f_0: "LIM x at_left a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2326
  assumes g_0: "LIM x at_left a. g x :> at_bot"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2327
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2328
      "eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2329
      "eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2330
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2331
  shows "filterlim (\<lambda> x. f x / g x) at_bot (at_left a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2332
  by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror,
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2333
      rule lhopital_right_at_top_at_bot[where f'="\<lambda>x. - f' (- x)"]) 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2334
     (insert assms, auto simp: DERIV_mirror)
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2335
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2336
lemma lhopital_at_top_at_top:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2337
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2338
  assumes f_0: "LIM x at a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2339
  assumes g_0: "LIM x at a. g x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2340
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2341
      "eventually (\<lambda>x. DERIV f x :> f' x) (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2342
      "eventually (\<lambda>x. DERIV g x :> g' x) (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2343
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2344
  shows "filterlim (\<lambda> x. f x / g x) at_top (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2345
  using assms unfolding eventually_at_split filterlim_at_split
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2346
  by (auto intro!: lhopital_right_at_top_at_top[of f a g f' g'] 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2347
                   lhopital_left_at_top_at_top[of f a g f' g'])
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2348
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2349
lemma lhopital_at_top_at_bot:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2350
  fixes f g :: "real \<Rightarrow> real"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2351
  assumes f_0: "LIM x at a. f x :> at_top"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2352
  assumes g_0: "LIM x at a. g x :> at_bot"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2353
    and ev:
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2354
      "eventually (\<lambda>x. DERIV f x :> f' x) (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2355
      "eventually (\<lambda>x. DERIV g x :> g' x) (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2356
    and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2357
  shows "filterlim (\<lambda> x. f x / g x) at_bot (at a)"
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2358
  using assms unfolding eventually_at_split filterlim_at_split
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2359
  by (auto intro!: lhopital_right_at_top_at_bot[of f a g f' g'] 
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2360
                   lhopital_left_at_top_at_bot[of f a g f' g'])
009e176e1010 Tuned L'Hospital
eberlm <eberlm@in.tum.de>
parents: 63648
diff changeset
  2361
21164
0742fc979c67 new Deriv.thy contains stuff from Lim.thy
huffman
parents:
diff changeset
  2362
end