| author | desharna | 
| Thu, 08 Jul 2021 08:44:18 +0200 | |
| changeset 73933 | fa92bc604c59 | 
| parent 73932 | fd21b4a93043 | 
| parent 73885 | 26171a89466a | 
| child 74007 | df976eefcba0 | 
| permissions | -rw-r--r-- | 
| 63558 | 1  | 
(* Title: HOL/Deriv.thy  | 
2  | 
Author: Jacques D. Fleuriot, University of Cambridge, 1998  | 
|
3  | 
Author: Brian Huffman  | 
|
4  | 
Author: Lawrence C Paulson, 2004  | 
|
5  | 
Author: Benjamin Porter, 2005  | 
|
| 21164 | 6  | 
*)  | 
7  | 
||
| 63558 | 8  | 
section \<open>Differentiation\<close>  | 
| 21164 | 9  | 
|
10  | 
theory Deriv  | 
|
| 63558 | 11  | 
imports Limits  | 
| 21164 | 12  | 
begin  | 
13  | 
||
| 60758 | 14  | 
subsection \<open>Frechet derivative\<close>  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
15  | 
|
| 63558 | 16  | 
definition has_derivative :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow>
 | 
17  | 
    ('a \<Rightarrow> 'b) \<Rightarrow> 'a filter \<Rightarrow> bool"  (infix "(has'_derivative)" 50)
 | 
|
18  | 
where "(f has_derivative f') F \<longleftrightarrow>  | 
|
19  | 
bounded_linear f' \<and>  | 
|
20  | 
((\<lambda>y. ((f y - f (Lim F (\<lambda>x. x))) - f' (y - Lim F (\<lambda>x. x))) /\<^sub>R norm (y - Lim F (\<lambda>x. x))) \<longlongrightarrow> 0) F"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
21  | 
|
| 60758 | 22  | 
text \<open>  | 
| 69593 | 23  | 
Usually the filter \<^term>\<open>F\<close> is \<^term>\<open>at x within s\<close>. \<^term>\<open>(f has_derivative D)  | 
24  | 
(at x within s)\<close> means: \<^term>\<open>D\<close> is the derivative of function \<^term>\<open>f\<close> at point \<^term>\<open>x\<close>  | 
|
25  | 
within the set \<^term>\<open>s\<close>. Where \<^term>\<open>s\<close> is used to express left or right sided derivatives. In  | 
|
26  | 
most cases \<^term>\<open>s\<close> is either a variable or \<^term>\<open>UNIV\<close>.  | 
|
| 60758 | 27  | 
\<close>  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
28  | 
|
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
29  | 
text \<open>These are the only cases we'll care about, probably.\<close>  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
30  | 
|
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
31  | 
lemma has_derivative_within: "(f has_derivative f') (at x within s) \<longleftrightarrow>  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
32  | 
bounded_linear f' \<and> ((\<lambda>y. (1 / norm(y - x)) *\<^sub>R (f y - (f x + f' (y - x)))) \<longlongrightarrow> 0) (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
33  | 
unfolding has_derivative_def tendsto_iff  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
34  | 
by (subst eventually_Lim_ident_at) (auto simp add: field_simps)  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
35  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
36  | 
lemma has_derivative_eq_rhs: "(f has_derivative f') F \<Longrightarrow> f' = g' \<Longrightarrow> (f has_derivative g') F"  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
37  | 
by simp  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
38  | 
|
| 63558 | 39  | 
definition has_field_derivative :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a filter \<Rightarrow> bool"
 | 
40  | 
(infix "(has'_field'_derivative)" 50)  | 
|
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
41  | 
where "(f has_field_derivative D) F \<longleftrightarrow> (f has_derivative (*) D) F"  | 
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
42  | 
|
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
43  | 
lemma DERIV_cong: "(f has_field_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_field_derivative Y) F"  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
44  | 
by simp  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
45  | 
|
| 63558 | 46  | 
definition has_vector_derivative :: "(real \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'b \<Rightarrow> real filter \<Rightarrow> bool"  | 
47  | 
(infix "has'_vector'_derivative" 50)  | 
|
48  | 
where "(f has_vector_derivative f') net \<longleftrightarrow> (f has_derivative (\<lambda>x. x *\<^sub>R f')) net"  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
49  | 
|
| 63558 | 50  | 
lemma has_vector_derivative_eq_rhs:  | 
51  | 
"(f has_vector_derivative X) F \<Longrightarrow> X = Y \<Longrightarrow> (f has_vector_derivative Y) F"  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
52  | 
by simp  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
53  | 
|
| 57953 | 54  | 
named_theorems derivative_intros "structural introduction rules for derivatives"  | 
| 60758 | 55  | 
setup \<open>  | 
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
56  | 
let  | 
| 57953 | 57  | 
    val eq_thms = @{thms has_derivative_eq_rhs DERIV_cong has_vector_derivative_eq_rhs}
 | 
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
58  | 
fun eq_rule thm = get_first (try (fn eq_thm => eq_thm OF [thm])) eq_thms  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
59  | 
in  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
60  | 
Global_Theory.add_thms_dynamic  | 
| 67149 | 61  | 
(\<^binding>\<open>derivative_eq_intros\<close>,  | 
| 57953 | 62  | 
fn context =>  | 
| 69593 | 63  | 
Named_Theorems.get (Context.proof_of context) \<^named_theorems>\<open>derivative_intros\<close>  | 
| 57953 | 64  | 
|> map_filter eq_rule)  | 
| 
69216
 
1a52baa70aed
clarified ML_Context.expression: it is a closed expression, not a let-declaration -- thus source positions are more accurate (amending d8849cfad60f, 162a4c2e97bc);
 
wenzelm 
parents: 
69111 
diff
changeset
 | 
65  | 
end  | 
| 60758 | 66  | 
\<close>  | 
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
67  | 
|
| 60758 | 68  | 
text \<open>  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
69  | 
The following syntax is only used as a legacy syntax.  | 
| 60758 | 70  | 
\<close>  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
71  | 
abbreviation (input)  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
72  | 
  FDERIV :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a \<Rightarrow>  ('a \<Rightarrow> 'b) \<Rightarrow> bool"
 | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
73  | 
  ("(FDERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
 | 
| 63558 | 74  | 
where "FDERIV f x :> f' \<equiv> (f has_derivative f') (at x)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
75  | 
|
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
76  | 
lemma has_derivative_bounded_linear: "(f has_derivative f') F \<Longrightarrow> bounded_linear f'"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
77  | 
by (simp add: has_derivative_def)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
78  | 
|
| 
56369
 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 
hoelzl 
parents: 
56289 
diff
changeset
 | 
79  | 
lemma has_derivative_linear: "(f has_derivative f') F \<Longrightarrow> linear f'"  | 
| 
 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 
hoelzl 
parents: 
56289 
diff
changeset
 | 
80  | 
using bounded_linear.linear[OF has_derivative_bounded_linear] .  | 
| 
 
2704ca85be98
moved generic theorems from Complex_Analysis_Basic; fixed some theorem names
 
hoelzl 
parents: 
56289 
diff
changeset
 | 
81  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
82  | 
lemma has_derivative_ident[derivative_intros, simp]: "((\<lambda>x. x) has_derivative (\<lambda>x. x)) F"  | 
| 
58729
 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 
hoelzl 
parents: 
57953 
diff
changeset
 | 
83  | 
by (simp add: has_derivative_def)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
84  | 
|
| 
63469
 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
63299 
diff
changeset
 | 
85  | 
lemma has_derivative_id [derivative_intros, simp]: "(id has_derivative id) (at a)"  | 
| 
 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
63299 
diff
changeset
 | 
86  | 
by (metis eq_id_iff has_derivative_ident)  | 
| 
 
b6900858dcb9
lots of new theorems about differentiable_on, retracts, ANRs, etc.
 
paulson <lp15@cam.ac.uk> 
parents: 
63299 
diff
changeset
 | 
87  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
88  | 
lemma has_derivative_const[derivative_intros, simp]: "((\<lambda>x. c) has_derivative (\<lambda>x. 0)) F"  | 
| 
58729
 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 
hoelzl 
parents: 
57953 
diff
changeset
 | 
89  | 
by (simp add: has_derivative_def)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
90  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
91  | 
lemma (in bounded_linear) bounded_linear: "bounded_linear f" ..  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
92  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
93  | 
lemma (in bounded_linear) has_derivative:  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
94  | 
"(g has_derivative g') F \<Longrightarrow> ((\<lambda>x. f (g x)) has_derivative (\<lambda>x. f (g' x))) F"  | 
| 63092 | 95  | 
unfolding has_derivative_def  | 
| 68634 | 96  | 
by (auto simp add: bounded_linear_compose [OF bounded_linear] scaleR diff dest: tendsto)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
97  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
98  | 
lemmas has_derivative_scaleR_right [derivative_intros] =  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
99  | 
bounded_linear.has_derivative [OF bounded_linear_scaleR_right]  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
100  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
101  | 
lemmas has_derivative_scaleR_left [derivative_intros] =  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
102  | 
bounded_linear.has_derivative [OF bounded_linear_scaleR_left]  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
103  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
104  | 
lemmas has_derivative_mult_right [derivative_intros] =  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
105  | 
bounded_linear.has_derivative [OF bounded_linear_mult_right]  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
106  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
107  | 
lemmas has_derivative_mult_left [derivative_intros] =  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
108  | 
bounded_linear.has_derivative [OF bounded_linear_mult_left]  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
109  | 
|
| 
70707
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
110  | 
lemmas has_derivative_of_real[derivative_intros, simp] =  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
111  | 
bounded_linear.has_derivative[OF bounded_linear_of_real]  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
112  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
113  | 
lemma has_derivative_add[simp, derivative_intros]:  | 
| 63558 | 114  | 
assumes f: "(f has_derivative f') F"  | 
115  | 
and g: "(g has_derivative g') F"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
116  | 
shows "((\<lambda>x. f x + g x) has_derivative (\<lambda>x. f' x + g' x)) F"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
117  | 
unfolding has_derivative_def  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
118  | 
proof safe  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
119  | 
let ?x = "Lim F (\<lambda>x. x)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
120  | 
let ?D = "\<lambda>f f' y. ((f y - f ?x) - f' (y - ?x)) /\<^sub>R norm (y - ?x)"  | 
| 61973 | 121  | 
have "((\<lambda>x. ?D f f' x + ?D g g' x) \<longlongrightarrow> (0 + 0)) F"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
122  | 
using f g by (intro tendsto_add) (auto simp: has_derivative_def)  | 
| 61973 | 123  | 
then show "(?D (\<lambda>x. f x + g x) (\<lambda>x. f' x + g' x) \<longlongrightarrow> 0) F"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
124  | 
by (simp add: field_simps scaleR_add_right scaleR_diff_right)  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
125  | 
qed (blast intro: bounded_linear_add f g has_derivative_bounded_linear)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
126  | 
|
| 64267 | 127  | 
lemma has_derivative_sum[simp, derivative_intros]:  | 
| 63915 | 128  | 
"(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) F) \<Longrightarrow>  | 
129  | 
((\<lambda>x. \<Sum>i\<in>I. f i x) has_derivative (\<lambda>x. \<Sum>i\<in>I. f' i x)) F"  | 
|
130  | 
by (induct I rule: infinite_finite_induct) simp_all  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
131  | 
|
| 63558 | 132  | 
lemma has_derivative_minus[simp, derivative_intros]:  | 
133  | 
"(f has_derivative f') F \<Longrightarrow> ((\<lambda>x. - f x) has_derivative (\<lambda>x. - f' x)) F"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
134  | 
using has_derivative_scaleR_right[of f f' F "-1"] by simp  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
135  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
136  | 
lemma has_derivative_diff[simp, derivative_intros]:  | 
| 63558 | 137  | 
"(f has_derivative f') F \<Longrightarrow> (g has_derivative g') F \<Longrightarrow>  | 
138  | 
((\<lambda>x. f x - g x) has_derivative (\<lambda>x. f' x - g' x)) F"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
139  | 
by (simp only: diff_conv_add_uminus has_derivative_add has_derivative_minus)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
140  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
141  | 
lemma has_derivative_at_within:  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
142  | 
"(f has_derivative f') (at x within s) \<longleftrightarrow>  | 
| 61973 | 143  | 
(bounded_linear f' \<and> ((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s))"  | 
| 
72219
 
0f38c96a0a74
tidying up some theorem statements
 
paulson <lp15@cam.ac.uk> 
parents: 
71837 
diff
changeset
 | 
144  | 
proof (cases "at x within s = bot")  | 
| 
 
0f38c96a0a74
tidying up some theorem statements
 
paulson <lp15@cam.ac.uk> 
parents: 
71837 
diff
changeset
 | 
145  | 
case True  | 
| 
 
0f38c96a0a74
tidying up some theorem statements
 
paulson <lp15@cam.ac.uk> 
parents: 
71837 
diff
changeset
 | 
146  | 
then show ?thesis  | 
| 
 
0f38c96a0a74
tidying up some theorem statements
 
paulson <lp15@cam.ac.uk> 
parents: 
71837 
diff
changeset
 | 
147  | 
by (metis (no_types, lifting) has_derivative_within tendsto_bot)  | 
| 
 
0f38c96a0a74
tidying up some theorem statements
 
paulson <lp15@cam.ac.uk> 
parents: 
71837 
diff
changeset
 | 
148  | 
next  | 
| 
 
0f38c96a0a74
tidying up some theorem statements
 
paulson <lp15@cam.ac.uk> 
parents: 
71837 
diff
changeset
 | 
149  | 
case False  | 
| 
 
0f38c96a0a74
tidying up some theorem statements
 
paulson <lp15@cam.ac.uk> 
parents: 
71837 
diff
changeset
 | 
150  | 
then show ?thesis  | 
| 
 
0f38c96a0a74
tidying up some theorem statements
 
paulson <lp15@cam.ac.uk> 
parents: 
71837 
diff
changeset
 | 
151  | 
by (simp add: Lim_ident_at has_derivative_def)  | 
| 
 
0f38c96a0a74
tidying up some theorem statements
 
paulson <lp15@cam.ac.uk> 
parents: 
71837 
diff
changeset
 | 
152  | 
qed  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
153  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
154  | 
lemma has_derivative_iff_norm:  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
155  | 
"(f has_derivative f') (at x within s) \<longleftrightarrow>  | 
| 63558 | 156  | 
bounded_linear f' \<and> ((\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
157  | 
using tendsto_norm_zero_iff[of _ "at x within s", where 'b="'b", symmetric]  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
158  | 
by (simp add: has_derivative_at_within divide_inverse ac_simps)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
159  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
160  | 
lemma has_derivative_at:  | 
| 63558 | 161  | 
"(f has_derivative D) (at x) \<longleftrightarrow>  | 
162  | 
(bounded_linear D \<and> (\<lambda>h. norm (f (x + h) - f x - D h) / norm h) \<midarrow>0\<rightarrow> 0)"  | 
|
| 72245 | 163  | 
by (simp add: has_derivative_iff_norm LIM_offset_zero_iff)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
164  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
165  | 
lemma field_has_derivative_at:  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
166  | 
fixes x :: "'a::real_normed_field"  | 
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
167  | 
shows "(f has_derivative (*) D) (at x) \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D" (is "?lhs = ?rhs")  | 
| 68634 | 168  | 
proof -  | 
169  | 
have "?lhs = (\<lambda>h. norm (f (x + h) - f x - D * h) / norm h) \<midarrow>0 \<rightarrow> 0"  | 
|
170  | 
by (simp add: bounded_linear_mult_right has_derivative_at)  | 
|
171  | 
also have "... = (\<lambda>y. norm ((f (x + y) - f x - D * y) / y)) \<midarrow>0\<rightarrow> 0"  | 
|
172  | 
by (simp cong: LIM_cong flip: nonzero_norm_divide)  | 
|
173  | 
also have "... = (\<lambda>y. norm ((f (x + y) - f x) / y - D / y * y)) \<midarrow>0\<rightarrow> 0"  | 
|
174  | 
by (simp only: diff_divide_distrib times_divide_eq_left [symmetric])  | 
|
175  | 
also have "... = ?rhs"  | 
|
176  | 
by (simp add: tendsto_norm_zero_iff LIM_zero_iff cong: LIM_cong)  | 
|
177  | 
finally show ?thesis .  | 
|
178  | 
qed  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
179  | 
|
| 
70999
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
180  | 
lemma has_derivative_iff_Ex:  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
181  | 
"(f has_derivative f') (at x) \<longleftrightarrow>  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
182  | 
bounded_linear f' \<and> (\<exists>e. (\<forall>h. f (x+h) = f x + f' h + e h) \<and> ((\<lambda>h. norm (e h) / norm h) \<longlongrightarrow> 0) (at 0))"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
183  | 
unfolding has_derivative_at by force  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
184  | 
|
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
185  | 
lemma has_derivative_at_within_iff_Ex:  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
186  | 
assumes "x \<in> S" "open S"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
187  | 
shows "(f has_derivative f') (at x within S) \<longleftrightarrow>  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
188  | 
bounded_linear f' \<and> (\<exists>e. (\<forall>h. x+h \<in> S \<longrightarrow> f (x+h) = f x + f' h + e h) \<and> ((\<lambda>h. norm (e h) / norm h) \<longlongrightarrow> 0) (at 0))"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
189  | 
(is "?lhs = ?rhs")  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
190  | 
proof safe  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
191  | 
show "bounded_linear f'"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
192  | 
if "(f has_derivative f') (at x within S)"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
193  | 
using has_derivative_bounded_linear that by blast  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
194  | 
show "\<exists>e. (\<forall>h. x + h \<in> S \<longrightarrow> f (x + h) = f x + f' h + e h) \<and> (\<lambda>h. norm (e h) / norm h) \<midarrow>0\<rightarrow> 0"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
195  | 
if "(f has_derivative f') (at x within S)"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
196  | 
by (metis (full_types) assms that has_derivative_iff_Ex at_within_open)  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
197  | 
show "(f has_derivative f') (at x within S)"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
198  | 
if "bounded_linear f'"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
199  | 
and eq [rule_format]: "\<forall>h. x + h \<in> S \<longrightarrow> f (x + h) = f x + f' h + e h"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
200  | 
and 0: "(\<lambda>h. norm (e (h::'a)::'b) / norm h) \<midarrow>0\<rightarrow> 0"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
201  | 
for e  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
202  | 
proof -  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
203  | 
have 1: "f y - f x = f' (y-x) + e (y-x)" if "y \<in> S" for y  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
204  | 
using eq [of "y-x"] that by simp  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
205  | 
have 2: "((\<lambda>y. norm (e (y-x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S)"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
206  | 
by (simp add: "0" assms tendsto_offset_zero_iff)  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
207  | 
have "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S)"  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
208  | 
by (simp add: Lim_cong_within 1 2)  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
209  | 
then show ?thesis  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
210  | 
by (simp add: has_derivative_iff_norm \<open>bounded_linear f'\<close>)  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
211  | 
qed  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
212  | 
qed  | 
| 
 
5b753486c075
Inverse function theorem + lemmas
 
paulson <lp15@cam.ac.uk> 
parents: 
70707 
diff
changeset
 | 
213  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
214  | 
lemma has_derivativeI:  | 
| 63558 | 215  | 
"bounded_linear f' \<Longrightarrow>  | 
216  | 
((\<lambda>y. ((f y - f x) - f' (y - x)) /\<^sub>R norm (y - x)) \<longlongrightarrow> 0) (at x within s) \<Longrightarrow>  | 
|
217  | 
(f has_derivative f') (at x within s)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
218  | 
by (simp add: has_derivative_at_within)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
219  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
220  | 
lemma has_derivativeI_sandwich:  | 
| 63558 | 221  | 
assumes e: "0 < e"  | 
222  | 
and bounded: "bounded_linear f'"  | 
|
223  | 
and sandwich: "(\<And>y. y \<in> s \<Longrightarrow> y \<noteq> x \<Longrightarrow> dist y x < e \<Longrightarrow>  | 
|
224  | 
norm ((f y - f x) - f' (y - x)) / norm (y - x) \<le> H y)"  | 
|
| 61973 | 225  | 
and "(H \<longlongrightarrow> 0) (at x within s)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
226  | 
shows "(f has_derivative f') (at x within s)"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
227  | 
unfolding has_derivative_iff_norm  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
228  | 
proof safe  | 
| 61973 | 229  | 
show "((\<lambda>y. norm (f y - f x - f' (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within s)"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
230  | 
proof (rule tendsto_sandwich[where f="\<lambda>x. 0"])  | 
| 61973 | 231  | 
show "(H \<longlongrightarrow> 0) (at x within s)" by fact  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
232  | 
show "eventually (\<lambda>n. norm (f n - f x - f' (n - x)) / norm (n - x) \<le> H n) (at x within s)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
233  | 
unfolding eventually_at using e sandwich by auto  | 
| 
58729
 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 
hoelzl 
parents: 
57953 
diff
changeset
 | 
234  | 
qed (auto simp: le_divide_eq)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
235  | 
qed fact  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
236  | 
|
| 63558 | 237  | 
lemma has_derivative_subset:  | 
238  | 
"(f has_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> (f has_derivative f') (at x within t)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
239  | 
by (auto simp add: has_derivative_iff_norm intro: tendsto_within_subset)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
240  | 
|
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
241  | 
lemma has_derivative_within_singleton_iff:  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
242  | 
  "(f has_derivative g) (at x within {x}) \<longleftrightarrow> bounded_linear g"
 | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
243  | 
by (auto intro!: has_derivativeI_sandwich[where e=1] has_derivative_bounded_linear)  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
244  | 
|
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
245  | 
|
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
246  | 
subsubsection \<open>Limit transformation for derivatives\<close>  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
247  | 
|
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
248  | 
lemma has_derivative_transform_within:  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
249  | 
assumes "(f has_derivative f') (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
250  | 
and "0 < d"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
251  | 
and "x \<in> s"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
252  | 
and "\<And>x'. \<lbrakk>x' \<in> s; dist x' x < d\<rbrakk> \<Longrightarrow> f x' = g x'"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
253  | 
shows "(g has_derivative f') (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
254  | 
using assms  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
255  | 
unfolding has_derivative_within  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
256  | 
by (force simp add: intro: Lim_transform_within)  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
257  | 
|
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
258  | 
lemma has_derivative_transform_within_open:  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
259  | 
assumes "(f has_derivative f') (at x within t)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
260  | 
and "open s"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
261  | 
and "x \<in> s"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
262  | 
and "\<And>x. x\<in>s \<Longrightarrow> f x = g x"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
263  | 
shows "(g has_derivative f') (at x within t)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
264  | 
using assms unfolding has_derivative_within  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
265  | 
by (force simp add: intro: Lim_transform_within_open)  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
266  | 
|
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
267  | 
lemma has_derivative_transform:  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
268  | 
assumes "x \<in> s" "\<And>x. x \<in> s \<Longrightarrow> g x = f x"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
269  | 
assumes "(f has_derivative f') (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
270  | 
shows "(g has_derivative f') (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
271  | 
using assms  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
272  | 
by (intro has_derivative_transform_within[OF _ zero_less_one, where g=g]) auto  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
273  | 
|
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
274  | 
lemma has_derivative_transform_eventually:  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
275  | 
assumes "(f has_derivative f') (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
276  | 
"(\<forall>\<^sub>F x' in at x within s. f x' = g x')"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
277  | 
assumes "f x = g x" "x \<in> s"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
278  | 
shows "(g has_derivative f') (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
279  | 
using assms  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
280  | 
proof -  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
281  | 
from assms(2,3) obtain d where "d > 0" "\<And>x'. x' \<in> s \<Longrightarrow> dist x' x < d \<Longrightarrow> f x' = g x'"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
282  | 
by (force simp: eventually_at)  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
283  | 
from has_derivative_transform_within[OF assms(1) this(1) assms(4) this(2)]  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
284  | 
show ?thesis .  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
285  | 
qed  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
286  | 
|
| 
71029
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
287  | 
lemma has_field_derivative_transform_within:  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
288  | 
assumes "(f has_field_derivative f') (at a within S)"  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
289  | 
and "0 < d"  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
290  | 
and "a \<in> S"  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
291  | 
and "\<And>x. \<lbrakk>x \<in> S; dist x a < d\<rbrakk> \<Longrightarrow> f x = g x"  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
292  | 
shows "(g has_field_derivative f') (at a within S)"  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
293  | 
using assms unfolding has_field_derivative_def  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
294  | 
by (metis has_derivative_transform_within)  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
295  | 
|
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
296  | 
lemma has_field_derivative_transform_within_open:  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
297  | 
assumes "(f has_field_derivative f') (at a)"  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
298  | 
and "open S" "a \<in> S"  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
299  | 
and "\<And>x. x \<in> S \<Longrightarrow> f x = g x"  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
300  | 
shows "(g has_field_derivative f') (at a)"  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
301  | 
using assms unfolding has_field_derivative_def  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
302  | 
by (metis has_derivative_transform_within_open)  | 
| 
 
934e0044e94b
Moved or deleted some out of place material, also eliminating obsolete naming conventions
 
paulson <lp15@cam.ac.uk> 
parents: 
70999 
diff
changeset
 | 
303  | 
|
| 56261 | 304  | 
|
| 60758 | 305  | 
subsection \<open>Continuity\<close>  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
306  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
307  | 
lemma has_derivative_continuous:  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
308  | 
assumes f: "(f has_derivative f') (at x within s)"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
309  | 
shows "continuous (at x within s) f"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
310  | 
proof -  | 
| 63558 | 311  | 
from f interpret F: bounded_linear f'  | 
312  | 
by (rule has_derivative_bounded_linear)  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
313  | 
note F.tendsto[tendsto_intros]  | 
| 61973 | 314  | 
let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
315  | 
have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x))"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
316  | 
using f unfolding has_derivative_iff_norm by blast  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
317  | 
then have "?L (\<lambda>y. norm ((f y - f x) - f' (y - x)) / norm (y - x) * norm (y - x))" (is ?m)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
318  | 
by (rule tendsto_mult_zero) (auto intro!: tendsto_eq_intros)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
319  | 
also have "?m \<longleftrightarrow> ?L (\<lambda>y. norm ((f y - f x) - f' (y - x)))"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
320  | 
by (intro filterlim_cong) (simp_all add: eventually_at_filter)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
321  | 
finally have "?L (\<lambda>y. (f y - f x) - f' (y - x))"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
322  | 
by (rule tendsto_norm_zero_cancel)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
323  | 
then have "?L (\<lambda>y. ((f y - f x) - f' (y - x)) + f' (y - x))"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
324  | 
by (rule tendsto_eq_intros) (auto intro!: tendsto_eq_intros simp: F.zero)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
325  | 
then have "?L (\<lambda>y. f y - f x)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
326  | 
by simp  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
327  | 
from tendsto_add[OF this tendsto_const, of "f x"] show ?thesis  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
328  | 
by (simp add: continuous_within)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
329  | 
qed  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
330  | 
|
| 63558 | 331  | 
|
| 60758 | 332  | 
subsection \<open>Composition\<close>  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
333  | 
|
| 63558 | 334  | 
lemma tendsto_at_iff_tendsto_nhds_within:  | 
335  | 
"f x = y \<Longrightarrow> (f \<longlongrightarrow> y) (at x within s) \<longleftrightarrow> (f \<longlongrightarrow> y) (inf (nhds x) (principal s))"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
336  | 
unfolding tendsto_def eventually_inf_principal eventually_at_filter  | 
| 61810 | 337  | 
by (intro ext all_cong imp_cong) (auto elim!: eventually_mono)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
338  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
339  | 
lemma has_derivative_in_compose:  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
340  | 
assumes f: "(f has_derivative f') (at x within s)"  | 
| 63558 | 341  | 
and g: "(g has_derivative g') (at (f x) within (f`s))"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
342  | 
shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
343  | 
proof -  | 
| 63558 | 344  | 
from f interpret F: bounded_linear f'  | 
345  | 
by (rule has_derivative_bounded_linear)  | 
|
346  | 
from g interpret G: bounded_linear g'  | 
|
347  | 
by (rule has_derivative_bounded_linear)  | 
|
348  | 
from F.bounded obtain kF where kF: "\<And>x. norm (f' x) \<le> norm x * kF"  | 
|
349  | 
by fast  | 
|
350  | 
from G.bounded obtain kG where kG: "\<And>x. norm (g' x) \<le> norm x * kG"  | 
|
351  | 
by fast  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
352  | 
note G.tendsto[tendsto_intros]  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
353  | 
|
| 61973 | 354  | 
let ?L = "\<lambda>f. (f \<longlongrightarrow> 0) (at x within s)"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
355  | 
let ?D = "\<lambda>f f' x y. (f y - f x) - f' (y - x)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
356  | 
let ?N = "\<lambda>f f' x y. norm (?D f f' x y) / norm (y - x)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
357  | 
let ?gf = "\<lambda>x. g (f x)" and ?gf' = "\<lambda>x. g' (f' x)"  | 
| 63040 | 358  | 
define Nf where "Nf = ?N f f' x"  | 
359  | 
define Ng where [abs_def]: "Ng y = ?N g g' (f x) (f y)" for y  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
360  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
361  | 
show ?thesis  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
362  | 
proof (rule has_derivativeI_sandwich[of 1])  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
363  | 
show "bounded_linear (\<lambda>x. g' (f' x))"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
364  | 
using f g by (blast intro: bounded_linear_compose has_derivative_bounded_linear)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
365  | 
next  | 
| 63558 | 366  | 
fix y :: 'a  | 
367  | 
assume neq: "y \<noteq> x"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
368  | 
have "?N ?gf ?gf' x y = norm (g' (?D f f' x y) + ?D g g' (f x) (f y)) / norm (y - x)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
369  | 
by (simp add: G.diff G.add field_simps)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
370  | 
also have "\<dots> \<le> norm (g' (?D f f' x y)) / norm (y - x) + Ng y * (norm (f y - f x) / norm (y - x))"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
371  | 
by (simp add: add_divide_distrib[symmetric] divide_right_mono norm_triangle_ineq G.zero Ng_def)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
372  | 
also have "\<dots> \<le> Nf y * kG + Ng y * (Nf y + kF)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
373  | 
proof (intro add_mono mult_left_mono)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
374  | 
have "norm (f y - f x) = norm (?D f f' x y + f' (y - x))"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
375  | 
by simp  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
376  | 
also have "\<dots> \<le> norm (?D f f' x y) + norm (f' (y - x))"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
377  | 
by (rule norm_triangle_ineq)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
378  | 
also have "\<dots> \<le> norm (?D f f' x y) + norm (y - x) * kF"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
379  | 
using kF by (intro add_mono) simp  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
380  | 
finally show "norm (f y - f x) / norm (y - x) \<le> Nf y + kF"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
381  | 
by (simp add: neq Nf_def field_simps)  | 
| 63558 | 382  | 
qed (use kG in \<open>simp_all add: Ng_def Nf_def neq zero_le_divide_iff field_simps\<close>)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
383  | 
finally show "?N ?gf ?gf' x y \<le> Nf y * kG + Ng y * (Nf y + kF)" .  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
384  | 
next  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
385  | 
have [tendsto_intros]: "?L Nf"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
386  | 
using f unfolding has_derivative_iff_norm Nf_def ..  | 
| 61973 | 387  | 
from f have "(f \<longlongrightarrow> f x) (at x within s)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
388  | 
by (blast intro: has_derivative_continuous continuous_within[THEN iffD1])  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
389  | 
then have f': "LIM x at x within s. f x :> inf (nhds (f x)) (principal (f`s))"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
390  | 
unfolding filterlim_def  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
391  | 
by (simp add: eventually_filtermap eventually_at_filter le_principal)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
392  | 
|
| 61973 | 393  | 
have "((?N g g' (f x)) \<longlongrightarrow> 0) (at (f x) within f`s)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
394  | 
using g unfolding has_derivative_iff_norm ..  | 
| 61973 | 395  | 
then have g': "((?N g g' (f x)) \<longlongrightarrow> 0) (inf (nhds (f x)) (principal (f`s)))"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
396  | 
by (rule tendsto_at_iff_tendsto_nhds_within[THEN iffD1, rotated]) simp  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
397  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
398  | 
have [tendsto_intros]: "?L Ng"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
399  | 
unfolding Ng_def by (rule filterlim_compose[OF g' f'])  | 
| 61973 | 400  | 
show "((\<lambda>y. Nf y * kG + Ng y * (Nf y + kF)) \<longlongrightarrow> 0) (at x within s)"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
401  | 
by (intro tendsto_eq_intros) auto  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
402  | 
qed simp  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
403  | 
qed  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
404  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
405  | 
lemma has_derivative_compose:  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
406  | 
"(f has_derivative f') (at x within s) \<Longrightarrow> (g has_derivative g') (at (f x)) \<Longrightarrow>  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
407  | 
((\<lambda>x. g (f x)) has_derivative (\<lambda>x. g' (f' x))) (at x within s)"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
408  | 
by (blast intro: has_derivative_in_compose has_derivative_subset)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
409  | 
|
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
410  | 
lemma has_derivative_in_compose2:  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
411  | 
assumes "\<And>x. x \<in> t \<Longrightarrow> (g has_derivative g' x) (at x within t)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
412  | 
assumes "f ` s \<subseteq> t" "x \<in> s"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
413  | 
assumes "(f has_derivative f') (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
414  | 
shows "((\<lambda>x. g (f x)) has_derivative (\<lambda>y. g' (f x) (f' y))) (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
415  | 
using assms  | 
| 
72445
 
2c2de074832e
tidying and removal of legacy name
 
paulson <lp15@cam.ac.uk> 
parents: 
72245 
diff
changeset
 | 
416  | 
by (auto intro: has_derivative_subset intro!: has_derivative_in_compose[of f f' x s g])  | 
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
417  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
418  | 
lemma (in bounded_bilinear) FDERIV:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
419  | 
assumes f: "(f has_derivative f') (at x within s)" and g: "(g has_derivative g') (at x within s)"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
420  | 
shows "((\<lambda>x. f x ** g x) has_derivative (\<lambda>h. f x ** g' h + f' h ** g x)) (at x within s)"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
421  | 
proof -  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
422  | 
from bounded_linear.bounded [OF has_derivative_bounded_linear [OF f]]  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
423  | 
obtain KF where norm_F: "\<And>x. norm (f' x) \<le> norm x * KF" by fast  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
424  | 
|
| 63558 | 425  | 
from pos_bounded obtain K  | 
426  | 
where K: "0 < K" and norm_prod: "\<And>a b. norm (a ** b) \<le> norm a * norm b * K"  | 
|
427  | 
by fast  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
428  | 
let ?D = "\<lambda>f f' y. f y - f x - f' (y - x)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
429  | 
let ?N = "\<lambda>f f' y. norm (?D f f' y) / norm (y - x)"  | 
| 63040 | 430  | 
define Ng where "Ng = ?N g g'"  | 
431  | 
define Nf where "Nf = ?N f f'"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
432  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
433  | 
let ?fun1 = "\<lambda>y. norm (f y ** g y - f x ** g x - (f x ** g' (y - x) + f' (y - x) ** g x)) / norm (y - x)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
434  | 
let ?fun2 = "\<lambda>y. norm (f x) * Ng y * K + Nf y * norm (g y) * K + KF * norm (g y - g x) * K"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
435  | 
let ?F = "at x within s"  | 
| 21164 | 436  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
437  | 
show ?thesis  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
438  | 
proof (rule has_derivativeI_sandwich[of 1])  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
439  | 
show "bounded_linear (\<lambda>h. f x ** g' h + f' h ** g x)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
440  | 
by (intro bounded_linear_add  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
441  | 
bounded_linear_compose [OF bounded_linear_right] bounded_linear_compose [OF bounded_linear_left]  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
442  | 
has_derivative_bounded_linear [OF g] has_derivative_bounded_linear [OF f])  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
443  | 
next  | 
| 61973 | 444  | 
from g have "(g \<longlongrightarrow> g x) ?F"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
445  | 
by (intro continuous_within[THEN iffD1] has_derivative_continuous)  | 
| 61973 | 446  | 
moreover from f g have "(Nf \<longlongrightarrow> 0) ?F" "(Ng \<longlongrightarrow> 0) ?F"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
447  | 
by (simp_all add: has_derivative_iff_norm Ng_def Nf_def)  | 
| 61973 | 448  | 
ultimately have "(?fun2 \<longlongrightarrow> norm (f x) * 0 * K + 0 * norm (g x) * K + KF * norm (0::'b) * K) ?F"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
449  | 
by (intro tendsto_intros) (simp_all add: LIM_zero_iff)  | 
| 61973 | 450  | 
then show "(?fun2 \<longlongrightarrow> 0) ?F"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
451  | 
by simp  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
452  | 
next  | 
| 63558 | 453  | 
fix y :: 'd  | 
454  | 
assume "y \<noteq> x"  | 
|
455  | 
have "?fun1 y =  | 
|
456  | 
norm (f x ** ?D g g' y + ?D f f' y ** g y + f' (y - x) ** (g y - g x)) / norm (y - x)"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
457  | 
by (simp add: diff_left diff_right add_left add_right field_simps)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
458  | 
also have "\<dots> \<le> (norm (f x) * norm (?D g g' y) * K + norm (?D f f' y) * norm (g y) * K +  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
459  | 
norm (y - x) * KF * norm (g y - g x) * K) / norm (y - x)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
460  | 
by (intro divide_right_mono mult_mono'  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
461  | 
order_trans [OF norm_triangle_ineq add_mono]  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
462  | 
order_trans [OF norm_prod mult_right_mono]  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
463  | 
mult_nonneg_nonneg order_refl norm_ge_zero norm_F  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
464  | 
K [THEN order_less_imp_le])  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
465  | 
also have "\<dots> = ?fun2 y"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
466  | 
by (simp add: add_divide_distrib Ng_def Nf_def)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
467  | 
finally show "?fun1 y \<le> ?fun2 y" .  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
468  | 
qed simp  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
469  | 
qed  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
470  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
471  | 
lemmas has_derivative_mult[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_mult]  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
472  | 
lemmas has_derivative_scaleR[simp, derivative_intros] = bounded_bilinear.FDERIV[OF bounded_bilinear_scaleR]  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
473  | 
|
| 64272 | 474  | 
lemma has_derivative_prod[simp, derivative_intros]:  | 
| 63558 | 475  | 
fixes f :: "'i \<Rightarrow> 'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"  | 
| 68634 | 476  | 
shows "(\<And>i. i \<in> I \<Longrightarrow> (f i has_derivative f' i) (at x within S)) \<Longrightarrow>  | 
477  | 
    ((\<lambda>x. \<Prod>i\<in>I. f i x) has_derivative (\<lambda>y. \<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x))) (at x within S)"
 | 
|
| 63915 | 478  | 
proof (induct I rule: infinite_finite_induct)  | 
479  | 
case infinite  | 
|
480  | 
then show ?case by simp  | 
|
481  | 
next  | 
|
482  | 
case empty  | 
|
483  | 
then show ?case by simp  | 
|
| 63558 | 484  | 
next  | 
| 63915 | 485  | 
case (insert i I)  | 
486  | 
  let ?P = "\<lambda>y. f i x * (\<Sum>i\<in>I. f' i y * (\<Prod>j\<in>I - {i}. f j x)) + (f' i y) * (\<Prod>i\<in>I. f i x)"
 | 
|
| 68634 | 487  | 
have "((\<lambda>x. f i x * (\<Prod>i\<in>I. f i x)) has_derivative ?P) (at x within S)"  | 
| 63915 | 488  | 
using insert by (intro has_derivative_mult) auto  | 
489  | 
  also have "?P = (\<lambda>y. \<Sum>i'\<in>insert i I. f' i' y * (\<Prod>j\<in>insert i I - {i'}. f j x))"
 | 
|
490  | 
using insert(1,2)  | 
|
| 64267 | 491  | 
by (auto simp add: sum_distrib_left insert_Diff_if intro!: ext sum.cong)  | 
| 63915 | 492  | 
finally show ?case  | 
493  | 
using insert by simp  | 
|
| 63558 | 494  | 
qed  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
495  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
496  | 
lemma has_derivative_power[simp, derivative_intros]:  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
497  | 
fixes f :: "'a :: real_normed_vector \<Rightarrow> 'b :: real_normed_field"  | 
| 68634 | 498  | 
assumes f: "(f has_derivative f') (at x within S)"  | 
499  | 
shows "((\<lambda>x. f x^n) has_derivative (\<lambda>y. of_nat n * f' y * f x^(n - 1))) (at x within S)"  | 
|
| 64272 | 500  | 
  using has_derivative_prod[OF f, of "{..< n}"] by (simp add: prod_constant ac_simps)
 | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
501  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
502  | 
lemma has_derivative_inverse':  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
503  | 
fixes x :: "'a::real_normed_div_algebra"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
504  | 
assumes x: "x \<noteq> 0"  | 
| 68634 | 505  | 
shows "(inverse has_derivative (\<lambda>h. - (inverse x * h * inverse x))) (at x within S)"  | 
506  | 
(is "(_ has_derivative ?f) _")  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
507  | 
proof (rule has_derivativeI_sandwich)  | 
| 68634 | 508  | 
show "bounded_linear (\<lambda>h. - (inverse x * h * inverse x))"  | 
509  | 
by (simp add: bounded_linear_minus bounded_linear_mult_const bounded_linear_mult_right)  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
510  | 
show "0 < norm x" using x by simp  | 
| 68634 | 511  | 
have "(inverse \<longlongrightarrow> inverse x) (at x within S)"  | 
512  | 
using tendsto_inverse tendsto_ident_at x by auto  | 
|
513  | 
then show "((\<lambda>y. norm (inverse y - inverse x) * norm (inverse x)) \<longlongrightarrow> 0) (at x within S)"  | 
|
514  | 
by (simp add: LIM_zero_iff tendsto_mult_left_zero tendsto_norm_zero)  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
515  | 
next  | 
| 63558 | 516  | 
fix y :: 'a  | 
517  | 
assume h: "y \<noteq> x" "dist y x < norm x"  | 
|
| 
62397
 
5ae24f33d343
Substantial new material for multivariate analysis. Also removal of some duplicates.
 
paulson <lp15@cam.ac.uk> 
parents: 
61976 
diff
changeset
 | 
518  | 
then have "y \<noteq> 0" by auto  | 
| 68634 | 519  | 
have "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x)  | 
520  | 
= norm (- (inverse y * (y - x) * inverse x - inverse x * (y - x) * inverse x)) /  | 
|
521  | 
norm (y - x)"  | 
|
522  | 
by (simp add: \<open>y \<noteq> 0\<close> inverse_diff_inverse x)  | 
|
523  | 
also have "... = norm ((inverse y - inverse x) * (y - x) * inverse x) / norm (y - x)"  | 
|
524  | 
by (simp add: left_diff_distrib norm_minus_commute)  | 
|
525  | 
also have "\<dots> \<le> norm (inverse y - inverse x) * norm (y - x) * norm (inverse x) / norm (y - x)"  | 
|
526  | 
by (simp add: norm_mult)  | 
|
527  | 
also have "\<dots> = norm (inverse y - inverse x) * norm (inverse x)"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
528  | 
by simp  | 
| 68634 | 529  | 
finally show "norm (inverse y - inverse x - ?f (y -x)) / norm (y - x) \<le>  | 
530  | 
norm (inverse y - inverse x) * norm (inverse x)" .  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
531  | 
qed  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
532  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
533  | 
lemma has_derivative_inverse[simp, derivative_intros]:  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
534  | 
fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"  | 
| 63558 | 535  | 
assumes x: "f x \<noteq> 0"  | 
| 68634 | 536  | 
and f: "(f has_derivative f') (at x within S)"  | 
| 63558 | 537  | 
shows "((\<lambda>x. inverse (f x)) has_derivative (\<lambda>h. - (inverse (f x) * f' h * inverse (f x))))  | 
| 68634 | 538  | 
(at x within S)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
539  | 
using has_derivative_compose[OF f has_derivative_inverse', OF x] .  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
540  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
541  | 
lemma has_derivative_divide[simp, derivative_intros]:  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
542  | 
fixes f :: "_ \<Rightarrow> 'a::real_normed_div_algebra"  | 
| 68634 | 543  | 
assumes f: "(f has_derivative f') (at x within S)"  | 
544  | 
and g: "(g has_derivative g') (at x within S)"  | 
|
| 55967 | 545  | 
assumes x: "g x \<noteq> 0"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
546  | 
shows "((\<lambda>x. f x / g x) has_derivative  | 
| 68634 | 547  | 
(\<lambda>h. - f x * (inverse (g x) * g' h * inverse (g x)) + f' h / g x)) (at x within S)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
548  | 
using has_derivative_mult[OF f has_derivative_inverse[OF x g]]  | 
| 
56480
 
093ea91498e6
field_simps: better support for negation and division, and power
 
hoelzl 
parents: 
56479 
diff
changeset
 | 
549  | 
by (simp add: field_simps)  | 
| 55967 | 550  | 
|
| 
71837
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
551  | 
lemma has_derivative_power_int':  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
552  | 
fixes x :: "'a::real_normed_field"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
553  | 
assumes x: "x \<noteq> 0"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
554  | 
shows "((\<lambda>x. power_int x n) has_derivative (\<lambda>y. y * (of_int n * power_int x (n - 1)))) (at x within S)"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
555  | 
proof (cases n rule: int_cases4)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
556  | 
case (nonneg n)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
557  | 
thus ?thesis using x  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
558  | 
by (cases "n = 0") (auto intro!: derivative_eq_intros simp: field_simps power_int_diff fun_eq_iff  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
559  | 
simp flip: power_Suc)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
560  | 
next  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
561  | 
case (neg n)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
562  | 
thus ?thesis using x  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
563  | 
by (auto intro!: derivative_eq_intros simp: field_simps power_int_diff power_int_minus  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
564  | 
simp flip: power_Suc power_Suc2 power_add)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
565  | 
qed  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
566  | 
|
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
567  | 
lemma has_derivative_power_int[simp, derivative_intros]:  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
568  | 
fixes f :: "_ \<Rightarrow> 'a::real_normed_field"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
569  | 
assumes x: "f x \<noteq> 0"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
570  | 
and f: "(f has_derivative f') (at x within S)"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
571  | 
shows "((\<lambda>x. power_int (f x) n) has_derivative (\<lambda>h. f' h * (of_int n * power_int (f x) (n - 1))))  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
572  | 
(at x within S)"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
573  | 
using has_derivative_compose[OF f has_derivative_power_int', OF x] .  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
574  | 
|
| 63558 | 575  | 
|
576  | 
text \<open>Conventional form requires mult-AC laws. Types real and complex only.\<close>  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
577  | 
|
| 63558 | 578  | 
lemma has_derivative_divide'[derivative_intros]:  | 
| 55967 | 579  | 
fixes f :: "_ \<Rightarrow> 'a::real_normed_field"  | 
| 68634 | 580  | 
assumes f: "(f has_derivative f') (at x within S)"  | 
581  | 
and g: "(g has_derivative g') (at x within S)"  | 
|
| 63558 | 582  | 
and x: "g x \<noteq> 0"  | 
| 68634 | 583  | 
shows "((\<lambda>x. f x / g x) has_derivative (\<lambda>h. (f' h * g x - f x * g' h) / (g x * g x))) (at x within S)"  | 
| 55967 | 584  | 
proof -  | 
| 63558 | 585  | 
have "f' h / g x - f x * (inverse (g x) * g' h * inverse (g x)) =  | 
586  | 
(f' h * g x - f x * g' h) / (g x * g x)" for h  | 
|
587  | 
by (simp add: field_simps x)  | 
|
| 55967 | 588  | 
then show ?thesis  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
589  | 
using has_derivative_divide [OF f g] x  | 
| 55967 | 590  | 
by simp  | 
591  | 
qed  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
592  | 
|
| 63558 | 593  | 
|
| 60758 | 594  | 
subsection \<open>Uniqueness\<close>  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
595  | 
|
| 60758 | 596  | 
text \<open>  | 
| 69593 | 597  | 
This can not generally shown for \<^const>\<open>has_derivative\<close>, as we need to approach the point from  | 
| 63627 | 598  | 
all directions. There is a proof in \<open>Analysis\<close> for \<open>euclidean_space\<close>.  | 
| 60758 | 599  | 
\<close>  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
600  | 
|
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
601  | 
lemma has_derivative_at2: "(f has_derivative f') (at x) \<longleftrightarrow>  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
602  | 
bounded_linear f' \<and> ((\<lambda>y. (1 / (norm(y - x))) *\<^sub>R (f y - (f x + f' (y - x)))) \<longlongrightarrow> 0) (at x)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
603  | 
using has_derivative_within [of f f' x UNIV]  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
604  | 
by simp  | 
| 71827 | 605  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
606  | 
lemma has_derivative_zero_unique:  | 
| 63558 | 607  | 
assumes "((\<lambda>x. 0) has_derivative F) (at x)"  | 
608  | 
shows "F = (\<lambda>h. 0)"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
609  | 
proof -  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
610  | 
interpret F: bounded_linear F  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
611  | 
using assms by (rule has_derivative_bounded_linear)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
612  | 
let ?r = "\<lambda>h. norm (F h) / norm h"  | 
| 61976 | 613  | 
have *: "?r \<midarrow>0\<rightarrow> 0"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
614  | 
using assms unfolding has_derivative_at by simp  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
615  | 
show "F = (\<lambda>h. 0)"  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
616  | 
proof  | 
| 63558 | 617  | 
show "F h = 0" for h  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
618  | 
proof (rule ccontr)  | 
| 63558 | 619  | 
assume **: "\<not> ?thesis"  | 
620  | 
then have h: "h \<noteq> 0"  | 
|
621  | 
by (auto simp add: F.zero)  | 
|
622  | 
with ** have "0 < ?r h"  | 
|
623  | 
by simp  | 
|
| 68634 | 624  | 
from LIM_D [OF * this] obtain S  | 
625  | 
where S: "0 < S" and r: "\<And>x. x \<noteq> 0 \<Longrightarrow> norm x < S \<Longrightarrow> ?r x < ?r h"  | 
|
| 63558 | 626  | 
by auto  | 
| 68634 | 627  | 
from dense [OF S] obtain t where t: "0 < t \<and> t < S" ..  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
628  | 
let ?x = "scaleR (t / norm h) h"  | 
| 68634 | 629  | 
have "?x \<noteq> 0" and "norm ?x < S"  | 
| 63558 | 630  | 
using t h by simp_all  | 
631  | 
then have "?r ?x < ?r h"  | 
|
632  | 
by (rule r)  | 
|
633  | 
then show False  | 
|
634  | 
using t h by (simp add: F.scaleR)  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
635  | 
qed  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
636  | 
qed  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
637  | 
qed  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
638  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
639  | 
lemma has_derivative_unique:  | 
| 63558 | 640  | 
assumes "(f has_derivative F) (at x)"  | 
641  | 
and "(f has_derivative F') (at x)"  | 
|
642  | 
shows "F = F'"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
643  | 
proof -  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
644  | 
have "((\<lambda>x. 0) has_derivative (\<lambda>h. F h - F' h)) (at x)"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
645  | 
using has_derivative_diff [OF assms] by simp  | 
| 63558 | 646  | 
then have "(\<lambda>h. F h - F' h) = (\<lambda>h. 0)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
647  | 
by (rule has_derivative_zero_unique)  | 
| 63558 | 648  | 
then show "F = F'"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
649  | 
unfolding fun_eq_iff right_minus_eq .  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
650  | 
qed  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
651  | 
|
| 71827 | 652  | 
lemma has_derivative_Uniq: "\<exists>\<^sub>\<le>\<^sub>1F. (f has_derivative F) (at x)"  | 
653  | 
by (simp add: Uniq_def has_derivative_unique)  | 
|
654  | 
||
| 63558 | 655  | 
|
| 60758 | 656  | 
subsection \<open>Differentiability predicate\<close>  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
657  | 
|
| 63558 | 658  | 
definition differentiable :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> 'a filter \<Rightarrow> bool"
 | 
659  | 
(infix "differentiable" 50)  | 
|
660  | 
where "f differentiable F \<longleftrightarrow> (\<exists>D. (f has_derivative D) F)"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
661  | 
|
| 63558 | 662  | 
lemma differentiable_subset:  | 
663  | 
"f differentiable (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow> f differentiable (at x within t)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
664  | 
unfolding differentiable_def by (blast intro: has_derivative_subset)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
665  | 
|
| 56261 | 666  | 
lemmas differentiable_within_subset = differentiable_subset  | 
667  | 
||
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
668  | 
lemma differentiable_ident [simp, derivative_intros]: "(\<lambda>x. x) differentiable F"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
669  | 
unfolding differentiable_def by (blast intro: has_derivative_ident)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
670  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
671  | 
lemma differentiable_const [simp, derivative_intros]: "(\<lambda>z. a) differentiable F"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
672  | 
unfolding differentiable_def by (blast intro: has_derivative_const)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
673  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
674  | 
lemma differentiable_in_compose:  | 
| 63558 | 675  | 
"f differentiable (at (g x) within (g`s)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>  | 
676  | 
(\<lambda>x. f (g x)) differentiable (at x within s)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
677  | 
unfolding differentiable_def by (blast intro: has_derivative_in_compose)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
678  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
679  | 
lemma differentiable_compose:  | 
| 63558 | 680  | 
"f differentiable (at (g x)) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>  | 
681  | 
(\<lambda>x. f (g x)) differentiable (at x within s)"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
682  | 
by (blast intro: differentiable_in_compose differentiable_subset)  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
683  | 
|
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
684  | 
lemma differentiable_add [simp, derivative_intros]:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
685  | 
"f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x + g x) differentiable F"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
686  | 
unfolding differentiable_def by (blast intro: has_derivative_add)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
687  | 
|
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
688  | 
lemma differentiable_sum[simp, derivative_intros]:  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
689  | 
assumes "finite s" "\<forall>a\<in>s. (f a) differentiable net"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
690  | 
shows "(\<lambda>x. sum (\<lambda>a. f a x) s) differentiable net"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
691  | 
proof -  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
692  | 
from bchoice[OF assms(2)[unfolded differentiable_def]]  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
693  | 
show ?thesis  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
694  | 
by (auto intro!: has_derivative_sum simp: differentiable_def)  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
695  | 
qed  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
696  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
697  | 
lemma differentiable_minus [simp, derivative_intros]:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
698  | 
"f differentiable F \<Longrightarrow> (\<lambda>x. - f x) differentiable F"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
699  | 
unfolding differentiable_def by (blast intro: has_derivative_minus)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
700  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
701  | 
lemma differentiable_diff [simp, derivative_intros]:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
702  | 
"f differentiable F \<Longrightarrow> g differentiable F \<Longrightarrow> (\<lambda>x. f x - g x) differentiable F"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
703  | 
unfolding differentiable_def by (blast intro: has_derivative_diff)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
704  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
705  | 
lemma differentiable_mult [simp, derivative_intros]:  | 
| 63558 | 706  | 
fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_algebra"  | 
707  | 
shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>  | 
|
708  | 
(\<lambda>x. f x * g x) differentiable (at x within s)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
709  | 
unfolding differentiable_def by (blast intro: has_derivative_mult)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
710  | 
|
| 73795 | 711  | 
lemma differentiable_cmult_left_iff [simp]:  | 
712  | 
fixes c::"'a::real_normed_field"  | 
|
713  | 
shows "(\<lambda>t. c * q t) differentiable at t \<longleftrightarrow> c = 0 \<or> (\<lambda>t. q t) differentiable at t" (is "?lhs = ?rhs")  | 
|
714  | 
proof  | 
|
715  | 
assume L: ?lhs  | 
|
716  | 
  {assume "c \<noteq> 0"
 | 
|
717  | 
then have "q differentiable at t"  | 
|
718  | 
using differentiable_mult [OF differentiable_const L, of concl: "1/c"] by auto  | 
|
719  | 
} then show ?rhs  | 
|
720  | 
by auto  | 
|
721  | 
qed auto  | 
|
722  | 
||
723  | 
lemma differentiable_cmult_right_iff [simp]:  | 
|
724  | 
fixes c::"'a::real_normed_field"  | 
|
725  | 
shows "(\<lambda>t. q t * c) differentiable at t \<longleftrightarrow> c = 0 \<or> (\<lambda>t. q t) differentiable at t" (is "?lhs = ?rhs")  | 
|
726  | 
by (simp add: mult.commute flip: differentiable_cmult_left_iff)  | 
|
727  | 
||
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
728  | 
lemma differentiable_inverse [simp, derivative_intros]:  | 
| 63558 | 729  | 
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"  | 
730  | 
shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>  | 
|
731  | 
(\<lambda>x. inverse (f x)) differentiable (at x within s)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
732  | 
unfolding differentiable_def by (blast intro: has_derivative_inverse)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
733  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
734  | 
lemma differentiable_divide [simp, derivative_intros]:  | 
| 63558 | 735  | 
fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"  | 
736  | 
shows "f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>  | 
|
737  | 
g x \<noteq> 0 \<Longrightarrow> (\<lambda>x. f x / g x) differentiable (at x within s)"  | 
|
| 63092 | 738  | 
unfolding divide_inverse by simp  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
739  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
740  | 
lemma differentiable_power [simp, derivative_intros]:  | 
| 63558 | 741  | 
fixes f g :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
742  | 
shows "f differentiable (at x within s) \<Longrightarrow> (\<lambda>x. f x ^ n) differentiable (at x within s)"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
743  | 
unfolding differentiable_def by (blast intro: has_derivative_power)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
744  | 
|
| 
71837
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
745  | 
lemma differentiable_power_int [simp, derivative_intros]:  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
746  | 
fixes f :: "'a::real_normed_vector \<Rightarrow> 'b::real_normed_field"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
747  | 
shows "f differentiable (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
748  | 
(\<lambda>x. power_int (f x) n) differentiable (at x within s)"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
749  | 
unfolding differentiable_def by (blast intro: has_derivative_power_int)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
750  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
751  | 
lemma differentiable_scaleR [simp, derivative_intros]:  | 
| 63558 | 752  | 
"f differentiable (at x within s) \<Longrightarrow> g differentiable (at x within s) \<Longrightarrow>  | 
753  | 
(\<lambda>x. f x *\<^sub>R g x) differentiable (at x within s)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
754  | 
unfolding differentiable_def by (blast intro: has_derivative_scaleR)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
755  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
756  | 
lemma has_derivative_imp_has_field_derivative:  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
757  | 
"(f has_derivative D) F \<Longrightarrow> (\<And>x. x * D' = D x) \<Longrightarrow> (f has_field_derivative D') F"  | 
| 63558 | 758  | 
unfolding has_field_derivative_def  | 
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
57418 
diff
changeset
 | 
759  | 
by (rule has_derivative_eq_rhs[of f D]) (simp_all add: fun_eq_iff mult.commute)  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
760  | 
|
| 63558 | 761  | 
lemma has_field_derivative_imp_has_derivative:  | 
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
762  | 
"(f has_field_derivative D) F \<Longrightarrow> (f has_derivative (*) D) F"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
763  | 
by (simp add: has_field_derivative_def)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
764  | 
|
| 63558 | 765  | 
lemma DERIV_subset:  | 
766  | 
"(f has_field_derivative f') (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow>  | 
|
767  | 
(f has_field_derivative f') (at x within t)"  | 
|
| 
72445
 
2c2de074832e
tidying and removal of legacy name
 
paulson <lp15@cam.ac.uk> 
parents: 
72245 
diff
changeset
 | 
768  | 
by (simp add: has_field_derivative_def has_derivative_subset)  | 
| 56261 | 769  | 
|
| 59862 | 770  | 
lemma has_field_derivative_at_within:  | 
| 63558 | 771  | 
"(f has_field_derivative f') (at x) \<Longrightarrow> (f has_field_derivative f') (at x within s)"  | 
| 59862 | 772  | 
using DERIV_subset by blast  | 
773  | 
||
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
774  | 
abbreviation (input)  | 
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
775  | 
  DERIV :: "('a::real_normed_field \<Rightarrow> 'a) \<Rightarrow> 'a \<Rightarrow> 'a \<Rightarrow> bool"
 | 
| 63558 | 776  | 
    ("(DERIV (_)/ (_)/ :> (_))" [1000, 1000, 60] 60)
 | 
777  | 
where "DERIV f x :> D \<equiv> (f has_field_derivative D) (at x)"  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
778  | 
|
| 63558 | 779  | 
abbreviation has_real_derivative :: "(real \<Rightarrow> real) \<Rightarrow> real \<Rightarrow> real filter \<Rightarrow> bool"  | 
780  | 
(infix "(has'_real'_derivative)" 50)  | 
|
781  | 
where "(f has_real_derivative D) F \<equiv> (f has_field_derivative D) F"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
782  | 
|
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
783  | 
lemma real_differentiable_def:  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
784  | 
"f differentiable at x within s \<longleftrightarrow> (\<exists>D. (f has_real_derivative D) (at x within s))"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
785  | 
proof safe  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
786  | 
assume "f differentiable at x within s"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
787  | 
then obtain f' where *: "(f has_derivative f') (at x within s)"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
788  | 
unfolding differentiable_def by auto  | 
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
789  | 
then obtain c where "f' = ((*) c)"  | 
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
57418 
diff
changeset
 | 
790  | 
by (metis real_bounded_linear has_derivative_bounded_linear mult.commute fun_eq_iff)  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
791  | 
with * show "\<exists>D. (f has_real_derivative D) (at x within s)"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
792  | 
unfolding has_field_derivative_def by auto  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
793  | 
qed (auto simp: differentiable_def has_field_derivative_def)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
794  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
795  | 
lemma real_differentiableE [elim?]:  | 
| 63558 | 796  | 
assumes f: "f differentiable (at x within s)"  | 
797  | 
obtains df where "(f has_real_derivative df) (at x within s)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
798  | 
using assms by (auto simp: real_differentiable_def)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
799  | 
|
| 63079 | 800  | 
lemma has_field_derivative_iff:  | 
801  | 
"(f has_field_derivative D) (at x within S) \<longleftrightarrow>  | 
|
802  | 
((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)"  | 
|
| 68634 | 803  | 
proof -  | 
804  | 
have "((\<lambda>y. norm (f y - f x - D * (y - x)) / norm (y - x)) \<longlongrightarrow> 0) (at x within S)  | 
|
805  | 
= ((\<lambda>y. (f y - f x) / (y - x) - D) \<longlongrightarrow> 0) (at x within S)"  | 
|
806  | 
apply (subst tendsto_norm_zero_iff[symmetric], rule filterlim_cong)  | 
|
807  | 
apply (simp_all add: eventually_at_filter field_simps nonzero_norm_divide)  | 
|
808  | 
done  | 
|
809  | 
then show ?thesis  | 
|
810  | 
by (simp add: has_field_derivative_def has_derivative_iff_norm bounded_linear_mult_right LIM_zero_iff)  | 
|
811  | 
qed  | 
|
| 21164 | 812  | 
|
| 63079 | 813  | 
lemma DERIV_def: "DERIV f x :> D \<longleftrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D"  | 
814  | 
unfolding field_has_derivative_at has_field_derivative_def has_field_derivative_iff ..  | 
|
815  | 
||
| 
73885
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
816  | 
lemma field_derivative_lim_unique:  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
817  | 
assumes f: "(f has_field_derivative df) (at z)"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
818  | 
and s: "s \<longlonglongrightarrow> 0" "\<And>n. s n \<noteq> 0"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
819  | 
and a: "(\<lambda>n. (f (z + s n) - f z) / s n) \<longlonglongrightarrow> a"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
820  | 
shows "df = a"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
821  | 
proof (rule ccontr)  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
822  | 
assume "df \<noteq> a"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
823  | 
obtain q where qpos: "\<And>\<epsilon>. \<epsilon> > 0 \<Longrightarrow> q \<epsilon> > 0"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
824  | 
and q: "\<And>\<epsilon> y. \<lbrakk>\<epsilon> > 0; y \<noteq> z; dist y z < q \<epsilon>\<rbrakk> \<Longrightarrow> dist ((f y - f z) / (y - z)) df < \<epsilon>"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
825  | 
using f unfolding LIM_def has_field_derivative_iff by metis  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
826  | 
obtain NA where NA: "\<And>\<epsilon> n. \<lbrakk>\<epsilon> > 0; n \<ge> NA \<epsilon>\<rbrakk> \<Longrightarrow> dist ((f (z + s n) - f z) / s n) a < \<epsilon>"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
827  | 
using a unfolding LIMSEQ_def by metis  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
828  | 
obtain NB where NB: "\<And>\<epsilon> n. \<lbrakk>\<epsilon> > 0; n \<ge> NB \<epsilon>\<rbrakk> \<Longrightarrow> norm (s n) < \<epsilon>"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
829  | 
using s unfolding LIMSEQ_def by (metis norm_conv_dist)  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
830  | 
have df: "\<And>\<epsilon> n. \<epsilon> > 0 \<Longrightarrow> \<lbrakk>0 < \<epsilon>; norm (s n) < q \<epsilon>\<rbrakk> \<Longrightarrow> dist ((f (z + s n) - f z) / s n) df < \<epsilon>"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
831  | 
using add_cancel_left_right add_diff_cancel_left' q s  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
832  | 
by (metis add_diff_cancel_right' dist_diff(1))  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
833  | 
define \<delta> where "\<delta> \<equiv> dist df a / 2"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
834  | 
with \<open>df \<noteq> a\<close> have "\<delta> > 0" and \<delta>: "\<delta>+\<delta> \<le> dist df a"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
835  | 
by auto  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
836  | 
define N where "N \<equiv> max (NA \<delta>) (NB (q \<delta>))"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
837  | 
then have "norm (s N) < q \<delta>"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
838  | 
by (simp add: NB \<open>\<delta> > 0\<close> qpos)  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
839  | 
then have "dist ((f (z + s N) - f z) / s N) df < \<delta>"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
840  | 
by (simp add: \<open>0 < \<delta>\<close> df)  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
841  | 
moreover have "dist ((f (z + s N) - f z) / s N) a < \<delta>"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
842  | 
using NA N_def \<open>0 < \<delta>\<close> by force  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
843  | 
ultimately have "dist df a < dist df a"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
844  | 
by (smt (verit, ccfv_SIG) \<delta> dist_commute dist_triangle)  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
845  | 
then show False ..  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
846  | 
qed  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
847  | 
|
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
848  | 
lemma mult_commute_abs: "(\<lambda>x. x * c) = (*) c"  | 
| 63558 | 849  | 
for c :: "'a::ab_semigroup_mult"  | 
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
57418 
diff
changeset
 | 
850  | 
by (simp add: fun_eq_iff mult.commute)  | 
| 21164 | 851  | 
|
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
852  | 
lemma DERIV_compose_FDERIV:  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
853  | 
fixes f::"real\<Rightarrow>real"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
854  | 
assumes "DERIV f (g x) :> f'"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
855  | 
assumes "(g has_derivative g') (at x within s)"  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
856  | 
shows "((\<lambda>x. f (g x)) has_derivative (\<lambda>x. g' x * f')) (at x within s)"  | 
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
857  | 
using assms has_derivative_compose[of g g' x s f "(*) f'"]  | 
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
858  | 
by (auto simp: has_field_derivative_def ac_simps)  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
859  | 
|
| 63558 | 860  | 
|
| 60758 | 861  | 
subsection \<open>Vector derivative\<close>  | 
| 60177 | 862  | 
|
863  | 
lemma has_field_derivative_iff_has_vector_derivative:  | 
|
864  | 
"(f has_field_derivative y) F \<longleftrightarrow> (f has_vector_derivative y) F"  | 
|
865  | 
unfolding has_vector_derivative_def has_field_derivative_def real_scaleR_def mult_commute_abs ..  | 
|
866  | 
||
867  | 
lemma has_field_derivative_subset:  | 
|
| 63558 | 868  | 
"(f has_field_derivative y) (at x within s) \<Longrightarrow> t \<subseteq> s \<Longrightarrow>  | 
869  | 
(f has_field_derivative y) (at x within t)"  | 
|
| 60177 | 870  | 
unfolding has_field_derivative_def by (rule has_derivative_subset)  | 
871  | 
||
872  | 
lemma has_vector_derivative_const[simp, derivative_intros]: "((\<lambda>x. c) has_vector_derivative 0) net"  | 
|
873  | 
by (auto simp: has_vector_derivative_def)  | 
|
874  | 
||
875  | 
lemma has_vector_derivative_id[simp, derivative_intros]: "((\<lambda>x. x) has_vector_derivative 1) net"  | 
|
876  | 
by (auto simp: has_vector_derivative_def)  | 
|
877  | 
||
878  | 
lemma has_vector_derivative_minus[derivative_intros]:  | 
|
879  | 
"(f has_vector_derivative f') net \<Longrightarrow> ((\<lambda>x. - f x) has_vector_derivative (- f')) net"  | 
|
880  | 
by (auto simp: has_vector_derivative_def)  | 
|
881  | 
||
882  | 
lemma has_vector_derivative_add[derivative_intros]:  | 
|
883  | 
"(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow>  | 
|
884  | 
((\<lambda>x. f x + g x) has_vector_derivative (f' + g')) net"  | 
|
885  | 
by (auto simp: has_vector_derivative_def scaleR_right_distrib)  | 
|
886  | 
||
| 64267 | 887  | 
lemma has_vector_derivative_sum[derivative_intros]:  | 
| 60177 | 888  | 
"(\<And>i. i \<in> I \<Longrightarrow> (f i has_vector_derivative f' i) net) \<Longrightarrow>  | 
889  | 
((\<lambda>x. \<Sum>i\<in>I. f i x) has_vector_derivative (\<Sum>i\<in>I. f' i)) net"  | 
|
| 64267 | 890  | 
by (auto simp: has_vector_derivative_def fun_eq_iff scaleR_sum_right intro!: derivative_eq_intros)  | 
| 60177 | 891  | 
|
892  | 
lemma has_vector_derivative_diff[derivative_intros]:  | 
|
893  | 
"(f has_vector_derivative f') net \<Longrightarrow> (g has_vector_derivative g') net \<Longrightarrow>  | 
|
894  | 
((\<lambda>x. f x - g x) has_vector_derivative (f' - g')) net"  | 
|
895  | 
by (auto simp: has_vector_derivative_def scaleR_diff_right)  | 
|
896  | 
||
| 61204 | 897  | 
lemma has_vector_derivative_add_const:  | 
| 63558 | 898  | 
"((\<lambda>t. g t + z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net"  | 
899  | 
apply (intro iffI)  | 
|
| 68634 | 900  | 
apply (force dest: has_vector_derivative_diff [where g = "\<lambda>t. z", OF _ has_vector_derivative_const])  | 
901  | 
apply (force dest: has_vector_derivative_add [OF _ has_vector_derivative_const])  | 
|
| 63558 | 902  | 
done  | 
| 61204 | 903  | 
|
904  | 
lemma has_vector_derivative_diff_const:  | 
|
| 63558 | 905  | 
"((\<lambda>t. g t - z) has_vector_derivative f') net = ((\<lambda>t. g t) has_vector_derivative f') net"  | 
906  | 
using has_vector_derivative_add_const [where z = "-z"]  | 
|
907  | 
by simp  | 
|
| 61204 | 908  | 
|
| 60177 | 909  | 
lemma (in bounded_linear) has_vector_derivative:  | 
910  | 
assumes "(g has_vector_derivative g') F"  | 
|
911  | 
shows "((\<lambda>x. f (g x)) has_vector_derivative f g') F"  | 
|
912  | 
using has_derivative[OF assms[unfolded has_vector_derivative_def]]  | 
|
913  | 
by (simp add: has_vector_derivative_def scaleR)  | 
|
914  | 
||
915  | 
lemma (in bounded_bilinear) has_vector_derivative:  | 
|
916  | 
assumes "(f has_vector_derivative f') (at x within s)"  | 
|
917  | 
and "(g has_vector_derivative g') (at x within s)"  | 
|
918  | 
shows "((\<lambda>x. f x ** g x) has_vector_derivative (f x ** g' + f' ** g x)) (at x within s)"  | 
|
919  | 
using FDERIV[OF assms(1-2)[unfolded has_vector_derivative_def]]  | 
|
920  | 
by (simp add: has_vector_derivative_def scaleR_right scaleR_left scaleR_right_distrib)  | 
|
921  | 
||
922  | 
lemma has_vector_derivative_scaleR[derivative_intros]:  | 
|
923  | 
"(f has_field_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow>  | 
|
924  | 
((\<lambda>x. f x *\<^sub>R g x) has_vector_derivative (f x *\<^sub>R g' + f' *\<^sub>R g x)) (at x within s)"  | 
|
925  | 
unfolding has_field_derivative_iff_has_vector_derivative  | 
|
926  | 
by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_scaleR])  | 
|
927  | 
||
928  | 
lemma has_vector_derivative_mult[derivative_intros]:  | 
|
929  | 
"(f has_vector_derivative f') (at x within s) \<Longrightarrow> (g has_vector_derivative g') (at x within s) \<Longrightarrow>  | 
|
| 63558 | 930  | 
((\<lambda>x. f x * g x) has_vector_derivative (f x * g' + f' * g x)) (at x within s)"  | 
931  | 
for f g :: "real \<Rightarrow> 'a::real_normed_algebra"  | 
|
| 60177 | 932  | 
by (rule bounded_bilinear.has_vector_derivative[OF bounded_bilinear_mult])  | 
933  | 
||
934  | 
lemma has_vector_derivative_of_real[derivative_intros]:  | 
|
935  | 
"(f has_field_derivative D) F \<Longrightarrow> ((\<lambda>x. of_real (f x)) has_vector_derivative (of_real D)) F"  | 
|
936  | 
by (rule bounded_linear.has_vector_derivative[OF bounded_linear_of_real])  | 
|
| 63558 | 937  | 
(simp add: has_field_derivative_iff_has_vector_derivative)  | 
| 60177 | 938  | 
|
| 
70707
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
939  | 
lemma has_vector_derivative_real_field:  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
940  | 
"(f has_field_derivative f') (at (of_real a)) \<Longrightarrow> ((\<lambda>x. f (of_real x)) has_vector_derivative f') (at a within s)"  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
941  | 
using has_derivative_compose[of of_real of_real a _ f "(*) f'"]  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
942  | 
by (simp add: scaleR_conv_of_real ac_simps has_vector_derivative_def has_field_derivative_def)  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
943  | 
|
| 63558 | 944  | 
lemma has_vector_derivative_continuous:  | 
945  | 
"(f has_vector_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"  | 
|
| 60177 | 946  | 
by (auto intro: has_derivative_continuous simp: has_vector_derivative_def)  | 
947  | 
||
| 70613 | 948  | 
lemma continuous_on_vector_derivative:  | 
949  | 
"(\<And>x. x \<in> S \<Longrightarrow> (f has_vector_derivative f' x) (at x within S)) \<Longrightarrow> continuous_on S f"  | 
|
950  | 
by (auto simp: continuous_on_eq_continuous_within intro!: has_vector_derivative_continuous)  | 
|
951  | 
||
| 60177 | 952  | 
lemma has_vector_derivative_mult_right[derivative_intros]:  | 
| 63558 | 953  | 
fixes a :: "'a::real_normed_algebra"  | 
| 60177 | 954  | 
shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. a * f x) has_vector_derivative (a * x)) F"  | 
955  | 
by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_right])  | 
|
956  | 
||
957  | 
lemma has_vector_derivative_mult_left[derivative_intros]:  | 
|
| 63558 | 958  | 
fixes a :: "'a::real_normed_algebra"  | 
| 60177 | 959  | 
shows "(f has_vector_derivative x) F \<Longrightarrow> ((\<lambda>x. f x * a) has_vector_derivative (x * a)) F"  | 
960  | 
by (rule bounded_linear.has_vector_derivative[OF bounded_linear_mult_left])  | 
|
961  | 
||
962  | 
||
| 60758 | 963  | 
subsection \<open>Derivatives\<close>  | 
| 21164 | 964  | 
|
| 61976 | 965  | 
lemma DERIV_D: "DERIV f x :> D \<Longrightarrow> (\<lambda>h. (f (x + h) - f x) / h) \<midarrow>0\<rightarrow> D"  | 
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
966  | 
by (simp add: DERIV_def)  | 
| 21164 | 967  | 
|
| 63079 | 968  | 
lemma has_field_derivativeD:  | 
969  | 
"(f has_field_derivative D) (at x within S) \<Longrightarrow>  | 
|
970  | 
((\<lambda>y. (f y - f x) / (y - x)) \<longlongrightarrow> D) (at x within S)"  | 
|
971  | 
by (simp add: has_field_derivative_iff)  | 
|
972  | 
||
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
973  | 
lemma DERIV_const [simp, derivative_intros]: "((\<lambda>x. k) has_field_derivative 0) F"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
974  | 
by (rule has_derivative_imp_has_field_derivative[OF has_derivative_const]) auto  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
975  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
976  | 
lemma DERIV_ident [simp, derivative_intros]: "((\<lambda>x. x) has_field_derivative 1) F"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
977  | 
by (rule has_derivative_imp_has_field_derivative[OF has_derivative_ident]) auto  | 
| 21164 | 978  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
979  | 
lemma field_differentiable_add[derivative_intros]:  | 
| 63558 | 980  | 
"(f has_field_derivative f') F \<Longrightarrow> (g has_field_derivative g') F \<Longrightarrow>  | 
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
981  | 
((\<lambda>z. f z + g z) has_field_derivative f' + g') F"  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
982  | 
by (rule has_derivative_imp_has_field_derivative[OF has_derivative_add])  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
983  | 
(auto simp: has_field_derivative_def field_simps mult_commute_abs)  | 
| 56261 | 984  | 
|
985  | 
corollary DERIV_add:  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
986  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>  | 
| 63558 | 987  | 
((\<lambda>x. f x + g x) has_field_derivative D + E) (at x within s)"  | 
| 56261 | 988  | 
by (rule field_differentiable_add)  | 
989  | 
||
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
990  | 
lemma field_differentiable_minus[derivative_intros]:  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
991  | 
"(f has_field_derivative f') F \<Longrightarrow> ((\<lambda>z. - (f z)) has_field_derivative -f') F"  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
992  | 
by (rule has_derivative_imp_has_field_derivative[OF has_derivative_minus])  | 
| 
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
993  | 
(auto simp: has_field_derivative_def field_simps mult_commute_abs)  | 
| 21164 | 994  | 
|
| 63558 | 995  | 
corollary DERIV_minus:  | 
996  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow>  | 
|
997  | 
((\<lambda>x. - f x) has_field_derivative -D) (at x within s)"  | 
|
| 56261 | 998  | 
by (rule field_differentiable_minus)  | 
| 21164 | 999  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
1000  | 
lemma field_differentiable_diff[derivative_intros]:  | 
| 63558 | 1001  | 
"(f has_field_derivative f') F \<Longrightarrow>  | 
1002  | 
(g has_field_derivative g') F \<Longrightarrow> ((\<lambda>z. f z - g z) has_field_derivative f' - g') F"  | 
|
| 63092 | 1003  | 
by (simp only: diff_conv_add_uminus field_differentiable_add field_differentiable_minus)  | 
| 56261 | 1004  | 
|
1005  | 
corollary DERIV_diff:  | 
|
| 63558 | 1006  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow>  | 
1007  | 
(g has_field_derivative E) (at x within s) \<Longrightarrow>  | 
|
1008  | 
((\<lambda>x. f x - g x) has_field_derivative D - E) (at x within s)"  | 
|
| 56261 | 1009  | 
by (rule field_differentiable_diff)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1010  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1011  | 
lemma DERIV_continuous: "(f has_field_derivative D) (at x within s) \<Longrightarrow> continuous (at x within s) f"  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1012  | 
by (drule has_derivative_continuous[OF has_field_derivative_imp_has_derivative]) simp  | 
| 21164 | 1013  | 
|
| 56261 | 1014  | 
corollary DERIV_isCont: "DERIV f x :> D \<Longrightarrow> isCont f x"  | 
1015  | 
by (rule DERIV_continuous)  | 
|
1016  | 
||
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1017  | 
lemma DERIV_atLeastAtMost_imp_continuous_on:  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1018  | 
assumes "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1019  | 
  shows "continuous_on {a..b} f"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1020  | 
by (meson DERIV_isCont assms atLeastAtMost_iff continuous_at_imp_continuous_at_within continuous_on_eq_continuous_within)  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1021  | 
|
| 56261 | 1022  | 
lemma DERIV_continuous_on:  | 
| 63299 | 1023  | 
"(\<And>x. x \<in> s \<Longrightarrow> (f has_field_derivative (D x)) (at x within s)) \<Longrightarrow> continuous_on s f"  | 
1024  | 
unfolding continuous_on_eq_continuous_within  | 
|
| 63558 | 1025  | 
by (intro continuous_at_imp_continuous_on ballI DERIV_continuous)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1026  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1027  | 
lemma DERIV_mult':  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1028  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow> (g has_field_derivative E) (at x within s) \<Longrightarrow>  | 
| 63558 | 1029  | 
((\<lambda>x. f x * g x) has_field_derivative f x * E + D * g x) (at x within s)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1030  | 
by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1031  | 
(auto simp: field_simps mult_commute_abs dest: has_field_derivative_imp_has_derivative)  | 
| 21164 | 1032  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
1033  | 
lemma DERIV_mult[derivative_intros]:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1034  | 
"(f has_field_derivative Da) (at x within s) \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>  | 
| 63558 | 1035  | 
((\<lambda>x. f x * g x) has_field_derivative Da * g x + Db * f x) (at x within s)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1036  | 
by (rule has_derivative_imp_has_field_derivative[OF has_derivative_mult])  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1037  | 
(auto simp: field_simps dest: has_field_derivative_imp_has_derivative)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1038  | 
|
| 60758 | 1039  | 
text \<open>Derivative of linear multiplication\<close>  | 
| 21164 | 1040  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1041  | 
lemma DERIV_cmult:  | 
| 63558 | 1042  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow>  | 
1043  | 
((\<lambda>x. c * f x) has_field_derivative c * D) (at x within s)"  | 
|
1044  | 
by (drule DERIV_mult' [OF DERIV_const]) simp  | 
|
| 21164 | 1045  | 
|
| 55967 | 1046  | 
lemma DERIV_cmult_right:  | 
| 63558 | 1047  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow>  | 
1048  | 
((\<lambda>x. f x * c) has_field_derivative D * c) (at x within s)"  | 
|
1049  | 
using DERIV_cmult by (auto simp add: ac_simps)  | 
|
| 55967 | 1050  | 
|
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
1051  | 
lemma DERIV_cmult_Id [simp]: "((*) c has_field_derivative c) (at x within s)"  | 
| 63558 | 1052  | 
using DERIV_ident [THEN DERIV_cmult, where c = c and x = x] by simp  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1053  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1054  | 
lemma DERIV_cdivide:  | 
| 63558 | 1055  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow>  | 
1056  | 
((\<lambda>x. f x / c) has_field_derivative D / c) (at x within s)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1057  | 
using DERIV_cmult_right[of f D x s "1 / c"] by simp  | 
| 21164 | 1058  | 
|
| 63558 | 1059  | 
lemma DERIV_unique: "DERIV f x :> D \<Longrightarrow> DERIV f x :> E \<Longrightarrow> D = E"  | 
1060  | 
unfolding DERIV_def by (rule LIM_unique)  | 
|
| 21164 | 1061  | 
|
| 71827 | 1062  | 
lemma DERIV_Uniq: "\<exists>\<^sub>\<le>\<^sub>1D. DERIV f x :> D"  | 
1063  | 
by (simp add: DERIV_unique Uniq_def)  | 
|
1064  | 
||
| 64267 | 1065  | 
lemma DERIV_sum[derivative_intros]:  | 
| 63558 | 1066  | 
"(\<And> n. n \<in> S \<Longrightarrow> ((\<lambda>x. f x n) has_field_derivative (f' x n)) F) \<Longrightarrow>  | 
| 64267 | 1067  | 
((\<lambda>x. sum (f x) S) has_field_derivative sum (f' x) S) F"  | 
1068  | 
by (rule has_derivative_imp_has_field_derivative [OF has_derivative_sum])  | 
|
1069  | 
(auto simp: sum_distrib_left mult_commute_abs dest: has_field_derivative_imp_has_derivative)  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1070  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
1071  | 
lemma DERIV_inverse'[derivative_intros]:  | 
| 
59867
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59862 
diff
changeset
 | 
1072  | 
assumes "(f has_field_derivative D) (at x within s)"  | 
| 
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59862 
diff
changeset
 | 
1073  | 
and "f x \<noteq> 0"  | 
| 63558 | 1074  | 
shows "((\<lambda>x. inverse (f x)) has_field_derivative - (inverse (f x) * D * inverse (f x)))  | 
1075  | 
(at x within s)"  | 
|
| 
59867
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59862 
diff
changeset
 | 
1076  | 
proof -  | 
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
1077  | 
have "(f has_derivative (\<lambda>x. x * D)) = (f has_derivative (*) D)"  | 
| 
59867
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59862 
diff
changeset
 | 
1078  | 
by (rule arg_cong [of "\<lambda>x. x * D"]) (simp add: fun_eq_iff)  | 
| 
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59862 
diff
changeset
 | 
1079  | 
with assms have "(f has_derivative (\<lambda>x. x * D)) (at x within s)"  | 
| 
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59862 
diff
changeset
 | 
1080  | 
by (auto dest!: has_field_derivative_imp_has_derivative)  | 
| 60758 | 1081  | 
then show ?thesis using \<open>f x \<noteq> 0\<close>  | 
| 
59867
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59862 
diff
changeset
 | 
1082  | 
by (auto intro: has_derivative_imp_has_field_derivative has_derivative_inverse)  | 
| 
 
58043346ca64
given up separate type classes demanding `inverse 0 = 0`
 
haftmann 
parents: 
59862 
diff
changeset
 | 
1083  | 
qed  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1084  | 
|
| 61799 | 1085  | 
text \<open>Power of \<open>-1\<close>\<close>  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1086  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1087  | 
lemma DERIV_inverse:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1088  | 
"x \<noteq> 0 \<Longrightarrow> ((\<lambda>x. inverse(x)) has_field_derivative - (inverse x ^ Suc (Suc 0))) (at x within s)"  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1089  | 
by (drule DERIV_inverse' [OF DERIV_ident]) simp  | 
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1090  | 
|
| 60758 | 1091  | 
text \<open>Derivative of inverse\<close>  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1092  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1093  | 
lemma DERIV_inverse_fun:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1094  | 
"(f has_field_derivative d) (at x within s) \<Longrightarrow> f x \<noteq> 0 \<Longrightarrow>  | 
| 63558 | 1095  | 
((\<lambda>x. inverse (f x)) has_field_derivative (- (d * inverse(f x ^ Suc (Suc 0))))) (at x within s)"  | 
| 
57514
 
bdc2c6b40bf2
prefer ac_simps collections over separate name bindings for add and mult
 
haftmann 
parents: 
57512 
diff
changeset
 | 
1096  | 
by (drule (1) DERIV_inverse') (simp add: ac_simps nonzero_inverse_mult_distrib)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1097  | 
|
| 60758 | 1098  | 
text \<open>Derivative of quotient\<close>  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1099  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
1100  | 
lemma DERIV_divide[derivative_intros]:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1101  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow>  | 
| 63558 | 1102  | 
(g has_field_derivative E) (at x within s) \<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>  | 
1103  | 
((\<lambda>x. f x / g x) has_field_derivative (D * g x - f x * E) / (g x * g x)) (at x within s)"  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1104  | 
by (rule has_derivative_imp_has_field_derivative[OF has_derivative_divide])  | 
| 
56480
 
093ea91498e6
field_simps: better support for negation and division, and power
 
hoelzl 
parents: 
56479 
diff
changeset
 | 
1105  | 
(auto dest: has_field_derivative_imp_has_derivative simp: field_simps)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1106  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1107  | 
lemma DERIV_quotient:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1108  | 
"(f has_field_derivative d) (at x within s) \<Longrightarrow>  | 
| 63558 | 1109  | 
(g has_field_derivative e) (at x within s)\<Longrightarrow> g x \<noteq> 0 \<Longrightarrow>  | 
1110  | 
((\<lambda>y. f y / g y) has_field_derivative (d * g x - (e * f x)) / (g x ^ Suc (Suc 0))) (at x within s)"  | 
|
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
57418 
diff
changeset
 | 
1111  | 
by (drule (2) DERIV_divide) (simp add: mult.commute)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1112  | 
|
| 
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1113  | 
lemma DERIV_power_Suc:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1114  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow>  | 
| 63558 | 1115  | 
((\<lambda>x. f x ^ Suc n) has_field_derivative (1 + of_nat n) * (D * f x ^ n)) (at x within s)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1116  | 
by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1117  | 
(auto simp: has_field_derivative_def)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1118  | 
|
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
1119  | 
lemma DERIV_power[derivative_intros]:  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1120  | 
"(f has_field_derivative D) (at x within s) \<Longrightarrow>  | 
| 63558 | 1121  | 
((\<lambda>x. f x ^ n) has_field_derivative of_nat n * (D * f x ^ (n - Suc 0))) (at x within s)"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1122  | 
by (rule has_derivative_imp_has_field_derivative[OF has_derivative_power])  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1123  | 
(auto simp: has_field_derivative_def)  | 
| 31880 | 1124  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1125  | 
lemma DERIV_pow: "((\<lambda>x. x ^ n) has_field_derivative real n * (x ^ (n - Suc 0))) (at x within s)"  | 
| 
61609
 
77b453bd616f
Coercion "real" now has type nat => real only and is no longer overloaded. Type class "real_of" is gone. Many duplicate theorems removed.
 
paulson <lp15@cam.ac.uk> 
parents: 
61552 
diff
changeset
 | 
1126  | 
using DERIV_power [OF DERIV_ident] by simp  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1127  | 
|
| 
71837
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1128  | 
lemma DERIV_power_int [derivative_intros]:  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1129  | 
assumes [derivative_intros]: "(f has_field_derivative d) (at x within s)" and [simp]: "f x \<noteq> 0"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1130  | 
shows "((\<lambda>x. power_int (f x) n) has_field_derivative  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1131  | 
(of_int n * power_int (f x) (n - 1) * d)) (at x within s)"  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1132  | 
proof (cases n rule: int_cases4)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1133  | 
case (nonneg n)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1134  | 
thus ?thesis  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1135  | 
by (cases "n = 0")  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1136  | 
(auto intro!: derivative_eq_intros simp: field_simps power_int_diff  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1137  | 
simp flip: power_Suc power_Suc2 power_add)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1138  | 
next  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1139  | 
case (neg n)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1140  | 
thus ?thesis  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1141  | 
by (auto intro!: derivative_eq_intros simp: field_simps power_int_diff power_int_minus  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1142  | 
simp flip: power_Suc power_Suc2 power_add)  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1143  | 
qed  | 
| 
 
dca11678c495
new constant power_int in HOL
 
Manuel Eberl <eberlm@in.tum.de> 
parents: 
71827 
diff
changeset
 | 
1144  | 
|
| 63558 | 1145  | 
lemma DERIV_chain': "(f has_field_derivative D) (at x within s) \<Longrightarrow> DERIV g (f x) :> E \<Longrightarrow>  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1146  | 
((\<lambda>x. g (f x)) has_field_derivative E * D) (at x within s)"  | 
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
1147  | 
using has_derivative_compose[of f "(*) D" x s g "(*) E"]  | 
| 63170 | 1148  | 
by (simp only: has_field_derivative_def mult_commute_abs ac_simps)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1149  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1150  | 
corollary DERIV_chain2: "DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>  | 
| 
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1151  | 
((\<lambda>x. f (g x)) has_field_derivative Da * Db) (at x within s)"  | 
| 55967 | 1152  | 
by (rule DERIV_chain')  | 
1153  | 
||
| 60758 | 1154  | 
text \<open>Standard version\<close>  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1155  | 
|
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1156  | 
lemma DERIV_chain:  | 
| 63558 | 1157  | 
"DERIV f (g x) :> Da \<Longrightarrow> (g has_field_derivative Db) (at x within s) \<Longrightarrow>  | 
1158  | 
(f \<circ> g has_field_derivative Da * Db) (at x within s)"  | 
|
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
57418 
diff
changeset
 | 
1159  | 
by (drule (1) DERIV_chain', simp add: o_def mult.commute)  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1160  | 
|
| 63558 | 1161  | 
lemma DERIV_image_chain:  | 
1162  | 
"(f has_field_derivative Da) (at (g x) within (g ` s)) \<Longrightarrow>  | 
|
1163  | 
(g has_field_derivative Db) (at x within s) \<Longrightarrow>  | 
|
1164  | 
(f \<circ> g has_field_derivative Da * Db) (at x within s)"  | 
|
| 
69064
 
5840724b1d71
Prefix form of infix with * on either side no longer needs special treatment
 
nipkow 
parents: 
69022 
diff
changeset
 | 
1165  | 
using has_derivative_in_compose [of g "(*) Db" x s f "(*) Da "]  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1166  | 
by (simp add: has_field_derivative_def o_def mult_commute_abs ac_simps)  | 
| 55967 | 1167  | 
|
1168  | 
(*These two are from HOL Light: HAS_COMPLEX_DERIVATIVE_CHAIN*)  | 
|
1169  | 
lemma DERIV_chain_s:  | 
|
1170  | 
assumes "(\<And>x. x \<in> s \<Longrightarrow> DERIV g x :> g'(x))"  | 
|
| 63558 | 1171  | 
and "DERIV f x :> f'"  | 
1172  | 
and "f x \<in> s"  | 
|
1173  | 
shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"  | 
|
| 
57512
 
cc97b347b301
reduced name variants for assoc and commute on plus and mult
 
haftmann 
parents: 
57418 
diff
changeset
 | 
1174  | 
by (metis (full_types) DERIV_chain' mult.commute assms)  | 
| 55967 | 1175  | 
|
1176  | 
lemma DERIV_chain3: (*HAS_COMPLEX_DERIVATIVE_CHAIN_UNIV*)  | 
|
1177  | 
assumes "(\<And>x. DERIV g x :> g'(x))"  | 
|
| 63558 | 1178  | 
and "DERIV f x :> f'"  | 
1179  | 
shows "DERIV (\<lambda>x. g(f x)) x :> f' * g'(f x)"  | 
|
| 55967 | 1180  | 
by (metis UNIV_I DERIV_chain_s [of UNIV] assms)  | 
1181  | 
||
| 63558 | 1182  | 
text \<open>Alternative definition for differentiability\<close>  | 
| 21164 | 1183  | 
|
1184  | 
lemma DERIV_LIM_iff:  | 
|
| 63558 | 1185  | 
  fixes f :: "'a::{real_normed_vector,inverse} \<Rightarrow> 'a"
 | 
| 68634 | 1186  | 
shows "((\<lambda>h. (f (a + h) - f a) / h) \<midarrow>0\<rightarrow> D) = ((\<lambda>x. (f x - f a) / (x - a)) \<midarrow>a\<rightarrow> D)" (is "?lhs = ?rhs")  | 
1187  | 
proof  | 
|
1188  | 
assume ?lhs  | 
|
1189  | 
then have "(\<lambda>x. (f (a + (x + - a)) - f a) / (x + - a)) \<midarrow>0 - - a\<rightarrow> D"  | 
|
1190  | 
by (rule LIM_offset)  | 
|
1191  | 
then show ?rhs  | 
|
1192  | 
by simp  | 
|
1193  | 
next  | 
|
1194  | 
assume ?rhs  | 
|
1195  | 
then have "(\<lambda>x. (f (x+a) - f a) / ((x+a) - a)) \<midarrow>a-a\<rightarrow> D"  | 
|
1196  | 
by (rule LIM_offset)  | 
|
1197  | 
then show ?lhs  | 
|
1198  | 
by (simp add: add.commute)  | 
|
1199  | 
qed  | 
|
| 63079 | 1200  | 
|
1201  | 
lemma has_field_derivative_cong_ev:  | 
|
1202  | 
assumes "x = y"  | 
|
| 68635 | 1203  | 
and *: "eventually (\<lambda>x. x \<in> S \<longrightarrow> f x = g x) (nhds x)"  | 
1204  | 
and "u = v" "S = t" "x \<in> S"  | 
|
1205  | 
shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative v) (at y within t)"  | 
|
| 68634 | 1206  | 
unfolding has_field_derivative_iff  | 
| 63079 | 1207  | 
proof (rule filterlim_cong)  | 
| 63558 | 1208  | 
from assms have "f y = g y"  | 
1209  | 
by (auto simp: eventually_nhds)  | 
|
| 68635 | 1210  | 
with * show "\<forall>\<^sub>F z in at x within S. (f z - f x) / (z - x) = (g z - g y) / (z - y)"  | 
| 63079 | 1211  | 
unfolding eventually_at_filter  | 
1212  | 
by eventually_elim (auto simp: assms \<open>f y = g y\<close>)  | 
|
1213  | 
qed (simp_all add: assms)  | 
|
| 21164 | 1214  | 
|
| 
67706
 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 
Wenda Li <wl302@cam.ac.uk> 
parents: 
67443 
diff
changeset
 | 
1215  | 
lemma has_field_derivative_cong_eventually:  | 
| 68635 | 1216  | 
assumes "eventually (\<lambda>x. f x = g x) (at x within S)" "f x = g x"  | 
1217  | 
shows "(f has_field_derivative u) (at x within S) = (g has_field_derivative u) (at x within S)"  | 
|
| 68634 | 1218  | 
unfolding has_field_derivative_iff  | 
| 68635 | 1219  | 
proof (rule tendsto_cong)  | 
1220  | 
show "\<forall>\<^sub>F y in at x within S. (f y - f x) / (y - x) = (g y - g x) / (y - x)"  | 
|
1221  | 
using assms by (auto elim: eventually_mono)  | 
|
1222  | 
qed  | 
|
| 
67706
 
4ddc49205f5d
Unified the order of zeros and poles; improved reasoning around non-essential singularites
 
Wenda Li <wl302@cam.ac.uk> 
parents: 
67443 
diff
changeset
 | 
1223  | 
|
| 63558 | 1224  | 
lemma DERIV_cong_ev:  | 
1225  | 
"x = y \<Longrightarrow> eventually (\<lambda>x. f x = g x) (nhds x) \<Longrightarrow> u = v \<Longrightarrow>  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1226  | 
DERIV f x :> u \<longleftrightarrow> DERIV g y :> v"  | 
| 63079 | 1227  | 
by (rule has_field_derivative_cong_ev) simp_all  | 
| 21164 | 1228  | 
|
| 
73885
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1229  | 
lemma DERIV_mirror: "(DERIV f (- x) :> y) \<longleftrightarrow> (DERIV (\<lambda>x. f (- x)) x :> - y)"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1230  | 
for f :: "real \<Rightarrow> real" and x y :: real  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1231  | 
by (simp add: DERIV_def filterlim_at_split filterlim_at_left_to_right  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1232  | 
tendsto_minus_cancel_left field_simps conj_commute)  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1233  | 
|
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1234  | 
lemma DERIV_shift:  | 
| 63079 | 1235  | 
"(f has_field_derivative y) (at (x + z)) = ((\<lambda>x. f (x + z)) has_field_derivative y) (at x)"  | 
| 
56381
 
0556204bc230
merged DERIV_intros, has_derivative_intros into derivative_intros
 
hoelzl 
parents: 
56371 
diff
changeset
 | 
1236  | 
by (simp add: DERIV_def field_simps)  | 
| 21164 | 1237  | 
|
| 
73885
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1238  | 
lemma DERIV_at_within_shift_lemma:  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1239  | 
assumes "(f has_field_derivative y) (at (z+x) within (+) z ` S)"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1240  | 
shows "(f \<circ> (+)z has_field_derivative y) (at x within S)"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1241  | 
proof -  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1242  | 
have "((+)z has_field_derivative 1) (at x within S)"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1243  | 
by (rule derivative_eq_intros | simp)+  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1244  | 
with assms DERIV_image_chain show ?thesis  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1245  | 
by (metis mult.right_neutral)  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1246  | 
qed  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1247  | 
|
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1248  | 
lemma DERIV_at_within_shift:  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1249  | 
"(f has_field_derivative y) (at (z+x) within (+) z ` S) \<longleftrightarrow>  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1250  | 
((\<lambda>x. f (z+x)) has_field_derivative y) (at x within S)" (is "?lhs = ?rhs")  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1251  | 
proof  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1252  | 
assume ?lhs then show ?rhs  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1253  | 
using DERIV_at_within_shift_lemma unfolding o_def by blast  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1254  | 
next  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1255  | 
have [simp]: "(\<lambda>x. x - z) ` (+) z ` S = S"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1256  | 
by force  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1257  | 
assume R: ?rhs  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1258  | 
have "(f \<circ> (+) z \<circ> (+) (- z) has_field_derivative y) (at (z + x) within (+) z ` S)"  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1259  | 
by (rule DERIV_at_within_shift_lemma) (use R in \<open>simp add: o_def\<close>)  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1260  | 
then show ?lhs  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1261  | 
by (simp add: o_def)  | 
| 
 
26171a89466a
A few useful lemmas about derivatives, colinearity and other topics
 
paulson <lp15@cam.ac.uk> 
parents: 
73795 
diff
changeset
 | 
1262  | 
qed  | 
| 21164 | 1263  | 
|
| 
63263
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1264  | 
lemma floor_has_real_derivative:  | 
| 63558 | 1265  | 
  fixes f :: "real \<Rightarrow> 'a::{floor_ceiling,order_topology}"
 | 
| 
63263
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1266  | 
assumes "isCont f x"  | 
| 63558 | 1267  | 
and "f x \<notin> \<int>"  | 
| 
63263
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1268  | 
shows "((\<lambda>x. floor (f x)) has_real_derivative 0) (at x)"  | 
| 
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1269  | 
proof (subst DERIV_cong_ev[OF refl _ refl])  | 
| 63558 | 1270  | 
show "((\<lambda>_. floor (f x)) has_real_derivative 0) (at x)"  | 
1271  | 
by simp  | 
|
| 
63263
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1272  | 
have "\<forall>\<^sub>F y in at x. \<lfloor>f y\<rfloor> = \<lfloor>f x\<rfloor>"  | 
| 
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1273  | 
by (rule eventually_floor_eq[OF assms[unfolded continuous_at]])  | 
| 
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1274  | 
then show "\<forall>\<^sub>F y in nhds x. real_of_int \<lfloor>f y\<rfloor> = real_of_int \<lfloor>f x\<rfloor>"  | 
| 
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1275  | 
unfolding eventually_at_filter  | 
| 
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1276  | 
by eventually_elim auto  | 
| 
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1277  | 
qed  | 
| 
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1278  | 
|
| 
67685
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
1279  | 
lemmas has_derivative_floor[derivative_intros] =  | 
| 
 
bdff8bf0a75b
moved theorems from AFP/Affine_Arithmetic and AFP/Ordinary_Differential_Equations
 
immler 
parents: 
67443 
diff
changeset
 | 
1280  | 
floor_has_real_derivative[THEN DERIV_compose_FDERIV]  | 
| 
63263
 
c6c95d64607a
approximation, derivative, and continuity of floor and ceiling
 
immler 
parents: 
63170 
diff
changeset
 | 
1281  | 
|
| 
70707
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1282  | 
lemma continuous_floor:  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1283  | 
fixes x::real  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1284  | 
shows "x \<notin> \<int> \<Longrightarrow> continuous (at x) (real_of_int \<circ> floor)"  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1285  | 
using floor_has_real_derivative [where f=id]  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1286  | 
by (auto simp: o_def has_field_derivative_def intro: has_derivative_continuous)  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1287  | 
|
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1288  | 
lemma continuous_frac:  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1289  | 
fixes x::real  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1290  | 
assumes "x \<notin> \<int>"  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1291  | 
shows "continuous (at x) frac"  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1292  | 
proof -  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1293  | 
have "isCont (\<lambda>x. real_of_int \<lfloor>x\<rfloor>) x"  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1294  | 
using continuous_floor [OF assms] by (simp add: o_def)  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1295  | 
then have *: "continuous (at x) (\<lambda>x. x - real_of_int \<lfloor>x\<rfloor>)"  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1296  | 
by (intro continuous_intros)  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1297  | 
moreover have "\<forall>\<^sub>F x in nhds x. frac x = x - real_of_int \<lfloor>x\<rfloor>"  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1298  | 
by (simp add: frac_def)  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1299  | 
ultimately show ?thesis  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1300  | 
by (simp add: LIM_imp_LIM frac_def isCont_def)  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1301  | 
qed  | 
| 
 
125705f5965f
A little-known material, and some tidying up
 
paulson <lp15@cam.ac.uk> 
parents: 
70615 
diff
changeset
 | 
1302  | 
|
| 60758 | 1303  | 
text \<open>Caratheodory formulation of derivative at a point\<close>  | 
| 21164 | 1304  | 
|
| 
68644
 
242d298526a3
de-applying and simplifying proofs
 
paulson <lp15@cam.ac.uk> 
parents: 
68638 
diff
changeset
 | 
1305  | 
lemma CARAT_DERIV:  | 
| 
51642
 
400ec5ae7f8f
move FrechetDeriv from the Library to HOL/Deriv; base DERIV on FDERIV and both derivatives allow a restricted support set; FDERIV is now an abbreviation of has_derivative
 
hoelzl 
parents: 
51641 
diff
changeset
 | 
1306  | 
"(DERIV f x :> l) \<longleftrightarrow> (\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l)"  | 
| 63558 | 1307  | 
(is "?lhs = ?rhs")  | 
| 21164 | 1308  | 
proof  | 
| 63558 | 1309  | 
assume ?lhs  | 
1310  | 
show "\<exists>g. (\<forall>z. f z - f x = g z * (z - x)) \<and> isCont g x \<and> g x = l"  | 
|
| 21164 | 1311  | 
proof (intro exI conjI)  | 
| 63558 | 1312  | 
let ?g = "(\<lambda>z. if z = x then l else (f z - f x) / (z-x))"  | 
1313  | 
show "\<forall>z. f z - f x = ?g z * (z - x)"  | 
|
1314  | 
by simp  | 
|
1315  | 
show "isCont ?g x"  | 
|
1316  | 
using \<open>?lhs\<close> by (simp add: isCont_iff DERIV_def cong: LIM_equal [rule_format])  | 
|
1317  | 
show "?g x = l"  | 
|
1318  | 
by simp  | 
|
| 21164 | 1319  | 
qed  | 
1320  | 
next  | 
|
| 63558 | 1321  | 
assume ?rhs  | 
1322  | 
then show ?lhs  | 
|
1323  | 
by (auto simp add: isCont_iff DERIV_def cong: LIM_cong)  | 
|
| 21164 | 1324  | 
qed  | 
1325  | 
||
1326  | 
||
| 60758 | 1327  | 
subsection \<open>Local extrema\<close>  | 
| 29975 | 1328  | 
|
| 69593 | 1329  | 
text \<open>If \<^term>\<open>0 < f' x\<close> then \<^term>\<open>x\<close> is Locally Strictly Increasing At The Right.\<close>  | 
| 21164 | 1330  | 
|
| 63079 | 1331  | 
lemma has_real_derivative_pos_inc_right:  | 
| 63558 | 1332  | 
fixes f :: "real \<Rightarrow> real"  | 
| 63079 | 1333  | 
assumes der: "(f has_real_derivative l) (at x within S)"  | 
| 63558 | 1334  | 
and l: "0 < l"  | 
| 63079 | 1335  | 
shows "\<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x + h)"  | 
1336  | 
using assms  | 
|
1337  | 
proof -  | 
|
1338  | 
from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at]  | 
|
| 63558 | 1339  | 
obtain s where s: "0 < s"  | 
1340  | 
and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < l"  | 
|
| 63079 | 1341  | 
by (auto simp: dist_real_def)  | 
1342  | 
then show ?thesis  | 
|
1343  | 
proof (intro exI conjI strip)  | 
|
| 63558 | 1344  | 
show "0 < s" by (rule s)  | 
1345  | 
next  | 
|
1346  | 
fix h :: real  | 
|
| 63079 | 1347  | 
assume "0 < h" "h < s" "x + h \<in> S"  | 
1348  | 
with all [of "x + h"] show "f x < f (x+h)"  | 
|
1349  | 
proof (simp add: abs_if dist_real_def pos_less_divide_eq split: if_split_asm)  | 
|
| 63558 | 1350  | 
assume "\<not> (f (x + h) - f x) / h < l" and h: "0 < h"  | 
1351  | 
with l have "0 < (f (x + h) - f x) / h"  | 
|
1352  | 
by arith  | 
|
1353  | 
then show "f x < f (x + h)"  | 
|
| 63079 | 1354  | 
by (simp add: pos_less_divide_eq h)  | 
1355  | 
qed  | 
|
1356  | 
qed  | 
|
1357  | 
qed  | 
|
1358  | 
||
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1359  | 
lemma DERIV_pos_inc_right:  | 
| 63558 | 1360  | 
fixes f :: "real \<Rightarrow> real"  | 
| 21164 | 1361  | 
assumes der: "DERIV f x :> l"  | 
| 63558 | 1362  | 
and l: "0 < l"  | 
1363  | 
shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x + h)"  | 
|
| 63079 | 1364  | 
using has_real_derivative_pos_inc_right[OF assms]  | 
1365  | 
by auto  | 
|
1366  | 
||
1367  | 
lemma has_real_derivative_neg_dec_left:  | 
|
| 63558 | 1368  | 
fixes f :: "real \<Rightarrow> real"  | 
| 63079 | 1369  | 
assumes der: "(f has_real_derivative l) (at x within S)"  | 
| 63558 | 1370  | 
and "l < 0"  | 
| 63079 | 1371  | 
shows "\<exists>d > 0. \<forall>h > 0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f x < f (x - h)"  | 
| 21164 | 1372  | 
proof -  | 
| 63558 | 1373  | 
from \<open>l < 0\<close> have l: "- l > 0"  | 
1374  | 
by simp  | 
|
| 63079 | 1375  | 
from der [THEN has_field_derivativeD, THEN tendstoD, OF l, unfolded eventually_at]  | 
| 63558 | 1376  | 
obtain s where s: "0 < s"  | 
1377  | 
and all: "\<And>xa. xa\<in>S \<Longrightarrow> xa \<noteq> x \<and> dist xa x < s \<longrightarrow> \<bar>(f xa - f x) / (xa - x) - l\<bar> < - l"  | 
|
| 63079 | 1378  | 
by (auto simp: dist_real_def)  | 
| 63558 | 1379  | 
then show ?thesis  | 
| 21164 | 1380  | 
proof (intro exI conjI strip)  | 
| 63558 | 1381  | 
show "0 < s" by (rule s)  | 
1382  | 
next  | 
|
1383  | 
fix h :: real  | 
|
| 63079 | 1384  | 
assume "0 < h" "h < s" "x - h \<in> S"  | 
1385  | 
with all [of "x - h"] show "f x < f (x-h)"  | 
|
| 63648 | 1386  | 
proof (simp add: abs_if pos_less_divide_eq dist_real_def split: if_split_asm)  | 
| 63558 | 1387  | 
assume "- ((f (x-h) - f x) / h) < l" and h: "0 < h"  | 
1388  | 
with l have "0 < (f (x-h) - f x) / h"  | 
|
1389  | 
by arith  | 
|
1390  | 
then show "f x < f (x - h)"  | 
|
| 63079 | 1391  | 
by (simp add: pos_less_divide_eq h)  | 
| 21164 | 1392  | 
qed  | 
1393  | 
qed  | 
|
1394  | 
qed  | 
|
1395  | 
||
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1396  | 
lemma DERIV_neg_dec_left:  | 
| 63558 | 1397  | 
fixes f :: "real \<Rightarrow> real"  | 
| 21164 | 1398  | 
assumes der: "DERIV f x :> l"  | 
| 63558 | 1399  | 
and l: "l < 0"  | 
1400  | 
shows "\<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x < f (x - h)"  | 
|
| 63079 | 1401  | 
using has_real_derivative_neg_dec_left[OF assms]  | 
1402  | 
by auto  | 
|
1403  | 
||
1404  | 
lemma has_real_derivative_pos_inc_left:  | 
|
| 63558 | 1405  | 
fixes f :: "real \<Rightarrow> real"  | 
1406  | 
shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> 0 < l \<Longrightarrow>  | 
|
1407  | 
\<exists>d>0. \<forall>h>0. x - h \<in> S \<longrightarrow> h < d \<longrightarrow> f (x - h) < f x"  | 
|
1408  | 
by (rule has_real_derivative_neg_dec_left [of "\<lambda>x. - f x" "-l" x S, simplified])  | 
|
| 63079 | 1409  | 
(auto simp add: DERIV_minus)  | 
| 21164 | 1410  | 
|
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1411  | 
lemma DERIV_pos_inc_left:  | 
| 63558 | 1412  | 
fixes f :: "real \<Rightarrow> real"  | 
1413  | 
shows "DERIV f x :> l \<Longrightarrow> 0 < l \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f (x - h) < f x"  | 
|
| 63079 | 1414  | 
using has_real_derivative_pos_inc_left  | 
1415  | 
by blast  | 
|
1416  | 
||
1417  | 
lemma has_real_derivative_neg_dec_right:  | 
|
| 63558 | 1418  | 
fixes f :: "real \<Rightarrow> real"  | 
1419  | 
shows "(f has_real_derivative l) (at x within S) \<Longrightarrow> l < 0 \<Longrightarrow>  | 
|
1420  | 
\<exists>d > 0. \<forall>h > 0. x + h \<in> S \<longrightarrow> h < d \<longrightarrow> f x > f (x + h)"  | 
|
1421  | 
by (rule has_real_derivative_pos_inc_right [of "\<lambda>x. - f x" "-l" x S, simplified])  | 
|
| 63079 | 1422  | 
(auto simp add: DERIV_minus)  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1423  | 
|
| 
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1424  | 
lemma DERIV_neg_dec_right:  | 
| 63558 | 1425  | 
fixes f :: "real \<Rightarrow> real"  | 
1426  | 
shows "DERIV f x :> l \<Longrightarrow> l < 0 \<Longrightarrow> \<exists>d > 0. \<forall>h > 0. h < d \<longrightarrow> f x > f (x + h)"  | 
|
| 63079 | 1427  | 
using has_real_derivative_neg_dec_right by blast  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1428  | 
|
| 21164 | 1429  | 
lemma DERIV_local_max:  | 
| 63558 | 1430  | 
fixes f :: "real \<Rightarrow> real"  | 
| 21164 | 1431  | 
assumes der: "DERIV f x :> l"  | 
| 63558 | 1432  | 
and d: "0 < d"  | 
1433  | 
and le: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x"  | 
|
| 21164 | 1434  | 
shows "l = 0"  | 
1435  | 
proof (cases rule: linorder_cases [of l 0])  | 
|
| 63558 | 1436  | 
case equal  | 
1437  | 
then show ?thesis .  | 
|
| 21164 | 1438  | 
next  | 
1439  | 
case less  | 
|
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1440  | 
from DERIV_neg_dec_left [OF der less]  | 
| 63558 | 1441  | 
obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x - h)"  | 
1442  | 
by blast  | 
|
1443  | 
obtain e where "0 < e \<and> e < d \<and> e < d'"  | 
|
| 
68527
 
2f4e2aab190a
Generalising and renaming some basic results
 
paulson <lp15@cam.ac.uk> 
parents: 
67707 
diff
changeset
 | 
1444  | 
using field_lbound_gt_zero [OF d d'] ..  | 
| 63558 | 1445  | 
with lt le [THEN spec [where x="x - e"]] show ?thesis  | 
1446  | 
by (auto simp add: abs_if)  | 
|
| 21164 | 1447  | 
next  | 
1448  | 
case greater  | 
|
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1449  | 
from DERIV_pos_inc_right [OF der greater]  | 
| 63558 | 1450  | 
obtain d' where d': "0 < d'" and lt: "\<forall>h > 0. h < d' \<longrightarrow> f x < f (x + h)"  | 
1451  | 
by blast  | 
|
1452  | 
obtain e where "0 < e \<and> e < d \<and> e < d'"  | 
|
| 
68527
 
2f4e2aab190a
Generalising and renaming some basic results
 
paulson <lp15@cam.ac.uk> 
parents: 
67707 
diff
changeset
 | 
1453  | 
using field_lbound_gt_zero [OF d d'] ..  | 
| 63558 | 1454  | 
with lt le [THEN spec [where x="x + e"]] show ?thesis  | 
1455  | 
by (auto simp add: abs_if)  | 
|
| 21164 | 1456  | 
qed  | 
1457  | 
||
| 63558 | 1458  | 
text \<open>Similar theorem for a local minimum\<close>  | 
| 21164 | 1459  | 
lemma DERIV_local_min:  | 
| 63558 | 1460  | 
fixes f :: "real \<Rightarrow> real"  | 
1461  | 
shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x \<le> f y \<Longrightarrow> l = 0"  | 
|
1462  | 
by (drule DERIV_minus [THEN DERIV_local_max]) auto  | 
|
| 21164 | 1463  | 
|
1464  | 
||
| 60758 | 1465  | 
text\<open>In particular, if a function is locally flat\<close>  | 
| 21164 | 1466  | 
lemma DERIV_local_const:  | 
| 63558 | 1467  | 
fixes f :: "real \<Rightarrow> real"  | 
1468  | 
shows "DERIV f x :> l \<Longrightarrow> 0 < d \<Longrightarrow> \<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f x = f y \<Longrightarrow> l = 0"  | 
|
1469  | 
by (auto dest!: DERIV_local_max)  | 
|
| 21164 | 1470  | 
|
| 29975 | 1471  | 
|
| 60758 | 1472  | 
subsection \<open>Rolle's Theorem\<close>  | 
| 29975 | 1473  | 
|
| 63558 | 1474  | 
text \<open>Lemma about introducing open ball in open interval\<close>  | 
| 68635 | 1475  | 
lemma lemma_interval_lt:  | 
1476  | 
fixes a b x :: real  | 
|
1477  | 
assumes "a < x" "x < b"  | 
|
1478  | 
shows "\<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a < y \<and> y < b)"  | 
|
1479  | 
using linorder_linear [of "x - a" "b - x"]  | 
|
1480  | 
proof  | 
|
1481  | 
assume "x - a \<le> b - x"  | 
|
1482  | 
with assms show ?thesis  | 
|
1483  | 
by (rule_tac x = "x - a" in exI) auto  | 
|
1484  | 
next  | 
|
1485  | 
assume "b - x \<le> x - a"  | 
|
1486  | 
with assms show ?thesis  | 
|
1487  | 
by (rule_tac x = "b - x" in exI) auto  | 
|
1488  | 
qed  | 
|
| 27668 | 1489  | 
|
| 63558 | 1490  | 
lemma lemma_interval: "a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b)"  | 
1491  | 
for a b x :: real  | 
|
| 68635 | 1492  | 
by (force dest: lemma_interval_lt)  | 
| 21164 | 1493  | 
|
| 63558 | 1494  | 
text \<open>Rolle's Theorem.  | 
| 69593 | 1495  | 
If \<^term>\<open>f\<close> is defined and continuous on the closed interval  | 
| 61799 | 1496  | 
\<open>[a,b]\<close> and differentiable on the open interval \<open>(a,b)\<close>,  | 
| 69593 | 1497  | 
and \<^term>\<open>f a = f b\<close>,  | 
1498  | 
then there exists \<open>x0 \<in> (a,b)\<close> such that \<^term>\<open>f' x0 = 0\<close>\<close>  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1499  | 
theorem Rolle_deriv:  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1500  | 
fixes f :: "real \<Rightarrow> real"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1501  | 
assumes "a < b"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1502  | 
and fab: "f a = f b"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1503  | 
    and contf: "continuous_on {a..b} f"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1504  | 
and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1505  | 
shows "\<exists>z. a < z \<and> z < b \<and> f' z = (\<lambda>v. 0)"  | 
| 21164 | 1506  | 
proof -  | 
| 63558 | 1507  | 
have le: "a \<le> b"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1508  | 
using \<open>a < b\<close> by simp  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1509  | 
    have "(a + b) / 2 \<in> {a..b}"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1510  | 
using assms(1) by auto  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1511  | 
    then have *: "{a..b} \<noteq> {}"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1512  | 
by auto  | 
| 63558 | 1513  | 
obtain x where x_max: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f z \<le> f x" and "a \<le> x" "x \<le> b"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1514  | 
using continuous_attains_sup[OF compact_Icc * contf]  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1515  | 
by (meson atLeastAtMost_iff)  | 
| 63558 | 1516  | 
obtain x' where x'_min: "\<forall>z. a \<le> z \<and> z \<le> b \<longrightarrow> f x' \<le> f z" and "a \<le> x'" "x' \<le> b"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1517  | 
using continuous_attains_inf[OF compact_Icc * contf] by (meson atLeastAtMost_iff)  | 
| 63558 | 1518  | 
consider "a < x" "x < b" | "x = a \<or> x = b"  | 
1519  | 
using \<open>a \<le> x\<close> \<open>x \<le> b\<close> by arith  | 
|
1520  | 
then show ?thesis  | 
|
| 21164 | 1521  | 
proof cases  | 
| 63558 | 1522  | 
case 1  | 
| 69593 | 1523  | 
\<comment> \<open>\<^term>\<open>f\<close> attains its maximum within the interval\<close>  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1524  | 
then obtain l where der: "DERIV f x :> l"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1525  | 
using derf differentiable_def real_differentiable_def by blast  | 
| 63558 | 1526  | 
obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"  | 
1527  | 
using lemma_interval [OF 1] by blast  | 
|
1528  | 
then have bound': "\<forall>y. \<bar>x - y\<bar> < d \<longrightarrow> f y \<le> f x"  | 
|
1529  | 
using x_max by blast  | 
|
| 
67443
 
3abf6a722518
standardized towards new-style formal comments: isabelle update_comments;
 
wenzelm 
parents: 
67399 
diff
changeset
 | 
1530  | 
\<comment> \<open>the derivative at a local maximum is zero\<close>  | 
| 63558 | 1531  | 
have "l = 0"  | 
1532  | 
by (rule DERIV_local_max [OF der d bound'])  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1533  | 
with 1 der derf [of x] show ?thesis  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1534  | 
by (metis has_derivative_unique has_field_derivative_def mult_zero_left)  | 
| 21164 | 1535  | 
next  | 
| 63558 | 1536  | 
case 2  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1537  | 
then have fx: "f b = f x" by (auto simp add: fab)  | 
| 63558 | 1538  | 
consider "a < x'" "x' < b" | "x' = a \<or> x' = b"  | 
1539  | 
using \<open>a \<le> x'\<close> \<open>x' \<le> b\<close> by arith  | 
|
1540  | 
then show ?thesis  | 
|
| 21164 | 1541  | 
proof cases  | 
| 63558 | 1542  | 
case 1  | 
| 69593 | 1543  | 
\<comment> \<open>\<^term>\<open>f\<close> attains its minimum within the interval\<close>  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1544  | 
then obtain l where der: "DERIV f x' :> l"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1545  | 
using derf differentiable_def real_differentiable_def by blast  | 
| 63558 | 1546  | 
from lemma_interval [OF 1]  | 
| 21164 | 1547  | 
obtain d where d: "0<d" and bound: "\<forall>y. \<bar>x'-y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"  | 
| 63558 | 1548  | 
by blast  | 
1549  | 
then have bound': "\<forall>y. \<bar>x' - y\<bar> < d \<longrightarrow> f x' \<le> f y"  | 
|
1550  | 
using x'_min by blast  | 
|
1551  | 
have "l = 0" by (rule DERIV_local_min [OF der d bound'])  | 
|
1552  | 
\<comment> \<open>the derivative at a local minimum is zero\<close>  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1553  | 
then show ?thesis using 1 der derf [of x']  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1554  | 
by (metis has_derivative_unique has_field_derivative_def mult_zero_left)  | 
| 21164 | 1555  | 
next  | 
| 63558 | 1556  | 
case 2  | 
| 69593 | 1557  | 
\<comment> \<open>\<^term>\<open>f\<close> is constant throughout the interval\<close>  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1558  | 
then have fx': "f b = f x'" by (auto simp: fab)  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1559  | 
from dense [OF \<open>a < b\<close>] obtain r where r: "a < r" "r < b" by blast  | 
| 63558 | 1560  | 
obtain d where d: "0 < d" and bound: "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> a \<le> y \<and> y \<le> b"  | 
1561  | 
using lemma_interval [OF r] by blast  | 
|
1562  | 
have eq_fb: "f z = f b" if "a \<le> z" and "z \<le> b" for z  | 
|
1563  | 
proof (rule order_antisym)  | 
|
1564  | 
show "f z \<le> f b" by (simp add: fx x_max that)  | 
|
1565  | 
show "f b \<le> f z" by (simp add: fx' x'_min that)  | 
|
| 21164 | 1566  | 
qed  | 
| 63558 | 1567  | 
have bound': "\<forall>y. \<bar>r - y\<bar> < d \<longrightarrow> f r = f y"  | 
| 21164 | 1568  | 
proof (intro strip)  | 
| 63558 | 1569  | 
fix y :: real  | 
1570  | 
assume lt: "\<bar>r - y\<bar> < d"  | 
|
1571  | 
then have "f y = f b" by (simp add: eq_fb bound)  | 
|
1572  | 
then show "f r = f y" by (simp add: eq_fb r order_less_imp_le)  | 
|
| 21164 | 1573  | 
qed  | 
| 63558 | 1574  | 
obtain l where der: "DERIV f r :> l"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1575  | 
using derf differentiable_def r(1) r(2) real_differentiable_def by blast  | 
| 63558 | 1576  | 
have "l = 0"  | 
1577  | 
by (rule DERIV_local_const [OF der d bound'])  | 
|
1578  | 
\<comment> \<open>the derivative of a constant function is zero\<close>  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1579  | 
with r der derf [of r] show ?thesis  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1580  | 
by (metis has_derivative_unique has_field_derivative_def mult_zero_left)  | 
| 21164 | 1581  | 
qed  | 
1582  | 
qed  | 
|
1583  | 
qed  | 
|
1584  | 
||
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1585  | 
corollary Rolle:  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1586  | 
fixes a b :: real  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1587  | 
  assumes ab: "a < b" "f a = f b" "continuous_on {a..b} f"
 | 
| 
69022
 
e2858770997a
removal of more redundancies, and fixes
 
paulson <lp15@cam.ac.uk> 
parents: 
69020 
diff
changeset
 | 
1588  | 
and dif [rule_format]: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1589  | 
shows "\<exists>z. a < z \<and> z < b \<and> DERIV f z :> 0"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1590  | 
proof -  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1591  | 
obtain f' where f': "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1592  | 
using dif unfolding differentiable_def by metis  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1593  | 
then have "\<exists>z. a < z \<and> z < b \<and> f' z = (\<lambda>v. 0)"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1594  | 
by (metis Rolle_deriv [OF ab])  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1595  | 
then show ?thesis  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1596  | 
using f' has_derivative_imp_has_field_derivative by fastforce  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1597  | 
qed  | 
| 21164 | 1598  | 
|
| 63558 | 1599  | 
subsection \<open>Mean Value Theorem\<close>  | 
| 21164 | 1600  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1601  | 
theorem mvt:  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1602  | 
fixes f :: "real \<Rightarrow> real"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1603  | 
assumes "a < b"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1604  | 
    and contf: "continuous_on {a..b} f"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1605  | 
and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> (f has_derivative f' x) (at x)"  | 
| 69109 | 1606  | 
obtains \<xi> where "a < \<xi>" "\<xi> < b" "f b - f a = (f' \<xi>) (b - a)"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1607  | 
proof -  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1608  | 
have "\<exists>x. a < x \<and> x < b \<and> (\<lambda>y. f' x y - (f b - f a) / (b - a) * y) = (\<lambda>v. 0)"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1609  | 
proof (intro Rolle_deriv[OF \<open>a < b\<close>])  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1610  | 
fix x  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1611  | 
assume x: "a < x" "x < b"  | 
| 69109 | 1612  | 
show "((\<lambda>x. f x - (f b - f a) / (b - a) * x)  | 
1613  | 
has_derivative (\<lambda>y. f' x y - (f b - f a) / (b - a) * y)) (at x)"  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1614  | 
by (intro derivative_intros derf[OF x])  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1615  | 
qed (use assms in \<open>auto intro!: continuous_intros simp: field_simps\<close>)  | 
| 69109 | 1616  | 
then obtain \<xi> where  | 
1617  | 
"a < \<xi>" "\<xi> < b" "(\<lambda>y. f' \<xi> y - (f b - f a) / (b - a) * y) = (\<lambda>v. 0)"  | 
|
1618  | 
by metis  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1619  | 
then show ?thesis  | 
| 
73932
 
fd21b4a93043
added opaque_combs and renamed hide_lams to opaque_lifting
 
desharna 
parents: 
73795 
diff
changeset
 | 
1620  | 
by (metis (no_types, opaque_lifting) that add.right_neutral add_diff_cancel_left' add_diff_eq \<open>a < b\<close>  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1621  | 
less_irrefl nonzero_eq_divide_eq)  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1622  | 
qed  | 
| 21164 | 1623  | 
|
1624  | 
theorem MVT:  | 
|
| 63558 | 1625  | 
fixes a b :: real  | 
1626  | 
assumes lt: "a < b"  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1627  | 
    and contf: "continuous_on {a..b} f"
 | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1628  | 
and dif: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"  | 
| 63558 | 1629  | 
shows "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"  | 
| 21164 | 1630  | 
proof -  | 
| 70346 | 1631  | 
obtain f' :: "real \<Rightarrow> real \<Rightarrow> real"  | 
1632  | 
where derf: "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (f has_derivative f' x) (at x)"  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1633  | 
using dif unfolding differentiable_def by metis  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1634  | 
then obtain z where "a < z" "z < b" "f b - f a = (f' z) (b - a)"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1635  | 
using mvt [OF lt contf] by blast  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1636  | 
then show ?thesis  | 
| 70346 | 1637  | 
by (simp add: ac_simps)  | 
1638  | 
(metis derf dif has_derivative_unique has_field_derivative_imp_has_derivative real_differentiable_def)  | 
|
| 21164 | 1639  | 
qed  | 
1640  | 
||
| 68635 | 1641  | 
corollary MVT2:  | 
1642  | 
assumes "a < b" and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> DERIV f x :> f' x"  | 
|
1643  | 
shows "\<exists>z::real. a < z \<and> z < b \<and> (f b - f a = (b - a) * f' z)"  | 
|
1644  | 
proof -  | 
|
1645  | 
have "\<exists>l z. a < z \<and>  | 
|
1646  | 
z < b \<and>  | 
|
1647  | 
(f has_real_derivative l) (at z) \<and>  | 
|
1648  | 
f b - f a = (b - a) * l"  | 
|
1649  | 
proof (rule MVT [OF \<open>a < b\<close>])  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1650  | 
    show "continuous_on {a..b} f"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1651  | 
by (meson DERIV_continuous atLeastAtMost_iff continuous_at_imp_continuous_on der)  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1652  | 
show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> f differentiable (at x)"  | 
| 68635 | 1653  | 
using assms by (force dest: order_less_imp_le simp add: real_differentiable_def)  | 
1654  | 
qed  | 
|
1655  | 
with assms show ?thesis  | 
|
1656  | 
by (blast dest: DERIV_unique order_less_imp_le)  | 
|
1657  | 
qed  | 
|
| 
29803
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1658  | 
|
| 68601 | 1659  | 
lemma pos_deriv_imp_strict_mono:  | 
1660  | 
assumes "\<And>x. (f has_real_derivative f' x) (at x)"  | 
|
1661  | 
assumes "\<And>x. f' x > 0"  | 
|
1662  | 
shows "strict_mono f"  | 
|
1663  | 
proof (rule strict_monoI)  | 
|
1664  | 
fix x y :: real assume xy: "x < y"  | 
|
1665  | 
from assms and xy have "\<exists>z>x. z < y \<and> f y - f x = (y - x) * f' z"  | 
|
1666  | 
by (intro MVT2) (auto dest: connectedD_interval)  | 
|
1667  | 
then obtain z where z: "z > x" "z < y" "f y - f x = (y - x) * f' z" by blast  | 
|
1668  | 
note \<open>f y - f x = (y - x) * f' z\<close>  | 
|
1669  | 
also have "(y - x) * f' z > 0" using xy assms by (intro mult_pos_pos) auto  | 
|
1670  | 
finally show "f x < f y" by simp  | 
|
1671  | 
qed  | 
|
| 21164 | 1672  | 
|
| 70614 | 1673  | 
proposition deriv_nonneg_imp_mono:  | 
1674  | 
  assumes deriv: "\<And>x. x \<in> {a..b} \<Longrightarrow> (g has_real_derivative g' x) (at x)"
 | 
|
1675  | 
  assumes nonneg: "\<And>x. x \<in> {a..b} \<Longrightarrow> g' x \<ge> 0"
 | 
|
1676  | 
assumes ab: "a \<le> b"  | 
|
1677  | 
shows "g a \<le> g b"  | 
|
1678  | 
proof (cases "a < b")  | 
|
1679  | 
assume "a < b"  | 
|
1680  | 
from deriv have "\<And>x. \<lbrakk>x \<ge> a; x \<le> b\<rbrakk> \<Longrightarrow> (g has_real_derivative g' x) (at x)" by simp  | 
|
1681  | 
with MVT2[OF \<open>a < b\<close>] and deriv  | 
|
1682  | 
obtain \<xi> where \<xi>_ab: "\<xi> > a" "\<xi> < b" and g_ab: "g b - g a = (b - a) * g' \<xi>" by blast  | 
|
1683  | 
from \<xi>_ab ab nonneg have "(b - a) * g' \<xi> \<ge> 0" by simp  | 
|
1684  | 
with g_ab show ?thesis by simp  | 
|
1685  | 
qed (insert ab, simp)  | 
|
1686  | 
||
| 68601 | 1687  | 
|
1688  | 
subsubsection \<open>A function is constant if its derivative is 0 over an interval.\<close>  | 
|
| 21164 | 1689  | 
|
1690  | 
lemma DERIV_isconst_end:  | 
|
| 63558 | 1691  | 
fixes f :: "real \<Rightarrow> real"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1692  | 
  assumes "a < b" and contf: "continuous_on {a..b} f"
 | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1693  | 
and 0: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> DERIV f x :> 0"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1694  | 
shows "f b = f a"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1695  | 
using MVT [OF \<open>a < b\<close>] "0" DERIV_unique contf real_differentiable_def  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1696  | 
by (fastforce simp: algebra_simps)  | 
| 21164 | 1697  | 
|
1698  | 
lemma DERIV_isconst2:  | 
|
| 63558 | 1699  | 
fixes f :: "real \<Rightarrow> real"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1700  | 
  assumes "a < b" and contf: "continuous_on {a..b} f" and derf: "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> DERIV f x :> 0"
 | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1701  | 
and "a \<le> x" "x \<le> b"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1702  | 
shows "f x = f a"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1703  | 
proof (cases "a < x")  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1704  | 
case True  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1705  | 
  have *: "continuous_on {a..x} f"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1706  | 
using \<open>x \<le> b\<close> contf continuous_on_subset by fastforce  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1707  | 
show ?thesis  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1708  | 
by (rule DERIV_isconst_end [OF True *]) (use \<open>x \<le> b\<close> derf in auto)  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1709  | 
qed (use \<open>a \<le> x\<close> in auto)  | 
| 21164 | 1710  | 
|
| 63558 | 1711  | 
lemma DERIV_isconst3:  | 
1712  | 
fixes a b x y :: real  | 
|
1713  | 
assumes "a < b"  | 
|
1714  | 
    and "x \<in> {a <..< b}"
 | 
|
1715  | 
    and "y \<in> {a <..< b}"
 | 
|
1716  | 
    and derivable: "\<And>x. x \<in> {a <..< b} \<Longrightarrow> DERIV f x :> 0"
 | 
|
| 
29803
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1717  | 
shows "f x = f y"  | 
| 
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1718  | 
proof (cases "x = y")  | 
| 
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1719  | 
case False  | 
| 
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1720  | 
let ?a = "min x y"  | 
| 
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1721  | 
let ?b = "max x y"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1722  | 
have *: "DERIV f z :> 0" if "?a \<le> z" "z \<le> ?b" for z  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1723  | 
proof -  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1724  | 
have "a < z" and "z < b"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1725  | 
      using that \<open>x \<in> {a <..< b}\<close> and \<open>y \<in> {a <..< b}\<close> by auto
 | 
| 63558 | 1726  | 
    then have "z \<in> {a<..<b}" by auto
 | 
1727  | 
then show "DERIV f z :> 0" by (rule derivable)  | 
|
| 
29803
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1728  | 
qed  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1729  | 
  have isCont: "continuous_on {?a..?b} f"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1730  | 
by (meson * DERIV_continuous_on atLeastAtMost_iff has_field_derivative_at_within)  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1731  | 
have DERIV: "\<And>z. \<lbrakk>?a < z; z < ?b\<rbrakk> \<Longrightarrow> DERIV f z :> 0"  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1732  | 
using * by auto  | 
| 60758 | 1733  | 
have "?a < ?b" using \<open>x \<noteq> y\<close> by auto  | 
| 
29803
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1734  | 
from DERIV_isconst2[OF this isCont DERIV, of x] and DERIV_isconst2[OF this isCont DERIV, of y]  | 
| 
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1735  | 
show ?thesis by auto  | 
| 
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1736  | 
qed auto  | 
| 
 
c56a5571f60a
Added derivation lemmas for power series and theorems for the pi, arcus tangens and logarithm series
 
hoelzl 
parents: 
29667 
diff
changeset
 | 
1737  | 
|
| 21164 | 1738  | 
lemma DERIV_isconst_all:  | 
| 63558 | 1739  | 
fixes f :: "real \<Rightarrow> real"  | 
1740  | 
shows "\<forall>x. DERIV f x :> 0 \<Longrightarrow> f x = f y"  | 
|
1741  | 
apply (rule linorder_cases [of x y])  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1742  | 
apply (metis DERIV_continuous DERIV_isconst_end continuous_at_imp_continuous_on)+  | 
| 63558 | 1743  | 
done  | 
| 21164 | 1744  | 
|
1745  | 
lemma DERIV_const_ratio_const:  | 
|
| 63558 | 1746  | 
fixes f :: "real \<Rightarrow> real"  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1747  | 
assumes "a \<noteq> b" and df: "\<And>x. DERIV f x :> k"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1748  | 
shows "f b - f a = (b - a) * k"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1749  | 
proof (cases a b rule: linorder_cases)  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1750  | 
case less  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1751  | 
show ?thesis  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1752  | 
using MVT [OF less] df  | 
| 
69022
 
e2858770997a
removal of more redundancies, and fixes
 
paulson <lp15@cam.ac.uk> 
parents: 
69020 
diff
changeset
 | 
1753  | 
by (metis DERIV_continuous DERIV_unique continuous_at_imp_continuous_on real_differentiable_def)  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1754  | 
next  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1755  | 
case greater  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1756  | 
have "f a - f b = (a - b) * k"  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1757  | 
using MVT [OF greater] df  | 
| 
69022
 
e2858770997a
removal of more redundancies, and fixes
 
paulson <lp15@cam.ac.uk> 
parents: 
69020 
diff
changeset
 | 
1758  | 
by (metis DERIV_continuous DERIV_unique continuous_at_imp_continuous_on real_differentiable_def)  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1759  | 
then show ?thesis  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1760  | 
by (simp add: algebra_simps)  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1761  | 
qed auto  | 
| 21164 | 1762  | 
|
1763  | 
lemma DERIV_const_ratio_const2:  | 
|
| 63558 | 1764  | 
fixes f :: "real \<Rightarrow> real"  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1765  | 
assumes "a \<noteq> b" and df: "\<And>x. DERIV f x :> k"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1766  | 
shows "(f b - f a) / (b - a) = k"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1767  | 
using DERIV_const_ratio_const [OF assms] \<open>a \<noteq> b\<close> by auto  | 
| 21164 | 1768  | 
|
| 63558 | 1769  | 
lemma real_average_minus_first [simp]: "(a + b) / 2 - a = (b - a) / 2"  | 
1770  | 
for a b :: real  | 
|
1771  | 
by simp  | 
|
| 21164 | 1772  | 
|
| 63558 | 1773  | 
lemma real_average_minus_second [simp]: "(b + a) / 2 - a = (b - a) / 2"  | 
1774  | 
for a b :: real  | 
|
1775  | 
by simp  | 
|
| 21164 | 1776  | 
|
| 63558 | 1777  | 
text \<open>Gallileo's "trick": average velocity = av. of end velocities.\<close>  | 
| 21164 | 1778  | 
|
1779  | 
lemma DERIV_const_average:  | 
|
| 63558 | 1780  | 
fixes v :: "real \<Rightarrow> real"  | 
1781  | 
and a b :: real  | 
|
1782  | 
assumes neq: "a \<noteq> b"  | 
|
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1783  | 
and der: "\<And>x. DERIV v x :> k"  | 
| 63558 | 1784  | 
shows "v ((a + b) / 2) = (v a + v b) / 2"  | 
| 21164 | 1785  | 
proof (cases rule: linorder_cases [of a b])  | 
| 63558 | 1786  | 
case equal  | 
1787  | 
with neq show ?thesis by simp  | 
|
| 21164 | 1788  | 
next  | 
1789  | 
case less  | 
|
1790  | 
have "(v b - v a) / (b - a) = k"  | 
|
1791  | 
by (rule DERIV_const_ratio_const2 [OF neq der])  | 
|
| 63558 | 1792  | 
then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k"  | 
1793  | 
by simp  | 
|
| 21164 | 1794  | 
moreover have "(v ((a + b) / 2) - v a) / ((a + b) / 2 - a) = k"  | 
| 63558 | 1795  | 
by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq)  | 
1796  | 
ultimately show ?thesis  | 
|
1797  | 
using neq by force  | 
|
| 21164 | 1798  | 
next  | 
1799  | 
case greater  | 
|
1800  | 
have "(v b - v a) / (b - a) = k"  | 
|
1801  | 
by (rule DERIV_const_ratio_const2 [OF neq der])  | 
|
| 63558 | 1802  | 
then have "(b - a) * ((v b - v a) / (b - a)) = (b - a) * k"  | 
1803  | 
by simp  | 
|
| 21164 | 1804  | 
moreover have " (v ((b + a) / 2) - v a) / ((b + a) / 2 - a) = k"  | 
| 63558 | 1805  | 
by (rule DERIV_const_ratio_const2 [OF _ der]) (simp add: neq)  | 
1806  | 
ultimately show ?thesis  | 
|
1807  | 
using neq by (force simp add: add.commute)  | 
|
| 21164 | 1808  | 
qed  | 
1809  | 
||
| 68601 | 1810  | 
subsubsection\<open>A function with positive derivative is increasing\<close>  | 
1811  | 
text \<open>A simple proof using the MVT, by Jeremy Avigad. And variants.\<close>  | 
|
| 56261 | 1812  | 
lemma DERIV_pos_imp_increasing_open:  | 
| 63558 | 1813  | 
fixes a b :: real  | 
1814  | 
and f :: "real \<Rightarrow> real"  | 
|
1815  | 
assumes "a < b"  | 
|
1816  | 
and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)"  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1817  | 
    and con: "continuous_on {a..b} f"
 | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1818  | 
shows "f a < f b"  | 
| 
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1819  | 
proof (rule ccontr)  | 
| 63558 | 1820  | 
assume f: "\<not> ?thesis"  | 
1821  | 
have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"  | 
|
| 
69022
 
e2858770997a
removal of more redundancies, and fixes
 
paulson <lp15@cam.ac.uk> 
parents: 
69020 
diff
changeset
 | 
1822  | 
by (rule MVT) (use assms real_differentiable_def in \<open>force+\<close>)  | 
| 63558 | 1823  | 
then obtain l z where z: "a < z" "z < b" "DERIV f z :> l" and "f b - f a = (b - a) * l"  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1824  | 
by auto  | 
| 63558 | 1825  | 
with assms f have "\<not> l > 0"  | 
| 
36777
 
be5461582d0f
avoid using real-specific versions of generic lemmas
 
huffman 
parents: 
35216 
diff
changeset
 | 
1826  | 
by (metis linorder_not_le mult_le_0_iff diff_le_0_iff_le)  | 
| 41550 | 1827  | 
with assms z show False  | 
| 56261 | 1828  | 
by (metis DERIV_unique)  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1829  | 
qed  | 
| 
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1830  | 
|
| 56261 | 1831  | 
lemma DERIV_pos_imp_increasing:  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1832  | 
fixes a b :: real and f :: "real \<Rightarrow> real"  | 
| 63558 | 1833  | 
assumes "a < b"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1834  | 
and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y > 0"  | 
| 56261 | 1835  | 
shows "f a < f b"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1836  | 
by (metis less_le_not_le DERIV_atLeastAtMost_imp_continuous_on DERIV_pos_imp_increasing_open [OF \<open>a < b\<close>] der)  | 
| 56261 | 1837  | 
|
| 45791 | 1838  | 
lemma DERIV_nonneg_imp_nondecreasing:  | 
| 63558 | 1839  | 
fixes a b :: real  | 
1840  | 
and f :: "real \<Rightarrow> real"  | 
|
1841  | 
assumes "a \<le> b"  | 
|
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1842  | 
and "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y \<ge> 0"  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1843  | 
shows "f a \<le> f b"  | 
| 
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1844  | 
proof (rule ccontr, cases "a = b")  | 
| 63558 | 1845  | 
assume "\<not> ?thesis" and "a = b"  | 
| 41550 | 1846  | 
then show False by auto  | 
| 37891 | 1847  | 
next  | 
| 63558 | 1848  | 
assume *: "\<not> ?thesis"  | 
1849  | 
assume "a \<noteq> b"  | 
|
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1850  | 
with \<open>a \<le> b\<close> have "a < b"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1851  | 
by linarith  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1852  | 
  moreover have "continuous_on {a..b} f"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1853  | 
by (meson DERIV_isCont assms(2) atLeastAtMost_iff continuous_at_imp_continuous_on)  | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1854  | 
ultimately have "\<exists>l z. a < z \<and> z < b \<and> DERIV f z :> l \<and> f b - f a = (b - a) * l"  | 
| 
69022
 
e2858770997a
removal of more redundancies, and fixes
 
paulson <lp15@cam.ac.uk> 
parents: 
69020 
diff
changeset
 | 
1855  | 
using assms MVT [OF \<open>a < b\<close>, of f] real_differentiable_def less_eq_real_def by blast  | 
| 63558 | 1856  | 
then obtain l z where lz: "a < z" "z < b" "DERIV f z :> l" and **: "f b - f a = (b - a) * l"  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1857  | 
by auto  | 
| 63558 | 1858  | 
with * have "a < b" "f b < f a" by auto  | 
1859  | 
with ** have "\<not> l \<ge> 0" by (auto simp add: not_le algebra_simps)  | 
|
1860  | 
(metis * add_le_cancel_right assms(1) less_eq_real_def mult_right_mono add_left_mono linear order_refl)  | 
|
1861  | 
with assms lz show False  | 
|
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1862  | 
by (metis DERIV_unique order_less_imp_le)  | 
| 
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1863  | 
qed  | 
| 
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1864  | 
|
| 56261 | 1865  | 
lemma DERIV_neg_imp_decreasing_open:  | 
| 63558 | 1866  | 
fixes a b :: real  | 
1867  | 
and f :: "real \<Rightarrow> real"  | 
|
1868  | 
assumes "a < b"  | 
|
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1869  | 
and "\<And>x. a < x \<Longrightarrow> x < b \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1870  | 
    and con: "continuous_on {a..b} f"
 | 
| 56261 | 1871  | 
shows "f a > f b"  | 
1872  | 
proof -  | 
|
| 63558 | 1873  | 
have "(\<lambda>x. -f x) a < (\<lambda>x. -f x) b"  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1874  | 
proof (rule DERIV_pos_imp_increasing_open [of a b])  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1875  | 
show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> \<exists>y. ((\<lambda>x. - f x) has_real_derivative y) (at x) \<and> 0 < y"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1876  | 
using assms  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1877  | 
by simp (metis field_differentiable_minus neg_0_less_iff_less)  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1878  | 
    show "continuous_on {a..b} (\<lambda>x. - f x)"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1879  | 
using con continuous_on_minus by blast  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1880  | 
qed (use assms in auto)  | 
| 63558 | 1881  | 
then show ?thesis  | 
| 56261 | 1882  | 
by simp  | 
1883  | 
qed  | 
|
1884  | 
||
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1885  | 
lemma DERIV_neg_imp_decreasing:  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1886  | 
fixes a b :: real and f :: "real \<Rightarrow> real"  | 
| 63558 | 1887  | 
assumes "a < b"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1888  | 
and der: "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1889  | 
shows "f a > f b"  | 
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1890  | 
by (metis less_le_not_le DERIV_atLeastAtMost_imp_continuous_on DERIV_neg_imp_decreasing_open [OF \<open>a < b\<close>] der)  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1891  | 
|
| 
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1892  | 
lemma DERIV_nonpos_imp_nonincreasing:  | 
| 63558 | 1893  | 
fixes a b :: real  | 
1894  | 
and f :: "real \<Rightarrow> real"  | 
|
1895  | 
assumes "a \<le> b"  | 
|
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1896  | 
and "\<And>x. \<lbrakk>a \<le> x; x \<le> b\<rbrakk> \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y \<le> 0"  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1897  | 
shows "f a \<ge> f b"  | 
| 
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1898  | 
proof -  | 
| 63558 | 1899  | 
have "(\<lambda>x. -f x) a \<le> (\<lambda>x. -f x) b"  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1900  | 
using DERIV_nonneg_imp_nondecreasing [of a b "\<lambda>x. -f x"] assms DERIV_minus by fastforce  | 
| 63558 | 1901  | 
then show ?thesis  | 
| 
33654
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1902  | 
by simp  | 
| 
 
abf780db30ea
A number of theorems contributed by Jeremy Avigad
 
paulson 
parents: 
31902 
diff
changeset
 | 
1903  | 
qed  | 
| 21164 | 1904  | 
|
| 56289 | 1905  | 
lemma DERIV_pos_imp_increasing_at_bot:  | 
| 63558 | 1906  | 
fixes f :: "real \<Rightarrow> real"  | 
1907  | 
assumes "\<And>x. x \<le> b \<Longrightarrow> (\<exists>y. DERIV f x :> y \<and> y > 0)"  | 
|
1908  | 
and lim: "(f \<longlongrightarrow> flim) at_bot"  | 
|
| 56289 | 1909  | 
shows "flim < f b"  | 
1910  | 
proof -  | 
|
| 
63952
 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 
paulson <lp15@cam.ac.uk> 
parents: 
63918 
diff
changeset
 | 
1911  | 
have "\<exists>N. \<forall>n\<le>N. f n \<le> f (b - 1)"  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1912  | 
by (rule_tac x="b - 2" in exI) (force intro: order.strict_implies_order DERIV_pos_imp_increasing assms)  | 
| 
63952
 
354808e9f44b
new material connected with HOL Light measure theory, plus more rationalisation
 
paulson <lp15@cam.ac.uk> 
parents: 
63918 
diff
changeset
 | 
1913  | 
then have "flim \<le> f (b - 1)"  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1914  | 
by (auto simp: eventually_at_bot_linorder tendsto_upperbound [OF lim])  | 
| 63558 | 1915  | 
also have "\<dots> < f b"  | 
| 56289 | 1916  | 
by (force intro: DERIV_pos_imp_increasing [where f=f] assms)  | 
1917  | 
finally show ?thesis .  | 
|
1918  | 
qed  | 
|
1919  | 
||
1920  | 
lemma DERIV_neg_imp_decreasing_at_top:  | 
|
| 63558 | 1921  | 
fixes f :: "real \<Rightarrow> real"  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1922  | 
assumes der: "\<And>x. x \<ge> b \<Longrightarrow> \<exists>y. DERIV f x :> y \<and> y < 0"  | 
| 63558 | 1923  | 
and lim: "(f \<longlongrightarrow> flim) at_top"  | 
| 56289 | 1924  | 
shows "flim < f b"  | 
1925  | 
apply (rule DERIV_pos_imp_increasing_at_bot [where f = "\<lambda>i. f (-i)" and b = "-b", simplified])  | 
|
| 63558 | 1926  | 
apply (metis DERIV_mirror der le_minus_iff neg_0_less_iff_less)  | 
| 56289 | 1927  | 
apply (metis filterlim_at_top_mirror lim)  | 
1928  | 
done  | 
|
1929  | 
||
| 60758 | 1930  | 
text \<open>Derivative of inverse function\<close>  | 
| 23041 | 1931  | 
|
1932  | 
lemma DERIV_inverse_function:  | 
|
1933  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
1934  | 
assumes der: "DERIV f (g x) :> D"  | 
|
| 63558 | 1935  | 
and neq: "D \<noteq> 0"  | 
1936  | 
and x: "a < x" "x < b"  | 
|
| 68611 | 1937  | 
and inj: "\<And>y. \<lbrakk>a < y; y < b\<rbrakk> \<Longrightarrow> f (g y) = y"  | 
| 63558 | 1938  | 
and cont: "isCont g x"  | 
| 23041 | 1939  | 
shows "DERIV g x :> inverse D"  | 
| 68634 | 1940  | 
unfolding has_field_derivative_iff  | 
| 23044 | 1941  | 
proof (rule LIM_equal2)  | 
1942  | 
show "0 < min (x - a) (b - x)"  | 
|
| 63558 | 1943  | 
using x by arith  | 
| 23044 | 1944  | 
next  | 
| 23041 | 1945  | 
fix y  | 
| 23044 | 1946  | 
assume "norm (y - x) < min (x - a) (b - x)"  | 
| 63558 | 1947  | 
then have "a < y" and "y < b"  | 
| 23044 | 1948  | 
by (simp_all add: abs_less_iff)  | 
| 63558 | 1949  | 
then show "(g y - g x) / (y - x) = inverse ((f (g y) - x) / (g y - g x))"  | 
| 23041 | 1950  | 
by (simp add: inj)  | 
1951  | 
next  | 
|
| 61976 | 1952  | 
have "(\<lambda>z. (f z - f (g x)) / (z - g x)) \<midarrow>g x\<rightarrow> D"  | 
| 68634 | 1953  | 
by (rule der [unfolded has_field_derivative_iff])  | 
| 63558 | 1954  | 
then have 1: "(\<lambda>z. (f z - x) / (z - g x)) \<midarrow>g x\<rightarrow> D"  | 
1955  | 
using inj x by simp  | 
|
| 23041 | 1956  | 
have 2: "\<exists>d>0. \<forall>y. y \<noteq> x \<and> norm (y - x) < d \<longrightarrow> g y \<noteq> g x"  | 
| 56219 | 1957  | 
proof (rule exI, safe)  | 
| 23044 | 1958  | 
show "0 < min (x - a) (b - x)"  | 
| 63558 | 1959  | 
using x by simp  | 
| 23041 | 1960  | 
next  | 
1961  | 
fix y  | 
|
| 23044 | 1962  | 
assume "norm (y - x) < min (x - a) (b - x)"  | 
| 63558 | 1963  | 
then have y: "a < y" "y < b"  | 
| 23044 | 1964  | 
by (simp_all add: abs_less_iff)  | 
| 23041 | 1965  | 
assume "g y = g x"  | 
| 63558 | 1966  | 
then have "f (g y) = f (g x)" by simp  | 
1967  | 
then have "y = x" using inj y x by simp  | 
|
| 23041 | 1968  | 
also assume "y \<noteq> x"  | 
1969  | 
finally show False by simp  | 
|
1970  | 
qed  | 
|
| 61976 | 1971  | 
have "(\<lambda>y. (f (g y) - x) / (g y - g x)) \<midarrow>x\<rightarrow> D"  | 
| 23041 | 1972  | 
using cont 1 2 by (rule isCont_LIM_compose2)  | 
| 63558 | 1973  | 
then show "(\<lambda>y. inverse ((f (g y) - x) / (g y - g x))) \<midarrow>x\<rightarrow> inverse D"  | 
| 
44568
 
e6f291cb5810
discontinue many legacy theorems about LIM and LIMSEQ, in favor of tendsto theorems
 
huffman 
parents: 
44317 
diff
changeset
 | 
1974  | 
using neq by (rule tendsto_inverse)  | 
| 23041 | 1975  | 
qed  | 
1976  | 
||
| 60758 | 1977  | 
subsection \<open>Generalized Mean Value Theorem\<close>  | 
| 29975 | 1978  | 
|
| 21164 | 1979  | 
theorem GMVT:  | 
| 
21784
 
e76faa6e65fd
changed (ns)deriv to take functions of type 'a::real_normed_field => 'a
 
huffman 
parents: 
21404 
diff
changeset
 | 
1980  | 
fixes a b :: real  | 
| 21164 | 1981  | 
assumes alb: "a < b"  | 
| 41550 | 1982  | 
and fc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont f x"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1983  | 
and fd: "\<forall>x. a < x \<and> x < b \<longrightarrow> f differentiable (at x)"  | 
| 41550 | 1984  | 
and gc: "\<forall>x. a \<le> x \<and> x \<le> b \<longrightarrow> isCont g x"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
1985  | 
and gd: "\<forall>x. a < x \<and> x < b \<longrightarrow> g differentiable (at x)"  | 
| 53381 | 1986  | 
shows "\<exists>g'c f'c c.  | 
| 63558 | 1987  | 
DERIV g c :> g'c \<and> DERIV f c :> f'c \<and> a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"  | 
| 21164 | 1988  | 
proof -  | 
| 63558 | 1989  | 
let ?h = "\<lambda>x. (f b - f a) * g x - (g b - g a) * f x"  | 
1990  | 
have "\<exists>l z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l"  | 
|
1991  | 
proof (rule MVT)  | 
|
1992  | 
from assms show "a < b" by simp  | 
|
| 
69020
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1993  | 
    show "continuous_on {a..b} ?h"
 | 
| 
 
4f94e262976d
elimination of near duplication involving Rolle's theorem and the MVT
 
paulson <lp15@cam.ac.uk> 
parents: 
68644 
diff
changeset
 | 
1994  | 
by (simp add: continuous_at_imp_continuous_on fc gc)  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
1995  | 
show "\<And>x. \<lbrakk>a < x; x < b\<rbrakk> \<Longrightarrow> ?h differentiable (at x)"  | 
| 63558 | 1996  | 
using fd gd by simp  | 
1997  | 
qed  | 
|
1998  | 
then obtain l where l: "\<exists>z. a < z \<and> z < b \<and> DERIV ?h z :> l \<and> ?h b - ?h a = (b - a) * l" ..  | 
|
1999  | 
then obtain c where c: "a < c \<and> c < b \<and> DERIV ?h c :> l \<and> ?h b - ?h a = (b - a) * l" ..  | 
|
| 21164 | 2000  | 
|
| 63558 | 2001  | 
from c have cint: "a < c \<and> c < b" by auto  | 
| 
69022
 
e2858770997a
removal of more redundancies, and fixes
 
paulson <lp15@cam.ac.uk> 
parents: 
69020 
diff
changeset
 | 
2002  | 
then obtain g'c where g'c: "DERIV g c :> g'c"  | 
| 
 
e2858770997a
removal of more redundancies, and fixes
 
paulson <lp15@cam.ac.uk> 
parents: 
69020 
diff
changeset
 | 
2003  | 
using gd real_differentiable_def by blast  | 
| 63558 | 2004  | 
from c have "a < c \<and> c < b" by auto  | 
| 
69022
 
e2858770997a
removal of more redundancies, and fixes
 
paulson <lp15@cam.ac.uk> 
parents: 
69020 
diff
changeset
 | 
2005  | 
then obtain f'c where f'c: "DERIV f c :> f'c"  | 
| 
 
e2858770997a
removal of more redundancies, and fixes
 
paulson <lp15@cam.ac.uk> 
parents: 
69020 
diff
changeset
 | 
2006  | 
using fd real_differentiable_def by blast  | 
| 21164 | 2007  | 
|
| 63558 | 2008  | 
from c have "DERIV ?h c :> l" by auto  | 
| 41368 | 2009  | 
moreover have "DERIV ?h c :> g'c * (f b - f a) - f'c * (g b - g a)"  | 
| 63558 | 2010  | 
using g'c f'c by (auto intro!: derivative_eq_intros)  | 
| 21164 | 2011  | 
ultimately have leq: "l = g'c * (f b - f a) - f'c * (g b - g a)" by (rule DERIV_unique)  | 
2012  | 
||
| 63558 | 2013  | 
have "?h b - ?h a = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))"  | 
2014  | 
proof -  | 
|
2015  | 
from c have "?h b - ?h a = (b - a) * l" by auto  | 
|
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
51642 
diff
changeset
 | 
2016  | 
also from leq have "\<dots> = (b - a) * (g'c * (f b - f a) - f'c * (g b - g a))" by simp  | 
| 63558 | 2017  | 
finally show ?thesis by simp  | 
2018  | 
qed  | 
|
2019  | 
moreover have "?h b - ?h a = 0"  | 
|
2020  | 
proof -  | 
|
| 21164 | 2021  | 
have "?h b - ?h a =  | 
| 63558 | 2022  | 
((f b)*(g b) - (f a)*(g b) - (g b)*(f b) + (g a)*(f b)) -  | 
2023  | 
((f b)*(g a) - (f a)*(g a) - (g b)*(f a) + (g a)*(f a))"  | 
|
| 29667 | 2024  | 
by (simp add: algebra_simps)  | 
| 63558 | 2025  | 
then show ?thesis by auto  | 
2026  | 
qed  | 
|
| 21164 | 2027  | 
ultimately have "(b - a) * (g'c * (f b - f a) - f'c * (g b - g a)) = 0" by auto  | 
2028  | 
with alb have "g'c * (f b - f a) - f'c * (g b - g a) = 0" by simp  | 
|
| 63558 | 2029  | 
then have "g'c * (f b - f a) = f'c * (g b - g a)" by simp  | 
2030  | 
then have "(f b - f a) * g'c = (g b - g a) * f'c" by (simp add: ac_simps)  | 
|
2031  | 
with g'c f'c cint show ?thesis by auto  | 
|
| 21164 | 2032  | 
qed  | 
2033  | 
||
| 50327 | 2034  | 
lemma GMVT':  | 
2035  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
2036  | 
assumes "a < b"  | 
|
| 63558 | 2037  | 
and isCont_f: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont f z"  | 
2038  | 
and isCont_g: "\<And>z. a \<le> z \<Longrightarrow> z \<le> b \<Longrightarrow> isCont g z"  | 
|
2039  | 
and DERIV_g: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV g z :> (g' z)"  | 
|
2040  | 
and DERIV_f: "\<And>z. a < z \<Longrightarrow> z < b \<Longrightarrow> DERIV f z :> (f' z)"  | 
|
| 50327 | 2041  | 
shows "\<exists>c. a < c \<and> c < b \<and> (f b - f a) * g' c = (g b - g a) * f' c"  | 
2042  | 
proof -  | 
|
2043  | 
have "\<exists>g'c f'c c. DERIV g c :> g'c \<and> DERIV f c :> f'c \<and>  | 
|
| 63558 | 2044  | 
a < c \<and> c < b \<and> (f b - f a) * g'c = (g b - g a) * f'c"  | 
| 
56181
 
2aa0b19e74f3
unify syntax for has_derivative and differentiable
 
hoelzl 
parents: 
55970 
diff
changeset
 | 
2045  | 
using assms by (intro GMVT) (force simp: real_differentiable_def)+  | 
| 50327 | 2046  | 
then obtain c where "a < c" "c < b" "(f b - f a) * g' c = (g b - g a) * f' c"  | 
2047  | 
using DERIV_f DERIV_g by (force dest: DERIV_unique)  | 
|
2048  | 
then show ?thesis  | 
|
2049  | 
by auto  | 
|
2050  | 
qed  | 
|
2051  | 
||
| 
51529
 
2d2f59e6055a
move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
 
hoelzl 
parents: 
51526 
diff
changeset
 | 
2052  | 
|
| 60758 | 2053  | 
subsection \<open>L'Hopitals rule\<close>  | 
| 
51529
 
2d2f59e6055a
move theorems about compactness of real closed intervals, the intermediate value theorem, and lemmas about continuity of bijective functions from Deriv.thy to Limits.thy
 
hoelzl 
parents: 
51526 
diff
changeset
 | 
2054  | 
|
| 
51641
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2055  | 
lemma isCont_If_ge:  | 
| 
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2056  | 
fixes a :: "'a :: linorder_topology"  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2057  | 
assumes "continuous (at_left a) g" and f: "(f \<longlongrightarrow> g a) (at_right a)"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2058  | 
shows "isCont (\<lambda>x. if x \<le> a then g x else f x) a" (is "isCont ?gf a")  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2059  | 
proof -  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2060  | 
have g: "(g \<longlongrightarrow> g a) (at_left a)"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2061  | 
using assms continuous_within by blast  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2062  | 
show ?thesis  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2063  | 
unfolding isCont_def continuous_within  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2064  | 
proof (intro filterlim_split_at; simp)  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2065  | 
show "(?gf \<longlongrightarrow> g a) (at_left a)"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2066  | 
by (subst filterlim_cong[OF refl refl, where g=g]) (simp_all add: eventually_at_filter less_le g)  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2067  | 
show "(?gf \<longlongrightarrow> g a) (at_right a)"  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2068  | 
by (subst filterlim_cong[OF refl refl, where g=f]) (simp_all add: eventually_at_filter less_le f)  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2069  | 
qed  | 
| 
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2070  | 
qed  | 
| 
51641
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2071  | 
|
| 50327 | 2072  | 
lemma lhopital_right_0:  | 
| 50329 | 2073  | 
fixes f0 g0 :: "real \<Rightarrow> real"  | 
| 61973 | 2074  | 
assumes f_0: "(f0 \<longlongrightarrow> 0) (at_right 0)"  | 
| 63558 | 2075  | 
and g_0: "(g0 \<longlongrightarrow> 0) (at_right 0)"  | 
2076  | 
and ev:  | 
|
2077  | 
"eventually (\<lambda>x. g0 x \<noteq> 0) (at_right 0)"  | 
|
2078  | 
"eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"  | 
|
2079  | 
"eventually (\<lambda>x. DERIV f0 x :> f' x) (at_right 0)"  | 
|
2080  | 
"eventually (\<lambda>x. DERIV g0 x :> g' x) (at_right 0)"  | 
|
| 63713 | 2081  | 
and lim: "filterlim (\<lambda> x. (f' x / g' x)) F (at_right 0)"  | 
2082  | 
shows "filterlim (\<lambda> x. f0 x / g0 x) F (at_right 0)"  | 
|
| 50327 | 2083  | 
proof -  | 
| 63040 | 2084  | 
define f where [abs_def]: "f x = (if x \<le> 0 then 0 else f0 x)" for x  | 
| 50329 | 2085  | 
then have "f 0 = 0" by simp  | 
2086  | 
||
| 63040 | 2087  | 
define g where [abs_def]: "g x = (if x \<le> 0 then 0 else g0 x)" for x  | 
| 50329 | 2088  | 
then have "g 0 = 0" by simp  | 
2089  | 
||
2090  | 
have "eventually (\<lambda>x. g0 x \<noteq> 0 \<and> g' x \<noteq> 0 \<and>  | 
|
2091  | 
DERIV f0 x :> (f' x) \<and> DERIV g0 x :> (g' x)) (at_right 0)"  | 
|
2092  | 
using ev by eventually_elim auto  | 
|
2093  | 
then obtain a where [arith]: "0 < a"  | 
|
2094  | 
and g0_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g0 x \<noteq> 0"  | 
|
| 50327 | 2095  | 
and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"  | 
| 50329 | 2096  | 
and f0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV f0 x :> (f' x)"  | 
2097  | 
and g0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> DERIV g0 x :> (g' x)"  | 
|
| 56219 | 2098  | 
unfolding eventually_at by (auto simp: dist_real_def)  | 
| 50327 | 2099  | 
|
| 50329 | 2100  | 
have g_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g x \<noteq> 0"  | 
2101  | 
using g0_neq_0 by (simp add: g_def)  | 
|
2102  | 
||
| 63558 | 2103  | 
have f: "DERIV f x :> (f' x)" if x: "0 < x" "x < a" for x  | 
2104  | 
using that  | 
|
2105  | 
by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ f0[OF x]])  | 
|
2106  | 
(auto simp: f_def eventually_nhds_metric dist_real_def intro!: exI[of _ x])  | 
|
| 50329 | 2107  | 
|
| 63558 | 2108  | 
have g: "DERIV g x :> (g' x)" if x: "0 < x" "x < a" for x  | 
2109  | 
using that  | 
|
2110  | 
by (intro DERIV_cong_ev[THEN iffD1, OF _ _ _ g0[OF x]])  | 
|
2111  | 
(auto simp: g_def eventually_nhds_metric dist_real_def intro!: exI[of _ x])  | 
|
| 50329 | 2112  | 
|
2113  | 
have "isCont f 0"  | 
|
| 
51641
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2114  | 
unfolding f_def by (intro isCont_If_ge f_0 continuous_const)  | 
| 
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2115  | 
|
| 50329 | 2116  | 
have "isCont g 0"  | 
| 
51641
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2117  | 
unfolding g_def by (intro isCont_If_ge g_0 continuous_const)  | 
| 50329 | 2118  | 
|
| 50327 | 2119  | 
  have "\<exists>\<zeta>. \<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)"
 | 
| 63558 | 2120  | 
proof (rule bchoice, rule ballI)  | 
2121  | 
fix x  | 
|
2122  | 
    assume "x \<in> {0 <..< a}"
 | 
|
| 50327 | 2123  | 
then have x[arith]: "0 < x" "x < a" by auto  | 
| 60758 | 2124  | 
with g'_neq_0 g_neq_0 \<open>g 0 = 0\<close> have g': "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> 0 \<noteq> g' x" "g 0 \<noteq> g x"  | 
| 50327 | 2125  | 
by auto  | 
| 50328 | 2126  | 
have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont f x"  | 
| 60758 | 2127  | 
using \<open>isCont f 0\<close> f by (auto intro: DERIV_isCont simp: le_less)  | 
| 50328 | 2128  | 
moreover have "\<And>x. 0 \<le> x \<Longrightarrow> x < a \<Longrightarrow> isCont g x"  | 
| 60758 | 2129  | 
using \<open>isCont g 0\<close> g by (auto intro: DERIV_isCont simp: le_less)  | 
| 50328 | 2130  | 
ultimately have "\<exists>c. 0 < c \<and> c < x \<and> (f x - f 0) * g' c = (g x - g 0) * f' c"  | 
| 60758 | 2131  | 
using f g \<open>x < a\<close> by (intro GMVT') auto  | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
51642 
diff
changeset
 | 
2132  | 
then obtain c where *: "0 < c" "c < x" "(f x - f 0) * g' c = (g x - g 0) * f' c"  | 
| 
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
51642 
diff
changeset
 | 
2133  | 
by blast  | 
| 50327 | 2134  | 
moreover  | 
| 
53374
 
a14d2a854c02
tuned proofs -- clarified flow of facts wrt. calculation;
 
wenzelm 
parents: 
51642 
diff
changeset
 | 
2135  | 
from * g'(1)[of c] g'(2) have "(f x - f 0) / (g x - g 0) = f' c / g' c"  | 
| 50327 | 2136  | 
by (simp add: field_simps)  | 
2137  | 
ultimately show "\<exists>y. 0 < y \<and> y < x \<and> f x / g x = f' y / g' y"  | 
|
| 60758 | 2138  | 
using \<open>f 0 = 0\<close> \<open>g 0 = 0\<close> by (auto intro!: exI[of _ c])  | 
| 50327 | 2139  | 
qed  | 
| 53381 | 2140  | 
  then obtain \<zeta> where "\<forall>x\<in>{0 <..< a}. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)" ..
 | 
| 50327 | 2141  | 
then have \<zeta>: "eventually (\<lambda>x. 0 < \<zeta> x \<and> \<zeta> x < x \<and> f x / g x = f' (\<zeta> x) / g' (\<zeta> x)) (at_right 0)"  | 
| 
51641
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2142  | 
unfolding eventually_at by (intro exI[of _ a]) (auto simp: dist_real_def)  | 
| 50327 | 2143  | 
moreover  | 
2144  | 
from \<zeta> have "eventually (\<lambda>x. norm (\<zeta> x) \<le> x) (at_right 0)"  | 
|
2145  | 
by eventually_elim auto  | 
|
| 61973 | 2146  | 
then have "((\<lambda>x. norm (\<zeta> x)) \<longlongrightarrow> 0) (at_right 0)"  | 
| 
58729
 
e8ecc79aee43
add tendsto_const and tendsto_ident_at as simp and intro rules
 
hoelzl 
parents: 
57953 
diff
changeset
 | 
2147  | 
by (rule_tac real_tendsto_sandwich[where f="\<lambda>x. 0" and h="\<lambda>x. x"]) auto  | 
| 61973 | 2148  | 
then have "(\<zeta> \<longlongrightarrow> 0) (at_right 0)"  | 
| 50327 | 2149  | 
by (rule tendsto_norm_zero_cancel)  | 
2150  | 
with \<zeta> have "filterlim \<zeta> (at_right 0) (at_right 0)"  | 
|
| 61810 | 2151  | 
by (auto elim!: eventually_mono simp: filterlim_at)  | 
| 63713 | 2152  | 
from this lim have "filterlim (\<lambda>t. f' (\<zeta> t) / g' (\<zeta> t)) F (at_right 0)"  | 
| 50327 | 2153  | 
by (rule_tac filterlim_compose[of _ _ _ \<zeta>])  | 
| 63713 | 2154  | 
ultimately have "filterlim (\<lambda>t. f t / g t) F (at_right 0)" (is ?P)  | 
| 50328 | 2155  | 
by (rule_tac filterlim_cong[THEN iffD1, OF refl refl])  | 
| 61810 | 2156  | 
(auto elim: eventually_mono)  | 
| 50329 | 2157  | 
also have "?P \<longleftrightarrow> ?thesis"  | 
| 
51641
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2158  | 
by (rule filterlim_cong) (auto simp: f_def g_def eventually_at_filter)  | 
| 50329 | 2159  | 
finally show ?thesis .  | 
| 50327 | 2160  | 
qed  | 
2161  | 
||
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2162  | 
lemma lhopital_right:  | 
| 63558 | 2163  | 
"(f \<longlongrightarrow> 0) (at_right x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_right x) \<Longrightarrow>  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2164  | 
eventually (\<lambda>x. g x \<noteq> 0) (at_right x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2165  | 
eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2166  | 
eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2167  | 
eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>  | 
| 63713 | 2168  | 
filterlim (\<lambda> x. (f' x / g' x)) F (at_right x) \<Longrightarrow>  | 
2169  | 
filterlim (\<lambda> x. f x / g x) F (at_right x)"  | 
|
| 63558 | 2170  | 
for x :: real  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2171  | 
unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2172  | 
by (rule lhopital_right_0)  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2173  | 
|
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2174  | 
lemma lhopital_left:  | 
| 63558 | 2175  | 
"(f \<longlongrightarrow> 0) (at_left x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at_left x) \<Longrightarrow>  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2176  | 
eventually (\<lambda>x. g x \<noteq> 0) (at_left x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2177  | 
eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2178  | 
eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2179  | 
eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>  | 
| 63713 | 2180  | 
filterlim (\<lambda> x. (f' x / g' x)) F (at_left x) \<Longrightarrow>  | 
2181  | 
filterlim (\<lambda> x. f x / g x) F (at_left x)"  | 
|
| 63558 | 2182  | 
for x :: real  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2183  | 
unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror  | 
| 
56479
 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 
hoelzl 
parents: 
56409 
diff
changeset
 | 
2184  | 
by (rule lhopital_right[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2185  | 
|
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2186  | 
lemma lhopital:  | 
| 63558 | 2187  | 
"(f \<longlongrightarrow> 0) (at x) \<Longrightarrow> (g \<longlongrightarrow> 0) (at x) \<Longrightarrow>  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2188  | 
eventually (\<lambda>x. g x \<noteq> 0) (at x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2189  | 
eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2190  | 
eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2191  | 
eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>  | 
| 63713 | 2192  | 
filterlim (\<lambda> x. (f' x / g' x)) F (at x) \<Longrightarrow>  | 
2193  | 
filterlim (\<lambda> x. f x / g x) F (at x)"  | 
|
| 63558 | 2194  | 
for x :: real  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2195  | 
unfolding eventually_at_split filterlim_at_split  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2196  | 
by (auto intro!: lhopital_right[of f x g g' f'] lhopital_left[of f x g g' f'])  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2197  | 
|
| 63713 | 2198  | 
|
| 50327 | 2199  | 
lemma lhopital_right_0_at_top:  | 
2200  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
2201  | 
assumes g_0: "LIM x at_right 0. g x :> at_top"  | 
|
| 63558 | 2202  | 
and ev:  | 
2203  | 
"eventually (\<lambda>x. g' x \<noteq> 0) (at_right 0)"  | 
|
2204  | 
"eventually (\<lambda>x. DERIV f x :> f' x) (at_right 0)"  | 
|
2205  | 
"eventually (\<lambda>x. DERIV g x :> g' x) (at_right 0)"  | 
|
2206  | 
and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) (at_right 0)"  | 
|
| 61973 | 2207  | 
shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) (at_right 0)"  | 
| 50327 | 2208  | 
unfolding tendsto_iff  | 
2209  | 
proof safe  | 
|
| 63558 | 2210  | 
fix e :: real  | 
2211  | 
assume "0 < e"  | 
|
| 50327 | 2212  | 
with lim[unfolded tendsto_iff, rule_format, of "e / 4"]  | 
| 63558 | 2213  | 
have "eventually (\<lambda>t. dist (f' t / g' t) x < e / 4) (at_right 0)"  | 
2214  | 
by simp  | 
|
| 50327 | 2215  | 
from eventually_conj[OF eventually_conj[OF ev(1) ev(2)] eventually_conj[OF ev(3) this]]  | 
2216  | 
obtain a where [arith]: "0 < a"  | 
|
2217  | 
and g'_neq_0: "\<And>x. 0 < x \<Longrightarrow> x < a \<Longrightarrow> g' x \<noteq> 0"  | 
|
2218  | 
and f0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV f x :> (f' x)"  | 
|
2219  | 
and g0: "\<And>x. 0 < x \<Longrightarrow> x \<le> a \<Longrightarrow> DERIV g x :> (g' x)"  | 
|
2220  | 
and Df: "\<And>t. 0 < t \<Longrightarrow> t < a \<Longrightarrow> dist (f' t / g' t) x < e / 4"  | 
|
| 
51641
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2221  | 
unfolding eventually_at_le by (auto simp: dist_real_def)  | 
| 50327 | 2222  | 
|
| 63558 | 2223  | 
from Df have "eventually (\<lambda>t. t < a) (at_right 0)" "eventually (\<lambda>t::real. 0 < t) (at_right 0)"  | 
| 
51641
 
cd05e9fcc63d
remove the within-filter, replace "at" by "at _ within UNIV" (This allows to remove a couple of redundant lemmas)
 
hoelzl 
parents: 
51529 
diff
changeset
 | 
2224  | 
unfolding eventually_at by (auto intro!: exI[of _ a] simp: dist_real_def)  | 
| 50327 | 2225  | 
|
2226  | 
moreover  | 
|
| 50328 | 2227  | 
have "eventually (\<lambda>t. 0 < g t) (at_right 0)" "eventually (\<lambda>t. g a < g t) (at_right 0)"  | 
| 61810 | 2228  | 
using g_0 by (auto elim: eventually_mono simp: filterlim_at_top_dense)  | 
| 50327 | 2229  | 
|
2230  | 
moreover  | 
|
| 61973 | 2231  | 
have inv_g: "((\<lambda>x. inverse (g x)) \<longlongrightarrow> 0) (at_right 0)"  | 
| 50327 | 2232  | 
using tendsto_inverse_0 filterlim_mono[OF g_0 at_top_le_at_infinity order_refl]  | 
2233  | 
by (rule filterlim_compose)  | 
|
| 61973 | 2234  | 
then have "((\<lambda>x. norm (1 - g a * inverse (g x))) \<longlongrightarrow> norm (1 - g a * 0)) (at_right 0)"  | 
| 50327 | 2235  | 
by (intro tendsto_intros)  | 
| 61973 | 2236  | 
then have "((\<lambda>x. norm (1 - g a / g x)) \<longlongrightarrow> 1) (at_right 0)"  | 
| 50327 | 2237  | 
by (simp add: inverse_eq_divide)  | 
2238  | 
from this[unfolded tendsto_iff, rule_format, of 1]  | 
|
2239  | 
have "eventually (\<lambda>x. norm (1 - g a / g x) < 2) (at_right 0)"  | 
|
| 61810 | 2240  | 
by (auto elim!: eventually_mono simp: dist_real_def)  | 
| 50327 | 2241  | 
|
2242  | 
moreover  | 
|
| 63558 | 2243  | 
from inv_g have "((\<lambda>t. norm ((f a - x * g a) * inverse (g t))) \<longlongrightarrow> norm ((f a - x * g a) * 0))  | 
2244  | 
(at_right 0)"  | 
|
| 50327 | 2245  | 
by (intro tendsto_intros)  | 
| 61973 | 2246  | 
then have "((\<lambda>t. norm (f a - x * g a) / norm (g t)) \<longlongrightarrow> 0) (at_right 0)"  | 
| 50327 | 2247  | 
by (simp add: inverse_eq_divide)  | 
| 60758 | 2248  | 
from this[unfolded tendsto_iff, rule_format, of "e / 2"] \<open>0 < e\<close>  | 
| 50327 | 2249  | 
have "eventually (\<lambda>t. norm (f a - x * g a) / norm (g t) < e / 2) (at_right 0)"  | 
2250  | 
by (auto simp: dist_real_def)  | 
|
2251  | 
||
2252  | 
ultimately show "eventually (\<lambda>t. dist (f t / g t) x < e) (at_right 0)"  | 
|
2253  | 
proof eventually_elim  | 
|
2254  | 
fix t assume t[arith]: "0 < t" "t < a" "g a < g t" "0 < g t"  | 
|
2255  | 
assume ineq: "norm (1 - g a / g t) < 2" "norm (f a - x * g a) / norm (g t) < e / 2"  | 
|
2256  | 
||
2257  | 
have "\<exists>y. t < y \<and> y < a \<and> (g a - g t) * f' y = (f a - f t) * g' y"  | 
|
2258  | 
using f0 g0 t(1,2) by (intro GMVT') (force intro!: DERIV_isCont)+  | 
|
| 53381 | 2259  | 
then obtain y where [arith]: "t < y" "y < a"  | 
2260  | 
and D_eq0: "(g a - g t) * f' y = (f a - f t) * g' y"  | 
|
2261  | 
by blast  | 
|
2262  | 
from D_eq0 have D_eq: "(f t - f a) / (g t - g a) = f' y / g' y"  | 
|
| 60758 | 2263  | 
using \<open>g a < g t\<close> g'_neq_0[of y] by (auto simp add: field_simps)  | 
| 50327 | 2264  | 
|
2265  | 
have *: "f t / g t - x = ((f t - f a) / (g t - g a) - x) * (1 - g a / g t) + (f a - x * g a) / g t"  | 
|
2266  | 
by (simp add: field_simps)  | 
|
2267  | 
have "norm (f t / g t - x) \<le>  | 
|
2268  | 
norm (((f t - f a) / (g t - g a) - x) * (1 - g a / g t)) + norm ((f a - x * g a) / g t)"  | 
|
2269  | 
unfolding * by (rule norm_triangle_ineq)  | 
|
2270  | 
also have "\<dots> = dist (f' y / g' y) x * norm (1 - g a / g t) + norm (f a - x * g a) / norm (g t)"  | 
|
2271  | 
by (simp add: abs_mult D_eq dist_real_def)  | 
|
2272  | 
also have "\<dots> < (e / 4) * 2 + e / 2"  | 
|
| 60758 | 2273  | 
using ineq Df[of y] \<open>0 < e\<close> by (intro add_le_less_mono mult_mono) auto  | 
| 50327 | 2274  | 
finally show "dist (f t / g t) x < e"  | 
2275  | 
by (simp add: dist_real_def)  | 
|
2276  | 
qed  | 
|
2277  | 
qed  | 
|
2278  | 
||
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2279  | 
lemma lhopital_right_at_top:  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2280  | 
"LIM x at_right x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2281  | 
eventually (\<lambda>x. g' x \<noteq> 0) (at_right x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2282  | 
eventually (\<lambda>x. DERIV f x :> f' x) (at_right x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2283  | 
eventually (\<lambda>x. DERIV g x :> g' x) (at_right x) \<Longrightarrow>  | 
| 61973 | 2284  | 
((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_right x) \<Longrightarrow>  | 
2285  | 
((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_right x)"  | 
|
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2286  | 
unfolding eventually_at_right_to_0[of _ x] filterlim_at_right_to_0[of _ _ x] DERIV_shift  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2287  | 
by (rule lhopital_right_0_at_top)  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2288  | 
|
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2289  | 
lemma lhopital_left_at_top:  | 
| 63558 | 2290  | 
"LIM x at_left x. g x :> at_top \<Longrightarrow>  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2291  | 
eventually (\<lambda>x. g' x \<noteq> 0) (at_left x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2292  | 
eventually (\<lambda>x. DERIV f x :> f' x) (at_left x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2293  | 
eventually (\<lambda>x. DERIV g x :> g' x) (at_left x) \<Longrightarrow>  | 
| 61973 | 2294  | 
((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at_left x) \<Longrightarrow>  | 
2295  | 
((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at_left x)"  | 
|
| 63558 | 2296  | 
for x :: real  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2297  | 
unfolding eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror  | 
| 
56479
 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 
hoelzl 
parents: 
56409 
diff
changeset
 | 
2298  | 
by (rule lhopital_right_at_top[where f'="\<lambda>x. - f' (- x)"]) (auto simp: DERIV_mirror)  | 
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2299  | 
|
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2300  | 
lemma lhopital_at_top:  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2301  | 
"LIM x at x. (g::real \<Rightarrow> real) x :> at_top \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2302  | 
eventually (\<lambda>x. g' x \<noteq> 0) (at x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2303  | 
eventually (\<lambda>x. DERIV f x :> f' x) (at x) \<Longrightarrow>  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2304  | 
eventually (\<lambda>x. DERIV g x :> g' x) (at x) \<Longrightarrow>  | 
| 61973 | 2305  | 
((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> y) (at x) \<Longrightarrow>  | 
2306  | 
((\<lambda> x. f x / g x) \<longlongrightarrow> y) (at x)"  | 
|
| 
50330
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2307  | 
unfolding eventually_at_split filterlim_at_split  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2308  | 
by (auto intro!: lhopital_right_at_top[of g x g' f f'] lhopital_left_at_top[of g x g' f f'])  | 
| 
 
d0b12171118e
conversion rules for at, at_left and at_right; applied to l'Hopital's rules.
 
hoelzl 
parents: 
50329 
diff
changeset
 | 
2309  | 
|
| 50347 | 2310  | 
lemma lhospital_at_top_at_top:  | 
2311  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
2312  | 
assumes g_0: "LIM x at_top. g x :> at_top"  | 
|
| 63558 | 2313  | 
and g': "eventually (\<lambda>x. g' x \<noteq> 0) at_top"  | 
2314  | 
and Df: "eventually (\<lambda>x. DERIV f x :> f' x) at_top"  | 
|
2315  | 
and Dg: "eventually (\<lambda>x. DERIV g x :> g' x) at_top"  | 
|
2316  | 
and lim: "((\<lambda> x. (f' x / g' x)) \<longlongrightarrow> x) at_top"  | 
|
| 61973 | 2317  | 
shows "((\<lambda> x. f x / g x) \<longlongrightarrow> x) at_top"  | 
| 50347 | 2318  | 
unfolding filterlim_at_top_to_right  | 
2319  | 
proof (rule lhopital_right_0_at_top)  | 
|
2320  | 
let ?F = "\<lambda>x. f (inverse x)"  | 
|
2321  | 
let ?G = "\<lambda>x. g (inverse x)"  | 
|
2322  | 
let ?R = "at_right (0::real)"  | 
|
2323  | 
let ?D = "\<lambda>f' x. f' (inverse x) * - (inverse x ^ Suc (Suc 0))"  | 
|
2324  | 
show "LIM x ?R. ?G x :> at_top"  | 
|
2325  | 
using g_0 unfolding filterlim_at_top_to_right .  | 
|
2326  | 
show "eventually (\<lambda>x. DERIV ?G x :> ?D g' x) ?R"  | 
|
2327  | 
unfolding eventually_at_right_to_top  | 
|
| 63558 | 2328  | 
using Dg eventually_ge_at_top[where c=1]  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2329  | 
by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+  | 
| 50347 | 2330  | 
show "eventually (\<lambda>x. DERIV ?F x :> ?D f' x) ?R"  | 
2331  | 
unfolding eventually_at_right_to_top  | 
|
| 63558 | 2332  | 
using Df eventually_ge_at_top[where c=1]  | 
| 
68638
 
87d1bff264df
de-applying and meta-quantifying
 
paulson <lp15@cam.ac.uk> 
parents: 
68635 
diff
changeset
 | 
2333  | 
by eventually_elim (rule derivative_eq_intros DERIV_chain'[where f=inverse] | simp)+  | 
| 50347 | 2334  | 
show "eventually (\<lambda>x. ?D g' x \<noteq> 0) ?R"  | 
2335  | 
unfolding eventually_at_right_to_top  | 
|
| 63558 | 2336  | 
using g' eventually_ge_at_top[where c=1]  | 
| 50347 | 2337  | 
by eventually_elim auto  | 
| 61973 | 2338  | 
show "((\<lambda>x. ?D f' x / ?D g' x) \<longlongrightarrow> x) ?R"  | 
| 50347 | 2339  | 
unfolding filterlim_at_right_to_top  | 
2340  | 
apply (intro filterlim_cong[THEN iffD2, OF refl refl _ lim])  | 
|
| 63558 | 2341  | 
using eventually_ge_at_top[where c=1]  | 
| 
56479
 
91958d4b30f7
revert c1bbd3e22226, a14831ac3023, and 36489d77c484: divide_minus_left/right are again simp rules
 
hoelzl 
parents: 
56409 
diff
changeset
 | 
2342  | 
by eventually_elim simp  | 
| 50347 | 2343  | 
qed  | 
2344  | 
||
| 63713 | 2345  | 
lemma lhopital_right_at_top_at_top:  | 
2346  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
2347  | 
assumes f_0: "LIM x at_right a. f x :> at_top"  | 
|
2348  | 
assumes g_0: "LIM x at_right a. g x :> at_top"  | 
|
2349  | 
and ev:  | 
|
2350  | 
"eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)"  | 
|
2351  | 
"eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)"  | 
|
2352  | 
and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_right a)"  | 
|
2353  | 
shows "filterlim (\<lambda> x. f x / g x) at_top (at_right a)"  | 
|
2354  | 
proof -  | 
|
2355  | 
from lim have pos: "eventually (\<lambda>x. f' x / g' x > 0) (at_right a)"  | 
|
2356  | 
unfolding filterlim_at_top_dense by blast  | 
|
2357  | 
have "((\<lambda>x. g x / f x) \<longlongrightarrow> 0) (at_right a)"  | 
|
2358  | 
proof (rule lhopital_right_at_top)  | 
|
2359  | 
from pos show "eventually (\<lambda>x. f' x \<noteq> 0) (at_right a)" by eventually_elim auto  | 
|
2360  | 
from tendsto_inverse_0_at_top[OF lim]  | 
|
2361  | 
show "((\<lambda>x. g' x / f' x) \<longlongrightarrow> 0) (at_right a)" by simp  | 
|
2362  | 
qed fact+  | 
|
2363  | 
moreover from f_0 g_0  | 
|
2364  | 
have "eventually (\<lambda>x. f x > 0) (at_right a)" "eventually (\<lambda>x. g x > 0) (at_right a)"  | 
|
2365  | 
unfolding filterlim_at_top_dense by blast+  | 
|
2366  | 
hence "eventually (\<lambda>x. g x / f x > 0) (at_right a)" by eventually_elim simp  | 
|
2367  | 
ultimately have "filterlim (\<lambda>x. inverse (g x / f x)) at_top (at_right a)"  | 
|
2368  | 
by (rule filterlim_inverse_at_top)  | 
|
2369  | 
thus ?thesis by simp  | 
|
2370  | 
qed  | 
|
| 63717 | 2371  | 
|
| 63713 | 2372  | 
lemma lhopital_right_at_top_at_bot:  | 
2373  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
2374  | 
assumes f_0: "LIM x at_right a. f x :> at_top"  | 
|
2375  | 
assumes g_0: "LIM x at_right a. g x :> at_bot"  | 
|
2376  | 
and ev:  | 
|
2377  | 
"eventually (\<lambda>x. DERIV f x :> f' x) (at_right a)"  | 
|
2378  | 
"eventually (\<lambda>x. DERIV g x :> g' x) (at_right a)"  | 
|
2379  | 
and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_right a)"  | 
|
2380  | 
shows "filterlim (\<lambda> x. f x / g x) at_bot (at_right a)"  | 
|
2381  | 
proof -  | 
|
2382  | 
from ev(2) have ev': "eventually (\<lambda>x. DERIV (\<lambda>x. -g x) x :> -g' x) (at_right a)"  | 
|
2383  | 
by eventually_elim (auto intro: derivative_intros)  | 
|
2384  | 
have "filterlim (\<lambda>x. f x / (-g x)) at_top (at_right a)"  | 
|
2385  | 
by (rule lhopital_right_at_top_at_top[where f' = f' and g' = "\<lambda>x. -g' x"])  | 
|
2386  | 
(insert assms ev', auto simp: filterlim_uminus_at_bot)  | 
|
2387  | 
hence "filterlim (\<lambda>x. -(f x / g x)) at_top (at_right a)" by simp  | 
|
2388  | 
thus ?thesis by (simp add: filterlim_uminus_at_bot)  | 
|
2389  | 
qed  | 
|
2390  | 
||
2391  | 
lemma lhopital_left_at_top_at_top:  | 
|
2392  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
2393  | 
assumes f_0: "LIM x at_left a. f x :> at_top"  | 
|
2394  | 
assumes g_0: "LIM x at_left a. g x :> at_top"  | 
|
2395  | 
and ev:  | 
|
2396  | 
"eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)"  | 
|
2397  | 
"eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)"  | 
|
2398  | 
and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at_left a)"  | 
|
2399  | 
shows "filterlim (\<lambda> x. f x / g x) at_top (at_left a)"  | 
|
2400  | 
by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror,  | 
|
2401  | 
rule lhopital_right_at_top_at_top[where f'="\<lambda>x. - f' (- x)"])  | 
|
2402  | 
(insert assms, auto simp: DERIV_mirror)  | 
|
2403  | 
||
2404  | 
lemma lhopital_left_at_top_at_bot:  | 
|
2405  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
2406  | 
assumes f_0: "LIM x at_left a. f x :> at_top"  | 
|
2407  | 
assumes g_0: "LIM x at_left a. g x :> at_bot"  | 
|
2408  | 
and ev:  | 
|
2409  | 
"eventually (\<lambda>x. DERIV f x :> f' x) (at_left a)"  | 
|
2410  | 
"eventually (\<lambda>x. DERIV g x :> g' x) (at_left a)"  | 
|
2411  | 
and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at_left a)"  | 
|
2412  | 
shows "filterlim (\<lambda> x. f x / g x) at_bot (at_left a)"  | 
|
2413  | 
by (insert assms, unfold eventually_at_left_to_right filterlim_at_left_to_right DERIV_mirror,  | 
|
2414  | 
rule lhopital_right_at_top_at_bot[where f'="\<lambda>x. - f' (- x)"])  | 
|
2415  | 
(insert assms, auto simp: DERIV_mirror)  | 
|
2416  | 
||
2417  | 
lemma lhopital_at_top_at_top:  | 
|
2418  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
2419  | 
assumes f_0: "LIM x at a. f x :> at_top"  | 
|
2420  | 
assumes g_0: "LIM x at a. g x :> at_top"  | 
|
2421  | 
and ev:  | 
|
2422  | 
"eventually (\<lambda>x. DERIV f x :> f' x) (at a)"  | 
|
2423  | 
"eventually (\<lambda>x. DERIV g x :> g' x) (at a)"  | 
|
2424  | 
and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_top (at a)"  | 
|
2425  | 
shows "filterlim (\<lambda> x. f x / g x) at_top (at a)"  | 
|
2426  | 
using assms unfolding eventually_at_split filterlim_at_split  | 
|
2427  | 
by (auto intro!: lhopital_right_at_top_at_top[of f a g f' g']  | 
|
2428  | 
lhopital_left_at_top_at_top[of f a g f' g'])  | 
|
2429  | 
||
2430  | 
lemma lhopital_at_top_at_bot:  | 
|
2431  | 
fixes f g :: "real \<Rightarrow> real"  | 
|
2432  | 
assumes f_0: "LIM x at a. f x :> at_top"  | 
|
2433  | 
assumes g_0: "LIM x at a. g x :> at_bot"  | 
|
2434  | 
and ev:  | 
|
2435  | 
"eventually (\<lambda>x. DERIV f x :> f' x) (at a)"  | 
|
2436  | 
"eventually (\<lambda>x. DERIV g x :> g' x) (at a)"  | 
|
2437  | 
and lim: "filterlim (\<lambda> x. (f' x / g' x)) at_bot (at a)"  | 
|
2438  | 
shows "filterlim (\<lambda> x. f x / g x) at_bot (at a)"  | 
|
2439  | 
using assms unfolding eventually_at_split filterlim_at_split  | 
|
2440  | 
by (auto intro!: lhopital_right_at_top_at_bot[of f a g f' g']  | 
|
2441  | 
lhopital_left_at_top_at_bot[of f a g f' g'])  | 
|
2442  | 
||
| 21164 | 2443  | 
end  |