| author | haftmann | 
| Sun, 28 Feb 2021 20:13:07 +0000 | |
| changeset 73327 | fd32f08f4fb5 | 
| parent 73109 | 783406dd051e | 
| child 74979 | 4d77dd3019d1 | 
| permissions | -rw-r--r-- | 
| 41959 | 1 | (* Title: HOL/Int.thy | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2 | Author: Lawrence C Paulson, Cambridge University Computer Laboratory | 
| 41959 | 3 | Author: Tobias Nipkow, Florian Haftmann, TU Muenchen | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 4 | *) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 5 | |
| 60758 | 6 | section \<open>The Integers as Equivalence Classes over Pairs of Natural Numbers\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 7 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 8 | theory Int | 
| 63652 | 9 | imports Equiv_Relations Power Quotient Fun_Def | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 10 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 11 | |
| 60758 | 12 | subsection \<open>Definition of integers as a quotient type\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 13 | |
| 63652 | 14 | definition intrel :: "(nat \<times> nat) \<Rightarrow> (nat \<times> nat) \<Rightarrow> bool" | 
| 15 | where "intrel = (\<lambda>(x, y) (u, v). x + v = u + y)" | |
| 48045 | 16 | |
| 17 | lemma intrel_iff [simp]: "intrel (x, y) (u, v) \<longleftrightarrow> x + v = u + y" | |
| 18 | by (simp add: intrel_def) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 19 | |
| 48045 | 20 | quotient_type int = "nat \<times> nat" / "intrel" | 
| 45694 
4a8743618257
prefer typedef without extra definition and alternative name;
 wenzelm parents: 
45607diff
changeset | 21 | morphisms Rep_Integ Abs_Integ | 
| 48045 | 22 | proof (rule equivpI) | 
| 63652 | 23 | show "reflp intrel" by (auto simp: reflp_def) | 
| 24 | show "symp intrel" by (auto simp: symp_def) | |
| 25 | show "transp intrel" by (auto simp: transp_def) | |
| 48045 | 26 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 27 | |
| 48045 | 28 | lemma eq_Abs_Integ [case_names Abs_Integ, cases type: int]: | 
| 63652 | 29 | "(\<And>x y. z = Abs_Integ (x, y) \<Longrightarrow> P) \<Longrightarrow> P" | 
| 30 | by (induct z) auto | |
| 31 | ||
| 48045 | 32 | |
| 60758 | 33 | subsection \<open>Integers form a commutative ring\<close> | 
| 48045 | 34 | |
| 35 | instantiation int :: comm_ring_1 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 36 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 37 | |
| 51994 | 38 | lift_definition zero_int :: "int" is "(0, 0)" . | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 39 | |
| 51994 | 40 | lift_definition one_int :: "int" is "(1, 0)" . | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 41 | |
| 48045 | 42 | lift_definition plus_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 43 | is "\<lambda>(x, y) (u, v). (x + u, y + v)" | |
| 44 | by clarsimp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 45 | |
| 48045 | 46 | lift_definition uminus_int :: "int \<Rightarrow> int" | 
| 47 | is "\<lambda>(x, y). (y, x)" | |
| 48 | by clarsimp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 49 | |
| 48045 | 50 | lift_definition minus_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 51 | is "\<lambda>(x, y) (u, v). (x + v, y + u)" | |
| 52 | by clarsimp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 53 | |
| 48045 | 54 | lift_definition times_int :: "int \<Rightarrow> int \<Rightarrow> int" | 
| 55 | is "\<lambda>(x, y) (u, v). (x*u + y*v, x*v + y*u)" | |
| 56 | proof (clarsimp) | |
| 57 | fix s t u v w x y z :: nat | |
| 58 | assume "s + v = u + t" and "w + z = y + x" | |
| 63652 | 59 | then have "(s + v) * w + (u + t) * x + u * (w + z) + v * (y + x) = | 
| 60 | (u + t) * w + (s + v) * x + u * (y + x) + v * (w + z)" | |
| 48045 | 61 | by simp | 
| 63652 | 62 | then show "(s * w + t * x) + (u * z + v * y) = (u * y + v * z) + (s * x + t * w)" | 
| 48045 | 63 | by (simp add: algebra_simps) | 
| 64 | qed | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 65 | |
| 48045 | 66 | instance | 
| 63652 | 67 | by standard (transfer; clarsimp simp: algebra_simps)+ | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 68 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 69 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 70 | |
| 63652 | 71 | abbreviation int :: "nat \<Rightarrow> int" | 
| 72 | where "int \<equiv> of_nat" | |
| 44709 | 73 | |
| 48045 | 74 | lemma int_def: "int n = Abs_Integ (n, 0)" | 
| 63652 | 75 | by (induct n) (simp add: zero_int.abs_eq, simp add: one_int.abs_eq plus_int.abs_eq) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 76 | |
| 70927 | 77 | lemma int_transfer [transfer_rule]: | 
| 78 | includes lifting_syntax | |
| 79 | shows "rel_fun (=) pcr_int (\<lambda>n. (n, 0)) int" | |
| 63652 | 80 | by (simp add: rel_fun_def int.pcr_cr_eq cr_int_def int_def) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 81 | |
| 63652 | 82 | lemma int_diff_cases: obtains (diff) m n where "z = int m - int n" | 
| 48045 | 83 | by transfer clarsimp | 
| 84 | ||
| 63652 | 85 | |
| 60758 | 86 | subsection \<open>Integers are totally ordered\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 87 | |
| 48045 | 88 | instantiation int :: linorder | 
| 89 | begin | |
| 90 | ||
| 91 | lift_definition less_eq_int :: "int \<Rightarrow> int \<Rightarrow> bool" | |
| 92 | is "\<lambda>(x, y) (u, v). x + v \<le> u + y" | |
| 93 | by auto | |
| 94 | ||
| 95 | lift_definition less_int :: "int \<Rightarrow> int \<Rightarrow> bool" | |
| 96 | is "\<lambda>(x, y) (u, v). x + v < u + y" | |
| 97 | by auto | |
| 98 | ||
| 99 | instance | |
| 61169 | 100 | by standard (transfer, force)+ | 
| 48045 | 101 | |
| 102 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 103 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 104 | instantiation int :: distrib_lattice | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 105 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 106 | |
| 63652 | 107 | definition "(inf :: int \<Rightarrow> int \<Rightarrow> int) = min" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 108 | |
| 63652 | 109 | definition "(sup :: int \<Rightarrow> int \<Rightarrow> int) = max" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 110 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 111 | instance | 
| 63652 | 112 | by standard (auto simp add: inf_int_def sup_int_def max_min_distrib2) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 113 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 114 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 115 | |
| 60758 | 116 | subsection \<open>Ordering properties of arithmetic operations\<close> | 
| 48045 | 117 | |
| 35028 
108662d50512
more consistent naming of type classes involving orderings (and lattices) -- c.f. NEWS
 haftmann parents: 
34055diff
changeset | 118 | instance int :: ordered_cancel_ab_semigroup_add | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 119 | proof | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 120 | fix i j k :: int | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 121 | show "i \<le> j \<Longrightarrow> k + i \<le> k + j" | 
| 48045 | 122 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 123 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 124 | |
| 63652 | 125 | text \<open>Strict Monotonicity of Multiplication.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 126 | |
| 63652 | 127 | text \<open>Strict, in 1st argument; proof is by induction on \<open>k > 0\<close>.\<close> | 
| 128 | lemma zmult_zless_mono2_lemma: "i < j \<Longrightarrow> 0 < k \<Longrightarrow> int k * i < int k * j" | |
| 129 | for i j :: int | |
| 130 | proof (induct k) | |
| 131 | case 0 | |
| 132 | then show ?case by simp | |
| 133 | next | |
| 134 | case (Suc k) | |
| 135 | then show ?case | |
| 136 | by (cases "k = 0") (simp_all add: distrib_right add_strict_mono) | |
| 137 | qed | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 138 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 139 | lemma zero_le_imp_eq_int: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 140 | assumes "k \<ge> (0::int)" shows "\<exists>n. k = int n" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 141 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 142 | have "b \<le> a \<Longrightarrow> \<exists>n::nat. a = n + b" for a b | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 143 | by (rule_tac x="a - b" in exI) simp | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 144 | with assms show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 145 | by transfer auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 146 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 147 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 148 | lemma zero_less_imp_eq_int: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 149 | assumes "k > (0::int)" shows "\<exists>n>0. k = int n" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 150 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 151 | have "b < a \<Longrightarrow> \<exists>n::nat. n>0 \<and> a = n + b" for a b | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 152 | by (rule_tac x="a - b" in exI) simp | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 153 | with assms show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 154 | by transfer auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 155 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 156 | |
| 63652 | 157 | lemma zmult_zless_mono2: "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j" | 
| 158 | for i j k :: int | |
| 159 | by (drule zero_less_imp_eq_int) (auto simp add: zmult_zless_mono2_lemma) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 160 | |
| 63652 | 161 | |
| 162 | text \<open>The integers form an ordered integral domain.\<close> | |
| 163 | ||
| 48045 | 164 | instantiation int :: linordered_idom | 
| 165 | begin | |
| 166 | ||
| 63652 | 167 | definition zabs_def: "\<bar>i::int\<bar> = (if i < 0 then - i else i)" | 
| 48045 | 168 | |
| 63652 | 169 | definition zsgn_def: "sgn (i::int) = (if i = 0 then 0 else if 0 < i then 1 else - 1)" | 
| 48045 | 170 | |
| 63652 | 171 | instance | 
| 172 | proof | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 173 | fix i j k :: int | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 174 | show "i < j \<Longrightarrow> 0 < k \<Longrightarrow> k * i < k * j" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 175 | by (rule zmult_zless_mono2) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 176 | show "\<bar>i\<bar> = (if i < 0 then -i else i)" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 177 | by (simp only: zabs_def) | 
| 61076 | 178 | show "sgn (i::int) = (if i=0 then 0 else if 0<i then 1 else - 1)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 179 | by (simp only: zsgn_def) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 180 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 181 | |
| 48045 | 182 | end | 
| 183 | ||
| 63652 | 184 | lemma zless_imp_add1_zle: "w < z \<Longrightarrow> w + 1 \<le> z" | 
| 185 | for w z :: int | |
| 48045 | 186 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 187 | |
| 63652 | 188 | lemma zless_iff_Suc_zadd: "w < z \<longleftrightarrow> (\<exists>n. z = w + int (Suc n))" | 
| 189 | for w z :: int | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 190 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 191 | have "\<And>a b c d. a + d < c + b \<Longrightarrow> \<exists>n. c + b = Suc (a + n + d)" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 192 | by (rule_tac x="c+b - Suc(a+d)" in exI) arith | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 193 | then show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 194 | by transfer auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 195 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 196 | |
| 63652 | 197 | lemma zabs_less_one_iff [simp]: "\<bar>z\<bar> < 1 \<longleftrightarrow> z = 0" (is "?lhs \<longleftrightarrow> ?rhs") | 
| 198 | for z :: int | |
| 62347 | 199 | proof | 
| 63652 | 200 | assume ?rhs | 
| 201 | then show ?lhs by simp | |
| 62347 | 202 | next | 
| 63652 | 203 | assume ?lhs | 
| 204 | with zless_imp_add1_zle [of "\<bar>z\<bar>" 1] have "\<bar>z\<bar> + 1 \<le> 1" by simp | |
| 205 | then have "\<bar>z\<bar> \<le> 0" by simp | |
| 206 | then show ?rhs by simp | |
| 62347 | 207 | qed | 
| 208 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 209 | |
| 61799 | 210 | subsection \<open>Embedding of the Integers into any \<open>ring_1\<close>: \<open>of_int\<close>\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 211 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 212 | context ring_1 | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 213 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 214 | |
| 63652 | 215 | lift_definition of_int :: "int \<Rightarrow> 'a" | 
| 216 | is "\<lambda>(i, j). of_nat i - of_nat j" | |
| 48045 | 217 | by (clarsimp simp add: diff_eq_eq eq_diff_eq diff_add_eq | 
| 63652 | 218 | of_nat_add [symmetric] simp del: of_nat_add) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 219 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 220 | lemma of_int_0 [simp]: "of_int 0 = 0" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 221 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 222 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 223 | lemma of_int_1 [simp]: "of_int 1 = 1" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 224 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 225 | |
| 63652 | 226 | lemma of_int_add [simp]: "of_int (w + z) = of_int w + of_int z" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 227 | by transfer (clarsimp simp add: algebra_simps) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 228 | |
| 63652 | 229 | lemma of_int_minus [simp]: "of_int (- z) = - (of_int z)" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 230 | by (transfer fixing: uminus) clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 231 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 232 | lemma of_int_diff [simp]: "of_int (w - z) = of_int w - of_int z" | 
| 54230 
b1d955791529
more simplification rules on unary and binary minus
 haftmann parents: 
54223diff
changeset | 233 | using of_int_add [of w "- z"] by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 234 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 235 | lemma of_int_mult [simp]: "of_int (w*z) = of_int w * of_int z" | 
| 63652 | 236 | by (transfer fixing: times) (clarsimp simp add: algebra_simps) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 237 | |
| 61531 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 238 | lemma mult_of_int_commute: "of_int x * y = y * of_int x" | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 239 | by (transfer fixing: times) (auto simp: algebra_simps mult_of_nat_commute) | 
| 
ab2e862263e7
Rounding function, uniform limits, cotangent, binomial identities
 eberlm parents: 
61524diff
changeset | 240 | |
| 63652 | 241 | text \<open>Collapse nested embeddings.\<close> | 
| 44709 | 242 | lemma of_int_of_nat_eq [simp]: "of_int (int n) = of_nat n" | 
| 63652 | 243 | by (induct n) auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 244 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 245 | lemma of_int_numeral [simp, code_post]: "of_int (numeral k) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 246 | by (simp add: of_nat_numeral [symmetric] of_int_of_nat_eq [symmetric]) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 247 | |
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54249diff
changeset | 248 | lemma of_int_neg_numeral [code_post]: "of_int (- numeral k) = - numeral k" | 
| 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54249diff
changeset | 249 | by simp | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 250 | |
| 63652 | 251 | lemma of_int_power [simp]: "of_int (z ^ n) = of_int z ^ n" | 
| 31015 | 252 | by (induct n) simp_all | 
| 253 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 254 | lemma of_int_of_bool [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 255 | "of_int (of_bool P) = of_bool P" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 256 | by auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 257 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 258 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 259 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 260 | context ring_char_0 | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 261 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 262 | |
| 63652 | 263 | lemma of_int_eq_iff [simp]: "of_int w = of_int z \<longleftrightarrow> w = z" | 
| 264 | by transfer (clarsimp simp add: algebra_simps of_nat_add [symmetric] simp del: of_nat_add) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 265 | |
| 63652 | 266 | text \<open>Special cases where either operand is zero.\<close> | 
| 267 | lemma of_int_eq_0_iff [simp]: "of_int z = 0 \<longleftrightarrow> z = 0" | |
| 36424 | 268 | using of_int_eq_iff [of z 0] by simp | 
| 269 | ||
| 63652 | 270 | lemma of_int_0_eq_iff [simp]: "0 = of_int z \<longleftrightarrow> z = 0" | 
| 36424 | 271 | using of_int_eq_iff [of 0 z] by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 272 | |
| 63652 | 273 | lemma of_int_eq_1_iff [iff]: "of_int z = 1 \<longleftrightarrow> z = 1" | 
| 61234 | 274 | using of_int_eq_iff [of z 1] by simp | 
| 275 | ||
| 66912 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 276 | lemma numeral_power_eq_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 277 | "numeral x ^ n = of_int y \<longleftrightarrow> numeral x ^ n = y" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 278 | using of_int_eq_iff[of "numeral x ^ n" y, unfolded of_int_numeral of_int_power] . | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 279 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 280 | lemma of_int_eq_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 281 | "of_int y = numeral x ^ n \<longleftrightarrow> y = numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 282 | using numeral_power_eq_of_int_cancel_iff [of x n y] by (metis (mono_tags)) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 283 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 284 | lemma neg_numeral_power_eq_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 285 | "(- numeral x) ^ n = of_int y \<longleftrightarrow> (- numeral x) ^ n = y" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 286 | using of_int_eq_iff[of "(- numeral x) ^ n" y] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 287 | by simp | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 288 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 289 | lemma of_int_eq_neg_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 290 | "of_int y = (- numeral x) ^ n \<longleftrightarrow> y = (- numeral x) ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 291 | using neg_numeral_power_eq_of_int_cancel_iff[of x n y] by (metis (mono_tags)) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 292 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 293 | lemma of_int_eq_of_int_power_cancel_iff[simp]: "(of_int b) ^ w = of_int x \<longleftrightarrow> b ^ w = x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 294 | by (metis of_int_power of_int_eq_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 295 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 296 | lemma of_int_power_eq_of_int_cancel_iff[simp]: "of_int x = (of_int b) ^ w \<longleftrightarrow> x = b ^ w" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 297 | by (metis of_int_eq_of_int_power_cancel_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 298 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 299 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 300 | |
| 36424 | 301 | context linordered_idom | 
| 302 | begin | |
| 303 | ||
| 63652 | 304 | text \<open>Every \<open>linordered_idom\<close> has characteristic zero.\<close> | 
| 36424 | 305 | subclass ring_char_0 .. | 
| 306 | ||
| 63652 | 307 | lemma of_int_le_iff [simp]: "of_int w \<le> of_int z \<longleftrightarrow> w \<le> z" | 
| 308 | by (transfer fixing: less_eq) | |
| 309 | (clarsimp simp add: algebra_simps of_nat_add [symmetric] simp del: of_nat_add) | |
| 36424 | 310 | |
| 63652 | 311 | lemma of_int_less_iff [simp]: "of_int w < of_int z \<longleftrightarrow> w < z" | 
| 36424 | 312 | by (simp add: less_le order_less_le) | 
| 313 | ||
| 63652 | 314 | lemma of_int_0_le_iff [simp]: "0 \<le> of_int z \<longleftrightarrow> 0 \<le> z" | 
| 36424 | 315 | using of_int_le_iff [of 0 z] by simp | 
| 316 | ||
| 63652 | 317 | lemma of_int_le_0_iff [simp]: "of_int z \<le> 0 \<longleftrightarrow> z \<le> 0" | 
| 36424 | 318 | using of_int_le_iff [of z 0] by simp | 
| 319 | ||
| 63652 | 320 | lemma of_int_0_less_iff [simp]: "0 < of_int z \<longleftrightarrow> 0 < z" | 
| 36424 | 321 | using of_int_less_iff [of 0 z] by simp | 
| 322 | ||
| 63652 | 323 | lemma of_int_less_0_iff [simp]: "of_int z < 0 \<longleftrightarrow> z < 0" | 
| 36424 | 324 | using of_int_less_iff [of z 0] by simp | 
| 325 | ||
| 63652 | 326 | lemma of_int_1_le_iff [simp]: "1 \<le> of_int z \<longleftrightarrow> 1 \<le> z" | 
| 61234 | 327 | using of_int_le_iff [of 1 z] by simp | 
| 328 | ||
| 63652 | 329 | lemma of_int_le_1_iff [simp]: "of_int z \<le> 1 \<longleftrightarrow> z \<le> 1" | 
| 61234 | 330 | using of_int_le_iff [of z 1] by simp | 
| 331 | ||
| 63652 | 332 | lemma of_int_1_less_iff [simp]: "1 < of_int z \<longleftrightarrow> 1 < z" | 
| 61234 | 333 | using of_int_less_iff [of 1 z] by simp | 
| 334 | ||
| 63652 | 335 | lemma of_int_less_1_iff [simp]: "of_int z < 1 \<longleftrightarrow> z < 1" | 
| 61234 | 336 | using of_int_less_iff [of z 1] by simp | 
| 337 | ||
| 62128 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 338 | lemma of_int_pos: "z > 0 \<Longrightarrow> of_int z > 0" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 339 | by simp | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 340 | |
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 341 | lemma of_int_nonneg: "z \<ge> 0 \<Longrightarrow> of_int z \<ge> 0" | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 342 | by simp | 
| 
3201ddb00097
Integrated some material from Algebraic_Numbers AFP entry to Polynomials; generalised some polynomial stuff.
 eberlm parents: 
61944diff
changeset | 343 | |
| 63652 | 344 | lemma of_int_abs [simp]: "of_int \<bar>x\<bar> = \<bar>of_int x\<bar>" | 
| 62347 | 345 | by (auto simp add: abs_if) | 
| 346 | ||
| 347 | lemma of_int_lessD: | |
| 348 | assumes "\<bar>of_int n\<bar> < x" | |
| 349 | shows "n = 0 \<or> x > 1" | |
| 350 | proof (cases "n = 0") | |
| 63652 | 351 | case True | 
| 352 | then show ?thesis by simp | |
| 62347 | 353 | next | 
| 354 | case False | |
| 355 | then have "\<bar>n\<bar> \<noteq> 0" by simp | |
| 356 | then have "\<bar>n\<bar> > 0" by simp | |
| 357 | then have "\<bar>n\<bar> \<ge> 1" | |
| 358 | using zless_imp_add1_zle [of 0 "\<bar>n\<bar>"] by simp | |
| 359 | then have "\<bar>of_int n\<bar> \<ge> 1" | |
| 360 | unfolding of_int_1_le_iff [of "\<bar>n\<bar>", symmetric] by simp | |
| 361 | then have "1 < x" using assms by (rule le_less_trans) | |
| 362 | then show ?thesis .. | |
| 363 | qed | |
| 364 | ||
| 365 | lemma of_int_leD: | |
| 366 | assumes "\<bar>of_int n\<bar> \<le> x" | |
| 367 | shows "n = 0 \<or> 1 \<le> x" | |
| 368 | proof (cases "n = 0") | |
| 63652 | 369 | case True | 
| 370 | then show ?thesis by simp | |
| 62347 | 371 | next | 
| 372 | case False | |
| 373 | then have "\<bar>n\<bar> \<noteq> 0" by simp | |
| 374 | then have "\<bar>n\<bar> > 0" by simp | |
| 375 | then have "\<bar>n\<bar> \<ge> 1" | |
| 376 | using zless_imp_add1_zle [of 0 "\<bar>n\<bar>"] by simp | |
| 377 | then have "\<bar>of_int n\<bar> \<ge> 1" | |
| 378 | unfolding of_int_1_le_iff [of "\<bar>n\<bar>", symmetric] by simp | |
| 379 | then have "1 \<le> x" using assms by (rule order_trans) | |
| 380 | then show ?thesis .. | |
| 381 | qed | |
| 382 | ||
| 66912 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 383 | lemma numeral_power_le_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 384 | "numeral x ^ n \<le> of_int a \<longleftrightarrow> numeral x ^ n \<le> a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 385 | by (metis (mono_tags) local.of_int_eq_numeral_power_cancel_iff of_int_le_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 386 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 387 | lemma of_int_le_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 388 | "of_int a \<le> numeral x ^ n \<longleftrightarrow> a \<le> numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 389 | by (metis (mono_tags) local.numeral_power_eq_of_int_cancel_iff of_int_le_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 390 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 391 | lemma numeral_power_less_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 392 | "numeral x ^ n < of_int a \<longleftrightarrow> numeral x ^ n < a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 393 | by (metis (mono_tags) local.of_int_eq_numeral_power_cancel_iff of_int_less_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 394 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 395 | lemma of_int_less_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 396 | "of_int a < numeral x ^ n \<longleftrightarrow> a < numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 397 | by (metis (mono_tags) local.of_int_eq_numeral_power_cancel_iff of_int_less_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 398 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 399 | lemma neg_numeral_power_le_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 400 | "(- numeral x) ^ n \<le> of_int a \<longleftrightarrow> (- numeral x) ^ n \<le> a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 401 | by (metis (mono_tags) of_int_le_iff of_int_neg_numeral of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 402 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 403 | lemma of_int_le_neg_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 404 | "of_int a \<le> (- numeral x) ^ n \<longleftrightarrow> a \<le> (- numeral x) ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 405 | by (metis (mono_tags) of_int_le_iff of_int_neg_numeral of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 406 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 407 | lemma neg_numeral_power_less_of_int_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 408 | "(- numeral x) ^ n < of_int a \<longleftrightarrow> (- numeral x) ^ n < a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 409 | using of_int_less_iff[of "(- numeral x) ^ n" a] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 410 | by simp | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 411 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 412 | lemma of_int_less_neg_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 413 | "of_int a < (- numeral x) ^ n \<longleftrightarrow> a < (- numeral x::int) ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 414 | using of_int_less_iff[of a "(- numeral x) ^ n"] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 415 | by simp | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 416 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 417 | lemma of_int_le_of_int_power_cancel_iff[simp]: "(of_int b) ^ w \<le> of_int x \<longleftrightarrow> b ^ w \<le> x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 418 | by (metis (mono_tags) of_int_le_iff of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 419 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 420 | lemma of_int_power_le_of_int_cancel_iff[simp]: "of_int x \<le> (of_int b) ^ w\<longleftrightarrow> x \<le> b ^ w" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 421 | by (metis (mono_tags) of_int_le_iff of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 422 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 423 | lemma of_int_less_of_int_power_cancel_iff[simp]: "(of_int b) ^ w < of_int x \<longleftrightarrow> b ^ w < x" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 424 | by (metis (mono_tags) of_int_less_iff of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 425 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 426 | lemma of_int_power_less_of_int_cancel_iff[simp]: "of_int x < (of_int b) ^ w\<longleftrightarrow> x < b ^ w" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 427 | by (metis (mono_tags) of_int_less_iff of_int_power) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 428 | |
| 67969 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 429 | lemma of_int_max: "of_int (max x y) = max (of_int x) (of_int y)" | 
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 430 | by (auto simp: max_def) | 
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 431 | |
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 432 | lemma of_int_min: "of_int (min x y) = min (of_int x) (of_int y)" | 
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 433 | by (auto simp: min_def) | 
| 
83c8cafdebe8
Syntax for the special cases Min(A`I) and Max (A`I)
 paulson <lp15@cam.ac.uk> parents: 
67399diff
changeset | 434 | |
| 36424 | 435 | end | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 436 | |
| 69791 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 437 | context division_ring | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 438 | begin | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 439 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 440 | lemmas mult_inverse_of_int_commute = | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 441 | mult_commute_imp_mult_inverse_commute[OF mult_of_int_commute] | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 442 | |
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 443 | end | 
| 
195aeee8b30a
Formal Laurent series and overhaul of Formal power series (due to Jeremy Sylvestre)
 Manuel Eberl <eberlm@in.tum.de> parents: 
69700diff
changeset | 444 | |
| 69593 | 445 | text \<open>Comparisons involving \<^term>\<open>of_int\<close>.\<close> | 
| 61234 | 446 | |
| 63652 | 447 | lemma of_int_eq_numeral_iff [iff]: "of_int z = (numeral n :: 'a::ring_char_0) \<longleftrightarrow> z = numeral n" | 
| 61234 | 448 | using of_int_eq_iff by fastforce | 
| 449 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 450 | lemma of_int_le_numeral_iff [simp]: | 
| 63652 | 451 | "of_int z \<le> (numeral n :: 'a::linordered_idom) \<longleftrightarrow> z \<le> numeral n" | 
| 61234 | 452 | using of_int_le_iff [of z "numeral n"] by simp | 
| 453 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 454 | lemma of_int_numeral_le_iff [simp]: | 
| 63652 | 455 | "(numeral n :: 'a::linordered_idom) \<le> of_int z \<longleftrightarrow> numeral n \<le> z" | 
| 61234 | 456 | using of_int_le_iff [of "numeral n"] by simp | 
| 457 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 458 | lemma of_int_less_numeral_iff [simp]: | 
| 63652 | 459 | "of_int z < (numeral n :: 'a::linordered_idom) \<longleftrightarrow> z < numeral n" | 
| 61234 | 460 | using of_int_less_iff [of z "numeral n"] by simp | 
| 461 | ||
| 61649 
268d88ec9087
Tweaks for "real": Removal of [iff] status for some lemmas, adding [simp] for others. Plus fixes.
 paulson <lp15@cam.ac.uk> parents: 
61609diff
changeset | 462 | lemma of_int_numeral_less_iff [simp]: | 
| 63652 | 463 | "(numeral n :: 'a::linordered_idom) < of_int z \<longleftrightarrow> numeral n < z" | 
| 61234 | 464 | using of_int_less_iff [of "numeral n" z] by simp | 
| 465 | ||
| 63652 | 466 | lemma of_nat_less_of_int_iff: "(of_nat n::'a::linordered_idom) < of_int x \<longleftrightarrow> int n < x" | 
| 56889 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56525diff
changeset | 467 | by (metis of_int_of_nat_eq of_int_less_iff) | 
| 
48a745e1bde7
avoid the Complex constructor, use the more natural Re/Im view; moved csqrt to Complex.
 hoelzl parents: 
56525diff
changeset | 468 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 469 | lemma of_int_eq_id [simp]: "of_int = id" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 470 | proof | 
| 63652 | 471 | show "of_int z = id z" for z | 
| 472 | by (cases z rule: int_diff_cases) simp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 473 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 474 | |
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51185diff
changeset | 475 | instance int :: no_top | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 476 | proof | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 477 | show "\<And>x::int. \<exists>y. x < y" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 478 | by (rule_tac x="x + 1" in exI) simp | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 479 | qed | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51185diff
changeset | 480 | |
| 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51185diff
changeset | 481 | instance int :: no_bot | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 482 | proof | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 483 | show "\<And>x::int. \<exists>y. y < x" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 484 | by (rule_tac x="x - 1" in exI) simp | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 485 | qed | 
| 51329 
4a3c453f99a1
split dense into inner_dense_order and no_top/no_bot
 hoelzl parents: 
51185diff
changeset | 486 | |
| 63652 | 487 | |
| 61799 | 488 | subsection \<open>Magnitude of an Integer, as a Natural Number: \<open>nat\<close>\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 489 | |
| 48045 | 490 | lift_definition nat :: "int \<Rightarrow> nat" is "\<lambda>(x, y). x - y" | 
| 491 | by auto | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 492 | |
| 44709 | 493 | lemma nat_int [simp]: "nat (int n) = n" | 
| 48045 | 494 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 495 | |
| 44709 | 496 | lemma int_nat_eq [simp]: "int (nat z) = (if 0 \<le> z then z else 0)" | 
| 48045 | 497 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 498 | |
| 63652 | 499 | lemma nat_0_le: "0 \<le> z \<Longrightarrow> int (nat z) = z" | 
| 500 | by simp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 501 | |
| 63652 | 502 | lemma nat_le_0 [simp]: "z \<le> 0 \<Longrightarrow> nat z = 0" | 
| 48045 | 503 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 504 | |
| 63652 | 505 | lemma nat_le_eq_zle: "0 < w \<or> 0 \<le> z \<Longrightarrow> nat w \<le> nat z \<longleftrightarrow> w \<le> z" | 
| 48045 | 506 | by transfer (clarsimp, arith) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 507 | |
| 69593 | 508 | text \<open>An alternative condition is \<^term>\<open>0 \<le> w\<close>.\<close> | 
| 63652 | 509 | lemma nat_mono_iff: "0 < z \<Longrightarrow> nat w < nat z \<longleftrightarrow> w < z" | 
| 510 | by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 511 | |
| 63652 | 512 | lemma nat_less_eq_zless: "0 \<le> w \<Longrightarrow> nat w < nat z \<longleftrightarrow> w < z" | 
| 513 | by (simp add: nat_le_eq_zle linorder_not_le [symmetric]) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 514 | |
| 63652 | 515 | lemma zless_nat_conj [simp]: "nat w < nat z \<longleftrightarrow> 0 < z \<and> w < z" | 
| 48045 | 516 | by transfer (clarsimp, arith) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 517 | |
| 64714 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 518 | lemma nonneg_int_cases: | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 519 | assumes "0 \<le> k" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 520 | obtains n where "k = int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 521 | proof - | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 522 | from assms have "k = int (nat k)" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 523 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 524 | then show thesis | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 525 | by (rule that) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 526 | qed | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 527 | |
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 528 | lemma pos_int_cases: | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 529 | assumes "0 < k" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 530 | obtains n where "k = int n" and "n > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 531 | proof - | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 532 | from assms have "0 \<le> k" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 533 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 534 | then obtain n where "k = int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 535 | by (rule nonneg_int_cases) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 536 | moreover have "n > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 537 | using \<open>k = int n\<close> assms by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 538 | ultimately show thesis | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 539 | by (rule that) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 540 | qed | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 541 | |
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 542 | lemma nonpos_int_cases: | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 543 | assumes "k \<le> 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 544 | obtains n where "k = - int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 545 | proof - | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 546 | from assms have "- k \<ge> 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 547 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 548 | then obtain n where "- k = int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 549 | by (rule nonneg_int_cases) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 550 | then have "k = - int n" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 551 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 552 | then show thesis | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 553 | by (rule that) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 554 | qed | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 555 | |
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 556 | lemma neg_int_cases: | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 557 | assumes "k < 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 558 | obtains n where "k = - int n" and "n > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 559 | proof - | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 560 | from assms have "- k > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 561 | by simp | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 562 | then obtain n where "- k = int n" and "- k > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 563 | by (blast elim: pos_int_cases) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 564 | then have "k = - int n" and "n > 0" | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 565 | by simp_all | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 566 | then show thesis | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 567 | by (rule that) | 
| 
53bab28983f1
complete set of cases rules for integers known to be (non-)positive/negative;
 haftmann parents: 
64272diff
changeset | 568 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 569 | |
| 63652 | 570 | lemma nat_eq_iff: "nat w = m \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)" | 
| 48045 | 571 | by transfer (clarsimp simp add: le_imp_diff_is_add) | 
| 60162 | 572 | |
| 63652 | 573 | lemma nat_eq_iff2: "m = nat w \<longleftrightarrow> (if 0 \<le> w then w = int m else m = 0)" | 
| 54223 | 574 | using nat_eq_iff [of w m] by auto | 
| 575 | ||
| 63652 | 576 | lemma nat_0 [simp]: "nat 0 = 0" | 
| 54223 | 577 | by (simp add: nat_eq_iff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 578 | |
| 63652 | 579 | lemma nat_1 [simp]: "nat 1 = Suc 0" | 
| 54223 | 580 | by (simp add: nat_eq_iff) | 
| 581 | ||
| 63652 | 582 | lemma nat_numeral [simp]: "nat (numeral k) = numeral k" | 
| 54223 | 583 | by (simp add: nat_eq_iff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 584 | |
| 63652 | 585 | lemma nat_neg_numeral [simp]: "nat (- numeral k) = 0" | 
| 54223 | 586 | by simp | 
| 587 | ||
| 588 | lemma nat_2: "nat 2 = Suc (Suc 0)" | |
| 589 | by simp | |
| 60162 | 590 | |
| 63652 | 591 | lemma nat_less_iff: "0 \<le> w \<Longrightarrow> nat w < m \<longleftrightarrow> w < of_nat m" | 
| 48045 | 592 | by transfer (clarsimp, arith) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 593 | |
| 44709 | 594 | lemma nat_le_iff: "nat x \<le> n \<longleftrightarrow> x \<le> int n" | 
| 48045 | 595 | by transfer (clarsimp simp add: le_diff_conv) | 
| 44707 | 596 | |
| 597 | lemma nat_mono: "x \<le> y \<Longrightarrow> nat x \<le> nat y" | |
| 48045 | 598 | by transfer auto | 
| 44707 | 599 | |
| 63652 | 600 | lemma nat_0_iff[simp]: "nat i = 0 \<longleftrightarrow> i \<le> 0" | 
| 601 | for i :: int | |
| 48045 | 602 | by transfer clarsimp | 
| 29700 | 603 | |
| 63652 | 604 | lemma int_eq_iff: "of_nat m = z \<longleftrightarrow> m = nat z \<and> 0 \<le> z" | 
| 605 | by (auto simp add: nat_eq_iff2) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 606 | |
| 63652 | 607 | lemma zero_less_nat_eq [simp]: "0 < nat z \<longleftrightarrow> 0 < z" | 
| 608 | using zless_nat_conj [of 0] by auto | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 609 | |
| 63652 | 610 | lemma nat_add_distrib: "0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat (z + z') = nat z + nat z'" | 
| 48045 | 611 | by transfer clarsimp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 612 | |
| 63652 | 613 | lemma nat_diff_distrib': "0 \<le> x \<Longrightarrow> 0 \<le> y \<Longrightarrow> nat (x - y) = nat x - nat y" | 
| 54223 | 614 | by transfer clarsimp | 
| 60162 | 615 | |
| 63652 | 616 | lemma nat_diff_distrib: "0 \<le> z' \<Longrightarrow> z' \<le> z \<Longrightarrow> nat (z - z') = nat z - nat z'" | 
| 54223 | 617 | by (rule nat_diff_distrib') auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 618 | |
| 44709 | 619 | lemma nat_zminus_int [simp]: "nat (- int n) = 0" | 
| 48045 | 620 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 621 | |
| 63652 | 622 | lemma le_nat_iff: "k \<ge> 0 \<Longrightarrow> n \<le> nat k \<longleftrightarrow> int n \<le> k" | 
| 53065 | 623 | by transfer auto | 
| 60162 | 624 | |
| 63652 | 625 | lemma zless_nat_eq_int_zless: "m < nat z \<longleftrightarrow> int m < z" | 
| 48045 | 626 | by transfer (clarsimp simp add: less_diff_conv) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 627 | |
| 63652 | 628 | lemma (in ring_1) of_nat_nat [simp]: "0 \<le> z \<Longrightarrow> of_nat (nat z) = of_int z" | 
| 48066 
c6783c9b87bf
transfer method now handles transfer rules for compound terms, e.g. locale-defined constants with hidden parameters
 huffman parents: 
48045diff
changeset | 629 | by transfer (clarsimp simp add: of_nat_diff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 630 | |
| 63652 | 631 | lemma diff_nat_numeral [simp]: "(numeral v :: nat) - numeral v' = nat (numeral v - numeral v')" | 
| 54249 | 632 | by (simp only: nat_diff_distrib' zero_le_numeral nat_numeral) | 
| 633 | ||
| 66886 | 634 | lemma nat_abs_triangle_ineq: | 
| 635 | "nat \<bar>k + l\<bar> \<le> nat \<bar>k\<bar> + nat \<bar>l\<bar>" | |
| 636 | by (simp add: nat_add_distrib [symmetric] nat_le_eq_zle abs_triangle_ineq) | |
| 637 | ||
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 638 | lemma nat_of_bool [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 639 | "nat (of_bool P) = of_bool P" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 640 | by auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 641 | |
| 66836 | 642 | lemma split_nat [arith_split]: "P (nat i) \<longleftrightarrow> ((\<forall>n. i = int n \<longrightarrow> P n) \<and> (i < 0 \<longrightarrow> P 0))" | 
| 643 | (is "?P = (?L \<and> ?R)") | |
| 644 | for i :: int | |
| 645 | proof (cases "i < 0") | |
| 646 | case True | |
| 647 | then show ?thesis | |
| 648 | by auto | |
| 649 | next | |
| 650 | case False | |
| 651 | have "?P = ?L" | |
| 652 | proof | |
| 653 | assume ?P | |
| 654 | then show ?L using False by auto | |
| 655 | next | |
| 656 | assume ?L | |
| 657 | moreover from False have "int (nat i) = i" | |
| 658 | by (simp add: not_less) | |
| 659 | ultimately show ?P | |
| 660 | by simp | |
| 661 | qed | |
| 662 | with False show ?thesis by simp | |
| 663 | qed | |
| 664 | ||
| 665 | lemma all_nat: "(\<forall>x. P x) \<longleftrightarrow> (\<forall>x\<ge>0. P (nat x))" | |
| 666 | by (auto split: split_nat) | |
| 667 | ||
| 668 | lemma ex_nat: "(\<exists>x. P x) \<longleftrightarrow> (\<exists>x. 0 \<le> x \<and> P (nat x))" | |
| 669 | proof | |
| 670 | assume "\<exists>x. P x" | |
| 671 | then obtain x where "P x" .. | |
| 672 | then have "int x \<ge> 0 \<and> P (nat (int x))" by simp | |
| 673 | then show "\<exists>x\<ge>0. P (nat x)" .. | |
| 674 | next | |
| 675 | assume "\<exists>x\<ge>0. P (nat x)" | |
| 676 | then show "\<exists>x. P x" by auto | |
| 677 | qed | |
| 678 | ||
| 54249 | 679 | |
| 60758 | 680 | text \<open>For termination proofs:\<close> | 
| 63652 | 681 | lemma measure_function_int[measure_function]: "is_measure (nat \<circ> abs)" .. | 
| 29779 | 682 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 683 | |
| 69593 | 684 | subsection \<open>Lemmas about the Function \<^term>\<open>of_nat\<close> and Orderings\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 685 | |
| 61076 | 686 | lemma negative_zless_0: "- (int (Suc n)) < (0 :: int)" | 
| 63652 | 687 | by (simp add: order_less_le del: of_nat_Suc) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 688 | |
| 44709 | 689 | lemma negative_zless [iff]: "- (int (Suc n)) < int m" | 
| 63652 | 690 | by (rule negative_zless_0 [THEN order_less_le_trans], simp) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 691 | |
| 44709 | 692 | lemma negative_zle_0: "- int n \<le> 0" | 
| 63652 | 693 | by (simp add: minus_le_iff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 694 | |
| 44709 | 695 | lemma negative_zle [iff]: "- int n \<le> int m" | 
| 63652 | 696 | by (rule order_trans [OF negative_zle_0 of_nat_0_le_iff]) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 697 | |
| 63652 | 698 | lemma not_zle_0_negative [simp]: "\<not> 0 \<le> - int (Suc n)" | 
| 699 | by (subst le_minus_iff) (simp del: of_nat_Suc) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 700 | |
| 63652 | 701 | lemma int_zle_neg: "int n \<le> - int m \<longleftrightarrow> n = 0 \<and> m = 0" | 
| 48045 | 702 | by transfer simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 703 | |
| 63652 | 704 | lemma not_int_zless_negative [simp]: "\<not> int n < - int m" | 
| 705 | by (simp add: linorder_not_less) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 706 | |
| 63652 | 707 | lemma negative_eq_positive [simp]: "- int n = of_nat m \<longleftrightarrow> n = 0 \<and> m = 0" | 
| 708 | by (force simp add: order_eq_iff [of "- of_nat n"] int_zle_neg) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 709 | |
| 63652 | 710 | lemma zle_iff_zadd: "w \<le> z \<longleftrightarrow> (\<exists>n. z = w + int n)" | 
| 711 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 62348 | 712 | proof | 
| 63652 | 713 | assume ?rhs | 
| 714 | then show ?lhs by auto | |
| 62348 | 715 | next | 
| 63652 | 716 | assume ?lhs | 
| 62348 | 717 | then have "0 \<le> z - w" by simp | 
| 718 | then obtain n where "z - w = int n" | |
| 719 | using zero_le_imp_eq_int [of "z - w"] by blast | |
| 63652 | 720 | then have "z = w + int n" by simp | 
| 721 | then show ?rhs .. | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 722 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 723 | |
| 44709 | 724 | lemma zadd_int_left: "int m + (int n + z) = int (m + n) + z" | 
| 63652 | 725 | by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 726 | |
| 63652 | 727 | text \<open> | 
| 728 | This version is proved for all ordered rings, not just integers! | |
| 729 | It is proved here because attribute \<open>arith_split\<close> is not available | |
| 730 | in theory \<open>Rings\<close>. | |
| 731 | But is it really better than just rewriting with \<open>abs_if\<close>? | |
| 732 | \<close> | |
| 733 | lemma abs_split [arith_split, no_atp]: "P \<bar>a\<bar> \<longleftrightarrow> (0 \<le> a \<longrightarrow> P a) \<and> (a < 0 \<longrightarrow> P (- a))" | |
| 734 | for a :: "'a::linordered_idom" | |
| 735 | by (force dest: order_less_le_trans simp add: abs_if linorder_not_less) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 736 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 737 | lemma negD: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 738 | assumes "x < 0" shows "\<exists>n. x = - (int (Suc n))" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 739 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 740 | have "\<And>a b. a < b \<Longrightarrow> \<exists>n. Suc (a + n) = b" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 741 | by (rule_tac x="b - Suc a" in exI) arith | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 742 | with assms show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 743 | by transfer auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 744 | qed | 
| 63652 | 745 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 746 | |
| 60758 | 747 | subsection \<open>Cases and induction\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 748 | |
| 63652 | 749 | text \<open> | 
| 750 | Now we replace the case analysis rule by a more conventional one: | |
| 751 | whether an integer is negative or not. | |
| 752 | \<close> | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 753 | |
| 63652 | 754 | text \<open>This version is symmetric in the two subgoals.\<close> | 
| 755 | lemma int_cases2 [case_names nonneg nonpos, cases type: int]: | |
| 756 | "(\<And>n. z = int n \<Longrightarrow> P) \<Longrightarrow> (\<And>n. z = - (int n) \<Longrightarrow> P) \<Longrightarrow> P" | |
| 757 | by (cases "z < 0") (auto simp add: linorder_not_less dest!: negD nat_0_le [THEN sym]) | |
| 59613 
7103019278f0
The function frac. Various lemmas about limits, series, the exp function, etc.
 paulson <lp15@cam.ac.uk> parents: 
59582diff
changeset | 758 | |
| 63652 | 759 | text \<open>This is the default, with a negative case.\<close> | 
| 760 | lemma int_cases [case_names nonneg neg, cases type: int]: | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 761 | assumes pos: "\<And>n. z = int n \<Longrightarrow> P" and neg: "\<And>n. z = - (int (Suc n)) \<Longrightarrow> P" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 762 | shows P | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 763 | proof (cases "z < 0") | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 764 | case True | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 765 | with neg show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 766 | by (blast dest!: negD) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 767 | next | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 768 | case False | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 769 | with pos show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 770 | by (force simp add: linorder_not_less dest: nat_0_le [THEN sym]) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 771 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 772 | |
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 773 | lemma int_cases3 [case_names zero pos neg]: | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 774 | fixes k :: int | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 775 | assumes "k = 0 \<Longrightarrow> P" and "\<And>n. k = int n \<Longrightarrow> n > 0 \<Longrightarrow> P" | 
| 61204 | 776 | and "\<And>n. k = - int n \<Longrightarrow> n > 0 \<Longrightarrow> P" | 
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 777 | shows "P" | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 778 | proof (cases k "0::int" rule: linorder_cases) | 
| 63652 | 779 | case equal | 
| 780 | with assms(1) show P by simp | |
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 781 | next | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 782 | case greater | 
| 63539 | 783 | then have *: "nat k > 0" by simp | 
| 784 | moreover from * have "k = int (nat k)" by auto | |
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 785 | ultimately show P using assms(2) by blast | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 786 | next | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 787 | case less | 
| 63539 | 788 | then have *: "nat (- k) > 0" by simp | 
| 789 | moreover from * have "k = - int (nat (- k))" by auto | |
| 60868 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 790 | ultimately show P using assms(3) by blast | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 791 | qed | 
| 
dd18c33c001e
direct bootstrap of integer division from natural division
 haftmann parents: 
60758diff
changeset | 792 | |
| 63652 | 793 | lemma int_of_nat_induct [case_names nonneg neg, induct type: int]: | 
| 794 | "(\<And>n. P (int n)) \<Longrightarrow> (\<And>n. P (- (int (Suc n)))) \<Longrightarrow> P z" | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 795 | by (cases z) auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 796 | |
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 797 | lemma sgn_mult_dvd_iff [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 798 | "sgn r * l dvd k \<longleftrightarrow> l dvd k \<and> (r = 0 \<longrightarrow> k = 0)" for k l r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 799 | by (cases r rule: int_cases3) auto | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 800 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 801 | lemma mult_sgn_dvd_iff [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 802 | "l * sgn r dvd k \<longleftrightarrow> l dvd k \<and> (r = 0 \<longrightarrow> k = 0)" for k l r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 803 | using sgn_mult_dvd_iff [of r l k] by (simp add: ac_simps) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 804 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 805 | lemma dvd_sgn_mult_iff [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 806 | "l dvd sgn r * k \<longleftrightarrow> l dvd k \<or> r = 0" for k l r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 807 | by (cases r rule: int_cases3) simp_all | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 808 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 809 | lemma dvd_mult_sgn_iff [simp]: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 810 | "l dvd k * sgn r \<longleftrightarrow> l dvd k \<or> r = 0" for k l r :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 811 | using dvd_sgn_mult_iff [of l r k] by (simp add: ac_simps) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 812 | |
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 813 | lemma int_sgnE: | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 814 | fixes k :: int | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 815 | obtains n and l where "k = sgn l * int n" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 816 | proof - | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 817 | have "k = sgn k * int (nat \<bar>k\<bar>)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 818 | by (simp add: sgn_mult_abs) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 819 | then show ?thesis .. | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 820 | qed | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 821 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 822 | |
| 60758 | 823 | subsubsection \<open>Binary comparisons\<close> | 
| 28958 | 824 | |
| 60758 | 825 | text \<open>Preliminaries\<close> | 
| 28958 | 826 | |
| 60162 | 827 | lemma le_imp_0_less: | 
| 63652 | 828 | fixes z :: int | 
| 28958 | 829 | assumes le: "0 \<le> z" | 
| 63652 | 830 | shows "0 < 1 + z" | 
| 28958 | 831 | proof - | 
| 832 | have "0 \<le> z" by fact | |
| 63652 | 833 | also have "\<dots> < z + 1" by (rule less_add_one) | 
| 834 | also have "\<dots> = 1 + z" by (simp add: ac_simps) | |
| 28958 | 835 | finally show "0 < 1 + z" . | 
| 836 | qed | |
| 837 | ||
| 63652 | 838 | lemma odd_less_0_iff: "1 + z + z < 0 \<longleftrightarrow> z < 0" | 
| 839 | for z :: int | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 840 | proof (cases z) | 
| 28958 | 841 | case (nonneg n) | 
| 63652 | 842 | then show ?thesis | 
| 843 | by (simp add: linorder_not_less add.assoc add_increasing le_imp_0_less [THEN order_less_imp_le]) | |
| 28958 | 844 | next | 
| 845 | case (neg n) | |
| 63652 | 846 | then show ?thesis | 
| 847 | by (simp del: of_nat_Suc of_nat_add of_nat_1 | |
| 848 | add: algebra_simps of_nat_1 [where 'a=int, symmetric] of_nat_add [symmetric]) | |
| 28958 | 849 | qed | 
| 850 | ||
| 63652 | 851 | |
| 60758 | 852 | subsubsection \<open>Comparisons, for Ordered Rings\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 853 | |
| 63652 | 854 | lemma odd_nonzero: "1 + z + z \<noteq> 0" | 
| 855 | for z :: int | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 856 | proof (cases z) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 857 | case (nonneg n) | 
| 63652 | 858 | have le: "0 \<le> z + z" | 
| 859 | by (simp add: nonneg add_increasing) | |
| 860 | then show ?thesis | |
| 67116 | 861 | using le_imp_0_less [OF le] by (auto simp: ac_simps) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 862 | next | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 863 | case (neg n) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 864 | show ?thesis | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 865 | proof | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 866 | assume eq: "1 + z + z = 0" | 
| 63652 | 867 | have "0 < 1 + (int n + int n)" | 
| 60162 | 868 | by (simp add: le_imp_0_less add_increasing) | 
| 63652 | 869 | also have "\<dots> = - (1 + z + z)" | 
| 60162 | 870 | by (simp add: neg add.assoc [symmetric]) | 
| 63652 | 871 | also have "\<dots> = 0" by (simp add: eq) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 872 | finally have "0<0" .. | 
| 63652 | 873 | then show False by blast | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 874 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 875 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 876 | |
| 30652 
752329615264
distributed contents of theory Arith_Tools to theories Int, IntDiv and NatBin accordingly
 haftmann parents: 
30496diff
changeset | 877 | |
| 60758 | 878 | subsection \<open>The Set of Integers\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 879 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 880 | context ring_1 | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 881 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 882 | |
| 61070 | 883 | definition Ints :: "'a set"  ("\<int>")
 | 
| 884 | where "\<int> = range of_int" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 885 | |
| 35634 | 886 | lemma Ints_of_int [simp]: "of_int z \<in> \<int>" | 
| 887 | by (simp add: Ints_def) | |
| 888 | ||
| 889 | lemma Ints_of_nat [simp]: "of_nat n \<in> \<int>" | |
| 45533 | 890 | using Ints_of_int [of "of_nat n"] by simp | 
| 35634 | 891 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 892 | lemma Ints_0 [simp]: "0 \<in> \<int>" | 
| 45533 | 893 | using Ints_of_int [of "0"] by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 894 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 895 | lemma Ints_1 [simp]: "1 \<in> \<int>" | 
| 45533 | 896 | using Ints_of_int [of "1"] by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 897 | |
| 61552 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 898 | lemma Ints_numeral [simp]: "numeral n \<in> \<int>" | 
| 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 899 | by (subst of_nat_numeral [symmetric], rule Ints_of_nat) | 
| 
980dd46a03fb
Added binomial identities to CONTRIBUTORS; small lemmas on of_int/pochhammer
 eberlm parents: 
61531diff
changeset | 900 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 901 | lemma Ints_add [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a + b \<in> \<int>" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 902 | by (force simp add: Ints_def simp flip: of_int_add intro: range_eqI) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 903 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 904 | lemma Ints_minus [simp]: "a \<in> \<int> \<Longrightarrow> -a \<in> \<int>" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 905 | by (force simp add: Ints_def simp flip: of_int_minus intro: range_eqI) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 906 | |
| 68721 | 907 | lemma minus_in_Ints_iff: "-x \<in> \<int> \<longleftrightarrow> x \<in> \<int>" | 
| 908 | using Ints_minus[of x] Ints_minus[of "-x"] by auto | |
| 909 | ||
| 35634 | 910 | lemma Ints_diff [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a - b \<in> \<int>" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 911 | by (force simp add: Ints_def simp flip: of_int_diff intro: range_eqI) | 
| 35634 | 912 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 913 | lemma Ints_mult [simp]: "a \<in> \<int> \<Longrightarrow> b \<in> \<int> \<Longrightarrow> a * b \<in> \<int>" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 914 | by (force simp add: Ints_def simp flip: of_int_mult intro: range_eqI) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 915 | |
| 35634 | 916 | lemma Ints_power [simp]: "a \<in> \<int> \<Longrightarrow> a ^ n \<in> \<int>" | 
| 63652 | 917 | by (induct n) simp_all | 
| 35634 | 918 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 919 | lemma Ints_cases [cases set: Ints]: | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 920 | assumes "q \<in> \<int>" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 921 | obtains (of_int) z where "q = of_int z" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 922 | unfolding Ints_def | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 923 | proof - | 
| 60758 | 924 | from \<open>q \<in> \<int>\<close> have "q \<in> range of_int" unfolding Ints_def . | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 925 | then obtain z where "q = of_int z" .. | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 926 | then show thesis .. | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 927 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 928 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 929 | lemma Ints_induct [case_names of_int, induct set: Ints]: | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 930 | "q \<in> \<int> \<Longrightarrow> (\<And>z. P (of_int z)) \<Longrightarrow> P q" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 931 | by (rule Ints_cases) auto | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 932 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 933 | lemma Nats_subset_Ints: "\<nat> \<subseteq> \<int>" | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 934 | unfolding Nats_def Ints_def | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 935 | by (rule subsetI, elim imageE, hypsubst, subst of_int_of_nat_eq[symmetric], rule imageI) simp_all | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 936 | |
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 937 | lemma Nats_altdef1: "\<nat> = {of_int n |n. n \<ge> 0}"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 938 | proof (intro subsetI equalityI) | 
| 63652 | 939 | fix x :: 'a | 
| 940 |   assume "x \<in> {of_int n |n. n \<ge> 0}"
 | |
| 941 | then obtain n where "x = of_int n" "n \<ge> 0" | |
| 942 | by (auto elim!: Ints_cases) | |
| 943 | then have "x = of_nat (nat n)" | |
| 944 | by (subst of_nat_nat) simp_all | |
| 945 | then show "x \<in> \<nat>" | |
| 946 | by simp | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 947 | next | 
| 63652 | 948 | fix x :: 'a | 
| 949 | assume "x \<in> \<nat>" | |
| 950 | then obtain n where "x = of_nat n" | |
| 951 | by (auto elim!: Nats_cases) | |
| 952 | then have "x = of_int (int n)" by simp | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 953 | also have "int n \<ge> 0" by simp | 
| 63652 | 954 |   then have "of_int (int n) \<in> {of_int n |n. n \<ge> 0}" by blast
 | 
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 955 |   finally show "x \<in> {of_int n |n. n \<ge> 0}" .
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 956 | qed | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 957 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 958 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 959 | |
| 73109 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 960 | lemma Ints_sum [intro]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<int>) \<Longrightarrow> sum f A \<in> \<int>" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 961 | by (induction A rule: infinite_finite_induct) auto | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 962 | |
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 963 | lemma Ints_prod [intro]: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> \<int>) \<Longrightarrow> prod f A \<in> \<int>" | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 964 | by (induction A rule: infinite_finite_induct) auto | 
| 
783406dd051e
some algebra material for HOL: characteristic of a ring, algebraic integers
 Manuel Eberl <eberlm@in.tum.de> parents: 
72512diff
changeset | 965 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 966 | lemma (in linordered_idom) Ints_abs [simp]: | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 967 | shows "a \<in> \<int> \<Longrightarrow> abs a \<in> \<int>" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 968 | by (auto simp: abs_if) | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 969 | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 970 | lemma (in linordered_idom) Nats_altdef2: "\<nat> = {n \<in> \<int>. n \<ge> 0}"
 | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 971 | proof (intro subsetI equalityI) | 
| 63652 | 972 | fix x :: 'a | 
| 973 |   assume "x \<in> {n \<in> \<int>. n \<ge> 0}"
 | |
| 974 | then obtain n where "x = of_int n" "n \<ge> 0" | |
| 975 | by (auto elim!: Ints_cases) | |
| 976 | then have "x = of_nat (nat n)" | |
| 977 | by (subst of_nat_nat) simp_all | |
| 978 | then show "x \<in> \<nat>" | |
| 979 | by simp | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 980 | qed (auto elim!: Nats_cases) | 
| 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 981 | |
| 64849 | 982 | lemma (in idom_divide) of_int_divide_in_Ints: | 
| 983 | "of_int a div of_int b \<in> \<int>" if "b dvd a" | |
| 984 | proof - | |
| 985 | from that obtain c where "a = b * c" .. | |
| 986 | then show ?thesis | |
| 987 | by (cases "of_int b = 0") simp_all | |
| 988 | qed | |
| 61524 
f2e51e704a96
added many small lemmas about setsum/setprod/powr/...
 eberlm parents: 
61234diff
changeset | 989 | |
| 69593 | 990 | text \<open>The premise involving \<^term>\<open>Ints\<close> prevents \<^term>\<open>a = 1/2\<close>.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 991 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 992 | lemma Ints_double_eq_0_iff: | 
| 63652 | 993 | fixes a :: "'a::ring_char_0" | 
| 61070 | 994 | assumes in_Ints: "a \<in> \<int>" | 
| 63652 | 995 | shows "a + a = 0 \<longleftrightarrow> a = 0" | 
| 996 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 997 | proof - | 
| 63652 | 998 | from in_Ints have "a \<in> range of_int" | 
| 999 | unfolding Ints_def [symmetric] . | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1000 | then obtain z where a: "a = of_int z" .. | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1001 | show ?thesis | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1002 | proof | 
| 63652 | 1003 | assume ?rhs | 
| 1004 | then show ?lhs by simp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1005 | next | 
| 63652 | 1006 | assume ?lhs | 
| 1007 | with a have "of_int (z + z) = (of_int 0 :: 'a)" by simp | |
| 1008 | then have "z + z = 0" by (simp only: of_int_eq_iff) | |
| 67116 | 1009 | then have "z = 0" by (simp only: double_zero) | 
| 63652 | 1010 | with a show ?rhs by simp | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1011 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1012 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1013 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1014 | lemma Ints_odd_nonzero: | 
| 63652 | 1015 | fixes a :: "'a::ring_char_0" | 
| 61070 | 1016 | assumes in_Ints: "a \<in> \<int>" | 
| 63652 | 1017 | shows "1 + a + a \<noteq> 0" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1018 | proof - | 
| 63652 | 1019 | from in_Ints have "a \<in> range of_int" | 
| 1020 | unfolding Ints_def [symmetric] . | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1021 | then obtain z where a: "a = of_int z" .. | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1022 | show ?thesis | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1023 | proof | 
| 63652 | 1024 | assume "1 + a + a = 0" | 
| 1025 | with a have "of_int (1 + z + z) = (of_int 0 :: 'a)" by simp | |
| 1026 | then have "1 + z + z = 0" by (simp only: of_int_eq_iff) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1027 | with odd_nonzero show False by blast | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1028 | qed | 
| 60162 | 1029 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1030 | |
| 61070 | 1031 | lemma Nats_numeral [simp]: "numeral w \<in> \<nat>" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 1032 | using of_nat_in_Nats [of "numeral w"] by simp | 
| 35634 | 1033 | |
| 60162 | 1034 | lemma Ints_odd_less_0: | 
| 63652 | 1035 | fixes a :: "'a::linordered_idom" | 
| 61070 | 1036 | assumes in_Ints: "a \<in> \<int>" | 
| 63652 | 1037 | shows "1 + a + a < 0 \<longleftrightarrow> a < 0" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1038 | proof - | 
| 63652 | 1039 | from in_Ints have "a \<in> range of_int" | 
| 1040 | unfolding Ints_def [symmetric] . | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1041 | then obtain z where a: "a = of_int z" .. | 
| 63652 | 1042 | with a have "1 + a + a < 0 \<longleftrightarrow> of_int (1 + z + z) < (of_int 0 :: 'a)" | 
| 1043 | by simp | |
| 1044 | also have "\<dots> \<longleftrightarrow> z < 0" | |
| 1045 | by (simp only: of_int_less_iff odd_less_0_iff) | |
| 1046 | also have "\<dots> \<longleftrightarrow> a < 0" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1047 | by (simp add: a) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1048 | finally show ?thesis . | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1049 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1050 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1051 | |
| 69593 | 1052 | subsection \<open>\<^term>\<open>sum\<close> and \<^term>\<open>prod\<close>\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1053 | |
| 69182 | 1054 | context semiring_1 | 
| 1055 | begin | |
| 1056 | ||
| 1057 | lemma of_nat_sum [simp]: | |
| 1058 | "of_nat (sum f A) = (\<Sum>x\<in>A. of_nat (f x))" | |
| 1059 | by (induction A rule: infinite_finite_induct) auto | |
| 1060 | ||
| 1061 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1062 | |
| 69182 | 1063 | context ring_1 | 
| 1064 | begin | |
| 1065 | ||
| 1066 | lemma of_int_sum [simp]: | |
| 1067 | "of_int (sum f A) = (\<Sum>x\<in>A. of_int (f x))" | |
| 1068 | by (induction A rule: infinite_finite_induct) auto | |
| 1069 | ||
| 1070 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1071 | |
| 69182 | 1072 | context comm_semiring_1 | 
| 1073 | begin | |
| 1074 | ||
| 1075 | lemma of_nat_prod [simp]: | |
| 1076 | "of_nat (prod f A) = (\<Prod>x\<in>A. of_nat (f x))" | |
| 1077 | by (induction A rule: infinite_finite_induct) auto | |
| 1078 | ||
| 1079 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1080 | |
| 69182 | 1081 | context comm_ring_1 | 
| 1082 | begin | |
| 1083 | ||
| 1084 | lemma of_int_prod [simp]: | |
| 1085 | "of_int (prod f A) = (\<Prod>x\<in>A. of_int (f x))" | |
| 1086 | by (induction A rule: infinite_finite_induct) auto | |
| 1087 | ||
| 1088 | end | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1089 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1090 | |
| 60758 | 1091 | subsection \<open>Setting up simplification procedures\<close> | 
| 30802 | 1092 | |
| 70356 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1093 | ML_file \<open>Tools/int_arith.ML\<close> | 
| 54249 | 1094 | |
| 70356 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1095 | declaration \<open>K ( | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1096 | Lin_Arith.add_discrete_type \<^type_name>\<open>Int.int\<close> | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1097 |   #> Lin_Arith.add_lessD @{thm zless_imp_add1_zle}
 | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1098 |   #> Lin_Arith.add_inj_thms @{thms of_nat_le_iff [THEN iffD2] of_nat_eq_iff [THEN iffD2]}
 | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1099 | #> Lin_Arith.add_inj_const (\<^const_name>\<open>of_nat\<close>, \<^typ>\<open>nat \<Rightarrow> int\<close>) | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1100 | #> Lin_Arith.add_simps | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1101 |       @{thms of_int_0 of_int_1 of_int_add of_int_mult of_int_numeral of_int_neg_numeral nat_0 nat_1 diff_nat_numeral nat_numeral
 | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1102 | neg_less_iff_less | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1103 | True_implies_equals | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1104 | distrib_left [where a = "numeral v" for v] | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1105 | distrib_left [where a = "- numeral v" for v] | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1106 | div_by_1 div_0 | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1107 | times_divide_eq_right times_divide_eq_left | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1108 | minus_divide_left [THEN sym] minus_divide_right [THEN sym] | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1109 | add_divide_distrib diff_divide_distrib | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1110 | of_int_minus of_int_diff | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1111 | of_int_of_nat_eq} | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1112 | #> Lin_Arith.add_simprocs [Int_Arith.zero_one_idom_simproc] | 
| 
4a327c061870
streamlined setup for linear algebra, particularly removed redundant rule declarations
 haftmann parents: 
70354diff
changeset | 1113 | )\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1114 | |
| 63652 | 1115 | simproc_setup fast_arith | 
| 1116 |   ("(m::'a::linordered_idom) < n" |
 | |
| 1117 | "(m::'a::linordered_idom) \<le> n" | | |
| 1118 | "(m::'a::linordered_idom) = n") = | |
| 61144 | 1119 | \<open>K Lin_Arith.simproc\<close> | 
| 43595 | 1120 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1121 | |
| 60758 | 1122 | subsection\<open>More Inequality Reasoning\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1123 | |
| 63652 | 1124 | lemma zless_add1_eq: "w < z + 1 \<longleftrightarrow> w < z \<or> w = z" | 
| 1125 | for w z :: int | |
| 1126 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1127 | |
| 63652 | 1128 | lemma add1_zle_eq: "w + 1 \<le> z \<longleftrightarrow> w < z" | 
| 1129 | for w z :: int | |
| 1130 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1131 | |
| 63652 | 1132 | lemma zle_diff1_eq [simp]: "w \<le> z - 1 \<longleftrightarrow> w < z" | 
| 1133 | for w z :: int | |
| 1134 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1135 | |
| 63652 | 1136 | lemma zle_add1_eq_le [simp]: "w < z + 1 \<longleftrightarrow> w \<le> z" | 
| 1137 | for w z :: int | |
| 1138 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1139 | |
| 63652 | 1140 | lemma int_one_le_iff_zero_less: "1 \<le> z \<longleftrightarrow> 0 < z" | 
| 1141 | for z :: int | |
| 1142 | by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1143 | |
| 64758 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1144 | lemma Ints_nonzero_abs_ge1: | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1145 | fixes x:: "'a :: linordered_idom" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1146 | assumes "x \<in> Ints" "x \<noteq> 0" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1147 | shows "1 \<le> abs x" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1148 | proof (rule Ints_cases [OF \<open>x \<in> Ints\<close>]) | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1149 | fix z::int | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1150 | assume "x = of_int z" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1151 | with \<open>x \<noteq> 0\<close> | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1152 | show "1 \<le> \<bar>x\<bar>" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1153 | apply (auto simp add: abs_if) | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1154 | by (metis diff_0 of_int_1 of_int_le_iff of_int_minus zle_diff1_eq) | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1155 | qed | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1156 | |
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1157 | lemma Ints_nonzero_abs_less1: | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1158 | fixes x:: "'a :: linordered_idom" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1159 | shows "\<lbrakk>x \<in> Ints; abs x < 1\<rbrakk> \<Longrightarrow> x = 0" | 
| 
3b33d2fc5fc0
A few new lemmas and needed adaptations
 paulson <lp15@cam.ac.uk> parents: 
64714diff
changeset | 1160 | using Ints_nonzero_abs_ge1 [of x] by auto | 
| 70365 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1161 | |
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1162 | lemma Ints_eq_abs_less1: | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1163 | fixes x:: "'a :: linordered_idom" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1164 | shows "\<lbrakk>x \<in> Ints; y \<in> Ints\<rbrakk> \<Longrightarrow> x = y \<longleftrightarrow> abs (x-y) < 1" | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1165 | using eq_iff_diff_eq_0 by (fastforce intro: Ints_nonzero_abs_less1) | 
| 
4df0628e8545
a few new lemmas and a bit of tidying
 paulson <lp15@cam.ac.uk> parents: 
70356diff
changeset | 1166 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1167 | |
| 69593 | 1168 | subsection \<open>The functions \<^term>\<open>nat\<close> and \<^term>\<open>int\<close>\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1169 | |
| 69593 | 1170 | text \<open>Simplify the term \<^term>\<open>w + - z\<close>.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1171 | |
| 63652 | 1172 | lemma one_less_nat_eq [simp]: "Suc 0 < nat z \<longleftrightarrow> 1 < z" | 
| 60162 | 1173 | using zless_nat_conj [of 1 z] by auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1174 | |
| 67116 | 1175 | lemma int_eq_iff_numeral [simp]: | 
| 1176 | "int m = numeral v \<longleftrightarrow> m = numeral v" | |
| 1177 | by (simp add: int_eq_iff) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1178 | |
| 67116 | 1179 | lemma nat_abs_int_diff: | 
| 1180 | "nat \<bar>int a - int b\<bar> = (if a \<le> b then b - a else a - b)" | |
| 59000 | 1181 | by auto | 
| 1182 | ||
| 1183 | lemma nat_int_add: "nat (int a + int b) = a + b" | |
| 1184 | by auto | |
| 1185 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1186 | context ring_1 | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1187 | begin | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1188 | |
| 33056 
791a4655cae3
renamed "nitpick_const_xxx" attributes to "nitpick_xxx" and "nitpick_ind_intros" to "nitpick_intros"
 blanchet parents: 
32437diff
changeset | 1189 | lemma of_int_of_nat [nitpick_simp]: | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1190 | "of_int k = (if k < 0 then - of_nat (nat (- k)) else of_nat (nat k))" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1191 | proof (cases "k < 0") | 
| 63652 | 1192 | case True | 
| 1193 | then have "0 \<le> - k" by simp | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1194 | then have "of_nat (nat (- k)) = of_int (- k)" by (rule of_nat_nat) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1195 | with True show ?thesis by simp | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1196 | next | 
| 63652 | 1197 | case False | 
| 1198 | then show ?thesis by (simp add: not_less) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1199 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1200 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1201 | end | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1202 | |
| 64014 | 1203 | lemma transfer_rule_of_int: | 
| 70927 | 1204 | includes lifting_syntax | 
| 64014 | 1205 | fixes R :: "'a::ring_1 \<Rightarrow> 'b::ring_1 \<Rightarrow> bool" | 
| 1206 | assumes [transfer_rule]: "R 0 0" "R 1 1" | |
| 70927 | 1207 | "(R ===> R ===> R) (+) (+)" | 
| 1208 | "(R ===> R) uminus uminus" | |
| 1209 | shows "((=) ===> R) of_int of_int" | |
| 64014 | 1210 | proof - | 
| 70927 | 1211 | note assms | 
| 64014 | 1212 | note transfer_rule_of_nat [transfer_rule] | 
| 70927 | 1213 | have [transfer_rule]: "((=) ===> R) of_nat of_nat" | 
| 64014 | 1214 | by transfer_prover | 
| 1215 | show ?thesis | |
| 1216 | by (unfold of_int_of_nat [abs_def]) transfer_prover | |
| 1217 | qed | |
| 1218 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1219 | lemma nat_mult_distrib: | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1220 | fixes z z' :: int | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1221 | assumes "0 \<le> z" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1222 | shows "nat (z * z') = nat z * nat z'" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1223 | proof (cases "0 \<le> z'") | 
| 63652 | 1224 | case False | 
| 1225 | with assms have "z * z' \<le> 0" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1226 | by (simp add: not_le mult_le_0_iff) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1227 | then have "nat (z * z') = 0" by simp | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1228 | moreover from False have "nat z' = 0" by simp | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1229 | ultimately show ?thesis by simp | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1230 | next | 
| 63652 | 1231 | case True | 
| 1232 | with assms have ge_0: "z * z' \<ge> 0" by (simp add: zero_le_mult_iff) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1233 | show ?thesis | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1234 | by (rule injD [of "of_nat :: nat \<Rightarrow> int", OF inj_of_nat]) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1235 | (simp only: of_nat_mult of_nat_nat [OF True] | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1236 | of_nat_nat [OF assms] of_nat_nat [OF ge_0], simp) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1237 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1238 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1239 | lemma nat_mult_distrib_neg: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1240 | assumes "z \<le> (0::int)" shows "nat (z * z') = nat (- z) * nat (- z')" (is "?L = ?R") | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1241 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1242 | have "?L = nat (- z * - z')" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1243 | using assms by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1244 | also have "... = ?R" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1245 | by (rule nat_mult_distrib) (use assms in auto) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1246 | finally show ?thesis . | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1247 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1248 | |
| 61944 | 1249 | lemma nat_abs_mult_distrib: "nat \<bar>w * z\<bar> = nat \<bar>w\<bar> * nat \<bar>z\<bar>" | 
| 63652 | 1250 | by (cases "z = 0 \<or> w = 0") | 
| 1251 | (auto simp add: abs_if nat_mult_distrib [symmetric] | |
| 1252 | nat_mult_distrib_neg [symmetric] mult_less_0_iff) | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1253 | |
| 63652 | 1254 | lemma int_in_range_abs [simp]: "int n \<in> range abs" | 
| 60570 | 1255 | proof (rule range_eqI) | 
| 63652 | 1256 | show "int n = \<bar>int n\<bar>" by simp | 
| 60570 | 1257 | qed | 
| 1258 | ||
| 63652 | 1259 | lemma range_abs_Nats [simp]: "range abs = (\<nat> :: int set)" | 
| 60570 | 1260 | proof - | 
| 1261 | have "\<bar>k\<bar> \<in> \<nat>" for k :: int | |
| 1262 | by (cases k) simp_all | |
| 1263 | moreover have "k \<in> range abs" if "k \<in> \<nat>" for k :: int | |
| 1264 | using that by induct simp | |
| 1265 | ultimately show ?thesis by blast | |
| 61204 | 1266 | qed | 
| 60570 | 1267 | |
| 63652 | 1268 | lemma Suc_nat_eq_nat_zadd1: "0 \<le> z \<Longrightarrow> Suc (nat z) = nat (1 + z)" | 
| 1269 | for z :: int | |
| 1270 | by (rule sym) (simp add: nat_eq_iff) | |
| 47207 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1271 | |
| 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1272 | lemma diff_nat_eq_if: | 
| 63652 | 1273 | "nat z - nat z' = | 
| 1274 | (if z' < 0 then nat z | |
| 1275 | else | |
| 1276 | let d = z - z' | |
| 1277 | in if d < 0 then 0 else nat d)" | |
| 1278 | by (simp add: Let_def nat_diff_distrib [symmetric]) | |
| 47207 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1279 | |
| 63652 | 1280 | lemma nat_numeral_diff_1 [simp]: "numeral v - (1::nat) = nat (numeral v - 1)" | 
| 47207 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1281 | using diff_nat_numeral [of v Num.One] by simp | 
| 
9368aa814518
move lemmas from Nat_Numeral to Int.thy and Num.thy
 huffman parents: 
47192diff
changeset | 1282 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1283 | |
| 63652 | 1284 | subsection \<open>Induction principles for int\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1285 | |
| 63652 | 1286 | text \<open>Well-founded segments of the integers.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1287 | |
| 63652 | 1288 | definition int_ge_less_than :: "int \<Rightarrow> (int \<times> int) set" | 
| 1289 |   where "int_ge_less_than d = {(z', z). d \<le> z' \<and> z' < z}"
 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1290 | |
| 63652 | 1291 | lemma wf_int_ge_less_than: "wf (int_ge_less_than d)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1292 | proof - | 
| 63652 | 1293 | have "int_ge_less_than d \<subseteq> measure (\<lambda>z. nat (z - d))" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1294 | by (auto simp add: int_ge_less_than_def) | 
| 63652 | 1295 | then show ?thesis | 
| 60162 | 1296 | by (rule wf_subset [OF wf_measure]) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1297 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1298 | |
| 63652 | 1299 | text \<open> | 
| 1300 | This variant looks odd, but is typical of the relations suggested | |
| 1301 | by RankFinder.\<close> | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1302 | |
| 63652 | 1303 | definition int_ge_less_than2 :: "int \<Rightarrow> (int \<times> int) set" | 
| 1304 |   where "int_ge_less_than2 d = {(z',z). d \<le> z \<and> z' < z}"
 | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1305 | |
| 63652 | 1306 | lemma wf_int_ge_less_than2: "wf (int_ge_less_than2 d)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1307 | proof - | 
| 63652 | 1308 | have "int_ge_less_than2 d \<subseteq> measure (\<lambda>z. nat (1 + z - d))" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1309 | by (auto simp add: int_ge_less_than2_def) | 
| 63652 | 1310 | then show ?thesis | 
| 60162 | 1311 | by (rule wf_subset [OF wf_measure]) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1312 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1313 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1314 | (* `set:int': dummy construction *) | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1315 | theorem int_ge_induct [case_names base step, induct set: int]: | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1316 | fixes i :: int | 
| 63652 | 1317 | assumes ge: "k \<le> i" | 
| 1318 | and base: "P k" | |
| 1319 | and step: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1320 | shows "P i" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1321 | proof - | 
| 63652 | 1322 | have "\<And>i::int. n = nat (i - k) \<Longrightarrow> k \<le> i \<Longrightarrow> P i" for n | 
| 1323 | proof (induct n) | |
| 1324 | case 0 | |
| 1325 | then have "i = k" by arith | |
| 1326 | with base show "P i" by simp | |
| 1327 | next | |
| 1328 | case (Suc n) | |
| 1329 | then have "n = nat ((i - 1) - k)" by arith | |
| 1330 | moreover have k: "k \<le> i - 1" using Suc.prems by arith | |
| 1331 | ultimately have "P (i - 1)" by (rule Suc.hyps) | |
| 1332 | from step [OF k this] show ?case by simp | |
| 1333 | qed | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1334 | with ge show ?thesis by fast | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1335 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1336 | |
| 25928 | 1337 | (* `set:int': dummy construction *) | 
| 1338 | theorem int_gr_induct [case_names base step, induct set: int]: | |
| 63652 | 1339 | fixes i k :: int | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1340 | assumes "k < i" "P (k + 1)" "\<And>i. k < i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1341 | shows "P i" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1342 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1343 | have "k+1 \<le> i" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1344 | using assms by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1345 | then show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1346 | by (induction i rule: int_ge_induct) (auto simp: assms) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1347 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1348 | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1349 | theorem int_le_induct [consumes 1, case_names base step]: | 
| 63652 | 1350 | fixes i k :: int | 
| 1351 | assumes le: "i \<le> k" | |
| 1352 | and base: "P k" | |
| 1353 | and step: "\<And>i. i \<le> k \<Longrightarrow> P i \<Longrightarrow> P (i - 1)" | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1354 | shows "P i" | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1355 | proof - | 
| 63652 | 1356 | have "\<And>i::int. n = nat(k-i) \<Longrightarrow> i \<le> k \<Longrightarrow> P i" for n | 
| 1357 | proof (induct n) | |
| 1358 | case 0 | |
| 1359 | then have "i = k" by arith | |
| 1360 | with base show "P i" by simp | |
| 1361 | next | |
| 1362 | case (Suc n) | |
| 1363 | then have "n = nat (k - (i + 1))" by arith | |
| 1364 | moreover have k: "i + 1 \<le> k" using Suc.prems by arith | |
| 1365 | ultimately have "P (i + 1)" by (rule Suc.hyps) | |
| 1366 | from step[OF k this] show ?case by simp | |
| 1367 | qed | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1368 | with le show ?thesis by fast | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1369 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1370 | |
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1371 | theorem int_less_induct [consumes 1, case_names base step]: | 
| 63652 | 1372 | fixes i k :: int | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1373 | assumes "i < k" "P (k - 1)" "\<And>i. i < k \<Longrightarrow> P i \<Longrightarrow> P (i - 1)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1374 | shows "P i" | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1375 | proof - | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1376 | have "i \<le> k-1" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1377 | using assms by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1378 | then show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1379 | by (induction i rule: int_le_induct) (auto simp: assms) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1380 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1381 | |
| 36811 
4ab4aa5bee1c
renamed former Int.int_induct to Int.int_of_nat_induct, former Presburger.int_induct to Int.int_induct: is more conservative and more natural than the intermediate solution
 haftmann parents: 
36801diff
changeset | 1382 | theorem int_induct [case_names base step1 step2]: | 
| 36801 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1383 | fixes k :: int | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1384 | assumes base: "P k" | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1385 | and step1: "\<And>i. k \<le> i \<Longrightarrow> P i \<Longrightarrow> P (i + 1)" | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1386 | and step2: "\<And>i. k \<ge> i \<Longrightarrow> P i \<Longrightarrow> P (i - 1)" | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1387 | shows "P i" | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1388 | proof - | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1389 | have "i \<le> k \<or> i \<ge> k" by arith | 
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1390 | then show ?thesis | 
| 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1391 | proof | 
| 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1392 | assume "i \<ge> k" | 
| 63652 | 1393 | then show ?thesis | 
| 1394 | using base by (rule int_ge_induct) (fact step1) | |
| 36801 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1395 | next | 
| 42676 
8724f20bf69c
proper case_names for int_cases, int_of_nat_induct;
 wenzelm parents: 
42411diff
changeset | 1396 | assume "i \<le> k" | 
| 63652 | 1397 | then show ?thesis | 
| 1398 | using base by (rule int_le_induct) (fact step2) | |
| 36801 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1399 | qed | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1400 | qed | 
| 
3560de0fe851
moved int induction lemma to theory Int as int_bidirectional_induct
 haftmann parents: 
36749diff
changeset | 1401 | |
| 63652 | 1402 | |
| 1403 | subsection \<open>Intermediate value theorems\<close> | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1404 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1405 | lemma nat_ivt_aux: | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1406 | "\<lbrakk>\<forall>i<n. \<bar>f (Suc i) - f i\<bar> \<le> 1; f 0 \<le> k; k \<le> f n\<rbrakk> \<Longrightarrow> \<exists>i \<le> n. f i = k" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1407 | for m n :: nat and k :: int | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1408 | proof (induct n) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1409 | case (Suc n) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1410 | show ?case | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1411 | proof (cases "k = f (Suc n)") | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1412 | case False | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1413 | with Suc have "k \<le> f n" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1414 | by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1415 | with Suc show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1416 | by (auto simp add: abs_if split: if_split_asm intro: le_SucI) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1417 | qed (use Suc in auto) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1418 | qed auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1419 | |
| 67116 | 1420 | lemma nat_intermed_int_val: | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1421 | fixes m n :: nat and k :: int | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1422 | assumes "\<forall>i. m \<le> i \<and> i < n \<longrightarrow> \<bar>f (Suc i) - f i\<bar> \<le> 1" "m \<le> n" "f m \<le> k" "k \<le> f n" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1423 | shows "\<exists>i. m \<le> i \<and> i \<le> n \<and> f i = k" | 
| 67116 | 1424 | proof - | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1425 | obtain i where "i \<le> n - m" "k = f (m + i)" | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1426 | using nat_ivt_aux [of "n - m" "f \<circ> plus m" k] assms by auto | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1427 | with assms show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1428 | by (rule_tac x = "m + i" in exI) auto | 
| 67116 | 1429 | qed | 
| 1430 | ||
| 1431 | lemma nat0_intermed_int_val: | |
| 1432 | "\<exists>i\<le>n. f i = k" | |
| 1433 | if "\<forall>i<n. \<bar>f (i + 1) - f i\<bar> \<le> 1" "f 0 \<le> k" "k \<le> f n" | |
| 63652 | 1434 | for n :: nat and k :: int | 
| 67116 | 1435 | using nat_intermed_int_val [of 0 n f k] that by auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1436 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1437 | |
| 63652 | 1438 | subsection \<open>Products and 1, by T. M. Rasmussen\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1439 | |
| 34055 | 1440 | lemma abs_zmult_eq_1: | 
| 63652 | 1441 | fixes m n :: int | 
| 34055 | 1442 | assumes mn: "\<bar>m * n\<bar> = 1" | 
| 63652 | 1443 | shows "\<bar>m\<bar> = 1" | 
| 34055 | 1444 | proof - | 
| 63652 | 1445 | from mn have 0: "m \<noteq> 0" "n \<noteq> 0" by auto | 
| 1446 | have "\<not> 2 \<le> \<bar>m\<bar>" | |
| 34055 | 1447 | proof | 
| 1448 | assume "2 \<le> \<bar>m\<bar>" | |
| 63652 | 1449 | then have "2 * \<bar>n\<bar> \<le> \<bar>m\<bar> * \<bar>n\<bar>" by (simp add: mult_mono 0) | 
| 1450 | also have "\<dots> = \<bar>m * n\<bar>" by (simp add: abs_mult) | |
| 1451 | also from mn have "\<dots> = 1" by simp | |
| 1452 | finally have "2 * \<bar>n\<bar> \<le> 1" . | |
| 1453 | with 0 show "False" by arith | |
| 34055 | 1454 | qed | 
| 63652 | 1455 | with 0 show ?thesis by auto | 
| 34055 | 1456 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1457 | |
| 63652 | 1458 | lemma pos_zmult_eq_1_iff_lemma: "m * n = 1 \<Longrightarrow> m = 1 \<or> m = - 1" | 
| 1459 | for m n :: int | |
| 1460 | using abs_zmult_eq_1 [of m n] by arith | |
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1461 | |
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35634diff
changeset | 1462 | lemma pos_zmult_eq_1_iff: | 
| 63652 | 1463 | fixes m n :: int | 
| 1464 | assumes "0 < m" | |
| 1465 | shows "m * n = 1 \<longleftrightarrow> m = 1 \<and> n = 1" | |
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35634diff
changeset | 1466 | proof - | 
| 63652 | 1467 | from assms have "m * n = 1 \<Longrightarrow> m = 1" | 
| 1468 | by (auto dest: pos_zmult_eq_1_iff_lemma) | |
| 1469 | then show ?thesis | |
| 1470 | by (auto dest: pos_zmult_eq_1_iff_lemma) | |
| 35815 
10e723e54076
tuned proofs (to avoid linarith error message caused by bootstrapping of HOL)
 boehmes parents: 
35634diff
changeset | 1471 | qed | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1472 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1473 | lemma zmult_eq_1_iff: "m * n = 1 \<longleftrightarrow> (m = 1 \<and> n = 1) \<or> (m = - 1 \<and> n = - 1)" (is "?L = ?R") | 
| 63652 | 1474 | for m n :: int | 
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1475 | proof | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1476 | assume L: ?L show ?R | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1477 | using pos_zmult_eq_1_iff_lemma [OF L] L by force | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1478 | qed auto | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1479 | |
| 69700 
7a92cbec7030
new material about summations and powers, along with some tweaks
 paulson <lp15@cam.ac.uk> parents: 
69605diff
changeset | 1480 | lemma infinite_UNIV_int [simp]: "\<not> finite (UNIV::int set)" | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1481 | proof | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1482 | assume "finite (UNIV::int set)" | 
| 61076 | 1483 | moreover have "inj (\<lambda>i::int. 2 * i)" | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1484 | by (rule injI) simp | 
| 61076 | 1485 | ultimately have "surj (\<lambda>i::int. 2 * i)" | 
| 33296 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1486 | by (rule finite_UNIV_inj_surj) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1487 | then obtain i :: int where "1 = 2 * i" by (rule surjE) | 
| 
a3924d1069e5
moved theory Divides after theory Nat_Numeral; tuned some proof texts
 haftmann parents: 
33056diff
changeset | 1488 | then show False by (simp add: pos_zmult_eq_1_iff) | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1489 | qed | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1490 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 1491 | |
| 60758 | 1492 | subsection \<open>The divides relation\<close> | 
| 33320 | 1493 | |
| 63652 | 1494 | lemma zdvd_antisym_nonneg: "0 \<le> m \<Longrightarrow> 0 \<le> n \<Longrightarrow> m dvd n \<Longrightarrow> n dvd m \<Longrightarrow> m = n" | 
| 1495 | for m n :: int | |
| 1496 | by (auto simp add: dvd_def mult.assoc zero_le_mult_iff zmult_eq_1_iff) | |
| 33320 | 1497 | |
| 63652 | 1498 | lemma zdvd_antisym_abs: | 
| 1499 | fixes a b :: int | |
| 1500 | assumes "a dvd b" and "b dvd a" | |
| 33320 | 1501 | shows "\<bar>a\<bar> = \<bar>b\<bar>" | 
| 63652 | 1502 | proof (cases "a = 0") | 
| 1503 | case True | |
| 1504 | with assms show ?thesis by simp | |
| 33657 | 1505 | next | 
| 63652 | 1506 | case False | 
| 1507 | from \<open>a dvd b\<close> obtain k where k: "b = a * k" | |
| 1508 | unfolding dvd_def by blast | |
| 1509 | from \<open>b dvd a\<close> obtain k' where k': "a = b * k'" | |
| 1510 | unfolding dvd_def by blast | |
| 1511 | from k k' have "a = a * k * k'" by simp | |
| 1512 | with mult_cancel_left1[where c="a" and b="k*k'"] have kk': "k * k' = 1" | |
| 1513 | using \<open>a \<noteq> 0\<close> by (simp add: mult.assoc) | |
| 1514 | then have "k = 1 \<and> k' = 1 \<or> k = -1 \<and> k' = -1" | |
| 1515 | by (simp add: zmult_eq_1_iff) | |
| 1516 | with k k' show ?thesis by auto | |
| 33320 | 1517 | qed | 
| 1518 | ||
| 63652 | 1519 | lemma zdvd_zdiffD: "k dvd m - n \<Longrightarrow> k dvd n \<Longrightarrow> k dvd m" | 
| 1520 | for k m n :: int | |
| 60162 | 1521 | using dvd_add_right_iff [of k "- n" m] by simp | 
| 33320 | 1522 | |
| 63652 | 1523 | lemma zdvd_reduce: "k dvd n + k * m \<longleftrightarrow> k dvd n" | 
| 1524 | for k m n :: int | |
| 58649 
a62065b5e1e2
generalized and consolidated some theorems concerning divisibility
 haftmann parents: 
58512diff
changeset | 1525 | using dvd_add_times_triv_right_iff [of k n m] by (simp add: ac_simps) | 
| 33320 | 1526 | |
| 1527 | lemma dvd_imp_le_int: | |
| 1528 | fixes d i :: int | |
| 1529 | assumes "i \<noteq> 0" and "d dvd i" | |
| 1530 | shows "\<bar>d\<bar> \<le> \<bar>i\<bar>" | |
| 1531 | proof - | |
| 60758 | 1532 | from \<open>d dvd i\<close> obtain k where "i = d * k" .. | 
| 1533 | with \<open>i \<noteq> 0\<close> have "k \<noteq> 0" by auto | |
| 33320 | 1534 | then have "1 \<le> \<bar>k\<bar>" and "0 \<le> \<bar>d\<bar>" by auto | 
| 1535 | then have "\<bar>d\<bar> * 1 \<le> \<bar>d\<bar> * \<bar>k\<bar>" by (rule mult_left_mono) | |
| 60758 | 1536 | with \<open>i = d * k\<close> show ?thesis by (simp add: abs_mult) | 
| 33320 | 1537 | qed | 
| 1538 | ||
| 1539 | lemma zdvd_not_zless: | |
| 1540 | fixes m n :: int | |
| 1541 | assumes "0 < m" and "m < n" | |
| 1542 | shows "\<not> n dvd m" | |
| 1543 | proof | |
| 1544 | from assms have "0 < n" by auto | |
| 1545 | assume "n dvd m" then obtain k where k: "m = n * k" .. | |
| 60758 | 1546 | with \<open>0 < m\<close> have "0 < n * k" by auto | 
| 1547 | with \<open>0 < n\<close> have "0 < k" by (simp add: zero_less_mult_iff) | |
| 1548 | with k \<open>0 < n\<close> \<open>m < n\<close> have "n * k < n * 1" by simp | |
| 1549 | with \<open>0 < n\<close> \<open>0 < k\<close> show False unfolding mult_less_cancel_left by auto | |
| 33320 | 1550 | qed | 
| 1551 | ||
| 63652 | 1552 | lemma zdvd_mult_cancel: | 
| 1553 | fixes k m n :: int | |
| 1554 | assumes d: "k * m dvd k * n" | |
| 1555 | and "k \<noteq> 0" | |
| 33320 | 1556 | shows "m dvd n" | 
| 63652 | 1557 | proof - | 
| 1558 | from d obtain h where h: "k * n = k * m * h" | |
| 1559 | unfolding dvd_def by blast | |
| 1560 | have "n = m * h" | |
| 1561 | proof (rule ccontr) | |
| 1562 | assume "\<not> ?thesis" | |
| 1563 | with \<open>k \<noteq> 0\<close> have "k * n \<noteq> k * (m * h)" by simp | |
| 1564 | with h show False | |
| 1565 | by (simp add: mult.assoc) | |
| 1566 | qed | |
| 1567 | then show ?thesis by simp | |
| 33320 | 1568 | qed | 
| 1569 | ||
| 67118 | 1570 | lemma int_dvd_int_iff [simp]: | 
| 1571 | "int m dvd int n \<longleftrightarrow> m dvd n" | |
| 33320 | 1572 | proof - | 
| 67118 | 1573 | have "m dvd n" if "int n = int m * k" for k | 
| 63652 | 1574 | proof (cases k) | 
| 67118 | 1575 | case (nonneg q) | 
| 1576 | with that have "n = m * q" | |
| 63652 | 1577 | by (simp del: of_nat_mult add: of_nat_mult [symmetric]) | 
| 1578 | then show ?thesis .. | |
| 1579 | next | |
| 67118 | 1580 | case (neg q) | 
| 1581 | with that have "int n = int m * (- int (Suc q))" | |
| 63652 | 1582 | by simp | 
| 67118 | 1583 | also have "\<dots> = - (int m * int (Suc q))" | 
| 63652 | 1584 | by (simp only: mult_minus_right) | 
| 67118 | 1585 | also have "\<dots> = - int (m * Suc q)" | 
| 63652 | 1586 | by (simp only: of_nat_mult [symmetric]) | 
| 67118 | 1587 | finally have "- int (m * Suc q) = int n" .. | 
| 63652 | 1588 | then show ?thesis | 
| 1589 | by (simp only: negative_eq_positive) auto | |
| 33320 | 1590 | qed | 
| 67118 | 1591 | then show ?thesis by (auto simp add: dvd_def) | 
| 33320 | 1592 | qed | 
| 1593 | ||
| 67118 | 1594 | lemma dvd_nat_abs_iff [simp]: | 
| 1595 | "n dvd nat \<bar>k\<bar> \<longleftrightarrow> int n dvd k" | |
| 1596 | proof - | |
| 1597 | have "n dvd nat \<bar>k\<bar> \<longleftrightarrow> int n dvd int (nat \<bar>k\<bar>)" | |
| 1598 | by (simp only: int_dvd_int_iff) | |
| 1599 | then show ?thesis | |
| 1600 | by simp | |
| 1601 | qed | |
| 1602 | ||
| 1603 | lemma nat_abs_dvd_iff [simp]: | |
| 1604 | "nat \<bar>k\<bar> dvd n \<longleftrightarrow> k dvd int n" | |
| 1605 | proof - | |
| 1606 | have "nat \<bar>k\<bar> dvd n \<longleftrightarrow> int (nat \<bar>k\<bar>) dvd int n" | |
| 1607 | by (simp only: int_dvd_int_iff) | |
| 1608 | then show ?thesis | |
| 1609 | by simp | |
| 1610 | qed | |
| 1611 | ||
| 1612 | lemma zdvd1_eq [simp]: "x dvd 1 \<longleftrightarrow> \<bar>x\<bar> = 1" (is "?lhs \<longleftrightarrow> ?rhs") | |
| 63652 | 1613 | for x :: int | 
| 33320 | 1614 | proof | 
| 63652 | 1615 | assume ?lhs | 
| 67118 | 1616 | then have "nat \<bar>x\<bar> dvd nat \<bar>1\<bar>" | 
| 1617 | by (simp only: nat_abs_dvd_iff) simp | |
| 1618 | then have "nat \<bar>x\<bar> = 1" | |
| 1619 | by simp | |
| 1620 | then show ?rhs | |
| 1621 | by (cases "x < 0") simp_all | |
| 33320 | 1622 | next | 
| 63652 | 1623 | assume ?rhs | 
| 67118 | 1624 | then have "x = 1 \<or> x = - 1" | 
| 1625 | by auto | |
| 1626 | then show ?lhs | |
| 1627 | by (auto intro: dvdI) | |
| 33320 | 1628 | qed | 
| 1629 | ||
| 60162 | 1630 | lemma zdvd_mult_cancel1: | 
| 63652 | 1631 | fixes m :: int | 
| 1632 | assumes mp: "m \<noteq> 0" | |
| 1633 | shows "m * n dvd m \<longleftrightarrow> \<bar>n\<bar> = 1" | |
| 1634 | (is "?lhs \<longleftrightarrow> ?rhs") | |
| 33320 | 1635 | proof | 
| 63652 | 1636 | assume ?rhs | 
| 1637 | then show ?lhs | |
| 1638 | by (cases "n > 0") (auto simp add: minus_equation_iff) | |
| 33320 | 1639 | next | 
| 63652 | 1640 | assume ?lhs | 
| 1641 | then have "m * n dvd m * 1" by simp | |
| 1642 | from zdvd_mult_cancel[OF this mp] show ?rhs | |
| 1643 | by (simp only: zdvd1_eq) | |
| 33320 | 1644 | qed | 
| 1645 | ||
| 63652 | 1646 | lemma nat_dvd_iff: "nat z dvd m \<longleftrightarrow> (if 0 \<le> z then z dvd int m else m = 0)" | 
| 67118 | 1647 | using nat_abs_dvd_iff [of z m] by (cases "z \<ge> 0") auto | 
| 33320 | 1648 | |
| 63652 | 1649 | lemma eq_nat_nat_iff: "0 \<le> z \<Longrightarrow> 0 \<le> z' \<Longrightarrow> nat z = nat z' \<longleftrightarrow> z = z'" | 
| 67116 | 1650 | by (auto elim: nonneg_int_cases) | 
| 33341 | 1651 | |
| 63652 | 1652 | lemma nat_power_eq: "0 \<le> z \<Longrightarrow> nat (z ^ n) = nat z ^ n" | 
| 33341 | 1653 | by (induct n) (simp_all add: nat_mult_distrib) | 
| 1654 | ||
| 66912 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1655 | lemma numeral_power_eq_nat_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1656 | "numeral x ^ n = nat y \<longleftrightarrow> numeral x ^ n = y" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1657 | using nat_eq_iff2 by auto | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1658 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1659 | lemma nat_eq_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1660 | "nat y = numeral x ^ n \<longleftrightarrow> y = numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1661 | using numeral_power_eq_nat_cancel_iff[of x n y] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1662 | by (metis (mono_tags)) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1663 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1664 | lemma numeral_power_le_nat_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1665 | "numeral x ^ n \<le> nat a \<longleftrightarrow> numeral x ^ n \<le> a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1666 | using nat_le_eq_zle[of "numeral x ^ n" a] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1667 | by (auto simp: nat_power_eq) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1668 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1669 | lemma nat_le_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1670 | "nat a \<le> numeral x ^ n \<longleftrightarrow> a \<le> numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1671 | by (simp add: nat_le_iff) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1672 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1673 | lemma numeral_power_less_nat_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1674 | "numeral x ^ n < nat a \<longleftrightarrow> numeral x ^ n < a" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1675 | using nat_less_eq_zless[of "numeral x ^ n" a] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1676 | by (auto simp: nat_power_eq) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1677 | |
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1678 | lemma nat_less_numeral_power_cancel_iff [simp]: | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1679 | "nat a < numeral x ^ n \<longleftrightarrow> a < numeral x ^ n" | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1680 | using nat_less_eq_zless[of a "numeral x ^ n"] | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1681 | by (cases "a < 0") (auto simp: nat_power_eq less_le_trans[where y=0]) | 
| 
a99a7cbf0fb5
generalized lemmas cancelling real_of_int/real in (in)equalities with power; completed set of related simp rules; lemmas about floorlog/bitlen
 immler parents: 
66886diff
changeset | 1682 | |
| 71616 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1683 | lemma zdvd_imp_le: "z \<le> n" if "z dvd n" "0 < n" for n z :: int | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1684 | proof (cases n) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1685 | case (nonneg n) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1686 | show ?thesis | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1687 | by (cases z) (use nonneg dvd_imp_le that in auto) | 
| 
a9de39608b1a
more tidying up of old apply-proofs
 paulson <lp15@cam.ac.uk> parents: 
70927diff
changeset | 1688 | qed (use that in auto) | 
| 33320 | 1689 | |
| 36749 | 1690 | lemma zdvd_period: | 
| 1691 | fixes a d :: int | |
| 1692 | assumes "a dvd d" | |
| 1693 | shows "a dvd (x + t) \<longleftrightarrow> a dvd ((x + c * d) + t)" | |
| 63652 | 1694 | (is "?lhs \<longleftrightarrow> ?rhs") | 
| 36749 | 1695 | proof - | 
| 66816 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 1696 | from assms have "a dvd (x + t) \<longleftrightarrow> a dvd ((x + t) + c * d)" | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 1697 | by (simp add: dvd_add_left_iff) | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 1698 | then show ?thesis | 
| 
212a3334e7da
more fundamental definition of div and mod on int
 haftmann parents: 
66035diff
changeset | 1699 | by (simp add: ac_simps) | 
| 36749 | 1700 | qed | 
| 1701 | ||
| 33320 | 1702 | |
| 71837 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1703 | subsection \<open>Powers with integer exponents\<close> | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1704 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1705 | text \<open> | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1706 | The following allows writing powers with an integer exponent. While the type signature | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1707 | is very generic, most theorems will assume that the underlying type is a division ring or | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1708 | a field. | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1709 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1710 | The notation `powi' is inspired by the `powr' notation for real/complex exponentiation. | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1711 | \<close> | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1712 | definition power_int :: "'a :: {inverse, power} \<Rightarrow> int \<Rightarrow> 'a" (infixr "powi" 80) where
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1713 | "power_int x n = (if n \<ge> 0 then x ^ nat n else inverse x ^ (nat (-n)))" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1714 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1715 | lemma power_int_0_right [simp]: "power_int x 0 = 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1716 | and power_int_1_right [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1717 |         "power_int (y :: 'a :: {power, inverse, monoid_mult}) 1 = y"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1718 | and power_int_minus1_right [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1719 |         "power_int (y :: 'a :: {power, inverse, monoid_mult}) (-1) = inverse y"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1720 | by (simp_all add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1721 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1722 | lemma power_int_of_nat [simp]: "power_int x (int n) = x ^ n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1723 | by (simp add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1724 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1725 | lemma power_int_numeral [simp]: "power_int x (numeral n) = x ^ numeral n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1726 | by (simp add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1727 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1728 | lemma int_cases4 [case_names nonneg neg]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1729 | fixes m :: int | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1730 | obtains n where "m = int n" | n where "n > 0" "m = -int n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1731 | proof (cases "m \<ge> 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1732 | case True | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1733 | thus ?thesis using that(1)[of "nat m"] by auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1734 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1735 | case False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1736 | thus ?thesis using that(2)[of "nat (-m)"] by auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1737 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1738 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1739 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1740 | context | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1741 |   assumes "SORT_CONSTRAINT('a::division_ring)"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1742 | begin | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1743 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1744 | lemma power_int_minus: "power_int (x::'a) (-n) = inverse (power_int x n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1745 | by (auto simp: power_int_def power_inverse) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1746 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1747 | lemma power_int_eq_0_iff [simp]: "power_int (x::'a) n = 0 \<longleftrightarrow> x = 0 \<and> n \<noteq> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1748 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1749 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1750 | lemma power_int_0_left_If: "power_int (0 :: 'a) m = (if m = 0 then 1 else 0)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1751 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1752 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1753 | lemma power_int_0_left [simp]: "m \<noteq> 0 \<Longrightarrow> power_int (0 :: 'a) m = 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1754 | by (simp add: power_int_0_left_If) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1755 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1756 | lemma power_int_1_left [simp]: "power_int 1 n = (1 :: 'a :: division_ring)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1757 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1758 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1759 | lemma power_diff_conv_inverse: "x \<noteq> 0 \<Longrightarrow> m \<le> n \<Longrightarrow> (x :: 'a) ^ (n - m) = x ^ n * inverse x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1760 | by (simp add: field_simps flip: power_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1761 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1762 | lemma power_mult_inverse_distrib: "x ^ m * inverse (x :: 'a) = inverse x * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1763 | proof (cases "x = 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1764 | case [simp]: False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1765 | show ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1766 | proof (cases m) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1767 | case (Suc m') | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1768 | have "x ^ Suc m' * inverse x = x ^ m'" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1769 | by (subst power_Suc2) (auto simp: mult.assoc) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1770 | also have "\<dots> = inverse x * x ^ Suc m'" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1771 | by (subst power_Suc) (auto simp: mult.assoc [symmetric]) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1772 | finally show ?thesis using Suc by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1773 | qed auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1774 | qed auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1775 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1776 | lemma power_mult_power_inverse_commute: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1777 | "x ^ m * inverse (x :: 'a) ^ n = inverse x ^ n * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1778 | proof (induction n) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1779 | case (Suc n) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1780 | have "x ^ m * inverse x ^ Suc n = (x ^ m * inverse x ^ n) * inverse x" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1781 | by (simp only: power_Suc2 mult.assoc) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1782 | also have "x ^ m * inverse x ^ n = inverse x ^ n * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1783 | by (rule Suc) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1784 | also have "\<dots> * inverse x = (inverse x ^ n * inverse x) * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1785 | by (simp add: mult.assoc power_mult_inverse_distrib) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1786 | also have "\<dots> = inverse x ^ (Suc n) * x ^ m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1787 | by (simp only: power_Suc2) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1788 | finally show ?case . | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1789 | qed auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1790 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1791 | lemma power_int_add: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1792 | assumes "x \<noteq> 0 \<or> m + n \<noteq> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1793 | shows "power_int (x::'a) (m + n) = power_int x m * power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1794 | proof (cases "x = 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1795 | case True | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1796 | thus ?thesis using assms by (auto simp: power_int_0_left_If) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1797 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1798 | case [simp]: False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1799 | show ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1800 | proof (cases m n rule: int_cases4[case_product int_cases4]) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1801 | case (nonneg_nonneg a b) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1802 | thus ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1803 | by (auto simp: power_int_def nat_add_distrib power_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1804 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1805 | case (nonneg_neg a b) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1806 | thus ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1807 | by (auto simp: power_int_def nat_diff_distrib not_le power_diff_conv_inverse | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1808 | power_mult_power_inverse_commute) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1809 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1810 | case (neg_nonneg a b) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1811 | thus ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1812 | by (auto simp: power_int_def nat_diff_distrib not_le power_diff_conv_inverse | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1813 | power_mult_power_inverse_commute) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1814 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1815 | case (neg_neg a b) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1816 | thus ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1817 | by (auto simp: power_int_def nat_add_distrib add.commute simp flip: power_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1818 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1819 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1820 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1821 | lemma power_int_add_1: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1822 | assumes "x \<noteq> 0 \<or> m \<noteq> -1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1823 | shows "power_int (x::'a) (m + 1) = power_int x m * x" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1824 | using assms by (subst power_int_add) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1825 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1826 | lemma power_int_add_1': | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1827 | assumes "x \<noteq> 0 \<or> m \<noteq> -1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1828 | shows "power_int (x::'a) (m + 1) = x * power_int x m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1829 | using assms by (subst add.commute, subst power_int_add) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1830 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1831 | lemma power_int_commutes: "power_int (x :: 'a) n * x = x * power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1832 | by (cases "x = 0") (auto simp flip: power_int_add_1 power_int_add_1') | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1833 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1834 | lemma power_int_inverse [field_simps, field_split_simps, divide_simps]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1835 | "power_int (inverse (x :: 'a)) n = inverse (power_int x n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1836 | by (auto simp: power_int_def power_inverse) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1837 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1838 | lemma power_int_mult: "power_int (x :: 'a) (m * n) = power_int (power_int x m) n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1839 | by (auto simp: power_int_def zero_le_mult_iff simp flip: power_mult power_inverse nat_mult_distrib) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1840 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1841 | end | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1842 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1843 | context | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1844 |   assumes "SORT_CONSTRAINT('a::field)"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1845 | begin | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1846 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1847 | lemma power_int_diff: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1848 | assumes "x \<noteq> 0 \<or> m \<noteq> n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1849 | shows "power_int (x::'a) (m - n) = power_int x m / power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1850 | using power_int_add[of x m "-n"] assms by (auto simp: field_simps power_int_minus) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1851 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1852 | lemma power_int_minus_mult: "x \<noteq> 0 \<or> n \<noteq> 0 \<Longrightarrow> power_int (x :: 'a) (n - 1) * x = power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1853 | by (auto simp flip: power_int_add_1) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1854 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1855 | lemma power_int_mult_distrib: "power_int (x * y :: 'a) m = power_int x m * power_int y m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1856 | by (auto simp: power_int_def power_mult_distrib) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1857 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1858 | lemmas power_int_mult_distrib_numeral1 = power_int_mult_distrib [where x = "numeral w" for w, simp] | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1859 | lemmas power_int_mult_distrib_numeral2 = power_int_mult_distrib [where y = "numeral w" for w, simp] | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1860 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1861 | lemma power_int_divide_distrib: "power_int (x / y :: 'a) m = power_int x m / power_int y m" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1862 | using power_int_mult_distrib[of x "inverse y" m] unfolding power_int_inverse | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1863 | by (simp add: field_simps) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1864 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1865 | end | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1866 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1867 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1868 | lemma power_int_add_numeral [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1869 | "power_int x (numeral m) * power_int x (numeral n) = power_int x (numeral (m + n))" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1870 | for x :: "'a :: division_ring" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1871 | by (simp add: power_int_add [symmetric]) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1872 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1873 | lemma power_int_add_numeral2 [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1874 | "power_int x (numeral m) * (power_int x (numeral n) * b) = power_int x (numeral (m + n)) * b" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1875 | for x :: "'a :: division_ring" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1876 | by (simp add: mult.assoc [symmetric]) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1877 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1878 | lemma power_int_mult_numeral [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1879 | "power_int (power_int x (numeral m)) (numeral n) = power_int x (numeral (m * n))" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1880 | for x :: "'a :: division_ring" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1881 | by (simp only: numeral_mult power_int_mult) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1882 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1883 | lemma power_int_not_zero: "(x :: 'a :: division_ring) \<noteq> 0 \<or> n = 0 \<Longrightarrow> power_int x n \<noteq> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1884 | by (subst power_int_eq_0_iff) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1885 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1886 | lemma power_int_one_over [field_simps, field_split_simps, divide_simps]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1887 | "power_int (1 / x :: 'a :: division_ring) n = 1 / power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1888 | using power_int_inverse[of x] by (simp add: divide_inverse) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1889 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1890 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1891 | context | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1892 |   assumes "SORT_CONSTRAINT('a :: linordered_field)"
 | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1893 | begin | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1894 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1895 | lemma power_int_numeral_neg_numeral [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1896 | "power_int (numeral m) (-numeral n) = (inverse (numeral (Num.pow m n)) :: 'a)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1897 | by (simp add: power_int_minus) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1898 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1899 | lemma zero_less_power_int [simp]: "0 < (x :: 'a) \<Longrightarrow> 0 < power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1900 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1901 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1902 | lemma zero_le_power_int [simp]: "0 \<le> (x :: 'a) \<Longrightarrow> 0 \<le> power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1903 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1904 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1905 | lemma power_int_mono: "(x :: 'a) \<le> y \<Longrightarrow> n \<ge> 0 \<Longrightarrow> 0 \<le> x \<Longrightarrow> power_int x n \<le> power_int y n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1906 | by (cases n rule: int_cases4) (auto intro: power_mono) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1907 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1908 | lemma one_le_power_int [simp]: "1 \<le> (x :: 'a) \<Longrightarrow> n \<ge> 0 \<Longrightarrow> 1 \<le> power_int x n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1909 | using power_int_mono [of 1 x n] by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1910 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1911 | lemma power_int_le_one: "0 \<le> (x :: 'a) \<Longrightarrow> n \<ge> 0 \<Longrightarrow> x \<le> 1 \<Longrightarrow> power_int x n \<le> 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1912 | using power_int_mono [of x 1 n] by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1913 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1914 | lemma power_int_le_imp_le_exp: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1915 | assumes gt1: "1 < (x :: 'a :: linordered_field)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1916 | assumes "power_int x m \<le> power_int x n" "n \<ge> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1917 | shows "m \<le> n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1918 | proof (cases "m < 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1919 | case True | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1920 | with \<open>n \<ge> 0\<close> show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1921 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1922 | case False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1923 | with assms have "x ^ nat m \<le> x ^ nat n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1924 | by (simp add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1925 | from gt1 and this show ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1926 | using False \<open>n \<ge> 0\<close> by auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1927 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1928 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1929 | lemma power_int_le_imp_less_exp: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1930 | assumes gt1: "1 < (x :: 'a :: linordered_field)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1931 | assumes "power_int x m < power_int x n" "n \<ge> 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1932 | shows "m < n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1933 | proof (cases "m < 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1934 | case True | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1935 | with \<open>n \<ge> 0\<close> show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1936 | next | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1937 | case False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1938 | with assms have "x ^ nat m < x ^ nat n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1939 | by (simp add: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1940 | from gt1 and this show ?thesis | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1941 | using False \<open>n \<ge> 0\<close> by auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1942 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1943 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1944 | lemma power_int_strict_mono: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1945 | "(a :: 'a :: linordered_field) < b \<Longrightarrow> 0 \<le> a \<Longrightarrow> 0 < n \<Longrightarrow> power_int a n < power_int b n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1946 | by (auto simp: power_int_def intro!: power_strict_mono) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1947 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1948 | lemma power_int_mono_iff [simp]: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1949 | fixes a b :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1950 | shows "\<lbrakk>a \<ge> 0; b \<ge> 0; n > 0\<rbrakk> \<Longrightarrow> power_int a n \<le> power_int b n \<longleftrightarrow> a \<le> b" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1951 | by (auto simp: power_int_def intro!: power_strict_mono) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1952 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1953 | lemma power_int_strict_increasing: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1954 | fixes a :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1955 | assumes "n < N" "1 < a" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1956 | shows "power_int a N > power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1957 | proof - | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1958 | have *: "a ^ nat (N - n) > a ^ 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1959 | using assms by (intro power_strict_increasing) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1960 | have "power_int a N = power_int a n * power_int a (N - n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1961 | using assms by (simp flip: power_int_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1962 | also have "\<dots> > power_int a n * 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1963 | using assms * | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1964 | by (intro mult_strict_left_mono zero_less_power_int) (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1965 | finally show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1966 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1967 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1968 | lemma power_int_increasing: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1969 | fixes a :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1970 | assumes "n \<le> N" "a \<ge> 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1971 | shows "power_int a N \<ge> power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1972 | proof - | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1973 | have *: "a ^ nat (N - n) \<ge> a ^ 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1974 | using assms by (intro power_increasing) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1975 | have "power_int a N = power_int a n * power_int a (N - n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1976 | using assms by (simp flip: power_int_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1977 | also have "\<dots> \<ge> power_int a n * 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1978 | using assms * by (intro mult_left_mono) (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1979 | finally show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1980 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1981 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1982 | lemma power_int_strict_decreasing: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1983 | fixes a :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1984 | assumes "n < N" "0 < a" "a < 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1985 | shows "power_int a N < power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1986 | proof - | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1987 | have *: "a ^ nat (N - n) < a ^ 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1988 | using assms by (intro power_strict_decreasing) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1989 | have "power_int a N = power_int a n * power_int a (N - n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1990 | using assms by (simp flip: power_int_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1991 | also have "\<dots> < power_int a n * 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1992 | using assms * | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1993 | by (intro mult_strict_left_mono zero_less_power_int) (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1994 | finally show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1995 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1996 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1997 | lemma power_int_decreasing: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1998 | fixes a :: "'a :: linordered_field" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 1999 | assumes "n \<le> N" "0 \<le> a" "a \<le> 1" "a \<noteq> 0 \<or> N \<noteq> 0 \<or> n = 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2000 | shows "power_int a N \<le> power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2001 | proof (cases "a = 0") | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2002 | case False | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2003 | have *: "a ^ nat (N - n) \<le> a ^ 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2004 | using assms by (intro power_decreasing) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2005 | have "power_int a N = power_int a n * power_int a (N - n)" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2006 | using assms False by (simp flip: power_int_add) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2007 | also have "\<dots> \<le> power_int a n * 1" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2008 | using assms * by (intro mult_left_mono) (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2009 | finally show ?thesis by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2010 | qed (use assms in \<open>auto simp: power_int_0_left_If\<close>) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2011 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2012 | lemma one_less_power_int: "1 < (a :: 'a) \<Longrightarrow> 0 < n \<Longrightarrow> 1 < power_int a n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2013 | using power_int_strict_increasing[of 0 n a] by simp | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2014 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2015 | lemma power_int_abs: "\<bar>power_int a n :: 'a\<bar> = power_int \<bar>a\<bar> n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2016 | by (auto simp: power_int_def power_abs) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2017 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2018 | lemma power_int_sgn [simp]: "sgn (power_int a n :: 'a) = power_int (sgn a) n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2019 | by (auto simp: power_int_def) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2020 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2021 | lemma abs_power_int_minus [simp]: "\<bar>power_int (- a) n :: 'a\<bar> = \<bar>power_int a n\<bar>" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2022 | by (simp add: power_int_abs) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2023 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2024 | lemma power_int_strict_antimono: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2025 | assumes "(a :: 'a :: linordered_field) < b" "0 < a" "n < 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2026 | shows "power_int a n > power_int b n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2027 | proof - | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2028 | have "inverse (power_int a (-n)) > inverse (power_int b (-n))" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2029 | using assms by (intro less_imp_inverse_less power_int_strict_mono zero_less_power_int) auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2030 | thus ?thesis by (simp add: power_int_minus) | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2031 | qed | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2032 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2033 | lemma power_int_antimono: | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2034 | assumes "(a :: 'a :: linordered_field) \<le> b" "0 < a" "n < 0" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2035 | shows "power_int a n \<ge> power_int b n" | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2036 | using power_int_strict_antimono[of a b n] assms by (cases "a = b") auto | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2037 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2038 | end | 
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2039 | |
| 
dca11678c495
new constant power_int in HOL
 Manuel Eberl <eberlm@in.tum.de> parents: 
71616diff
changeset | 2040 | |
| 60758 | 2041 | subsection \<open>Finiteness of intervals\<close> | 
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2042 | |
| 63652 | 2043 | lemma finite_interval_int1 [iff]: "finite {i :: int. a \<le> i \<and> i \<le> b}"
 | 
| 2044 | proof (cases "a \<le> b") | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2045 | case True | 
| 63652 | 2046 | then show ?thesis | 
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2047 | proof (induct b rule: int_ge_induct) | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2048 | case base | 
| 63652 | 2049 |     have "{i. a \<le> i \<and> i \<le> a} = {a}" by auto
 | 
| 2050 | then show ?case by simp | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2051 | next | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2052 | case (step b) | 
| 63652 | 2053 |     then have "{i. a \<le> i \<and> i \<le> b + 1} = {i. a \<le> i \<and> i \<le> b} \<union> {b + 1}" by auto
 | 
| 2054 | with step show ?case by simp | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2055 | qed | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2056 | next | 
| 63652 | 2057 | case False | 
| 2058 | then show ?thesis | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2059 | by (metis (lifting, no_types) Collect_empty_eq finite.emptyI order_trans) | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2060 | qed | 
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2061 | |
| 63652 | 2062 | lemma finite_interval_int2 [iff]: "finite {i :: int. a \<le> i \<and> i < b}"
 | 
| 2063 | by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2064 | |
| 63652 | 2065 | lemma finite_interval_int3 [iff]: "finite {i :: int. a < i \<and> i \<le> b}"
 | 
| 2066 | by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2067 | |
| 63652 | 2068 | lemma finite_interval_int4 [iff]: "finite {i :: int. a < i \<and> i < b}"
 | 
| 2069 | by (rule rev_finite_subset[OF finite_interval_int1[of "a" "b"]]) auto | |
| 46756 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2070 | |
| 
faf62905cd53
adding finiteness of intervals on integer sets; adding another finiteness theorem for multisets
 bulwahn parents: 
46027diff
changeset | 2071 | |
| 60758 | 2072 | subsection \<open>Configuration of the code generator\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2073 | |
| 60758 | 2074 | text \<open>Constructors\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2075 | |
| 63652 | 2076 | definition Pos :: "num \<Rightarrow> int" | 
| 2077 | where [simp, code_abbrev]: "Pos = numeral" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2078 | |
| 63652 | 2079 | definition Neg :: "num \<Rightarrow> int" | 
| 2080 | where [simp, code_abbrev]: "Neg n = - (Pos n)" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2081 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2082 | code_datatype "0::int" Pos Neg | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2083 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2084 | |
| 63652 | 2085 | text \<open>Auxiliary operations.\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2086 | |
| 63652 | 2087 | definition dup :: "int \<Rightarrow> int" | 
| 2088 | where [simp]: "dup k = k + k" | |
| 26507 | 2089 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2090 | lemma dup_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2091 | "dup 0 = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2092 | "dup (Pos n) = Pos (Num.Bit0 n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2093 | "dup (Neg n) = Neg (Num.Bit0 n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2094 | by (simp_all add: numeral_Bit0) | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2095 | |
| 63652 | 2096 | definition sub :: "num \<Rightarrow> num \<Rightarrow> int" | 
| 2097 | where [simp]: "sub m n = numeral m - numeral n" | |
| 26507 | 2098 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2099 | lemma sub_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2100 | "sub Num.One Num.One = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2101 | "sub (Num.Bit0 m) Num.One = Pos (Num.BitM m)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2102 | "sub (Num.Bit1 m) Num.One = Pos (Num.Bit0 m)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2103 | "sub Num.One (Num.Bit0 n) = Neg (Num.BitM n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2104 | "sub Num.One (Num.Bit1 n) = Neg (Num.Bit0 n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2105 | "sub (Num.Bit0 m) (Num.Bit0 n) = dup (sub m n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2106 | "sub (Num.Bit1 m) (Num.Bit1 n) = dup (sub m n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2107 | "sub (Num.Bit1 m) (Num.Bit0 n) = dup (sub m n) + 1" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2108 | "sub (Num.Bit0 m) (Num.Bit1 n) = dup (sub m n) - 1" | 
| 66035 
de6cd60b1226
replace non-arithmetic terms by fresh variables before replaying linear-arithmetic proofs: avoid failed proof replays due to an overambitious simpset which may cause proof replay to diverge from the pre-computed proof trace
 boehmes parents: 
64996diff
changeset | 2109 | by (simp_all only: sub_def dup_def numeral.simps Pos_def Neg_def numeral_BitM) | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2110 | |
| 72512 | 2111 | lemma sub_BitM_One_eq: | 
| 2112 | \<open>(Num.sub (Num.BitM n) num.One) = 2 * (Num.sub n Num.One :: int)\<close> | |
| 2113 | by (cases n) simp_all | |
| 2114 | ||
| 63652 | 2115 | text \<open>Implementations.\<close> | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2116 | |
| 64996 | 2117 | lemma one_int_code [code]: "1 = Pos Num.One" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2118 | by simp | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2119 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2120 | lemma plus_int_code [code]: | 
| 63652 | 2121 | "k + 0 = k" | 
| 2122 | "0 + l = l" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2123 | "Pos m + Pos n = Pos (m + n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2124 | "Pos m + Neg n = sub m n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2125 | "Neg m + Pos n = sub n m" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2126 | "Neg m + Neg n = Neg (m + n)" | 
| 63652 | 2127 | for k l :: int | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2128 | by simp_all | 
| 26507 | 2129 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2130 | lemma uminus_int_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2131 | "uminus 0 = (0::int)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2132 | "uminus (Pos m) = Neg m" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2133 | "uminus (Neg m) = Pos m" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2134 | by simp_all | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2135 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2136 | lemma minus_int_code [code]: | 
| 63652 | 2137 | "k - 0 = k" | 
| 2138 | "0 - l = uminus l" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2139 | "Pos m - Pos n = sub m n" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2140 | "Pos m - Neg n = Pos (m + n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2141 | "Neg m - Pos n = Neg (m + n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2142 | "Neg m - Neg n = sub n m" | 
| 63652 | 2143 | for k l :: int | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2144 | by simp_all | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2145 | |
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2146 | lemma times_int_code [code]: | 
| 63652 | 2147 | "k * 0 = 0" | 
| 2148 | "0 * l = 0" | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2149 | "Pos m * Pos n = Pos (m * n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2150 | "Pos m * Neg n = Neg (m * n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2151 | "Neg m * Pos n = Neg (m * n)" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2152 | "Neg m * Neg n = Pos (m * n)" | 
| 63652 | 2153 | for k l :: int | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2154 | by simp_all | 
| 26507 | 2155 | |
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
37887diff
changeset | 2156 | instantiation int :: equal | 
| 26507 | 2157 | begin | 
| 2158 | ||
| 63652 | 2159 | definition "HOL.equal k l \<longleftrightarrow> k = (l::int)" | 
| 38857 
97775f3e8722
renamed class/constant eq to equal; tuned some instantiations
 haftmann parents: 
37887diff
changeset | 2160 | |
| 61169 | 2161 | instance | 
| 2162 | by standard (rule equal_int_def) | |
| 26507 | 2163 | |
| 2164 | end | |
| 2165 | ||
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2166 | lemma equal_int_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2167 | "HOL.equal 0 (0::int) \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2168 | "HOL.equal 0 (Pos l) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2169 | "HOL.equal 0 (Neg l) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2170 | "HOL.equal (Pos k) 0 \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2171 | "HOL.equal (Pos k) (Pos l) \<longleftrightarrow> HOL.equal k l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2172 | "HOL.equal (Pos k) (Neg l) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2173 | "HOL.equal (Neg k) 0 \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2174 | "HOL.equal (Neg k) (Pos l) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2175 | "HOL.equal (Neg k) (Neg l) \<longleftrightarrow> HOL.equal k l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2176 | by (auto simp add: equal) | 
| 26507 | 2177 | |
| 63652 | 2178 | lemma equal_int_refl [code nbe]: "HOL.equal k k \<longleftrightarrow> True" | 
| 2179 | for k :: int | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2180 | by (fact equal_refl) | 
| 26507 | 2181 | |
| 28562 | 2182 | lemma less_eq_int_code [code]: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2183 | "0 \<le> (0::int) \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2184 | "0 \<le> Pos l \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2185 | "0 \<le> Neg l \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2186 | "Pos k \<le> 0 \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2187 | "Pos k \<le> Pos l \<longleftrightarrow> k \<le> l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2188 | "Pos k \<le> Neg l \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2189 | "Neg k \<le> 0 \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2190 | "Neg k \<le> Pos l \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2191 | "Neg k \<le> Neg l \<longleftrightarrow> l \<le> k" | 
| 28958 | 2192 | by simp_all | 
| 26507 | 2193 | |
| 28562 | 2194 | lemma less_int_code [code]: | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2195 | "0 < (0::int) \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2196 | "0 < Pos l \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2197 | "0 < Neg l \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2198 | "Pos k < 0 \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2199 | "Pos k < Pos l \<longleftrightarrow> k < l" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2200 | "Pos k < Neg l \<longleftrightarrow> False" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2201 | "Neg k < 0 \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2202 | "Neg k < Pos l \<longleftrightarrow> True" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2203 | "Neg k < Neg l \<longleftrightarrow> l < k" | 
| 28958 | 2204 | by simp_all | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2205 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2206 | lemma nat_code [code]: | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2207 | "nat (Int.Neg k) = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2208 | "nat 0 = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2209 | "nat (Int.Pos k) = nat_of_num k" | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54249diff
changeset | 2210 | by (simp_all add: nat_of_num_numeral) | 
| 25928 | 2211 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2212 | lemma (in ring_1) of_int_code [code]: | 
| 54489 
03ff4d1e6784
eliminiated neg_numeral in favour of - (numeral _)
 haftmann parents: 
54249diff
changeset | 2213 | "of_int (Int.Neg k) = - numeral k" | 
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2214 | "of_int 0 = 0" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2215 | "of_int (Int.Pos k) = numeral k" | 
| 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2216 | by simp_all | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2217 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2218 | |
| 63652 | 2219 | text \<open>Serializer setup.\<close> | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2220 | |
| 52435 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51994diff
changeset | 2221 | code_identifier | 
| 
6646bb548c6b
migration from code_(const|type|class|instance) to code_printing and from code_module to code_identifier
 haftmann parents: 
51994diff
changeset | 2222 | code_module Int \<rightharpoonup> (SML) Arith and (OCaml) Arith and (Haskell) Arith | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2223 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2224 | quickcheck_params [default_type = int] | 
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2225 | |
| 47108 
2a1953f0d20d
merged fork with new numeral representation (see NEWS)
 huffman parents: 
46756diff
changeset | 2226 | hide_const (open) Pos Neg sub dup | 
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2227 | |
| 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2228 | |
| 61799 | 2229 | text \<open>De-register \<open>int\<close> as a quotient type:\<close> | 
| 48045 | 2230 | |
| 53652 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53065diff
changeset | 2231 | lifting_update int.lifting | 
| 
18fbca265e2e
use lifting_forget for deregistering numeric types as a quotient type
 kuncar parents: 
53065diff
changeset | 2232 | lifting_forget int.lifting | 
| 48045 | 2233 | |
| 67116 | 2234 | |
| 2235 | subsection \<open>Duplicates\<close> | |
| 2236 | ||
| 2237 | lemmas int_sum = of_nat_sum [where 'a=int] | |
| 2238 | lemmas int_prod = of_nat_prod [where 'a=int] | |
| 2239 | lemmas zle_int = of_nat_le_iff [where 'a=int] | |
| 2240 | lemmas int_int_eq = of_nat_eq_iff [where 'a=int] | |
| 2241 | lemmas nonneg_eq_int = nonneg_int_cases | |
| 2242 | lemmas double_eq_0_iff = double_zero | |
| 2243 | ||
| 2244 | lemmas int_distrib = | |
| 2245 | distrib_right [of z1 z2 w] | |
| 2246 | distrib_left [of w z1 z2] | |
| 2247 | left_diff_distrib [of z1 z2 w] | |
| 2248 | right_diff_distrib [of w z1 z2] | |
| 2249 | for z1 z2 w :: int | |
| 2250 | ||
| 25919 
8b1c0d434824
joined theories IntDef, Numeral, IntArith to theory Int
 haftmann parents: diff
changeset | 2251 | end | 
| 67116 | 2252 |